hwpmc_mod.c revision 298931
1/*-
2 * Copyright (c) 2003-2008 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/dev/hwpmc/hwpmc_mod.c 298931 2016-05-02 16:47:28Z pfg $");
34
35#include <sys/param.h>
36#include <sys/eventhandler.h>
37#include <sys/jail.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/module.h>
44#include <sys/mount.h>
45#include <sys/mutex.h>
46#include <sys/pmc.h>
47#include <sys/pmckern.h>
48#include <sys/pmclog.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/queue.h>
52#include <sys/resourcevar.h>
53#include <sys/rwlock.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/systm.h>
61#include <sys/vnode.h>
62
63#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64
65#include <machine/atomic.h>
66#include <machine/md_var.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include "hwpmc_soft.h"
75
76/*
77 * Types
78 */
79
80enum pmc_flags {
81	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84};
85
86/*
87 * The offset in sysent where the syscall is allocated.
88 */
89
90static int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	HWPMC_DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199    pmc_id_t pmc);
200static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201    uint32_t mode);
202static void	pmc_force_context_switch(void);
203static void	pmc_link_target_process(struct pmc *pm,
204    struct pmc_process *pp);
205static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206static void	pmc_log_kernel_mappings(struct pmc *pm);
207static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209static void	pmc_process_csw_in(struct thread *td);
210static void	pmc_process_csw_out(struct thread *td);
211static void	pmc_process_exit(void *arg, struct proc *p);
212static void	pmc_process_fork(void *arg, struct proc *p1,
213    struct proc *p2, int n);
214static void	pmc_process_samples(int cpu, int soft);
215static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216static void	pmc_remove_owner(struct pmc_owner *po);
217static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220static void	pmc_select_cpu(int cpu);
221static int	pmc_start(struct pmc *pm);
222static int	pmc_stop(struct pmc *pm);
223static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224static void	pmc_unlink_target_process(struct pmc *pmc,
225    struct pmc_process *pp);
226static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230
231/*
232 * Kernel tunables and sysctl(8) interface.
233 */
234
235SYSCTL_DECL(_kern_hwpmc);
236
237static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
239    &pmc_callchaindepth, 0, "depth of call chain records");
240
241#ifdef	HWPMC_DEBUG
242struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245    sizeof(pmc_debugstr));
246SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
248    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249#endif
250
251/*
252 * kern.hwpmc.hashrows -- determines the number of rows in the
253 * of the hash table used to look up threads
254 */
255
256static int pmc_hashsize = PMC_HASH_SIZE;
257SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
258    &pmc_hashsize, 0, "rows in hash tables");
259
260/*
261 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
262 */
263
264static int pmc_nsamples = PMC_NSAMPLES;
265SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
266    &pmc_nsamples, 0, "number of PC samples per CPU");
267
268
269/*
270 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271 */
272
273static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
275    &pmc_mtxpool_size, 0, "size of spin mutex pool");
276
277
278/*
279 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
280 * allocate system-wide PMCs.
281 *
282 * Allowing unprivileged processes to allocate system PMCs is convenient
283 * if system-wide measurements need to be taken concurrently with other
284 * per-process measurements.  This feature is turned off by default.
285 */
286
287static int pmc_unprivileged_syspmcs = 0;
288SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
289    &pmc_unprivileged_syspmcs, 0,
290    "allow unprivileged process to allocate system PMCs");
291
292/*
293 * Hash function.  Discard the lower 2 bits of the pointer since
294 * these are always zero for our uses.  The hash multiplier is
295 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
296 */
297
298#if	LONG_BIT == 64
299#define	_PMC_HM		11400714819323198486u
300#elif	LONG_BIT == 32
301#define	_PMC_HM		2654435769u
302#else
303#error 	Must know the size of 'long' to compile
304#endif
305
306#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
307
308/*
309 * Syscall structures
310 */
311
312/* The `sysent' for the new syscall */
313static struct sysent pmc_sysent = {
314	2,			/* sy_narg */
315	pmc_syscall_handler	/* sy_call */
316};
317
318static struct syscall_module_data pmc_syscall_mod = {
319	load,
320	NULL,
321	&pmc_syscall_num,
322	&pmc_sysent,
323#if (__FreeBSD_version >= 1100000)
324	{ 0, NULL },
325	SY_THR_STATIC_KLD,
326#else
327	{ 0, NULL }
328#endif
329};
330
331static moduledata_t pmc_mod = {
332	PMC_MODULE_NAME,
333	syscall_module_handler,
334	&pmc_syscall_mod
335};
336
337DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
338MODULE_VERSION(pmc, PMC_VERSION);
339
340#ifdef	HWPMC_DEBUG
341enum pmc_dbgparse_state {
342	PMCDS_WS,		/* in whitespace */
343	PMCDS_MAJOR,		/* seen a major keyword */
344	PMCDS_MINOR
345};
346
347static int
348pmc_debugflags_parse(char *newstr, char *fence)
349{
350	char c, *p, *q;
351	struct pmc_debugflags *tmpflags;
352	int error, found, *newbits, tmp;
353	size_t kwlen;
354
355	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
356
357	p = newstr;
358	error = 0;
359
360	for (; p < fence && (c = *p); p++) {
361
362		/* skip white space */
363		if (c == ' ' || c == '\t')
364			continue;
365
366		/* look for a keyword followed by "=" */
367		for (q = p; p < fence && (c = *p) && c != '='; p++)
368			;
369		if (c != '=') {
370			error = EINVAL;
371			goto done;
372		}
373
374		kwlen = p - q;
375		newbits = NULL;
376
377		/* lookup flag group name */
378#define	DBG_SET_FLAG_MAJ(S,F)						\
379		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
380			newbits = &tmpflags->pdb_ ## F;
381
382		DBG_SET_FLAG_MAJ("cpu",		CPU);
383		DBG_SET_FLAG_MAJ("csw",		CSW);
384		DBG_SET_FLAG_MAJ("logging",	LOG);
385		DBG_SET_FLAG_MAJ("module",	MOD);
386		DBG_SET_FLAG_MAJ("md", 		MDP);
387		DBG_SET_FLAG_MAJ("owner",	OWN);
388		DBG_SET_FLAG_MAJ("pmc",		PMC);
389		DBG_SET_FLAG_MAJ("process",	PRC);
390		DBG_SET_FLAG_MAJ("sampling", 	SAM);
391
392		if (newbits == NULL) {
393			error = EINVAL;
394			goto done;
395		}
396
397		p++;		/* skip the '=' */
398
399		/* Now parse the individual flags */
400		tmp = 0;
401	newflag:
402		for (q = p; p < fence && (c = *p); p++)
403			if (c == ' ' || c == '\t' || c == ',')
404				break;
405
406		/* p == fence or c == ws or c == "," or c == 0 */
407
408		if ((kwlen = p - q) == 0) {
409			*newbits = tmp;
410			continue;
411		}
412
413		found = 0;
414#define	DBG_SET_FLAG_MIN(S,F)						\
415		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
416			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
417
418		/* a '*' denotes all possible flags in the group */
419		if (kwlen == 1 && *q == '*')
420			tmp = found = ~0;
421		/* look for individual flag names */
422		DBG_SET_FLAG_MIN("allocaterow", ALR);
423		DBG_SET_FLAG_MIN("allocate",	ALL);
424		DBG_SET_FLAG_MIN("attach",	ATT);
425		DBG_SET_FLAG_MIN("bind",	BND);
426		DBG_SET_FLAG_MIN("config",	CFG);
427		DBG_SET_FLAG_MIN("exec",	EXC);
428		DBG_SET_FLAG_MIN("exit",	EXT);
429		DBG_SET_FLAG_MIN("find",	FND);
430		DBG_SET_FLAG_MIN("flush",	FLS);
431		DBG_SET_FLAG_MIN("fork",	FRK);
432		DBG_SET_FLAG_MIN("getbuf",	GTB);
433		DBG_SET_FLAG_MIN("hook",	PMH);
434		DBG_SET_FLAG_MIN("init",	INI);
435		DBG_SET_FLAG_MIN("intr",	INT);
436		DBG_SET_FLAG_MIN("linktarget",	TLK);
437		DBG_SET_FLAG_MIN("mayberemove", OMR);
438		DBG_SET_FLAG_MIN("ops",		OPS);
439		DBG_SET_FLAG_MIN("read",	REA);
440		DBG_SET_FLAG_MIN("register",	REG);
441		DBG_SET_FLAG_MIN("release",	REL);
442		DBG_SET_FLAG_MIN("remove",	ORM);
443		DBG_SET_FLAG_MIN("sample",	SAM);
444		DBG_SET_FLAG_MIN("scheduleio",	SIO);
445		DBG_SET_FLAG_MIN("select",	SEL);
446		DBG_SET_FLAG_MIN("signal",	SIG);
447		DBG_SET_FLAG_MIN("swi",		SWI);
448		DBG_SET_FLAG_MIN("swo",		SWO);
449		DBG_SET_FLAG_MIN("start",	STA);
450		DBG_SET_FLAG_MIN("stop",	STO);
451		DBG_SET_FLAG_MIN("syscall",	PMS);
452		DBG_SET_FLAG_MIN("unlinktarget", TUL);
453		DBG_SET_FLAG_MIN("write",	WRI);
454		if (found == 0) {
455			/* unrecognized flag name */
456			error = EINVAL;
457			goto done;
458		}
459
460		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
461			*newbits = tmp;
462			continue;
463		}
464
465		p++;
466		goto newflag;
467	}
468
469	/* save the new flag set */
470	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
471
472 done:
473	free(tmpflags, M_PMC);
474	return error;
475}
476
477static int
478pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
479{
480	char *fence, *newstr;
481	int error;
482	unsigned int n;
483
484	(void) arg1; (void) arg2; /* unused parameters */
485
486	n = sizeof(pmc_debugstr);
487	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
488	(void) strlcpy(newstr, pmc_debugstr, n);
489
490	error = sysctl_handle_string(oidp, newstr, n, req);
491
492	/* if there is a new string, parse and copy it */
493	if (error == 0 && req->newptr != NULL) {
494		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
495		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
496			(void) strlcpy(pmc_debugstr, newstr,
497			    sizeof(pmc_debugstr));
498	}
499
500	free(newstr, M_PMC);
501
502	return error;
503}
504#endif
505
506/*
507 * Map a row index to a classdep structure and return the adjusted row
508 * index for the PMC class index.
509 */
510static struct pmc_classdep *
511pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
512{
513	struct pmc_classdep *pcd;
514
515	(void) md;
516
517	KASSERT(ri >= 0 && ri < md->pmd_npmc,
518	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
519
520	pcd = pmc_rowindex_to_classdep[ri];
521
522	KASSERT(pcd != NULL,
523	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
524
525	*adjri = ri - pcd->pcd_ri;
526
527	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
528	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
529
530	return (pcd);
531}
532
533/*
534 * Concurrency Control
535 *
536 * The driver manages the following data structures:
537 *
538 *   - target process descriptors, one per target process
539 *   - owner process descriptors (and attached lists), one per owner process
540 *   - lookup hash tables for owner and target processes
541 *   - PMC descriptors (and attached lists)
542 *   - per-cpu hardware state
543 *   - the 'hook' variable through which the kernel calls into
544 *     this module
545 *   - the machine hardware state (managed by the MD layer)
546 *
547 * These data structures are accessed from:
548 *
549 * - thread context-switch code
550 * - interrupt handlers (possibly on multiple cpus)
551 * - kernel threads on multiple cpus running on behalf of user
552 *   processes doing system calls
553 * - this driver's private kernel threads
554 *
555 * = Locks and Locking strategy =
556 *
557 * The driver uses four locking strategies for its operation:
558 *
559 * - The global SX lock "pmc_sx" is used to protect internal
560 *   data structures.
561 *
562 *   Calls into the module by syscall() start with this lock being
563 *   held in exclusive mode.  Depending on the requested operation,
564 *   the lock may be downgraded to 'shared' mode to allow more
565 *   concurrent readers into the module.  Calls into the module from
566 *   other parts of the kernel acquire the lock in shared mode.
567 *
568 *   This SX lock is held in exclusive mode for any operations that
569 *   modify the linkages between the driver's internal data structures.
570 *
571 *   The 'pmc_hook' function pointer is also protected by this lock.
572 *   It is only examined with the sx lock held in exclusive mode.  The
573 *   kernel module is allowed to be unloaded only with the sx lock held
574 *   in exclusive mode.  In normal syscall handling, after acquiring the
575 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
576 *   proceeding.  This prevents races between the thread unloading the module
577 *   and other threads seeking to use the module.
578 *
579 * - Lookups of target process structures and owner process structures
580 *   cannot use the global "pmc_sx" SX lock because these lookups need
581 *   to happen during context switches and in other critical sections
582 *   where sleeping is not allowed.  We protect these lookup tables
583 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
584 *   "pmc_ownerhash_mtx".
585 *
586 * - Interrupt handlers work in a lock free manner.  At interrupt
587 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
588 *   when the PMC was started.  If this pointer is NULL, the interrupt
589 *   is ignored after updating driver statistics.  We ensure that this
590 *   pointer is set (using an atomic operation if necessary) before the
591 *   PMC hardware is started.  Conversely, this pointer is unset atomically
592 *   only after the PMC hardware is stopped.
593 *
594 *   We ensure that everything needed for the operation of an
595 *   interrupt handler is available without it needing to acquire any
596 *   locks.  We also ensure that a PMC's software state is destroyed only
597 *   after the PMC is taken off hardware (on all CPUs).
598 *
599 * - Context-switch handling with process-private PMCs needs more
600 *   care.
601 *
602 *   A given process may be the target of multiple PMCs.  For example,
603 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
604 *   while the target process is running on another.  A PMC could also
605 *   be getting released because its owner is exiting.  We tackle
606 *   these situations in the following manner:
607 *
608 *   - each target process structure 'pmc_process' has an array
609 *     of 'struct pmc *' pointers, one for each hardware PMC.
610 *
611 *   - At context switch IN time, each "target" PMC in RUNNING state
612 *     gets started on hardware and a pointer to each PMC is copied into
613 *     the per-cpu phw array.  The 'runcount' for the PMC is
614 *     incremented.
615 *
616 *   - At context switch OUT time, all process-virtual PMCs are stopped
617 *     on hardware.  The saved value is added to the PMCs value field
618 *     only if the PMC is in a non-deleted state (the PMCs state could
619 *     have changed during the current time slice).
620 *
621 *     Note that since in-between a switch IN on a processor and a switch
622 *     OUT, the PMC could have been released on another CPU.  Therefore
623 *     context switch OUT always looks at the hardware state to turn
624 *     OFF PMCs and will update a PMC's saved value only if reachable
625 *     from the target process record.
626 *
627 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
628 *     be attached to many processes at the time of the call and could
629 *     be active on multiple CPUs).
630 *
631 *     We prevent further scheduling of the PMC by marking it as in
632 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
633 *     this PMC is currently running on a CPU somewhere.  The thread
634 *     doing the PMCRELEASE operation waits by repeatedly doing a
635 *     pause() till the runcount comes to zero.
636 *
637 * The contents of a PMC descriptor (struct pmc) are protected using
638 * a spin-mutex.  In order to save space, we use a mutex pool.
639 *
640 * In terms of lock types used by witness(4), we use:
641 * - Type "pmc-sx", used by the global SX lock.
642 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
643 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
644 * - Type "pmc-leaf", used for all other spin mutexes.
645 */
646
647/*
648 * save the cpu binding of the current kthread
649 */
650
651static void
652pmc_save_cpu_binding(struct pmc_binding *pb)
653{
654	PMCDBG0(CPU,BND,2, "save-cpu");
655	thread_lock(curthread);
656	pb->pb_bound = sched_is_bound(curthread);
657	pb->pb_cpu   = curthread->td_oncpu;
658	thread_unlock(curthread);
659	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
660}
661
662/*
663 * restore the cpu binding of the current thread
664 */
665
666static void
667pmc_restore_cpu_binding(struct pmc_binding *pb)
668{
669	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
670	    curthread->td_oncpu, pb->pb_cpu);
671	thread_lock(curthread);
672	if (pb->pb_bound)
673		sched_bind(curthread, pb->pb_cpu);
674	else
675		sched_unbind(curthread);
676	thread_unlock(curthread);
677	PMCDBG0(CPU,BND,2, "restore-cpu done");
678}
679
680/*
681 * move execution over the specified cpu and bind it there.
682 */
683
684static void
685pmc_select_cpu(int cpu)
686{
687	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
688	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
689
690	/* Never move to an inactive CPU. */
691	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
692	    "CPU %d", __LINE__, cpu));
693
694	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
695	thread_lock(curthread);
696	sched_bind(curthread, cpu);
697	thread_unlock(curthread);
698
699	KASSERT(curthread->td_oncpu == cpu,
700	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
701		cpu, curthread->td_oncpu));
702
703	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
704}
705
706/*
707 * Force a context switch.
708 *
709 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
710 * guaranteed to force a context switch.
711 */
712
713static void
714pmc_force_context_switch(void)
715{
716
717	pause("pmcctx", 1);
718}
719
720/*
721 * Get the file name for an executable.  This is a simple wrapper
722 * around vn_fullpath(9).
