if_fxp.c revision 90168
150479Speter/*-
22536Spst * Copyright (c) 1995, David Greenman
3265420Simp * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4156813Sru * All rights reserved.
5116015Smarkm *
6156813Sru * Redistribution and use in source and binary forms, with or without
7116015Smarkm * modification, are permitted provided that the following conditions
8156813Sru * are met:
999430Sdes * 1. Redistributions of source code must retain the above copyright
1057437Smarkm *    notice unmodified, this list of conditions, and the following
1157841Skris *    disclaimer.
122536Spst * 2. Redistributions in binary form must reproduce the above copyright
13264741Sjmmv *    notice, this list of conditions and the following disclaimer in the
14264741Sjmmv *    documentation and/or other materials provided with the distribution.
15264741Sjmmv *
16264741Sjmmv * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
172536Spst * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 90168 2002-02-04 03:15:27Z silby $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39		/* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <vm/vm.h>		/* for vtophys */
64#include <vm/pmap.h>		/* for vtophys */
65#include <machine/clock.h>	/* for DELAY */
66
67#include <net/if_types.h>
68#include <net/if_vlan_var.h>
69
70#include <pci/pcivar.h>
71#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72
73#include <dev/mii/mii.h>
74#include <dev/mii/miivar.h>
75
76#include <dev/fxp/if_fxpreg.h>
77#include <dev/fxp/if_fxpvar.h>
78#include <dev/fxp/rcvbundl.h>
79
80MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81#include "miibus_if.h"
82
83/*
84 * NOTE!  On the Alpha, we have an alignment constraint.  The
85 * card DMAs the packet immediately following the RFA.  However,
86 * the first thing in the packet is a 14-byte Ethernet header.
87 * This means that the packet is misaligned.  To compensate,
88 * we actually offset the RFA 2 bytes into the cluster.  This
89 * alignes the packet after the Ethernet header at a 32-bit
90 * boundary.  HOWEVER!  This means that the RFA is misaligned!
91 */
92#define	RFA_ALIGNMENT_FUDGE	2
93
94/*
95 * Set initial transmit threshold at 64 (512 bytes). This is
96 * increased by 64 (512 bytes) at a time, to maximum of 192
97 * (1536 bytes), if an underrun occurs.
98 */
99static int tx_threshold = 64;
100
101/*
102 * The configuration byte map has several undefined fields which
103 * must be one or must be zero.  Set up a template for these bits
104 * only, (assuming a 82557 chip) leaving the actual configuration
105 * to fxp_init.
106 *
107 * See struct fxp_cb_config for the bit definitions.
108 */
109static u_char fxp_cb_config_template[] = {
110	0x0, 0x0,		/* cb_status */
111	0x0, 0x0,		/* cb_command */
112	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113	0x0,	/*  0 */
114	0x0,	/*  1 */
115	0x0,	/*  2 */
116	0x0,	/*  3 */
117	0x0,	/*  4 */
118	0x0,	/*  5 */
119	0x32,	/*  6 */
120	0x0,	/*  7 */
121	0x0,	/*  8 */
122	0x0,	/*  9 */
123	0x6,	/* 10 */
124	0x0,	/* 11 */
125	0x0,	/* 12 */
126	0x0,	/* 13 */
127	0xf2,	/* 14 */
128	0x48,	/* 15 */
129	0x0,	/* 16 */
130	0x40,	/* 17 */
131	0xf0,	/* 18 */
132	0x0,	/* 19 */
133	0x3f,	/* 20 */
134	0x5	/* 21 */
135};
136
137struct fxp_ident {
138	u_int16_t	devid;
139	char 		*name;
140};
141
142/*
143 * Claim various Intel PCI device identifiers for this driver.  The
144 * sub-vendor and sub-device field are extensively used to identify
145 * particular variants, but we don't currently differentiate between
146 * them.
147 */
148static struct fxp_ident fxp_ident_table[] = {
149    { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150    { 0x2449,		"Intel Pro/100 Ethernet" },
151    { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152    { 0x1029,		"Intel Pro/100 Ethernet" },
153    { 0x1030,		"Intel Pro/100 Ethernet" },
154    { 0x1031,		"Intel Pro/100 Ethernet" },
155    { 0x1032,		"Intel Pro/100 Ethernet" },
156    { 0x1033,		"Intel Pro/100 Ethernet" },
157    { 0x1034,		"Intel Pro/100 Ethernet" },
158    { 0x1035,		"Intel Pro/100 Ethernet" },
159    { 0x1036,		"Intel Pro/100 Ethernet" },
160    { 0x1037,		"Intel Pro/100 Ethernet" },
161    { 0x1038,		"Intel Pro/100 Ethernet" },
162    { 0,		NULL },
163};
164
165static int		fxp_probe(device_t dev);
166static int		fxp_attach(device_t dev);
167static int		fxp_detach(device_t dev);
168static int		fxp_shutdown(device_t dev);
169static int		fxp_suspend(device_t dev);
170static int		fxp_resume(device_t dev);
171
172static void		fxp_intr(void *xsc);
173static void 		fxp_init(void *xsc);
174static void 		fxp_tick(void *xsc);
175static void		fxp_powerstate_d0(device_t dev);
176static void 		fxp_start(struct ifnet *ifp);
177static void		fxp_stop(struct fxp_softc *sc);
178static void 		fxp_release(struct fxp_softc *sc);
179static int		fxp_ioctl(struct ifnet *ifp, u_long command,
180			    caddr_t data);
181static void 		fxp_watchdog(struct ifnet *ifp);
182static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
183static int		fxp_mc_addrs(struct fxp_softc *sc);
184static void		fxp_mc_setup(struct fxp_softc *sc);
185static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
186			    int autosize);
187static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
188			    u_int16_t data);
189static void		fxp_autosize_eeprom(struct fxp_softc *sc);
190static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
191			    int offset, int words);
192static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
193			    int offset, int words);
194static int		fxp_ifmedia_upd(struct ifnet *ifp);
195static void		fxp_ifmedia_sts(struct ifnet *ifp,
196			    struct ifmediareq *ifmr);
197static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
198static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
199			    struct ifmediareq *ifmr);
200static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
201static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
202			    int value);
203static void		fxp_load_ucode(struct fxp_softc *sc);
204static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
205			    int low, int high);
206static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
207static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
208static __inline void	fxp_lwcopy(volatile u_int32_t *src,
209			    volatile u_int32_t *dst);
210static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
211static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
212static __inline void	fxp_dma_wait(volatile u_int16_t *status,
213			    struct fxp_softc *sc);
214
215static device_method_t fxp_methods[] = {
216	/* Device interface */
217	DEVMETHOD(device_probe,		fxp_probe),
218	DEVMETHOD(device_attach,	fxp_attach),
219	DEVMETHOD(device_detach,	fxp_detach),
220	DEVMETHOD(device_shutdown,	fxp_shutdown),
221	DEVMETHOD(device_suspend,	fxp_suspend),
222	DEVMETHOD(device_resume,	fxp_resume),
223
224	/* MII interface */
225	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
226	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
227
228	{ 0, 0 }
229};
230
231static driver_t fxp_driver = {
232	"fxp",
233	fxp_methods,
234	sizeof(struct fxp_softc),
235};
236
237static devclass_t fxp_devclass;
238
239DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
240DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
241DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
242
243/*
244 * Inline function to copy a 16-bit aligned 32-bit quantity.
245 */
246static __inline void
247fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
248{
249#ifdef __i386__
250	*dst = *src;
251#else
252	