723 */
724
725static void
726pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
727{
728
729	*fullpath = "unknown";
730	*freepath = NULL;
731	vn_fullpath(curthread, v, fullpath, freepath);
732}
733
734/*
735 * remove an process owning PMCs
736 */
737
738void
739pmc_remove_owner(struct pmc_owner *po)
740{
741	struct pmc *pm, *tmp;
742
743	sx_assert(&pmc_sx, SX_XLOCKED);
744
745	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
746
747	/* Remove descriptor from the owner hash table */
748	LIST_REMOVE(po, po_next);
749
750	/* release all owned PMC descriptors */
751	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
752		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
753		KASSERT(pm->pm_owner == po,
754		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
755
756		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
757		pmc_destroy_pmc_descriptor(pm);
758	}
759
760	KASSERT(po->po_sscount == 0,
761	    ("[pmc,%d] SS count not zero", __LINE__));
762	KASSERT(LIST_EMPTY(&po->po_pmcs),
763	    ("[pmc,%d] PMC list not empty", __LINE__));
764
765	/* de-configure the log file if present */
766	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
767		pmclog_deconfigure_log(po);
768}
769
770/*
771 * remove an owner process record if all conditions are met.
772 */
773
774static void
775pmc_maybe_remove_owner(struct pmc_owner *po)
776{
777
778	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
779
780	/*
781	 * Remove owner record if
782	 * - this process does not own any PMCs
783	 * - this process has not allocated a system-wide sampling buffer
784	 */
785
786	if (LIST_EMPTY(&po->po_pmcs) &&
787	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
788		pmc_remove_owner(po);
789		pmc_destroy_owner_descriptor(po);
790	}
791}
792
793/*
794 * Add an association between a target process and a PMC.
795 */
796
797static void
798pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
799{
800	int ri;
801	struct pmc_target *pt;
802
803	sx_assert(&pmc_sx, SX_XLOCKED);
804
805	KASSERT(pm != NULL && pp != NULL,
806	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
807	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
808	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
809		__LINE__, pm, pp->pp_proc->p_pid));
810	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
811	    ("[pmc,%d] Illegal reference count %d for process record %p",
812		__LINE__, pp->pp_refcnt, (void *) pp));
813
814	ri = PMC_TO_ROWINDEX(pm);
815
816	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
817	    pm, ri, pp);
818
819#ifdef	HWPMC_DEBUG
820	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
821	    if (pt->pt_process == pp)
822		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
823				__LINE__, pp, pm));
824#endif
825
826	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
827	pt->pt_process = pp;
828
829	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
830
831	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
832	    (uintptr_t)pm);
833
834	if (pm->pm_owner->po_owner == pp->pp_proc)
835		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
836
837	/*
838	 * Initialize the per-process values at this row index.
839	 */
840	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
841	    pm->pm_sc.pm_reloadcount : 0;
842
843	pp->pp_refcnt++;
844
845}
846
847/*
848 * Removes the association between a target process and a PMC.
849 */
850
851static void
852pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
853{
854	int ri;
855	struct proc *p;
856	struct pmc_target *ptgt;
857
858	sx_assert(&pmc_sx, SX_XLOCKED);
859
860	KASSERT(pm != NULL && pp != NULL,
861	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
862
863	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
864	    ("[pmc,%d] Illegal ref count %d on process record %p",
865		__LINE__, pp->pp_refcnt, (void *) pp));
866
867	ri = PMC_TO_ROWINDEX(pm);
868
869	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
870	    pm, ri, pp);
871
872	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
873	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
874		ri, pm, pp->pp_pmcs[ri].pp_pmc));
875
876	pp->pp_pmcs[ri].pp_pmc = NULL;
877	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
878
879	/* Remove owner-specific flags */
880	if (pm->pm_owner->po_owner == pp->pp_proc) {
881		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
882		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
883	}
884
885	pp->pp_refcnt--;
886
887	/* Remove the target process from the PMC structure */
888	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
889		if (ptgt->pt_process == pp)
890			break;
891
892	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
893		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
894
895	LIST_REMOVE(ptgt, pt_next);
896	free(ptgt, M_PMC);
897
898	/* if the PMC now lacks targets, send the owner a SIGIO */
899	if (LIST_EMPTY(&pm->pm_targets)) {
900		p = pm->pm_owner->po_owner;
901		PROC_LOCK(p);
902		kern_psignal(p, SIGIO);
903		PROC_UNLOCK(p);
904
905		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
906		    SIGIO);
907	}
908}
909
910/*
911 * Check if PMC 'pm' may be attached to target process 't'.
912 */
913
914static int
915pmc_can_attach(struct pmc *pm, struct proc *t)
916{
917	struct proc *o;		/* pmc owner */
918	struct ucred *oc, *tc;	/* owner, target credentials */
919	int decline_attach, i;
920
921	/*
922	 * A PMC's owner can always attach that PMC to itself.
923	 */
924
925	if ((o = pm->pm_owner->po_owner) == t)
926		return 0;
927
928	PROC_LOCK(o);
929	oc = o->p_ucred;
930	crhold(oc);
931	PROC_UNLOCK(o);
932
933	PROC_LOCK(t);
934	tc = t->p_ucred;
935	crhold(tc);
936	PROC_UNLOCK(t);
937
938	/*
939	 * The effective uid of the PMC owner should match at least one
940	 * of the {effective,real,saved} uids of the target process.
941	 */
942
943	decline_attach = oc->cr_uid != tc->cr_uid &&
944	    oc->cr_uid != tc->cr_svuid &&
945	    oc->cr_uid != tc->cr_ruid;
946
947	/*
948	 * Every one of the target's group ids, must be in the owner's
949	 * group list.
950	 */
951	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
952		decline_attach = !groupmember(tc->cr_groups[i], oc);
953
954	/* check the read and saved gids too */
955	if (decline_attach == 0)
956		decline_attach = !groupmember(tc->cr_rgid, oc) ||
957		    !groupmember(tc->cr_svgid, oc);
958
959	crfree(tc);
960	crfree(oc);
961
962	return !decline_attach;
963}
964
965/*
966 * Attach a process to a PMC.
967 */
968
969static int
970pmc_attach_one_process(struct proc *p, struct pmc *pm)
971{
972	int ri;
973	char *fullpath, *freepath;
974	struct pmc_process	*pp;
975
976	sx_assert(&pmc_sx, SX_XLOCKED);
977
978	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
979	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
980
981	/*
982	 * Locate the process descriptor corresponding to process 'p',
983	 * allocating space as needed.
984	 *
985	 * Verify that rowindex 'pm_rowindex' is free in the process
986	 * descriptor.
987	 *
988	 * If not, allocate space for a descriptor and link the
989	 * process descriptor and PMC.
990	 */
991	ri = PMC_TO_ROWINDEX(pm);
992
993	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
994		return ENOMEM;
995
996	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
997		return EEXIST;
998
999	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1000		return EBUSY;
1001
1002	pmc_link_target_process(pm, pp);
1003
1004	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1005	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1006		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1007
1008	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1009
1010	/* issue an attach event to a configured log file */
1011	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1012		if (p->p_flag & P_KPROC) {
1013			fullpath = kernelname;
1014			freepath = NULL;
1015		} else {
1016			pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1017			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1018		}
1019		free(freepath, M_TEMP);
1020		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1021			pmc_log_process_mappings(pm->pm_owner, p);
1022	}
1023	/* mark process as using HWPMCs */
1024	PROC_LOCK(p);
1025	p->p_flag |= P_HWPMC;
1026	PROC_UNLOCK(p);
1027
1028	return 0;
1029}
1030
1031/*
1032 * Attach a process and optionally its children
1033 */
1034
1035static int
1036pmc_attach_process(struct proc *p, struct pmc *pm)
1037{
1038	int error;
1039	struct proc *top;
1040
1041	sx_assert(&pmc_sx, SX_XLOCKED);
1042
1043	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1044	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1045
1046
1047	/*
1048	 * If this PMC successfully allowed a GETMSR operation
1049	 * in the past, disallow further ATTACHes.
1050	 */
1051
1052	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1053		return EPERM;
1054
1055	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1056		return pmc_attach_one_process(p, pm);
1057
1058	/*
1059	 * Traverse all child processes, attaching them to
1060	 * this PMC.
1061	 */
1062
1063	sx_slock(&proctree_lock);
1064
1065	top = p;
1066
1067	for (;;) {
1068		if ((error = pmc_attach_one_process(p, pm)) != 0)
1069			break;
1070		if (!LIST_EMPTY(&p->p_children))
1071			p = LIST_FIRST(&p->p_children);
1072		else for (;;) {
1073			if (p == top)
1074				goto done;
1075			if (LIST_NEXT(p, p_sibling)) {
1076				p = LIST_NEXT(p, p_sibling);
1077				break;
1078			}
1079			p = p->p_pptr;
1080		}
1081	}
1082
1083	if (error)
1084		(void) pmc_detach_process(top, pm);
1085
1086 done:
1087	sx_sunlock(&proctree_lock);
1088	return error;
1089}
1090
1091/*
1092 * Detach a process from a PMC.  If there are no other PMCs tracking
1093 * this process, remove the process structure from its hash table.  If
1094 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1095 */
1096
1097static int
1098pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1099{
1100	int ri;
1101	struct pmc_process *pp;
1102
1103	sx_assert(&pmc_sx, SX_XLOCKED);
1104
1105	KASSERT(pm != NULL,
1106	    ("[pmc,%d] null pm pointer", __LINE__));
1107
1108	ri = PMC_TO_ROWINDEX(pm);
1109
1110	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1111	    pm, ri, p, p->p_pid, p->p_comm, flags);
1112
1113	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1114		return ESRCH;
1115
1116	if (pp->pp_pmcs[ri].pp_pmc != pm)
1117		return EINVAL;
1118
1119	pmc_unlink_target_process(pm, pp);
1120
1121	/* Issue a detach entry if a log file is configured */
1122	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1123		pmclog_process_pmcdetach(pm, p->p_pid);
1124
1125	/*
1126	 * If there are no PMCs targeting this process, we remove its
1127	 * descriptor from the target hash table and unset the P_HWPMC
1128	 * flag in the struct proc.
1129	 */
1130	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1131	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1132		__LINE__, pp->pp_refcnt, pp));
1133
1134	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1135		return 0;
1136
1137	pmc_remove_process_descriptor(pp);
1138
1139	if (flags & PMC_FLAG_REMOVE)
1140		free(pp, M_PMC);
1141
1142	PROC_LOCK(p);
1143	p->p_flag &= ~P_HWPMC;
1144	PROC_UNLOCK(p);
1145
1146	return 0;
1147}
1148
1149/*
1150 * Detach a process and optionally its descendants from a PMC.
1151 */
1152
1153static int
1154pmc_detach_process(struct proc *p, struct pmc *pm)
1155{
1156	struct proc *top;
1157
1158	sx_assert(&pmc_sx, SX_XLOCKED);
1159
1160	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1161	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1162
1163	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1164		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1165
1166	/*
1167	 * Traverse all children, detaching them from this PMC.  We
1168	 * ignore errors since we could be detaching a PMC from a
1169	 * partially attached proc tree.
1170	 */
1171
1172	sx_slock(&proctree_lock);
1173
1174	top = p;
1175
1176	for (;;) {
1177		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1178
1179		if (!LIST_EMPTY(&p->p_children))
1180			p = LIST_FIRST(&p->p_children);
1181		else for (;;) {
1182			if (p == top)
1183				goto done;
1184			if (LIST_NEXT(p, p_sibling)) {
1185				p = LIST_NEXT(p, p_sibling);
1186				break;
1187			}
1188			p = p->p_pptr;
1189		}
1190	}
1191
1192 done:
1193	sx_sunlock(&proctree_lock);
1194
1195	if (LIST_EMPTY(&pm->pm_targets))
1196		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1197
1198	return 0;
1199}
1200
1201
1202/*
1203 * Thread context switch IN
1204 */
1205
1206static void
1207pmc_process_csw_in(struct thread *td)
1208{
1209	int cpu;
1210	unsigned int adjri, ri;
1211	struct pmc *pm;
1212	struct proc *p;
1213	struct pmc_cpu *pc;
1214	struct pmc_hw *phw;
1215	pmc_value_t newvalue;
1216	struct pmc_process *pp;
1217	struct pmc_classdep *pcd;
1218
1219	p = td->td_proc;
1220
1221	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1222		return;
1223
1224	KASSERT(pp->pp_proc == td->td_proc,
1225	    ("[pmc,%d] not my thread state", __LINE__));
1226
1227	critical_enter(); /* no preemption from this point */
1228
1229	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1230
1231	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1232	    p->p_pid, p->p_comm, pp);
1233
1234	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1235	    ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1236
1237	pc = pmc_pcpu[cpu];
1238
1239	for (ri = 0; ri < md->pmd_npmc; ri++) {
1240
1241		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1242			continue;
1243
1244		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1245		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1246			__LINE__, PMC_TO_MODE(pm)));
1247
1248		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1249		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1250			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1251
1252		/*
1253		 * Only PMCs that are marked as 'RUNNING' need
1254		 * be placed on hardware.
1255		 */
1256
1257		if (pm->pm_state != PMC_STATE_RUNNING)
1258			continue;
1259
1260		/* increment PMC runcount */
1261		atomic_add_rel_int(&pm->pm_runcount, 1);
1262
1263		/* configure the HWPMC we are going to use. */
1264		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1265		pcd->pcd_config_pmc(cpu, adjri, pm);
1266
1267		phw = pc->pc_hwpmcs[ri];
1268
1269		KASSERT(phw != NULL,
1270		    ("[pmc,%d] null hw pointer", __LINE__));
1271
1272		KASSERT(phw->phw_pmc == pm,
1273		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1274			phw->phw_pmc, pm));
1275
1276		/*
1277		 * Write out saved value and start the PMC.
1278		 *
1279		 * Sampling PMCs use a per-process value, while
1280		 * counting mode PMCs use a per-pmc value that is
1281		 * inherited across descendants.
1282		 */
1283		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1284			mtx_pool_lock_spin(pmc_mtxpool, pm);
1285
1286			/*
1287			 * Use the saved value calculated after the most recent
1288			 * thread switch out to start this counter.  Reset
1289			 * the saved count in case another thread from this
1290			 * process switches in before any threads switch out.
1291			 */
1292			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1293			    pp->pp_pmcs[ri].pp_pmcval;
1294			pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1295			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1296		} else {
1297			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1298			    ("[pmc,%d] illegal mode=%d", __LINE__,
1299			    PMC_TO_MODE(pm)));
1300			mtx_pool_lock_spin(pmc_mtxpool, pm);
1301			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1302			    pm->pm_gv.pm_savedvalue;
1303			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1304		}
1305
1306		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1307
1308		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1309
1310		/* If a sampling mode PMC, reset stalled state. */
1311		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1312			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1313
1314		/* Indicate that we desire this to run. */
1315		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1316
1317		/* Start the PMC. */
1318		pcd->pcd_start_pmc(cpu, adjri);
1319	}
1320
1321	/*
1322	 * perform any other architecture/cpu dependent thread
1323	 * switch-in actions.
1324	 */
1325
1326	(void) (*md->pmd_switch_in)(pc, pp);
1327
1328	critical_exit();
1329
1330}
1331
1332/*
1333 * Thread context switch OUT.
1334 */
1335
1336static void
1337pmc_process_csw_out(struct thread *td)
1338{
1339	int cpu;
1340	int64_t tmp;
1341	struct pmc *pm;
1342	struct proc *p;
1343	enum pmc_mode mode;
1344	struct pmc_cpu *pc;
1345	pmc_value_t newvalue;
1346	unsigned int adjri, ri;
1347	struct pmc_process *pp;
1348	struct pmc_classdep *pcd;
1349
1350
1351	/*
1352	 * Locate our process descriptor; this may be NULL if
1353	 * this process is exiting and we have already removed
1354	 * the process from the target process table.
1355	 *
1356	 * Note that due to kernel preemption, multiple
1357	 * context switches may happen while the process is
1358	 * exiting.
1359	 *
1360	 * Note also that if the target process cannot be
1361	 * found we still need to deconfigure any PMCs that
1362	 * are currently running on hardware.
1363	 */
1364
1365	p = td->td_proc;
1366	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1367
1368	/*
1369	 * save PMCs
1370	 */
1371
1372	critical_enter();
1373
1374	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1375
1376	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1377	    p->p_pid, p->p_comm, pp);
1378
1379	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1380	    ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1381
1382	pc = pmc_pcpu[cpu];
1383
1384	/*
1385	 * When a PMC gets unlinked from a target PMC, it will
1386	 * be removed from the target's pp_pmc[] array.
1387	 *
1388	 * However, on a MP system, the target could have been
1389	 * executing on another CPU at the time of the unlink.
1390	 * So, at context switch OUT time, we need to look at
1391	 * the hardware to determine if a PMC is scheduled on
1392	 * it.
1393	 */
1394
1395	for (ri = 0; ri < md->pmd_npmc; ri++) {
1396
1397		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1398		pm  = NULL;
1399		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1400
1401		if (pm == NULL)	/* nothing at this row index */
1402			continue;
1403
1404		mode = PMC_TO_MODE(pm);
1405		if (!PMC_IS_VIRTUAL_MODE(mode))
1406			continue; /* not a process virtual PMC */
1407
1408		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1409		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1410			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1411
1412		/*
1413		 * Change desired state, and then stop if not stalled.
1414		 * This two-step dance should avoid race conditions where
1415		 * an interrupt re-enables the PMC after this code has
1416		 * already checked the pm_stalled flag.
1417		 */
1418		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1419		if (!CPU_ISSET(cpu, &pm->pm_stalled))
1420			pcd->pcd_stop_pmc(cpu, adjri);
1421
1422		/* reduce this PMC's runcount */
1423		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1424
1425		/*
1426		 * If this PMC is associated with this process,
1427		 * save the reading.
1428		 */
1429
1430		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1431
1432			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1433			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1434				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1435
1436			KASSERT(pp->pp_refcnt > 0,
1437			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1438				pp->pp_refcnt));
1439
1440			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1441
1442			if (mode == PMC_MODE_TS) {
1443				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1444				    cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1445
1446				/*
1447				 * For sampling process-virtual PMCs,
1448				 * newvalue is the number of events to be seen
1449				 * until the next sampling interrupt.
1450				 * We can just add the events left from this
1451				 * invocation to the counter, then adjust
1452				 * in case we overflow our range.
1453				 *
1454				 * (Recall that we reload the counter every
1455				 * time we use it.)
1456				 */
1457				mtx_pool_lock_spin(pmc_mtxpool, pm);
1458
1459				pp->pp_pmcs[ri].pp_pmcval += newvalue;
1460				if (pp->pp_pmcs[ri].pp_pmcval >
1461				    pm->pm_sc.pm_reloadcount)
1462					pp->pp_pmcs[ri].pp_pmcval -=
1463					    pm->pm_sc.pm_reloadcount;
1464				KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1465				    pp->pp_pmcs[ri].pp_pmcval <=
1466				    pm->pm_sc.pm_reloadcount,
1467				    ("[pmc,%d] pp_pmcval outside of expected "
1468				    "range cpu=%d ri=%d pp_pmcval=%jx "
1469				    "pm_reloadcount=%jx", __LINE__, cpu, ri,
1470				    pp->pp_pmcs[ri].pp_pmcval,
1471				    pm->pm_sc.pm_reloadcount));
1472				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1473
1474			} else {
1475				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1476
1477				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1478				    cpu, ri, tmp);
1479
1480				/*
1481				 * For counting process-virtual PMCs,
1482				 * we expect the count to be
1483				 * increasing monotonically, modulo a 64
1484				 * bit wraparound.
1485				 */
1486				KASSERT(tmp >= 0,
1487				    ("[pmc,%d] negative increment cpu=%d "
1488				     "ri=%d newvalue=%jx saved=%jx "
1489				     "incr=%jx", __LINE__, cpu, ri,
1490				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1491
1492				mtx_pool_lock_spin(pmc_mtxpool, pm);
1493				pm->pm_gv.pm_savedvalue += tmp;
1494				pp->pp_pmcs[ri].pp_pmcval += tmp;
1495				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1496
1497				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1498					pmclog_process_proccsw(pm, pp, tmp);
1499			}
1500		}
1501
1502		/* mark hardware as free */
1503		pcd->pcd_config_pmc(cpu, adjri, NULL);
1504	}
1505
1506	/*
1507	 * perform any other architecture/cpu dependent thread
1508	 * switch out functions.
1509	 */
1510
1511	(void) (*md->pmd_switch_out)(pc, pp);
1512
1513	critical_exit();
1514}
1515
1516/*
1517 * A mapping change for a process.
1518 */
1519
1520static void
1521pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1522{
1523	int ri;
1524	pid_t pid;
1525	char *fullpath, *freepath;
1526	const struct pmc *pm;
1527	struct pmc_owner *po;
1528	const struct pmc_process *pp;
1529
1530	freepath = fullpath = NULL;
1531	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1532
1533	pid = td->td_proc->p_pid;
1534
1535	/* Inform owners of all system-wide sampling PMCs. */
1536	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1537	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1538		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1539
1540	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1541		goto done;
1542
1543	/*
1544	 * Inform sampling PMC owners tracking this process.
1545	 */
1546	for (ri = 0; ri < md->pmd_npmc; ri++)
1547		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1548		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1549			pmclog_process_map_in(pm->pm_owner,
1550			    pid, pkm->pm_address, fullpath);
1551
1552  done:
1553	if (freepath)
1554		free(freepath, M_TEMP);
1555}
1556
1557
1558/*
1559 * Log an munmap request.
1560 */
1561
1562static void
1563pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1564{
1565	int ri;
1566	pid_t pid;
1567	struct pmc_owner *po;
1568	const struct pmc *pm;
1569	const struct pmc_process *pp;
1570
1571	pid = td->td_proc->p_pid;
1572
1573	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1574	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1575		pmclog_process_map_out(po, pid, pkm->pm_address,
1576		    pkm->pm_address + pkm->pm_size);
1577
1578	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1579		return;
1580
1581	for (ri = 0; ri < md->pmd_npmc; ri++)
1582		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1583		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1584			pmclog_process_map_out(pm->pm_owner, pid,
1585			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1586}
1587
1588/*
1589 * Log mapping information about the kernel.
1590 */
1591
1592static void
1593pmc_log_kernel_mappings(struct pmc *pm)
1594{
1595	struct pmc_owner *po;
1596	struct pmckern_map_in *km, *kmbase;
1597
1598	sx_assert(&pmc_sx, SX_LOCKED);
1599	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1600	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1601		__LINE__, (void *) pm));
1602
1603	po = pm->pm_owner;
1604
1605	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1606		return;
1607
1608	/*
1609	 * Log the current set of kernel modules.
1610	 */
1611	kmbase = linker_hwpmc_list_objects();
1612	for (km = kmbase; km->pm_file != NULL; km++) {
1613		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1614		    (void *) km->pm_address);
1615		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1616		    km->pm_file);
1617	}
1618	free(kmbase, M_LINKER);
1619
1620	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1621}
1622
1623/*
1624 * Log the mappings for a single process.
1625 */
1626
1627static void
1628pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1629{
1630	vm_map_t map;
1631	struct vnode *vp;
1632	struct vmspace *vm;
1633	vm_map_entry_t entry;
1634	vm_offset_t last_end;
1635	u_int last_timestamp;
1636	struct vnode *last_vp;
1637	vm_offset_t start_addr;
1638	vm_object_t obj, lobj, tobj;
1639	char *fullpath, *freepath;
1640
1641	last_vp = NULL;
1642	last_end = (vm_offset_t) 0;
1643	fullpath = freepath = NULL;
1644
1645	if ((vm = vmspace_acquire_ref(p)) == NULL)
1646		return;
1647
1648	map = &vm->vm_map;
1649	vm_map_lock_read(map);
1650
1651	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1652
1653		if (entry == NULL) {
1654			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1655			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1656			break;
1657		}
1658
1659		/*
1660		 * We only care about executable map entries.
1661		 */
1662		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1663		    !(entry->protection & VM_PROT_EXECUTE) ||
1664		    (entry->object.vm_object == NULL)) {
1665			continue;
1666		}
1667
1668		obj = entry->object.vm_object;
1669		VM_OBJECT_RLOCK(obj);
1670
1671		/*
1672		 * Walk the backing_object list to find the base
1673		 * (non-shadowed) vm_object.
1674		 */
1675		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1676			if (tobj != obj)
1677				VM_OBJECT_RLOCK(tobj);
1678			if (lobj != obj)
1679				VM_OBJECT_RUNLOCK(lobj);
1680			lobj = tobj;
1681		}
1682
1683		/*
1684		 * At this point lobj is the base vm_object and it is locked.
1685		 */
1686		if (lobj == NULL) {
1687			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1688			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1689			VM_OBJECT_RUNLOCK(obj);
1690			continue;
1691		}
1692
1693		vp = vm_object_vnode(lobj);
1694		if (vp == NULL) {
1695			if (lobj != obj)
1696				VM_OBJECT_RUNLOCK(lobj);
1697			VM_OBJECT_RUNLOCK(obj);
1698			continue;
1699		}
1700
1701		/*
1702		 * Skip contiguous regions that point to the same
1703		 * vnode, so we don't emit redundant MAP-IN
1704		 * directives.
1705		 */
1706		if (entry->start == last_end && vp == last_vp) {
1707			last_end = entry->end;
1708			if (lobj != obj)
1709				VM_OBJECT_RUNLOCK(lobj);
1710			VM_OBJECT_RUNLOCK(obj);
1711			continue;
1712		}
1713
1714		/*
1715		 * We don't want to keep the proc's vm_map or this
1716		 * vm_object locked while we walk the pathname, since
1717		 * vn_fullpath() can sleep.  However, if we drop the
1718		 * lock, it's possible for concurrent activity to
1719		 * modify the vm_map list.  To protect against this,
1720		 * we save the vm_map timestamp before we release the
1721		 * lock, and check it after we reacquire the lock
1722		 * below.
1723		 */
1724		start_addr = entry->start;
1725		last_end = entry->end;
1726		last_timestamp = map->timestamp;
1727		vm_map_unlock_read(map);
1728
1729		vref(vp);
1730		if (lobj != obj)
1731			VM_OBJECT_RUNLOCK(lobj);
1732
1733		VM_OBJECT_RUNLOCK(obj);
1734
1735		freepath = NULL;
1736		pmc_getfilename(vp, &fullpath, &freepath);
1737		last_vp = vp;
1738
1739		vrele(vp);
1740
1741		vp = NULL;
1742		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1743		if (freepath)
1744			free(freepath, M_TEMP);
1745
1746		vm_map_lock_read(map);
1747
1748		/*
1749		 * If our saved timestamp doesn't match, this means
1750		 * that the vm_map was modified out from under us and
1751		 * we can't trust our current "entry" pointer.  Do a
1752		 * new lookup for this entry.  If there is no entry
1753		 * for this address range, vm_map_lookup_entry() will
1754		 * return the previous one, so we always want to go to
1755		 * entry->next on the next loop iteration.
1756		 *
1757		 * There is an edge condition here that can occur if
1758		 * there is no entry at or before this address.  In
1759		 * this situation, vm_map_lookup_entry returns
1760		 * &map->header, which would cause our loop to abort
1761		 * without processing the rest of the map.  However,
1762		 * in practice this will never happen for process
1763		 * vm_map.  This is because the executable's text
1764		 * segment is the first mapping in the proc's address
1765		 * space, and this mapping is never removed until the
1766		 * process exits, so there will always be a non-header
1767		 * entry at or before the requested address for
1768		 * vm_map_lookup_entry to return.
1769		 */
1770		if (map->timestamp != last_timestamp)
1771			vm_map_lookup_entry(map, last_end - 1, &entry);
1772	}
1773
1774	vm_map_unlock_read(map);
1775	vmspace_free(vm);
1776	return;
1777}
1778
1779/*
1780 * Log mappings for all processes in the system.
1781 */
1782
1783static void
1784pmc_log_all_process_mappings(struct pmc_owner *po)
1785{
1786	struct proc *p, *top;
1787
1788	sx_assert(&pmc_sx, SX_XLOCKED);
1789
1790	if ((p = pfind(1)) == NULL)
1791		panic("[pmc,%d] Cannot find init", __LINE__);
1792
1793	PROC_UNLOCK(p);
1794
1795	sx_slock(&proctree_lock);
1796
1797	top = p;
1798
1799	for (;;) {
1800		pmc_log_process_mappings(po, p);
1801		if (!LIST_EMPTY(&p->p_children))
1802			p = LIST_FIRST(&p->p_children);
1803		else for (;;) {
1804			if (p == top)
1805				goto done;
1806			if (LIST_NEXT(p, p_sibling)) {
1807				p = LIST_NEXT(p, p_sibling);
1808				break;
1809			}
1810			p = p->p_pptr;
1811		}
1812	}
1813 done:
1814	sx_sunlock(&proctree_lock);
1815}
1816
1817/*
1818 * The 'hook' invoked from the kernel proper
1819 */
1820
1821
1822#ifdef	HWPMC_DEBUG
1823const char *pmc_hooknames[] = {
1824	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1825	"",
1826	"EXEC",
1827	"CSW-IN",
1828	"CSW-OUT",
1829	"SAMPLE",
1830	"UNUSED1",
1831	"UNUSED2",
1832	"MMAP",
1833	"MUNMAP",
1834	"CALLCHAIN-NMI",
1835	"CALLCHAIN-SOFT",
1836	"SOFTSAMPLING"
1837};
1838#endif
1839
1840static int
1841pmc_hook_handler(struct thread *td, int function, void *arg)
1842{
1843
1844	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1845	    pmc_hooknames[function], arg);
1846
1847	switch (function)
1848	{
1849
1850	/*
1851	 * Process exec()
1852	 */
1853
1854	case PMC_FN_PROCESS_EXEC:
1855	{
1856		char *fullpath, *freepath;
1857		unsigned int ri;
1858		int is_using_hwpmcs;
1859		struct pmc *pm;
1860		struct proc *p;
1861		struct pmc_owner *po;
1862		struct pmc_process *pp;
1863		struct pmckern_procexec *pk;
1864
1865		sx_assert(&pmc_sx, SX_XLOCKED);
1866
1867		p = td->td_proc;
1868		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1869
1870		pk = (struct pmckern_procexec *) arg;
1871
1872		/* Inform owners of SS mode PMCs of the exec event. */
1873		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1874		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1875			    pmclog_process_procexec(po, PMC_ID_INVALID,
1876				p->p_pid, pk->pm_entryaddr, fullpath);
1877
1878		PROC_LOCK(p);
1879		is_using_hwpmcs = p->p_flag & P_HWPMC;
1880		PROC_UNLOCK(p);
1881
1882		if (!is_using_hwpmcs) {
1883			if (freepath)
1884				free(freepath, M_TEMP);
1885			break;
1886		}
1887
1888		/*
1889		 * PMCs are not inherited across an exec():  remove any
1890		 * PMCs that this process is the owner of.
1891		 */
1892
1893		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1894			pmc_remove_owner(po);
1895			pmc_destroy_owner_descriptor(po);
1896		}
1897
1898		/*
1899		 * If the process being exec'ed is not the target of any
1900		 * PMC, we are done.
1901		 */
1902		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1903			if (freepath)
1904				free(freepath, M_TEMP);
1905			break;
1906		}
1907
1908		/*
1909		 * Log the exec event to all monitoring owners.  Skip
1910		 * owners who have already received the event because
1911		 * they had system sampling PMCs active.
1912		 */
1913		for (ri = 0; ri < md->pmd_npmc; ri++)
1914			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1915				po = pm->pm_owner;
1916				if (po->po_sscount == 0 &&
1917				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1918					pmclog_process_procexec(po, pm->pm_id,
1919					    p->p_pid, pk->pm_entryaddr,
1920					    fullpath);
1921			}
1922
1923		if (freepath)
1924			free(freepath, M_TEMP);
1925
1926
1927		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1928		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1929
1930		if (pk->pm_credentialschanged == 0) /* no change */
1931			break;
1932
1933		/*
1934		 * If the newly exec()'ed process has a different credential
1935		 * than before, allow it to be the target of a PMC only if
1936		 * the PMC's owner has sufficient privilege.
1937		 */
1938
1939		for (ri = 0; ri < md->pmd_npmc; ri++)
1940			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1941				if (pmc_can_attach(pm, td->td_proc) != 0)
1942					pmc_detach_one_process(td->td_proc,
1943					    pm, PMC_FLAG_NONE);
1944
1945		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1946		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1947			pp->pp_refcnt, pp));
1948
1949		/*
1950		 * If this process is no longer the target of any
1951		 * PMCs, we can remove the process entry and free
1952		 * up space.
1953		 */
1954
1955		if (pp->pp_refcnt == 0) {
1956			pmc_remove_process_descriptor(pp);
1957			free(pp, M_PMC);
1958			break;
1959		}
1960
1961	}
1962	break;
1963
1964	case PMC_FN_CSW_IN:
1965		pmc_process_csw_in(td);
1966		break;
1967
1968	case PMC_FN_CSW_OUT:
1969		pmc_process_csw_out(td);
1970		break;
1971
1972	/*
1973	 * Process accumulated PC samples.
1974	 *
1975	 * This function is expected to be called by hardclock() for
1976	 * each CPU that has accumulated PC samples.
1977	 *
1978	 * This function is to be executed on the CPU whose samples
1979	 * are being processed.
1980	 */
1981	case PMC_FN_DO_SAMPLES:
1982
1983		/*
1984		 * Clear the cpu specific bit in the CPU mask before
1985		 * do the rest of the processing.  If the NMI handler
1986		 * gets invoked after the "atomic_clear_int()" call
1987		 * below but before "pmc_process_samples()" gets
1988		 * around to processing the interrupt, then we will
1989		 * come back here at the next hardclock() tick (and
1990		 * may find nothing to do if "pmc_process_samples()"
1991		 * had already processed the interrupt).  We don't
1992		 * lose the interrupt sample.
1993		 */
1994		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1995		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1996		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1997		break;
1998
1999	case PMC_FN_MMAP:
2000		sx_assert(&pmc_sx, SX_LOCKED);
2001		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2002		break;
2003
2004	case PMC_FN_MUNMAP:
2005		sx_assert(&pmc_sx, SX_LOCKED);
2006		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2007		break;
2008
2009	case PMC_FN_USER_CALLCHAIN:
2010		/*
2011		 * Record a call chain.
2012		 */
2013		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2014		    __LINE__));
2015
2016		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2017		    (struct trapframe *) arg);
2018		td->td_pflags &= ~TDP_CALLCHAIN;
2019		break;
2020
2021	case PMC_FN_USER_CALLCHAIN_SOFT:
2022		/*
2023		 * Record a call chain.
2024		 */
2025		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2026		    __LINE__));
2027		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2028		    (struct trapframe *) arg);
2029		td->td_pflags &= ~TDP_CALLCHAIN;
2030		break;
2031
2032	case PMC_FN_SOFT_SAMPLING:
2033		/*
2034		 * Call soft PMC sampling intr.
2035		 */
2036		pmc_soft_intr((struct pmckern_soft *) arg);
2037		break;
2038
2039	default:
2040#ifdef	HWPMC_DEBUG
2041		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2042#endif
2043		break;
2044
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2052 */
2053
2054static struct pmc_owner *
2055pmc_allocate_owner_descriptor(struct proc *p)
2056{
2057	uint32_t hindex;
2058	struct pmc_owner *po;
2059	struct pmc_ownerhash *poh;
2060
2061	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2062	poh = &pmc_ownerhash[hindex];
2063
2064	/* allocate space for N pointers and one descriptor struct */
2065	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2066	po->po_owner = p;
2067	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2068
2069	TAILQ_INIT(&po->po_logbuffers);
2070	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2071
2072	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2073	    p, p->p_pid, p->p_comm, po);
2074
2075	return po;
2076}
2077
2078static void
2079pmc_destroy_owner_descriptor(struct pmc_owner *po)
2080{
2081
2082	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2083	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2084
2085	mtx_destroy(&po->po_mtx);
2086	free(po, M_PMC);
2087}
2088
2089/*
2090 * find the descriptor corresponding to process 'p', adding or removing it
2091 * as specified by 'mode'.
2092 */
2093
2094static struct pmc_process *
2095pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2096{
2097	uint32_t hindex;
2098	struct pmc_process *pp, *ppnew;
2099	struct pmc_processhash *pph;
2100
2101	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2102	pph = &pmc_processhash[hindex];
2103
2104	ppnew = NULL;
2105
2106	/*
2107	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2108	 * cannot call malloc(9) once we hold a spin lock.
2109	 */
2110	if (mode & PMC_FLAG_ALLOCATE)
2111		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2112		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2113
2114	mtx_lock_spin(&pmc_processhash_mtx);
2115	LIST_FOREACH(pp, pph, pp_next)
2116	    if (pp->pp_proc == p)
2117		    break;
2118
2119	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2120		LIST_REMOVE(pp, pp_next);
2121
2122	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2123	    ppnew != NULL) {
2124		ppnew->pp_proc = p;
2125		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2126		pp = ppnew;
2127		ppnew = NULL;
2128	}
2129	mtx_unlock_spin(&pmc_processhash_mtx);
2130
2131	if (pp != NULL && ppnew != NULL)
2132		free(ppnew, M_PMC);
2133
2134	return pp;
2135}
2136
2137/*
2138 * remove a process descriptor from the process hash table.
2139 */
2140
2141static void
2142pmc_remove_process_descriptor(struct pmc_process *pp)
2143{
2144	KASSERT(pp->pp_refcnt == 0,
2145	    ("[pmc,%d] Removing process descriptor %p with count %d",
2146		__LINE__, pp, pp->pp_refcnt));
2147
2148	mtx_lock_spin(&pmc_processhash_mtx);
2149	LIST_REMOVE(pp, pp_next);
2150	mtx_unlock_spin(&pmc_processhash_mtx);
2151}
2152
2153
2154/*
2155 * find an owner descriptor corresponding to proc 'p'
2156 */
2157
2158static struct pmc_owner *
2159pmc_find_owner_descriptor(struct proc *p)
2160{
2161	uint32_t hindex;
2162	struct pmc_owner *po;
2163	struct pmc_ownerhash *poh;
2164
2165	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2166	poh = &pmc_ownerhash[hindex];
2167
2168	po = NULL;
2169	LIST_FOREACH(po, poh, po_next)
2170	    if (po->po_owner == p)
2171		    break;
2172
2173	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2174	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2175
2176	return po;
2177}
2178
2179/*
2180 * pmc_allocate_pmc_descriptor
2181 *
2182 * Allocate a pmc descriptor and initialize its
2183 * fields.
2184 */
2185
2186static struct pmc *
2187pmc_allocate_pmc_descriptor(void)
2188{
2189	struct pmc *pmc;
2190
2191	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2192
2193	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2194
2195	return pmc;
2196}
2197
2198/*
2199 * Destroy a pmc descriptor.
2200 */
2201
2202static void
2203pmc_destroy_pmc_descriptor(struct pmc *pm)
2204{
2205
2206	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2207	    pm->pm_state == PMC_STATE_FREE,
2208	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2209	KASSERT(LIST_EMPTY(&pm->pm_targets),
2210	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2211	KASSERT(pm->pm_owner == NULL,
2212	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2213	KASSERT(pm->pm_runcount == 0,
2214	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2215		pm->pm_runcount));
2216
2217	free(pm, M_PMC);
2218}
2219
2220static void
2221pmc_wait_for_pmc_idle(struct pmc *pm)
2222{
2223#ifdef HWPMC_DEBUG
2224	volatile int maxloop;
2225
2226	maxloop = 100 * pmc_cpu_max();
2227#endif
2228	/*
2229	 * Loop (with a forced context switch) till the PMC's runcount
2230	 * comes down to zero.
2231	 */
2232	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2233#ifdef HWPMC_DEBUG
2234		maxloop--;
2235		KASSERT(maxloop > 0,
2236		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2237			"pmc to be free", __LINE__,
2238			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2239#endif
2240		pmc_force_context_switch();
2241	}
2242}
2243
2244/*
2245 * This function does the following things:
2246 *
2247 *  - detaches the PMC from hardware
2248 *  - unlinks all target threads that were attached to it
2249 *  - removes the PMC from its owner's list
2250 *  - destroys the PMC private mutex
2251 *
2252 * Once this function completes, the given pmc pointer can be freed by
2253 * calling pmc_destroy_pmc_descriptor().
2254 */
2255
2256static void
2257pmc_release_pmc_descriptor(struct pmc *pm)
2258{
2259	enum pmc_mode mode;
2260	struct pmc_hw *phw;
2261	u_int adjri, ri, cpu;
2262	struct pmc_owner *po;
2263	struct pmc_binding pb;
2264	struct pmc_process *pp;
2265	struct pmc_classdep *pcd;
2266	struct pmc_target *ptgt, *tmp;
2267
2268	sx_assert(&pmc_sx, SX_XLOCKED);
2269
2270	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2271
2272	ri   = PMC_TO_ROWINDEX(pm);
2273	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2274	mode = PMC_TO_MODE(pm);
2275
2276	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2277	    mode);
2278
2279	/*
2280	 * First, we take the PMC off hardware.
2281	 */
2282	cpu = 0;
2283	if (PMC_IS_SYSTEM_MODE(mode)) {
2284
2285		/*
2286		 * A system mode PMC runs on a specific CPU.  Switch
2287		 * to this CPU and turn hardware off.
2288		 */
2289		pmc_save_cpu_binding(&pb);
2290
2291		cpu = PMC_TO_CPU(pm);
2292
2293		pmc_select_cpu(cpu);
2294
2295		/* switch off non-stalled CPUs */
2296		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2297		if (pm->pm_state == PMC_STATE_RUNNING &&
2298		    !CPU_ISSET(cpu, &pm->pm_stalled)) {
2299
2300			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2301
2302			KASSERT(phw->phw_pmc == pm,
2303			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2304				__LINE__, ri, phw->phw_pmc, pm));
2305			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2306
2307			critical_enter();
2308			pcd->pcd_stop_pmc(cpu, adjri);
2309			critical_exit();
2310		}
2311
2312		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2313
2314		critical_enter();
2315		pcd->pcd_config_pmc(cpu, adjri, NULL);
2316		critical_exit();
2317
2318		/* adjust the global and process count of SS mode PMCs */
2319		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2320			po = pm->pm_owner;
2321			po->po_sscount--;
2322			if (po->po_sscount == 0) {
2323				atomic_subtract_rel_int(&pmc_ss_count, 1);
2324				LIST_REMOVE(po, po_ssnext);
2325			}
2326		}
2327
2328		pm->pm_state = PMC_STATE_DELETED;
2329
2330		pmc_restore_cpu_binding(&pb);
2331
2332		/*
2333		 * We could have references to this PMC structure in
2334		 * the per-cpu sample queues.  Wait for the queue to
2335		 * drain.
2336		 */
2337		pmc_wait_for_pmc_idle(pm);
2338
2339	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2340
2341		/*
2342		 * A virtual PMC could be running on multiple CPUs at
2343		 * a given instant.
2344		 *
2345		 * By marking its state as DELETED, we ensure that
2346		 * this PMC is never further scheduled on hardware.
2347		 *
2348		 * Then we wait till all CPUs are done with this PMC.
2349		 */
2350		pm->pm_state = PMC_STATE_DELETED;
2351
2352
2353		/* Wait for the PMCs runcount to come to zero. */
2354		pmc_wait_for_pmc_idle(pm);
2355
2356		/*
2357		 * At this point the PMC is off all CPUs and cannot be
2358		 * freshly scheduled onto a CPU.  It is now safe to
2359		 * unlink all targets from this PMC.  If a
2360		 * process-record's refcount falls to zero, we remove
2361		 * it from the hash table.  The module-wide SX lock
2362		 * protects us from races.
2363		 */
2364		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2365			pp = ptgt->pt_process;
2366			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2367
2368			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2369
2370			/*
2371			 * If the target process record shows that no
2372			 * PMCs are attached to it, reclaim its space.
2373			 */
2374
2375			if (pp->pp_refcnt == 0) {
2376				pmc_remove_process_descriptor(pp);
2377				free(pp, M_PMC);
2378			}
2379		}
2380
2381		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2382
2383	}
2384
2385	/*
2386	 * Release any MD resources
2387	 */
2388	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2389
2390	/*
2391	 * Update row disposition
2392	 */
2393
2394	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2395		PMC_UNMARK_ROW_STANDALONE(ri);
2396	else
2397		PMC_UNMARK_ROW_THREAD(ri);
2398
2399	/* unlink from the owner's list */
2400	if (pm->pm_owner) {
2401		LIST_REMOVE(pm, pm_next);
2402		pm->pm_owner = NULL;
2403	}
2404}
2405
2406/*
2407 * Register an owner and a pmc.
2408 */
2409
2410static int
2411pmc_register_owner(struct proc *p, struct pmc *pmc)
2412{
2413	struct pmc_owner *po;
2414
2415	sx_assert(&pmc_sx, SX_XLOCKED);
2416
2417	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2418		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2419			return ENOMEM;
2420
2421	KASSERT(pmc->pm_owner == NULL,
2422	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2423	pmc->pm_owner  = po;
2424
2425	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2426
2427	PROC_LOCK(p);
2428	p->p_flag |= P_HWPMC;
2429	PROC_UNLOCK(p);
2430
2431	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2432		pmclog_process_pmcallocate(pmc);
2433
2434	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2435	    po, pmc);
2436
2437	return 0;
2438}
2439
2440/*
2441 * Return the current row disposition:
2442 * == 0 => FREE
2443 *  > 0 => PROCESS MODE
2444 *  < 0 => SYSTEM MODE
2445 */
2446
2447int
2448pmc_getrowdisp(int ri)
2449{
2450	return pmc_pmcdisp[ri];
2451}
2452
2453/*
2454 * Check if a PMC at row index 'ri' can be allocated to the current
2455 * process.
2456 *
2457 * Allocation can fail if:
2458 *   - the current process is already being profiled by a PMC at index 'ri',
2459 *     attached to it via OP_PMCATTACH.
2460 *   - the current process has already allocated a PMC at index 'ri'
2461 *     via OP_ALLOCATE.
2462 */
2463
2464static int
2465pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2466{
2467	enum pmc_mode mode;
2468	struct pmc *pm;
2469	struct pmc_owner *po;
2470	struct pmc_process *pp;
2471
2472	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2473	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2474
2475	/*
2476	 * We shouldn't have already allocated a process-mode PMC at
2477	 * row index 'ri'.
2478	 *
2479	 * We shouldn't have allocated a system-wide PMC on the same
2480	 * CPU and same RI.
2481	 */
2482	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2483		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2484		    if (PMC_TO_ROWINDEX(pm) == ri) {
2485			    mode = PMC_TO_MODE(pm);
2486			    if (PMC_IS_VIRTUAL_MODE(mode))
2487				    return EEXIST;
2488			    if (PMC_IS_SYSTEM_MODE(mode) &&
2489				(int) PMC_TO_CPU(pm) == cpu)
2490				    return EEXIST;
2491		    }
2492	        }
2493
2494	/*
2495	 * We also shouldn't be the target of any PMC at this index
2496	 * since otherwise a PMC_ATTACH to ourselves will fail.
2497	 */
2498	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2499		if (pp->pp_pmcs[ri].pp_pmc)
2500			return EEXIST;
2501
2502	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2503	    p, p->p_pid, p->p_comm, ri);
2504
2505	return 0;
2506}
2507
2508/*
2509 * Check if a given PMC at row index 'ri' can be currently used in
2510 * mode 'mode'.
2511 */
2512
2513static int
2514pmc_can_allocate_row(int ri, enum pmc_mode mode)
2515{
2516	enum pmc_disp	disp;
2517
2518	sx_assert(&pmc_sx, SX_XLOCKED);
2519
2520	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2521
2522	if (PMC_IS_SYSTEM_MODE(mode))
2523		disp = PMC_DISP_STANDALONE;
2524	else
2525		disp = PMC_DISP_THREAD;
2526
2527	/*
2528	 * check disposition for PMC row 'ri':
2529	 *
2530	 * Expected disposition		Row-disposition		Result
2531	 *
2532	 * STANDALONE			STANDALONE or FREE	proceed
2533	 * STANDALONE			THREAD			fail
2534	 * THREAD			THREAD or FREE		proceed
2535	 * THREAD			STANDALONE		fail
2536	 */
2537
2538	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2539	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2540	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2541		return EBUSY;
2542
2543	/*
2544	 * All OK
2545	 */
2546
2547	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2548
2549	return 0;
2550
2551}
2552
2553/*
2554 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2555 */
2556
2557static struct pmc *
2558pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2559{
2560	struct pmc *pm;
2561
2562	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2563	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2564		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2565
2566	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2567	    if (pm->pm_id == pmcid)
2568		    return pm;
2569
2570	return NULL;
2571}
2572
2573static int
2574pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2575{
2576
2577	struct pmc *pm, *opm;
2578	struct pmc_owner *po;
2579	struct pmc_process *pp;
2580
2581	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2582	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2583		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2584	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2585
2586	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
2587		/*
2588		 * In case of PMC_F_DESCENDANTS child processes we will not find
2589		 * the current process in the owners hash list.  Find the owner
2590		 * process first and from there lookup the po.
2591		 */
2592		if ((pp = pmc_find_process_descriptor(curthread->td_proc,
2593		    PMC_FLAG_NONE)) == NULL) {
2594			return ESRCH;
2595		} else {
2596			opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
2597			if (opm == NULL)
2598				return ESRCH;
2599			if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
2600			    PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
2601			    PMC_F_DESCENDANTS))
2602				return ESRCH;
2603			po = opm->pm_owner;
2604		}
2605	}
2606
2607	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2608		return EINVAL;
2609
2610	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2611
2612	*pmc = pm;
2613	return 0;
2614}
2615
2616/*
2617 * Start a PMC.
2618 */
2619
2620static int
2621pmc_start(struct pmc *pm)
2622{
2623	enum pmc_mode mode;
2624	struct pmc_owner *po;
2625	struct pmc_binding pb;
2626	struct pmc_classdep *pcd;
2627	int adjri, error, cpu, ri;
2628
2629	KASSERT(pm != NULL,
2630	    ("[pmc,%d] null pm", __LINE__));
2631
2632	mode = PMC_TO_MODE(pm);
2633	ri   = PMC_TO_ROWINDEX(pm);
2634	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2635
2636	error = 0;
2637
2638	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2639
2640	po = pm->pm_owner;
2641
2642	/*
2643	 * Disallow PMCSTART if a logfile is required but has not been
2644	 * configured yet.
2645	 */
2646	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2647	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2648		return (EDOOFUS);	/* programming error */
2649
2650	/*
2651	 * If this is a sampling mode PMC, log mapping information for
2652	 * the kernel modules that are currently loaded.
2653	 */
2654	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2655	    pmc_log_kernel_mappings(pm);
2656
2657	if (PMC_IS_VIRTUAL_MODE(mode)) {
2658
2659		/*
2660		 * If a PMCATTACH has never been done on this PMC,
2661		 * attach it to its owner process.
2662		 */
2663
2664		if (LIST_EMPTY(&pm->pm_targets))
2665			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2666			    pmc_attach_process(po->po_owner, pm);
2667
2668		/*
2669		 * If the PMC is attached to its owner, then force a context
2670		 * switch to ensure that the MD state gets set correctly.
2671		 */
2672
2673		if (error == 0) {
2674			pm->pm_state = PMC_STATE_RUNNING;
2675			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2676				pmc_force_context_switch();
2677		}
2678
2679		return (error);
2680	}
2681
2682
2683	/*
2684	 * A system-wide PMC.
2685	 *
2686	 * Add the owner to the global list if this is a system-wide
2687	 * sampling PMC.
2688	 */
2689
2690	if (mode == PMC_MODE_SS) {
2691		if (po->po_sscount == 0) {
2692			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2693			atomic_add_rel_int(&pmc_ss_count, 1);
2694			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2695		}
2696		po->po_sscount++;
2697
2698		/*
2699		 * Log mapping information for all existing processes in the
2700		 * system.  Subsequent mappings are logged as they happen;
2701		 * see pmc_process_mmap().
2702		 */
2703		if (po->po_logprocmaps == 0) {
2704			pmc_log_all_process_mappings(po);
2705			po->po_logprocmaps = 1;
2706		}
2707	}
2708
2709	/*
2710	 * Move to the CPU associated with this
2711	 * PMC, and start the hardware.
2712	 */
2713
2714	pmc_save_cpu_binding(&pb);
2715
2716	cpu = PMC_TO_CPU(pm);
2717
2718	if (!pmc_cpu_is_active(cpu))
2719		return (ENXIO);
2720
2721	pmc_select_cpu(cpu);
2722
2723	/*
2724	 * global PMCs are configured at allocation time
2725	 * so write out the initial value and start the PMC.
2726	 */
2727
2728	pm->pm_state = PMC_STATE_RUNNING;
2729
2730	critical_enter();
2731	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2732		 PMC_IS_SAMPLING_MODE(mode) ?
2733		 pm->pm_sc.pm_reloadcount :
2734		 pm->pm_sc.pm_initial)) == 0) {
2735		/* If a sampling mode PMC, reset stalled state. */
2736		if (PMC_IS_SAMPLING_MODE(mode))
2737			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2738
2739		/* Indicate that we desire this to run. Start it. */
2740		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2741		error = pcd->pcd_start_pmc(cpu, adjri);
2742	}
2743	critical_exit();
2744
2745	pmc_restore_cpu_binding(&pb);
2746
2747	return (error);
2748}
2749
2750/*
2751 * Stop a PMC.
2752 */
2753
2754static int
2755pmc_stop(struct pmc *pm)
2756{
2757	struct pmc_owner *po;
2758	struct pmc_binding pb;
2759	struct pmc_classdep *pcd;
2760	int adjri, cpu, error, ri;
2761
2762	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2763
2764	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2765	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2766
2767	pm->pm_state = PMC_STATE_STOPPED;
2768
2769	/*
2770	 * If the PMC is a virtual mode one, changing the state to
2771	 * non-RUNNING is enough to ensure that the PMC never gets
2772	 * scheduled.
2773	 *
2774	 * If this PMC is current running on a CPU, then it will
2775	 * handled correctly at the time its target process is context
2776	 * switched out.
2777	 */
2778
2779	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2780		return 0;
2781
2782	/*
2783	 * A system-mode PMC.  Move to the CPU associated with
2784	 * this PMC, and stop the hardware.  We update the
2785	 * 'initial count' so that a subsequent PMCSTART will
2786	 * resume counting from the current hardware count.
2787	 */
2788
2789	pmc_save_cpu_binding(&pb);
2790
2791	cpu = PMC_TO_CPU(pm);
2792
2793	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2794	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2795
2796	if (!pmc_cpu_is_active(cpu))
2797		return ENXIO;
2798
2799	pmc_select_cpu(cpu);
2800
2801	ri = PMC_TO_ROWINDEX(pm);
2802	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2803
2804	CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2805	critical_enter();
2806	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2807		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2808	critical_exit();
2809
2810	pmc_restore_cpu_binding(&pb);
2811
2812	po = pm->pm_owner;
2813
2814	/* remove this owner from the global list of SS PMC owners */
2815	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2816		po->po_sscount--;
2817		if (po->po_sscount == 0) {
2818			atomic_subtract_rel_int(&pmc_ss_count, 1);
2819			LIST_REMOVE(po, po_ssnext);
2820			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2821		}
2822	}
2823
2824	return (error);
2825}
2826
2827
2828#ifdef	HWPMC_DEBUG
2829static const char *pmc_op_to_name[] = {
2830#undef	__PMC_OP
2831#define	__PMC_OP(N, D)	#N ,
2832	__PMC_OPS()
2833	NULL
2834};
2835#endif
2836
2837/*
2838 * The syscall interface
2839 */
2840
2841#define	PMC_GET_SX_XLOCK(...) do {		\
2842	sx_xlock(&pmc_sx);			\
2843	if (pmc_hook == NULL) {			\
2844		sx_xunlock(&pmc_sx);		\
2845		return __VA_ARGS__;		\
2846	}					\
2847} while (0)
2848
2849#define	PMC_DOWNGRADE_SX() do {			\
2850	sx_downgrade(&pmc_sx);			\
2851	is_sx_downgraded = 1;			\
2852} while (0)
2853
2854static int
2855pmc_syscall_handler(struct thread *td, void *syscall_args)
2856{
2857	int error, is_sx_downgraded, is_sx_locked, op;
2858	struct pmc_syscall_args *c;
2859	void *arg;
2860
2861	PMC_GET_SX_XLOCK(ENOSYS);
2862
2863	DROP_GIANT();
2864
2865	is_sx_downgraded = 0;
2866	is_sx_locked = 1;
2867
2868	c = (struct pmc_syscall_args *) syscall_args;
2869
2870	op = c->pmop_code;
2871	arg = c->pmop_data;
2872
2873	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2874	    pmc_op_to_name[op], arg);
2875
2876	error = 0;
2877	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2878
2879	switch(op)
2880	{
2881
2882
2883	/*
2884	 * Configure a log file.
2885	 *
2886	 * XXX This OP will be reworked.
2887	 */
2888
2889	case PMC_OP_CONFIGURELOG:
2890	{
2891		struct proc *p;
2892		struct pmc *pm;
2893		struct pmc_owner *po;
2894		struct pmc_op_configurelog cl;
2895
2896		sx_assert(&pmc_sx, SX_XLOCKED);
2897
2898		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2899			break;
2900
2901		/* mark this process as owning a log file */
2902		p = td->td_proc;
2903		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2904			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2905				error = ENOMEM;
2906				break;
2907			}
2908
2909		/*
2910		 * If a valid fd was passed in, try to configure that,
2911		 * otherwise if 'fd' was less than zero and there was
2912		 * a log file configured, flush its buffers and
2913		 * de-configure it.
2914		 */
2915		if (cl.pm_logfd >= 0) {
2916			sx_xunlock(&pmc_sx);
2917			is_sx_locked = 0;
2918			error = pmclog_configure_log(md, po, cl.pm_logfd);
2919		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2920			pmclog_process_closelog(po);
2921			error = pmclog_close(po);
2922			if (error == 0) {
2923				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2924				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2925					pm->pm_state == PMC_STATE_RUNNING)
2926					    pmc_stop(pm);
2927				error = pmclog_deconfigure_log(po);
2928			}
2929		} else
2930			error = EINVAL;
2931
2932		if (error)
2933			break;
2934	}
2935	break;
2936
2937	/*
2938	 * Flush a log file.
2939	 */
2940
2941	case PMC_OP_FLUSHLOG:
2942	{
2943		struct pmc_owner *po;
2944
2945		sx_assert(&pmc_sx, SX_XLOCKED);
2946
2947		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2948			error = EINVAL;
2949			break;
2950		}
2951
2952		error = pmclog_flush(po);
2953	}
2954	break;
2955
2956	/*
2957	 * Close a log file.
2958	 */
2959
2960	case PMC_OP_CLOSELOG:
2961	{
2962		struct pmc_owner *po;
2963
2964		sx_assert(&pmc_sx, SX_XLOCKED);
2965
2966		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2967			error = EINVAL;
2968			break;
2969		}
2970
2971		error = pmclog_close(po);
2972	}
2973	break;
2974
2975	/*
2976	 * Retrieve hardware configuration.
2977	 */
2978
2979	case PMC_OP_GETCPUINFO:	/* CPU information */
2980	{
2981		struct pmc_op_getcpuinfo gci;
2982		struct pmc_classinfo *pci;
2983		struct pmc_classdep *pcd;
2984		int cl;
2985
2986		gci.pm_cputype = md->pmd_cputype;
2987		gci.pm_ncpu    = pmc_cpu_max();
2988		gci.pm_npmc    = md->pmd_npmc;
2989		gci.pm_nclass  = md->pmd_nclass;
2990		pci = gci.pm_classes;
2991		pcd = md->pmd_classdep;
2992		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2993			pci->pm_caps  = pcd->pcd_caps;
2994			pci->pm_class = pcd->pcd_class;
2995			pci->pm_width = pcd->pcd_width;
2996			pci->pm_num   = pcd->pcd_num;
2997		}
2998		error = copyout(&gci, arg, sizeof(gci));
2999	}
3000	break;
3001
3002	/*
3003	 * Retrieve soft events list.
3004	 */
3005	case PMC_OP_GETDYNEVENTINFO:
3006	{
3007		enum pmc_class			cl;
3008		enum pmc_event			ev;
3009		struct pmc_op_getdyneventinfo	*gei;
3010		struct pmc_dyn_event_descr	dev;
3011		struct pmc_soft			*ps;
3012		uint32_t			nevent;
3013
3014		sx_assert(&pmc_sx, SX_LOCKED);
3015
3016		gei = (struct pmc_op_getdyneventinfo *) arg;
3017
3018		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3019			break;
3020
3021		/* Only SOFT class is dynamic. */
3022		if (cl != PMC_CLASS_SOFT) {
3023			error = EINVAL;
3024			break;
3025		}
3026
3027		nevent = 0;
3028		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3029			ps = pmc_soft_ev_acquire(ev);
3030			if (ps == NULL)
3031				continue;
3032			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3033			pmc_soft_ev_release(ps);
3034
3035			error = copyout(&dev,
3036			    &gei->pm_events[nevent],
3037			    sizeof(struct pmc_dyn_event_descr));
3038			if (error != 0)
3039				break;
3040			nevent++;
3041		}
3042		if (error != 0)
3043			break;
3044
3045		error = copyout(&nevent, &gei->pm_nevent,
3046		    sizeof(nevent));
3047	}
3048	break;
3049
3050	/*
3051	 * Get module statistics
3052	 */
3053
3054	case PMC_OP_GETDRIVERSTATS:
3055	{
3056		struct pmc_op_getdriverstats gms;
3057
3058		bcopy(&pmc_stats, &gms, sizeof(gms));
3059		error = copyout(&gms, arg, sizeof(gms));
3060	}
3061	break;
3062
3063
3064	/*
3065	 * Retrieve module version number
3066	 */
3067
3068	case PMC_OP_GETMODULEVERSION:
3069	{
3070		uint32_t cv, modv;
3071
3072		/* retrieve the client's idea of the ABI version */
3073		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3074			break;
3075		/* don't service clients newer than our driver */
3076		modv = PMC_VERSION;
3077		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3078			error = EPROGMISMATCH;
3079			break;
3080		}
3081		error = copyout(&modv, arg, sizeof(int));
3082	}
3083	break;
3084
3085
3086	/*
3087	 * Retrieve the state of all the PMCs on a given
3088	 * CPU.
3089	 */
3090
3091	case PMC_OP_GETPMCINFO:
3092	{
3093		int ari;
3094		struct pmc *pm;
3095		size_t pmcinfo_size;
3096		uint32_t cpu, n, npmc;
3097		struct pmc_owner *po;
3098		struct pmc_binding pb;
3099		struct pmc_classdep *pcd;
3100		struct pmc_info *p, *pmcinfo;
3101		struct pmc_op_getpmcinfo *gpi;
3102
3103		PMC_DOWNGRADE_SX();
3104
3105		gpi = (struct pmc_op_getpmcinfo *) arg;
3106
3107		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3108			break;
3109
3110		if (cpu >= pmc_cpu_max()) {
3111			error = EINVAL;
3112			break;
3113		}
3114
3115		if (!pmc_cpu_is_active(cpu)) {
3116			error = ENXIO;
3117			break;
3118		}
3119
3120		/* switch to CPU 'cpu' */
3121		pmc_save_cpu_binding(&pb);
3122		pmc_select_cpu(cpu);
3123
3124		npmc = md->pmd_npmc;
3125
3126		pmcinfo_size = npmc * sizeof(struct pmc_info);
3127		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3128
3129		p = pmcinfo;
3130
3131		for (n = 0; n < md->pmd_npmc; n++, p++) {
3132
3133			pcd = pmc_ri_to_classdep(md, n, &ari);
3134
3135			KASSERT(pcd != NULL,
3136			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3137
3138			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3139				break;
3140
3141			if (PMC_ROW_DISP_IS_STANDALONE(n))
3142				p->pm_rowdisp = PMC_DISP_STANDALONE;
3143			else if (PMC_ROW_DISP_IS_THREAD(n))
3144				p->pm_rowdisp = PMC_DISP_THREAD;
3145			else
3146				p->pm_rowdisp = PMC_DISP_FREE;
3147
3148			p->pm_ownerpid = -1;
3149
3150			if (pm == NULL)	/* no PMC associated */
3151				continue;
3152
3153			po = pm->pm_owner;
3154
3155			KASSERT(po->po_owner != NULL,
3156			    ("[pmc,%d] pmc_owner had a null proc pointer",
3157				__LINE__));
3158
3159			p->pm_ownerpid = po->po_owner->p_pid;
3160			p->pm_mode     = PMC_TO_MODE(pm);
3161			p->pm_event    = pm->pm_event;
3162			p->pm_flags    = pm->pm_flags;
3163
3164			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3165				p->pm_reloadcount =
3166				    pm->pm_sc.pm_reloadcount;
3167		}
3168
3169		pmc_restore_cpu_binding(&pb);
3170
3171		/* now copy out the PMC info collected */
3172		if (error == 0)
3173			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3174
3175		free(pmcinfo, M_PMC);
3176	}
3177	break;
3178
3179
3180	/*
3181	 * Set the administrative state of a PMC.  I.e. whether
3182	 * the PMC is to be used or not.
3183	 */
3184
3185	case PMC_OP_PMCADMIN:
3186	{
3187		int cpu, ri;
3188		enum pmc_state request;
3189		struct pmc_cpu *pc;
3190		struct pmc_hw *phw;
3191		struct pmc_op_pmcadmin pma;
3192		struct pmc_binding pb;
3193
3194		sx_assert(&pmc_sx, SX_XLOCKED);
3195
3196		KASSERT(td == curthread,
3197		    ("[pmc,%d] td != curthread", __LINE__));
3198
3199		error = priv_check(td, PRIV_PMC_MANAGE);
3200		if (error)
3201			break;
3202
3203		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3204			break;
3205
3206		cpu = pma.pm_cpu;
3207
3208		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3209			error = EINVAL;
3210			break;
3211		}
3212
3213		if (!pmc_cpu_is_active(cpu)) {
3214			error = ENXIO;
3215			break;
3216		}
3217
3218		request = pma.pm_state;
3219
3220		if (request != PMC_STATE_DISABLED &&
3221		    request != PMC_STATE_FREE) {
3222			error = EINVAL;
3223			break;
3224		}
3225
3226		ri = pma.pm_pmc; /* pmc id == row index */
3227		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3228			error = EINVAL;
3229			break;
3230		}
3231
3232		/*
3233		 * We can't disable a PMC with a row-index allocated
3234		 * for process virtual PMCs.
3235		 */
3236
3237		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3238		    request == PMC_STATE_DISABLED) {
3239			error = EBUSY;
3240			break;
3241		}
3242
3243		/*
3244		 * otherwise, this PMC on this CPU is either free or
3245		 * in system-wide mode.
3246		 */
3247
3248		pmc_save_cpu_binding(&pb);
3249		pmc_select_cpu(cpu);
3250
3251		pc  = pmc_pcpu[cpu];
3252		phw = pc->pc_hwpmcs[ri];
3253
3254		/*
3255		 * XXX do we need some kind of 'forced' disable?
3256		 */
3257
3258		if (phw->phw_pmc == NULL) {
3259			if (request == PMC_STATE_DISABLED &&
3260			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3261				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3262				PMC_MARK_ROW_STANDALONE(ri);
3263			} else if (request == PMC_STATE_FREE &&
3264			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3265				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3266				PMC_UNMARK_ROW_STANDALONE(ri);
3267			}
3268			/* other cases are a no-op */
3269		} else
3270			error = EBUSY;
3271
3272		pmc_restore_cpu_binding(&pb);
3273	}
3274	break;
3275
3276
3277	/*
3278	 * Allocate a PMC.
3279	 */
3280
3281	case PMC_OP_PMCALLOCATE:
3282	{
3283		int adjri, n;
3284		u_int cpu;
3285		uint32_t caps;
3286		struct pmc *pmc;
3287		enum pmc_mode mode;
3288		struct pmc_hw *phw;
3289		struct pmc_binding pb;
3290		struct pmc_classdep *pcd;
3291		struct pmc_op_pmcallocate pa;
3292
3293		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3294			break;
3295
3296		caps = pa.pm_caps;
3297		mode = pa.pm_mode;
3298		cpu  = pa.pm_cpu;
3299
3300		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3301		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3302		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3303			error = EINVAL;
3304			break;
3305		}
3306
3307		/*
3308		 * Virtual PMCs should only ask for a default CPU.
3309		 * System mode PMCs need to specify a non-default CPU.
3310		 */
3311
3312		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3313		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3314			error = EINVAL;
3315			break;
3316		}
3317
3318		/*
3319		 * Check that an inactive CPU is not being asked for.
3320		 */
3321
3322		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3323			error = ENXIO;
3324			break;
3325		}
3326
3327		/*
3328		 * Refuse an allocation for a system-wide PMC if this
3329		 * process has been jailed, or if this process lacks
3330		 * super-user credentials and the sysctl tunable
3331		 * 'security.bsd.unprivileged_syspmcs' is zero.
3332		 */
3333
3334		if (PMC_IS_SYSTEM_MODE(mode)) {
3335			if (jailed(curthread->td_ucred)) {
3336				error = EPERM;
3337				break;
3338			}
3339			if (!pmc_unprivileged_syspmcs) {
3340				error = priv_check(curthread,
3341				    PRIV_PMC_SYSTEM);
3342				if (error)
3343					break;
3344			}
3345		}
3346
3347		/*
3348		 * Look for valid values for 'pm_flags'
3349		 */
3350
3351		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3352		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3353			error = EINVAL;
3354			break;
3355		}
3356
3357		/* process logging options are not allowed for system PMCs */
3358		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3359		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3360			error = EINVAL;
3361			break;
3362		}
3363
3364		/*
3365		 * All sampling mode PMCs need to be able to interrupt the
3366		 * CPU.
3367		 */
3368		if (PMC_IS_SAMPLING_MODE(mode))
3369			caps |= PMC_CAP_INTERRUPT;
3370
3371		/* A valid class specifier should have been passed in. */
3372		for (n = 0; n < md->pmd_nclass; n++)
3373			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3374				break;
3375		if (n == md->pmd_nclass) {
3376			error = EINVAL;
3377			break;
3378		}
3379
3380		/* The requested PMC capabilities should be feasible. */
3381		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3382			error = EOPNOTSUPP;
3383			break;
3384		}
3385
3386		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3387		    pa.pm_ev, caps, mode, cpu);
3388
3389		pmc = pmc_allocate_pmc_descriptor();
3390		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3391		    PMC_ID_INVALID);
3392		pmc->pm_event = pa.pm_ev;
3393		pmc->pm_state = PMC_STATE_FREE;
3394		pmc->pm_caps  = caps;
3395		pmc->pm_flags = pa.pm_flags;
3396
3397		/* switch thread to CPU 'cpu' */
3398		pmc_save_cpu_binding(&pb);
3399
3400#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3401	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3402	 PMC_PHW_FLAG_IS_SHAREABLE)
3403#define	PMC_IS_UNALLOCATED(cpu, n)				\
3404	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3405
3406		if (PMC_IS_SYSTEM_MODE(mode)) {
3407			pmc_select_cpu(cpu);
3408			for (n = 0; n < (int) md->pmd_npmc; n++) {
3409				pcd = pmc_ri_to_classdep(md, n, &adjri);
3410				if (pmc_can_allocate_row(n, mode) == 0 &&
3411				    pmc_can_allocate_rowindex(
3412					    curthread->td_proc, n, cpu) == 0 &&
3413				    (PMC_IS_UNALLOCATED(cpu, n) ||
3414				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3415				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3416					&pa) == 0)
3417					break;
3418			}
3419		} else {
3420			/* Process virtual mode */
3421			for (n = 0; n < (int) md->pmd_npmc; n++) {
3422				pcd = pmc_ri_to_classdep(md, n, &adjri);
3423				if (pmc_can_allocate_row(n, mode) == 0 &&
3424				    pmc_can_allocate_rowindex(
3425					    curthread->td_proc, n,
3426					    PMC_CPU_ANY) == 0 &&
3427				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3428					adjri, pmc, &pa) == 0)
3429					break;
3430			}
3431		}
3432
3433#undef	PMC_IS_UNALLOCATED
3434#undef	PMC_IS_SHAREABLE_PMC
3435
3436		pmc_restore_cpu_binding(&pb);
3437
3438		if (n == (int) md->pmd_npmc) {
3439			pmc_destroy_pmc_descriptor(pmc);
3440			pmc = NULL;
3441			error = EINVAL;
3442			break;
3443		}
3444
3445		/* Fill in the correct value in the ID field */
3446		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3447
3448		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3449		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3450
3451		/* Process mode PMCs with logging enabled need log files */
3452		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3453			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3454
3455		/* All system mode sampling PMCs require a log file */
3456		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3457			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3458
3459		/*
3460		 * Configure global pmc's immediately
3461		 */
3462
3463		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3464
3465			pmc_save_cpu_binding(&pb);
3466			pmc_select_cpu(cpu);
3467
3468			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3469			pcd = pmc_ri_to_classdep(md, n, &adjri);
3470
3471			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3472			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3473				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3474				pmc_destroy_pmc_descriptor(pmc);
3475				pmc = NULL;
3476				pmc_restore_cpu_binding(&pb);
3477				error = EPERM;
3478				break;
3479			}
3480
3481			pmc_restore_cpu_binding(&pb);
3482		}
3483
3484		pmc->pm_state    = PMC_STATE_ALLOCATED;
3485
3486		/*
3487		 * mark row disposition
3488		 */
3489
3490		if (PMC_IS_SYSTEM_MODE(mode))
3491			PMC_MARK_ROW_STANDALONE(n);
3492		else
3493			PMC_MARK_ROW_THREAD(n);
3494
3495		/*
3496		 * Register this PMC with the current thread as its owner.
3497		 */
3498
3499		if ((error =
3500		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3501			pmc_release_pmc_descriptor(pmc);
3502			pmc_destroy_pmc_descriptor(pmc);
3503			pmc = NULL;
3504			break;
3505		}
3506
3507		/*
3508		 * Return the allocated index.
3509		 */
3510
3511		pa.pm_pmcid = pmc->pm_id;
3512
3513		error = copyout(&pa, arg, sizeof(pa));
3514	}
3515	break;
3516
3517
3518	/*
3519	 * Attach a PMC to a process.
3520	 */
3521
3522	case PMC_OP_PMCATTACH:
3523	{
3524		struct pmc *pm;
3525		struct proc *p;
3526		struct pmc_op_pmcattach a;
3527
3528		sx_assert(&pmc_sx, SX_XLOCKED);
3529
3530		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3531			break;
3532
3533		if (a.pm_pid < 0) {
3534			error = EINVAL;
3535			break;
3536		} else if (a.pm_pid == 0)
3537			a.pm_pid = td->td_proc->p_pid;
3538
3539		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3540			break;
3541
3542		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3543			error = EINVAL;
3544			break;
3545		}
3546
3547		/* PMCs may be (re)attached only when allocated or stopped */
3548		if (pm->pm_state == PMC_STATE_RUNNING) {
3549			error = EBUSY;
3550			break;
3551		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3552		    pm->pm_state != PMC_STATE_STOPPED) {
3553			error = EINVAL;
3554			break;
3555		}
3556
3557		/* lookup pid */
3558		if ((p = pfind(a.pm_pid)) == NULL) {
3559			error = ESRCH;
3560			break;
3561		}
3562
3563		/*
3564		 * Ignore processes that are working on exiting.
3565		 */
3566		if (p->p_flag & P_WEXIT) {
3567			error = ESRCH;
3568			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3569			break;
3570		}
3571
3572		/*
3573		 * we are allowed to attach a PMC to a process if
3574		 * we can debug it.
3575		 */
3576		error = p_candebug(curthread, p);
3577
3578		PROC_UNLOCK(p);
3579
3580		if (error == 0)
3581			error = pmc_attach_process(p, pm);
3582	}
3583	break;
3584
3585
3586	/*
3587	 * Detach an attached PMC from a process.
3588	 */
3589
3590	case PMC_OP_PMCDETACH:
3591	{
3592		struct pmc *pm;
3593		struct proc *p;
3594		struct pmc_op_pmcattach a;
3595
3596		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3597			break;
3598
3599		if (a.pm_pid < 0) {
3600			error = EINVAL;
3601			break;
3602		} else if (a.pm_pid == 0)
3603			a.pm_pid = td->td_proc->p_pid;
3604
3605		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3606			break;
3607
3608		if ((p = pfind(a.pm_pid)) == NULL) {
3609			error = ESRCH;
3610			break;
3611		}
3612
3613		/*
3614		 * Treat processes that are in the process of exiting
3615		 * as if they were not present.
3616		 */
3617
3618		if (p->p_flag & P_WEXIT)
3619			error = ESRCH;
3620
3621		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3622
3623		if (error == 0)
3624			error = pmc_detach_process(p, pm);
3625	}
3626	break;
3627
3628
3629	/*
3630	 * Retrieve the MSR number associated with the counter
3631	 * 'pmc_id'.  This allows processes to directly use RDPMC
3632	 * instructions to read their PMCs, without the overhead of a
3633	 * system call.
3634	 */
3635
3636	case PMC_OP_PMCGETMSR:
3637	{
3638		int adjri, ri;
3639		struct pmc *pm;
3640		struct pmc_target *pt;
3641		struct pmc_op_getmsr gm;
3642		struct pmc_classdep *pcd;
3643
3644		PMC_DOWNGRADE_SX();
3645
3646		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3647			break;
3648
3649		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3650			break;
3651
3652		/*
3653		 * The allocated PMC has to be a process virtual PMC,
3654		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3655		 * read using the PMCREAD operation since they may be
3656		 * allocated on a different CPU than the one we could
3657		 * be running on at the time of the RDPMC instruction.
3658		 *
3659		 * The GETMSR operation is not allowed for PMCs that
3660		 * are inherited across processes.
3661		 */
3662
3663		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3664		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3665			error = EINVAL;
3666			break;
3667		}
3668
3669		/*
3670		 * It only makes sense to use a RDPMC (or its
3671		 * equivalent instruction on non-x86 architectures) on
3672		 * a process that has allocated and attached a PMC to
3673		 * itself.  Conversely the PMC is only allowed to have
3674		 * one process attached to it -- its owner.
3675		 */
3676
3677		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3678		    LIST_NEXT(pt, pt_next) != NULL ||
3679		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3680			error = EINVAL;
3681			break;
3682		}
3683
3684		ri = PMC_TO_ROWINDEX(pm);
3685		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3686
3687		/* PMC class has no 'GETMSR' support */
3688		if (pcd->pcd_get_msr == NULL) {
3689			error = ENOSYS;
3690			break;
3691		}
3692
3693		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3694			break;
3695
3696		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3697			break;
3698
3699		/*
3700		 * Mark our process as using MSRs.  Update machine
3701		 * state using a forced context switch.
3702		 */
3703
3704		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3705		pmc_force_context_switch();
3706
3707	}
3708	break;
3709
3710	/*
3711	 * Release an allocated PMC
3712	 */
3713
3714	case PMC_OP_PMCRELEASE:
3715	{
3716		pmc_id_t pmcid;
3717		struct pmc *pm;
3718		struct pmc_owner *po;
3719		struct pmc_op_simple sp;
3720
3721		/*
3722		 * Find PMC pointer for the named PMC.
3723		 *
3724		 * Use pmc_release_pmc_descriptor() to switch off the
3725		 * PMC, remove all its target threads, and remove the
3726		 * PMC from its owner's list.
3727		 *
3728		 * Remove the owner record if this is the last PMC
3729		 * owned.
3730		 *
3731		 * Free up space.
3732		 */
3733
3734		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3735			break;
3736
3737		pmcid = sp.pm_pmcid;
3738
3739		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3740			break;
3741
3742		po = pm->pm_owner;
3743		pmc_release_pmc_descriptor(pm);
3744		pmc_maybe_remove_owner(po);
3745		pmc_destroy_pmc_descriptor(pm);
3746	}
3747	break;
3748
3749
3750	/*
3751	 * Read and/or write a PMC.
3752	 */
3753
3754	case PMC_OP_PMCRW:
3755	{
3756		int adjri;
3757		struct pmc *pm;
3758		uint32_t cpu, ri;
3759		pmc_value_t oldvalue;
3760		struct pmc_binding pb;
3761		struct pmc_op_pmcrw prw;
3762		struct pmc_classdep *pcd;
3763		struct pmc_op_pmcrw *pprw;
3764
3765		PMC_DOWNGRADE_SX();
3766
3767		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3768			break;
3769
3770		ri = 0;
3771		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3772		    prw.pm_flags);
3773
3774		/* must have at least one flag set */
3775		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3776			error = EINVAL;
3777			break;
3778		}
3779
3780		/* locate pmc descriptor */
3781		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3782			break;
3783
3784		/* Can't read a PMC that hasn't been started. */
3785		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3786		    pm->pm_state != PMC_STATE_STOPPED &&
3787		    pm->pm_state != PMC_STATE_RUNNING) {
3788			error = EINVAL;
3789			break;
3790		}
3791
3792		/* writing a new value is allowed only for 'STOPPED' pmcs */
3793		if (pm->pm_state == PMC_STATE_RUNNING &&
3794		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3795			error = EBUSY;
3796			break;
3797		}
3798
3799		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3800
3801			/*
3802			 * If this PMC is attached to its owner (i.e.,
3803			 * the process requesting this operation) and
3804			 * is running, then attempt to get an
3805			 * upto-date reading from hardware for a READ.
3806			 * Writes are only allowed when the PMC is
3807			 * stopped, so only update the saved value
3808			 * field.
3809			 *
3810			 * If the PMC is not running, or is not
3811			 * attached to its owner, read/write to the
3812			 * savedvalue field.
3813			 */
3814
3815			ri = PMC_TO_ROWINDEX(pm);
3816			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3817
3818			mtx_pool_lock_spin(pmc_mtxpool, pm);
3819			cpu = curthread->td_oncpu;
3820
3821			if (prw.pm_flags & PMC_F_OLDVALUE) {
3822				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3823				    (pm->pm_state == PMC_STATE_RUNNING))
3824					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3825					    &oldvalue);
3826				else
3827					oldvalue = pm->pm_gv.pm_savedvalue;
3828			}
3829			if (prw.pm_flags & PMC_F_NEWVALUE)
3830				pm->pm_gv.pm_savedvalue = prw.pm_value;
3831
3832			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3833
3834		} else { /* System mode PMCs */
3835			cpu = PMC_TO_CPU(pm);
3836			ri  = PMC_TO_ROWINDEX(pm);
3837			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3838
3839			if (!pmc_cpu_is_active(cpu)) {
3840				error = ENXIO;
3841				break;
3842			}
3843
3844			/* move this thread to CPU 'cpu' */
3845			pmc_save_cpu_binding(&pb);
3846			pmc_select_cpu(cpu);
3847
3848			critical_enter();
3849			/* save old value */
3850			if (prw.pm_flags & PMC_F_OLDVALUE)
3851				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3852					 &oldvalue)))
3853					goto error;
3854			/* write out new value */
3855			if (prw.pm_flags & PMC_F_NEWVALUE)
3856				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3857				    prw.pm_value);
3858		error:
3859			critical_exit();
3860			pmc_restore_cpu_binding(&pb);
3861			if (error)
3862				break;
3863		}
3864
3865		pprw = (struct pmc_op_pmcrw *) arg;
3866
3867#ifdef	HWPMC_DEBUG
3868		if (prw.pm_flags & PMC_F_NEWVALUE)
3869			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3870			    ri, prw.pm_value, oldvalue);
3871		else if (prw.pm_flags & PMC_F_OLDVALUE)
3872			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3873#endif
3874
3875		/* return old value if requested */
3876		if (prw.pm_flags & PMC_F_OLDVALUE)
3877			if ((error = copyout(&oldvalue, &pprw->pm_value,
3878				 sizeof(prw.pm_value))))
3879				break;
3880
3881	}
3882	break;
3883
3884
3885	/*
3886	 * Set the sampling rate for a sampling mode PMC and the
3887	 * initial count for a counting mode PMC.
3888	 */
3889
3890	case PMC_OP_PMCSETCOUNT:
3891	{
3892		struct pmc *pm;
3893		struct pmc_op_pmcsetcount sc;
3894
3895		PMC_DOWNGRADE_SX();
3896
3897		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3898			break;
3899
3900		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3901			break;
3902
3903		if (pm->pm_state == PMC_STATE_RUNNING) {
3904			error = EBUSY;
3905			break;
3906		}
3907
3908		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3909			pm->pm_sc.pm_reloadcount = sc.pm_count;
3910		else
3911			pm->pm_sc.pm_initial = sc.pm_count;
3912	}
3913	break;
3914
3915
3916	/*
3917	 * Start a PMC.
3918	 */
3919
3920	case PMC_OP_PMCSTART:
3921	{
3922		pmc_id_t pmcid;
3923		struct pmc *pm;
3924		struct pmc_op_simple sp;
3925
3926		sx_assert(&pmc_sx, SX_XLOCKED);
3927
3928		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3929			break;
3930
3931		pmcid = sp.pm_pmcid;
3932
3933		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3934			break;
3935
3936		KASSERT(pmcid == pm->pm_id,
3937		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3938			pm->pm_id, pmcid));
3939
3940		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3941			break;
3942		else if (pm->pm_state != PMC_STATE_STOPPED &&
3943		    pm->pm_state != PMC_STATE_ALLOCATED) {
3944			error = EINVAL;
3945			break;
3946		}
3947
3948		error = pmc_start(pm);
3949	}
3950	break;
3951
3952
3953	/*
3954	 * Stop a PMC.
3955	 */
3956
3957	case PMC_OP_PMCSTOP:
3958	{
3959		pmc_id_t pmcid;
3960		struct pmc *pm;
3961		struct pmc_op_simple sp;
3962
3963		PMC_DOWNGRADE_SX();
3964
3965		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3966			break;
3967
3968		pmcid = sp.pm_pmcid;
3969
3970		/*
3971		 * Mark the PMC as inactive and invoke the MD stop
3972		 * routines if needed.
3973		 */
3974
3975		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3976			break;
3977
3978		KASSERT(pmcid == pm->pm_id,
3979		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3980			pm->pm_id, pmcid));
3981
3982		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3983			break;
3984		else if (pm->pm_state != PMC_STATE_RUNNING) {
3985			error = EINVAL;
3986			break;
3987		}
3988
3989		error = pmc_stop(pm);
3990	}
3991	break;
3992
3993
3994	/*
3995	 * Write a user supplied value to the log file.
3996	 */
3997
3998	case PMC_OP_WRITELOG:
3999	{
4000		struct pmc_op_writelog wl;
4001		struct pmc_owner *po;
4002
4003		PMC_DOWNGRADE_SX();
4004
4005		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4006			break;
4007
4008		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4009			error = EINVAL;
4010			break;
4011		}
4012
4013		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4014			error = EINVAL;
4015			break;
4016		}
4017
4018		error = pmclog_process_userlog(po, &wl);
4019	}
4020	break;
4021
4022
4023	default:
4024		error = EINVAL;
4025		break;
4026	}
4027
4028	if (is_sx_locked != 0) {
4029		if (is_sx_downgraded)
4030			sx_sunlock(&pmc_sx);
4031		else
4032			sx_xunlock(&pmc_sx);
4033	}
4034
4035	if (error)
4036		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4037
4038	PICKUP_GIANT();
4039
4040	return error;
4041}
4042
4043/*
4044 * Helper functions
4045 */
4046
4047
4048/*
4049 * Mark the thread as needing callchain capture and post an AST.  The
4050 * actual callchain capture will be done in a context where it is safe
4051 * to take page faults.
4052 */
4053
4054static void
4055pmc_post_callchain_callback(void)
4056{
4057	struct thread *td;
4058
4059	td = curthread;
4060
4061	/*
4062	 * If there is multiple PMCs for the same interrupt ignore new post
4063	 */
4064	if (td->td_pflags & TDP_CALLCHAIN)
4065		return;
4066
4067	/*
4068	 * Mark this thread as needing callchain capture.
4069	 * `td->td_pflags' will be safe to touch because this thread
4070	 * was in user space when it was interrupted.
4071	 */
4072	td->td_pflags |= TDP_CALLCHAIN;
4073
4074	/*
4075	 * Don't let this thread migrate between CPUs until callchain
4076	 * capture completes.
4077	 */
4078	sched_pin();
4079
4080	return;
4081}
4082
4083/*
4084 * Interrupt processing.
4085 *
4086 * Find a free slot in the per-cpu array of samples and capture the
4087 * current callchain there.  If a sample was successfully added, a bit
4088 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4089 * needs to be invoked from the clock handler.
4090 *
4091 * This function is meant to be called from an NMI handler.  It cannot
4092 * use any of the locking primitives supplied by the OS.
4093 */
4094
4095int
4096pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4097    int inuserspace)
4098{
4099	int error, callchaindepth;
4100	struct thread *td;
4101	struct pmc_sample *ps;
4102	struct pmc_samplebuffer *psb;
4103
4104	error = 0;
4105
4106	/*
4107	 * Allocate space for a sample buffer.
4108	 */
4109	psb = pmc_pcpu[cpu]->pc_sb[ring];
4110
4111	ps = psb->ps_write;
4112	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4113		CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4114		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4115		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4116		    cpu, pm, (void *) tf, inuserspace,
4117		    (int) (psb->ps_write - psb->ps_samples),
4118		    (int) (psb->ps_read - psb->ps_samples));
4119		callchaindepth = 1;
4120		error = ENOMEM;
4121		goto done;
4122	}
4123
4124
4125	/* Fill in entry. */
4126	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4127	    (void *) tf, inuserspace,
4128	    (int) (psb->ps_write - psb->ps_samples),
4129	    (int) (psb->ps_read - psb->ps_samples));
4130
4131	KASSERT(pm->pm_runcount >= 0,
4132	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4133		pm->pm_runcount));
4134
4135	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4136
4137	ps->ps_pmc = pm;
4138	if ((td = curthread) && td->td_proc)
4139		ps->ps_pid = td->td_proc->p_pid;
4140	else
4141		ps->ps_pid = -1;
4142	ps->ps_cpu = cpu;
4143	ps->ps_td = td;
4144	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4145
4146	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4147	    pmc_callchaindepth : 1;
4148
4149	if (callchaindepth == 1)
4150		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4151	else {
4152		/*
4153		 * Kernel stack traversals can be done immediately,
4154		 * while we defer to an AST for user space traversals.
4155		 */
4156		if (!inuserspace) {
4157			callchaindepth =
4158			    pmc_save_kernel_callchain(ps->ps_pc,
4159				callchaindepth, tf);
4160		} else {
4161			pmc_post_callchain_callback();
4162			callchaindepth = PMC_SAMPLE_INUSE;
4163		}
4164	}
4165
4166	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4167
4168	/* increment write pointer, modulo ring buffer size */
4169	ps++;
4170	if (ps == psb->ps_fence)
4171		psb->ps_write = psb->ps_samples;
4172	else
4173		psb->ps_write = ps;
4174
4175 done:
4176	/* mark CPU as needing processing */
4177	if (callchaindepth != PMC_SAMPLE_INUSE)
4178		CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4179
4180	return (error);
4181}
4182
4183/*
4184 * Capture a user call chain.  This function will be called from ast()
4185 * before control returns to userland and before the process gets
4186 * rescheduled.
4187 */
4188
4189static void
4190pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4191{
4192	struct pmc *pm;
4193	struct thread *td;
4194	struct pmc_sample *ps, *ps_end;
4195	struct pmc_samplebuffer *psb;
4196#ifdef	INVARIANTS
4197	int ncallchains;
4198#endif
4199
4200	psb = pmc_pcpu[cpu]->pc_sb[ring];
4201	td = curthread;
4202
4203	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4204	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4205		__LINE__));
4206
4207#ifdef	INVARIANTS
4208	ncallchains = 0;
4209#endif
4210
4211	/*
4212	 * Iterate through all deferred callchain requests.
4213	 * Walk from the current read pointer to the current
4214	 * write pointer.
4215	 */
4216
4217	ps = psb->ps_read;
4218	ps_end = psb->ps_write;
4219	do {
4220		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4221			goto next;
4222		if (ps->ps_td != td)
4223			goto next;
4224
4225		KASSERT(ps->ps_cpu == cpu,
4226		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4227			ps->ps_cpu, PCPU_GET(cpuid)));
4228
4229		pm = ps->ps_pmc;
4230
4231		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4232		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4233			"want it", __LINE__));
4234
4235		KASSERT(pm->pm_runcount > 0,
4236		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4237
4238		/*
4239		 * Retrieve the callchain and mark the sample buffer
4240		 * as 'processable' by the timer tick sweep code.
4241		 */
4242		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4243		    pmc_callchaindepth, tf);
4244
4245#ifdef	INVARIANTS
4246		ncallchains++;
4247#endif
4248
4249next:
4250		/* increment the pointer, modulo sample ring size */
4251		if (++ps == psb->ps_fence)
4252			ps = psb->ps_samples;
4253	} while (ps != ps_end);
4254
4255	KASSERT(ncallchains > 0,
4256	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4257		cpu));
4258
4259	KASSERT(td->td_pinned == 1,
4260	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4261	sched_unpin();	/* Can migrate safely now. */
4262
4263	/* mark CPU as needing processing */
4264	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4265
4266	return;
4267}
4268
4269/*
4270 * Process saved PC samples.
4271 */
4272
4273static void
4274pmc_process_samples(int cpu, int ring)
4275{
4276	struct pmc *pm;
4277	int adjri, n;
4278	struct thread *td;
4279	struct pmc_owner *po;
4280	struct pmc_sample *ps;
4281	struct pmc_classdep *pcd;
4282	struct pmc_samplebuffer *psb;
4283
4284	KASSERT(PCPU_GET(cpuid) == cpu,
4285	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4286		PCPU_GET(cpuid), cpu));
4287
4288	psb = pmc_pcpu[cpu]->pc_sb[ring];
4289
4290	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4291
4292		ps = psb->ps_read;
4293		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4294			break;
4295
4296		pm = ps->ps_pmc;
4297
4298		KASSERT(pm->pm_runcount > 0,
4299		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4300			pm->pm_runcount));
4301
4302		po = pm->pm_owner;
4303
4304		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4305		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4306			pm, PMC_TO_MODE(pm)));
4307
4308		/* Ignore PMCs that have been switched off */
4309		if (pm->pm_state != PMC_STATE_RUNNING)
4310			goto entrydone;
4311
4312		/* If there is a pending AST wait for completion */
4313		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4314			/* Need a rescan at a later time. */
4315			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4316			break;
4317		}
4318
4319		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4320		    pm, ps->ps_nsamples, ps->ps_flags,
4321		    (int) (psb->ps_write - psb->ps_samples),
4322		    (int) (psb->ps_read - psb->ps_samples));
4323
4324		/*
4325		 * If this is a process-mode PMC that is attached to
4326		 * its owner, and if the PC is in user mode, update
4327		 * profiling statistics like timer-based profiling
4328		 * would have done.
4329		 */
4330		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4331			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4332				td = FIRST_THREAD_IN_PROC(po->po_owner);
4333				addupc_intr(td, ps->ps_pc[0], 1);
4334			}
4335			goto entrydone;
4336		}
4337
4338		/*
4339		 * Otherwise, this is either a sampling mode PMC that
4340		 * is attached to a different process than its owner,
4341		 * or a system-wide sampling PMC.  Dispatch a log
4342		 * entry to the PMC's owner process.
4343		 */
4344		pmclog_process_callchain(pm, ps);
4345
4346	entrydone:
4347		ps->ps_nsamples = 0; /* mark entry as free */
4348		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4349
4350		/* increment read pointer, modulo sample size */
4351		if (++ps == psb->ps_fence)
4352			psb->ps_read = psb->ps_samples;
4353		else
4354			psb->ps_read = ps;
4355	}
4356
4357	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4358
4359	/* Do not re-enable stalled PMCs if we failed to process any samples */
4360	if (n == 0)
4361		return;
4362
4363	/*
4364	 * Restart any stalled sampling PMCs on this CPU.
4365	 *
4366	 * If the NMI handler sets the pm_stalled field of a PMC after
4367	 * the check below, we'll end up processing the stalled PMC at
4368	 * the next hardclock tick.
4369	 */
4370	for (n = 0; n < md->pmd_npmc; n++) {
4371		pcd = pmc_ri_to_classdep(md, n, &adjri);
4372		KASSERT(pcd != NULL,
4373		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4374		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4375
4376		if (pm == NULL ||			 /* !cfg'ed */
4377		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4378		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4379		    !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4380		    !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4381			continue;
4382
4383		CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4384		(*pcd->pcd_start_pmc)(cpu, adjri);
4385	}
4386}
4387
4388/*
4389 * Event handlers.
4390 */
4391
4392/*
4393 * Handle a process exit.
4394 *
4395 * Remove this process from all hash tables.  If this process
4396 * owned any PMCs, turn off those PMCs and deallocate them,
4397 * removing any associations with target processes.
4398 *
4399 * This function will be called by the last 'thread' of a
4400 * process.
4401 *
4402 * XXX This eventhandler gets called early in the exit process.
4403 * Consider using a 'hook' invocation from thread_exit() or equivalent
4404 * spot.  Another negative is that kse_exit doesn't seem to call
4405 * exit1() [??].
4406 *
4407 */
4408
4409static void
4410pmc_process_exit(void *arg __unused, struct proc *p)
4411{
4412	struct pmc *pm;
4413	int adjri, cpu;
4414	unsigned int ri;
4415	int is_using_hwpmcs;
4416	struct pmc_owner *po;
4417	struct pmc_process *pp;
4418	struct pmc_classdep *pcd;
4419	pmc_value_t newvalue, tmp;
4420
4421	PROC_LOCK(p);
4422	is_using_hwpmcs = p->p_flag & P_HWPMC;
4423	PROC_UNLOCK(p);
4424
4425	/*
4426	 * Log a sysexit event to all SS PMC owners.
4427	 */
4428	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4429	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4430		    pmclog_process_sysexit(po, p->p_pid);
4431
4432	if (!is_using_hwpmcs)
4433		return;
4434
4435	PMC_GET_SX_XLOCK();
4436	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4437	    p->p_comm);
4438
4439	/*
4440	 * Since this code is invoked by the last thread in an exiting
4441	 * process, we would have context switched IN at some prior
4442	 * point.  However, with PREEMPTION, kernel mode context
4443	 * switches may happen any time, so we want to disable a
4444	 * context switch OUT till we get any PMCs targeting this
4445	 * process off the hardware.
4446	 *
4447	 * We also need to atomically remove this process'
4448	 * entry from our target process hash table, using
4449	 * PMC_FLAG_REMOVE.
4450	 */
4451	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4452	    p->p_comm);
4453
4454	critical_enter(); /* no preemption */
4455
4456	cpu = curthread->td_oncpu;
4457
4458	if ((pp = pmc_find_process_descriptor(p,
4459		 PMC_FLAG_REMOVE)) != NULL) {
4460
4461		PMCDBG2(PRC,EXT,2,
4462		    "process-exit proc=%p pmc-process=%p", p, pp);
4463
4464		/*
4465		 * The exiting process could the target of
4466		 * some PMCs which will be running on
4467		 * currently executing CPU.
4468		 *
4469		 * We need to turn these PMCs off like we
4470		 * would do at context switch OUT time.
4471		 */
4472		for (ri = 0; ri < md->pmd_npmc; ri++) {
4473
4474			/*
4475			 * Pick up the pmc pointer from hardware
4476			 * state similar to the CSW_OUT code.
4477			 */
4478			pm = NULL;
4479
4480			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4481
4482			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4483
4484			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4485
4486			if (pm == NULL ||
4487			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4488				continue;
4489
4490			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4491			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4492			    pm, pm->pm_state);
4493
4494			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4495			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4496				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4497
4498			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4499			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4500				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4501
4502			KASSERT(pm->pm_runcount > 0,
4503			    ("[pmc,%d] bad runcount ri %d rc %d",
4504				__LINE__, ri, pm->pm_runcount));
4505
4506			/*
4507			 * Change desired state, and then stop if not
4508			 * stalled. This two-step dance should avoid
4509			 * race conditions where an interrupt re-enables
4510			 * the PMC after this code has already checked
4511			 * the pm_stalled flag.
4512			 */
4513			if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4514				CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4515				if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4516					(void) pcd->pcd_stop_pmc(cpu, adjri);
4517					pcd->pcd_read_pmc(cpu, adjri,
4518					    &newvalue);
4519					tmp = newvalue -
4520					    PMC_PCPU_SAVED(cpu,ri);
4521
4522					mtx_pool_lock_spin(pmc_mtxpool, pm);
4523					pm->pm_gv.pm_savedvalue += tmp;
4524					pp->pp_pmcs[ri].pp_pmcval += tmp;
4525					mtx_pool_unlock_spin(pmc_mtxpool, pm);
4526				}
4527			}
4528
4529			atomic_subtract_rel_int(&pm->pm_runcount,1);
4530
4531			KASSERT((int) pm->pm_runcount >= 0,
4532			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4533
4534			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4535		}
4536
4537		/*
4538		 * Inform the MD layer of this pseudo "context switch
4539		 * out"
4540		 */
4541		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4542
4543		critical_exit(); /* ok to be pre-empted now */
4544
4545		/*
4546		 * Unlink this process from the PMCs that are
4547		 * targeting it.  This will send a signal to
4548		 * all PMC owner's whose PMCs are orphaned.
4549		 *
4550		 * Log PMC value at exit time if requested.
4551		 */
4552		for (ri = 0; ri < md->pmd_npmc; ri++)
4553			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4554				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4555				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4556					pmclog_process_procexit(pm, pp);
4557				pmc_unlink_target_process(pm, pp);
4558			}
4559		free(pp, M_PMC);
4560
4561	} else
4562		critical_exit(); /* pp == NULL */
4563
4564
4565	/*
4566	 * If the process owned PMCs, free them up and free up
4567	 * memory.
4568	 */
4569	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4570		pmc_remove_owner(po);
4571		pmc_destroy_owner_descriptor(po);
4572	}
4573
4574	sx_xunlock(&pmc_sx);
4575}
4576
4577/*
4578 * Handle a process fork.
4579 *
4580 * If the parent process 'p1' is under HWPMC monitoring, then copy
4581 * over any attached PMCs that have 'do_descendants' semantics.
4582 */
4583
4584static void
4585pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4586    int flags)
4587{
4588	int is_using_hwpmcs;
4589	unsigned int ri;
4590	uint32_t do_descendants;
4591	struct pmc *pm;
4592	struct pmc_owner *po;
4593	struct pmc_process *ppnew, *ppold;
4594
4595	(void) flags;		/* unused parameter */
4596
4597	PROC_LOCK(p1);
4598	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4599	PROC_UNLOCK(p1);
4600
4601	/*
4602	 * If there are system-wide sampling PMCs active, we need to
4603	 * log all fork events to their owner's logs.
4604	 */
4605
4606	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4607	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4608		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4609
4610	if (!is_using_hwpmcs)
4611		return;
4612
4613	PMC_GET_SX_XLOCK();
4614	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4615	    p1->p_pid, p1->p_comm, newproc);
4616
4617	/*
4618	 * If the parent process (curthread->td_proc) is a
4619	 * target of any PMCs, look for PMCs that are to be
4620	 * inherited, and link these into the new process
4621	 * descriptor.
4622	 */
4623	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4624		 PMC_FLAG_NONE)) == NULL)
4625		goto done;		/* nothing to do */
4626
4627	do_descendants = 0;
4628	for (ri = 0; ri < md->pmd_npmc; ri++)
4629		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4630			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4631	if (do_descendants == 0) /* nothing to do */
4632		goto done;
4633
4634	/* allocate a descriptor for the new process  */
4635	if ((ppnew = pmc_find_process_descriptor(newproc,
4636		 PMC_FLAG_ALLOCATE)) == NULL)
4637		goto done;
4638
4639	/*
4640	 * Run through all PMCs that were targeting the old process
4641	 * and which specified F_DESCENDANTS and attach them to the
4642	 * new process.
4643	 *
4644	 * Log the fork event to all owners of PMCs attached to this
4645	 * process, if not already logged.
4646	 */
4647	for (ri = 0; ri < md->pmd_npmc; ri++)
4648		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4649		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4650			pmc_link_target_process(pm, ppnew);
4651			po = pm->pm_owner;
4652			if (po->po_sscount == 0 &&
4653			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4654				pmclog_process_procfork(po, p1->p_pid,
4655				    newproc->p_pid);
4656		}
4657
4658	/*
4659	 * Now mark the new process as being tracked by this driver.
4660	 */
4661	PROC_LOCK(newproc);
4662	newproc->p_flag |= P_HWPMC;
4663	PROC_UNLOCK(newproc);
4664
4665 done:
4666	sx_xunlock(&pmc_sx);
4667}
4668
4669static void
4670pmc_kld_load(void *arg __unused, linker_file_t lf)
4671{
4672	struct pmc_owner *po;
4673
4674	sx_slock(&pmc_sx);
4675
4676	/*
4677	 * Notify owners of system sampling PMCs about KLD operations.
4678	 */
4679	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4680		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4681			pmclog_process_map_in(po, (pid_t) -1,
4682			    (uintfptr_t) lf->address, lf->filename);
4683
4684	/*
4685	 * TODO: Notify owners of (all) process-sampling PMCs too.
4686	 */
4687
4688	sx_sunlock(&pmc_sx);
4689}
4690
4691static void
4692pmc_kld_unload(void *arg __unused, const char *filename __unused,
4693    caddr_t address, size_t size)
4694{
4695	struct pmc_owner *po;
4696
4697	sx_slock(&pmc_sx);
4698
4699	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4700		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4701			pmclog_process_map_out(po, (pid_t) -1,
4702			    (uintfptr_t) address, (uintfptr_t) address + size);
4703
4704	/*
4705	 * TODO: Notify owners of process-sampling PMCs.
4706	 */
4707
4708	sx_sunlock(&pmc_sx);
4709}
4710
4711/*
4712 * initialization
4713 */
4714static const char *
4715pmc_name_of_pmcclass(enum pmc_class class)
4716{
4717
4718	switch (class) {
4719#undef	__PMC_CLASS
4720#define	__PMC_CLASS(S,V,D)						\
4721	case PMC_CLASS_##S:						\
4722		return #S;
4723	__PMC_CLASSES();
4724	default:
4725		return ("<unknown>");
4726	}
4727}
4728
4729/*
4730 * Base class initializer: allocate structure and set default classes.
4731 */
4732struct pmc_mdep *
4733pmc_mdep_alloc(int nclasses)
4734{
4735	struct pmc_mdep *md;
4736	int	n;
4737
4738	/* SOFT + md classes */
4739	n = 1 + nclasses;
4740	md = malloc(sizeof(struct pmc_mdep) + n *
4741	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4742	md->pmd_nclass = n;
4743
4744	/* Add base class. */
4745	pmc_soft_initialize(md);
4746	return md;
4747}
4748
4749void
4750pmc_mdep_free(struct pmc_mdep *md)
4751{
4752	pmc_soft_finalize(md);
4753	free(md, M_PMC);
4754}
4755
4756static int
4757generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4758{
4759	(void) pc; (void) pp;
4760
4761	return (0);
4762}
4763
4764static int
4765generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4766{
4767	(void) pc; (void) pp;
4768
4769	return (0);
4770}
4771
4772static struct pmc_mdep *
4773pmc_generic_cpu_initialize(void)
4774{
4775	struct pmc_mdep *md;
4776
4777	md = pmc_mdep_alloc(0);
4778
4779	md->pmd_cputype    = PMC_CPU_GENERIC;
4780
4781	md->pmd_pcpu_init  = NULL;
4782	md->pmd_pcpu_fini  = NULL;
4783	md->pmd_switch_in  = generic_switch_in;
4784	md->pmd_switch_out = generic_switch_out;
4785
4786	return (md);
4787}
4788
4789static void
4790pmc_generic_cpu_finalize(struct pmc_mdep *md)
4791{
4792	(void) md;
4793}
4794
4795
4796static int
4797pmc_initialize(void)
4798{
4799	int c, cpu, error, n, ri;
4800	unsigned int maxcpu;
4801	struct pmc_binding pb;
4802	struct pmc_sample *ps;
4803	struct pmc_classdep *pcd;
4804	struct pmc_samplebuffer *sb;
4805
4806	md = NULL;
4807	error = 0;
4808
4809#ifdef	HWPMC_DEBUG
4810	/* parse debug flags first */
4811	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4812		pmc_debugstr, sizeof(pmc_debugstr)))
4813		pmc_debugflags_parse(pmc_debugstr,
4814		    pmc_debugstr+strlen(pmc_debugstr));
4815#endif
4816
4817	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4818
4819	/* check kernel version */
4820	if (pmc_kernel_version != PMC_VERSION) {
4821		if (pmc_kernel_version == 0)
4822			printf("hwpmc: this kernel has not been compiled with "
4823			    "'options HWPMC_HOOKS'.\n");
4824		else
4825			printf("hwpmc: kernel version (0x%x) does not match "
4826			    "module version (0x%x).\n", pmc_kernel_version,
4827			    PMC_VERSION);
4828		return EPROGMISMATCH;
4829	}
4830
4831	/*
4832	 * check sysctl parameters
4833	 */
4834
4835	if (pmc_hashsize <= 0) {
4836		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4837		    "greater than zero.\n", pmc_hashsize);
4838		pmc_hashsize = PMC_HASH_SIZE;
4839	}
4840
4841	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4842		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4843		    "range.\n", pmc_nsamples);
4844		pmc_nsamples = PMC_NSAMPLES;
4845	}
4846
4847	if (pmc_callchaindepth <= 0 ||
4848	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4849		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4850		    "range - using %d.\n", pmc_callchaindepth,
4851		    PMC_CALLCHAIN_DEPTH_MAX);
4852		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4853	}
4854
4855	md = pmc_md_initialize();
4856	if (md == NULL) {
4857		/* Default to generic CPU. */
4858		md = pmc_generic_cpu_initialize();
4859		if (md == NULL)
4860			return (ENOSYS);
4861        }
4862
4863	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4864	    ("[pmc,%d] no classes or pmcs", __LINE__));
4865
4866	/* Compute the map from row-indices to classdep pointers. */
4867	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4868	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4869
4870	for (n = 0; n < md->pmd_npmc; n++)
4871		pmc_rowindex_to_classdep[n] = NULL;
4872	for (ri = c = 0; c < md->pmd_nclass; c++) {
4873		pcd = &md->pmd_classdep[c];
4874		for (n = 0; n < pcd->pcd_num; n++, ri++)
4875			pmc_rowindex_to_classdep[ri] = pcd;
4876	}
4877
4878	KASSERT(ri == md->pmd_npmc,
4879	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4880	    ri, md->pmd_npmc));
4881
4882	maxcpu = pmc_cpu_max();
4883
4884	/* allocate space for the per-cpu array */
4885	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4886	    M_WAITOK|M_ZERO);
4887
4888	/* per-cpu 'saved values' for managing process-mode PMCs */
4889	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4890	    M_PMC, M_WAITOK);
4891
4892	/* Perform CPU-dependent initialization. */
4893	pmc_save_cpu_binding(&pb);
4894	error = 0;
4895	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4896		if (!pmc_cpu_is_active(cpu))
4897			continue;
4898		pmc_select_cpu(cpu);
4899		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4900		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4901		    M_WAITOK|M_ZERO);
4902		if (md->pmd_pcpu_init)
4903			error = md->pmd_pcpu_init(md, cpu);
4904		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4905			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4906	}
4907	pmc_restore_cpu_binding(&pb);
4908
4909	if (error)
4910		return (error);
4911
4912	/* allocate space for the sample array */
4913	for (cpu = 0; cpu < maxcpu; cpu++) {
4914		if (!pmc_cpu_is_active(cpu))
4915			continue;
4916
4917		sb = malloc(sizeof(struct pmc_samplebuffer) +
4918		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4919		    M_WAITOK|M_ZERO);
4920		sb->ps_read = sb->ps_write = sb->ps_samples;
4921		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4922
4923		KASSERT(pmc_pcpu[cpu] != NULL,
4924		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4925
4926		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4927		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4928
4929		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4930			ps->ps_pc = sb->ps_callchains +
4931			    (n * pmc_callchaindepth);
4932
4933		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4934
4935		sb = malloc(sizeof(struct pmc_samplebuffer) +
4936		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4937		    M_WAITOK|M_ZERO);
4938		sb->ps_read = sb->ps_write = sb->ps_samples;
4939		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4940
4941		KASSERT(pmc_pcpu[cpu] != NULL,
4942		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4943
4944		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4945		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4946
4947		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4948			ps->ps_pc = sb->ps_callchains +
4949			    (n * pmc_callchaindepth);
4950
4951		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4952	}
4953
4954	/* allocate space for the row disposition array */
4955	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4956	    M_PMC, M_WAITOK|M_ZERO);
4957
4958	/* mark all PMCs as available */
4959	for (n = 0; n < (int) md->pmd_npmc; n++)
4960		PMC_MARK_ROW_FREE(n);
4961
4962	/* allocate thread hash tables */
4963	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4964	    &pmc_ownerhashmask);
4965
4966	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4967	    &pmc_processhashmask);
4968	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4969	    MTX_SPIN);
4970
4971	LIST_INIT(&pmc_ss_owners);
4972	pmc_ss_count = 0;
4973
4974	/* allocate a pool of spin mutexes */
4975	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4976	    MTX_SPIN);
4977
4978	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4979	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4980	    pmc_processhash, pmc_processhashmask);
4981
4982	/* register process {exit,fork,exec} handlers */
4983	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4984	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4985	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4986	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4987
4988	/* register kld event handlers */
4989	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4990	    NULL, EVENTHANDLER_PRI_ANY);
4991	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4992	    NULL, EVENTHANDLER_PRI_ANY);
4993
4994	/* initialize logging */
4995	pmclog_initialize();
4996
4997	/* set hook functions */
4998	pmc_intr = md->pmd_intr;
4999	pmc_hook = pmc_hook_handler;
5000
5001	if (error == 0) {
5002		printf(PMC_MODULE_NAME ":");
5003		for (n = 0; n < (int) md->pmd_nclass; n++) {
5004			pcd = &md->pmd_classdep[n];
5005			printf(" %s/%d/%d/0x%b",
5006			    pmc_name_of_pmcclass(pcd->pcd_class),
5007			    pcd->pcd_num,
5008			    pcd->pcd_width,
5009			    pcd->pcd_caps,
5010			    "\20"
5011			    "\1INT\2USR\3SYS\4EDG\5THR"
5012			    "\6REA\7WRI\10INV\11QUA\12PRC"
5013			    "\13TAG\14CSC");
5014		}
5015		printf("\n");
5016	}
5017
5018	return (error);
5019}
5020
5021/* prepare to be unloaded */
5022static void
5023pmc_cleanup(void)
5024{
5025	int c, cpu;
5026	unsigned int maxcpu;
5027	struct pmc_ownerhash *ph;
5028	struct pmc_owner *po, *tmp;
5029	struct pmc_binding pb;
5030#ifdef	HWPMC_DEBUG
5031	struct pmc_processhash *prh;
5032#endif
5033
5034	PMCDBG0(MOD,INI,0, "cleanup");
5035
5036	/* switch off sampling */
5037	CPU_ZERO(&pmc_cpumask);
5038	pmc_intr = NULL;
5039
5040	sx_xlock(&pmc_sx);
5041	if (pmc_hook == NULL) {	/* being unloaded already */
5042		sx_xunlock(&pmc_sx);
5043		return;
5044	}
5045
5046	pmc_hook = NULL; /* prevent new threads from entering module */
5047
5048	/* deregister event handlers */
5049	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5050	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5051	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5052	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5053
5054	/* send SIGBUS to all owner threads, free up allocations */
5055	if (pmc_ownerhash)
5056		for (ph = pmc_ownerhash;
5057		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5058		     ph++) {
5059			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5060				pmc_remove_owner(po);
5061
5062				/* send SIGBUS to owner processes */
5063				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5064				    "(%d, %s)", po->po_owner,
5065				    po->po_owner->p_pid,
5066				    po->po_owner->p_comm);
5067
5068				PROC_LOCK(po->po_owner);
5069				kern_psignal(po->po_owner, SIGBUS);
5070				PROC_UNLOCK(po->po_owner);
5071
5072				pmc_destroy_owner_descriptor(po);
5073			}
5074		}
5075
5076	/* reclaim allocated data structures */
5077	if (pmc_mtxpool)
5078		mtx_pool_destroy(&pmc_mtxpool);
5079
5080	mtx_destroy(&pmc_processhash_mtx);
5081	if (pmc_processhash) {
5082#ifdef	HWPMC_DEBUG
5083		struct pmc_process *pp;
5084
5085		PMCDBG0(MOD,INI,3, "destroy process hash");
5086		for (prh = pmc_processhash;
5087		     prh <= &pmc_processhash[pmc_processhashmask];
5088		     prh++)
5089			LIST_FOREACH(pp, prh, pp_next)
5090			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5091#endif
5092
5093		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5094		pmc_processhash = NULL;
5095	}
5096
5097	if (pmc_ownerhash) {
5098		PMCDBG0(MOD,INI,3, "destroy owner hash");
5099		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5100		pmc_ownerhash = NULL;
5101	}
5102
5103	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5104	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5105	KASSERT(pmc_ss_count == 0,
5106	    ("[pmc,%d] Global SS count not empty", __LINE__));
5107
5108 	/* do processor and pmc-class dependent cleanup */
5109	maxcpu = pmc_cpu_max();
5110
5111	PMCDBG0(MOD,INI,3, "md cleanup");
5112	if (md) {
5113		pmc_save_cpu_binding(&pb);
5114		for (cpu = 0; cpu < maxcpu; cpu++) {
5115			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5116			    cpu, pmc_pcpu[cpu]);
5117			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5118				continue;
5119			pmc_select_cpu(cpu);
5120			for (c = 0; c < md->pmd_nclass; c++)
5121				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5122			if (md->pmd_pcpu_fini)
5123				md->pmd_pcpu_fini(md, cpu);
5124		}
5125
5126		if (md->pmd_cputype == PMC_CPU_GENERIC)
5127			pmc_generic_cpu_finalize(md);
5128		else
5129			pmc_md_finalize(md);
5130
5131		pmc_mdep_free(md);
5132		md = NULL;
5133		pmc_restore_cpu_binding(&pb);
5134	}
5135
5136	/* Free per-cpu descriptors. */
5137	for (cpu = 0; cpu < maxcpu; cpu++) {
5138		if (!pmc_cpu_is_active(cpu))
5139			continue;
5140		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5141		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5142			cpu));
5143		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5144		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5145			cpu));
5146		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5147		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5148		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5149		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5150		free(pmc_pcpu[cpu], M_PMC);
5151	}
5152
5153	free(pmc_pcpu, M_PMC);
5154	pmc_pcpu = NULL;
5155
5156	free(pmc_pcpu_saved, M_PMC);
5157	pmc_pcpu_saved = NULL;
5158
5159	if (pmc_pmcdisp) {
5160		free(pmc_pmcdisp, M_PMC);
5161		pmc_pmcdisp = NULL;
5162	}
5163
5164	if (pmc_rowindex_to_classdep) {
5165		free(pmc_rowindex_to_classdep, M_PMC);
5166		pmc_rowindex_to_classdep = NULL;
5167	}
5168
5169	pmclog_shutdown();
5170
5171	sx_xunlock(&pmc_sx); 	/* we are done */
5172}
5173
5174/*
5175 * The function called at load/unload.
5176 */
5177
5178static int
5179load (struct module *module __unused, int cmd, void *arg __unused)
5180{
5181	int error;
5182
5183	error = 0;
5184
5185	switch (cmd) {
5186	case MOD_LOAD :
5187		/* initialize the subsystem */
5188		error = pmc_initialize();
5189		if (error != 0)
5190			break;
5191		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5192		    pmc_syscall_num, pmc_cpu_max());
5193		break;
5194
5195
5196	case MOD_UNLOAD :
5197	case MOD_SHUTDOWN:
5198		pmc_cleanup();
5199		PMCDBG0(MOD,INI,1, "unloaded");
5200		break;
5201
5202	default :
5203		error = EINVAL;	/* XXX should panic(9) */
5204		break;
5205	}
5206
5207	return error;
5208}
5209
5210/* memory pool */
5211MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5212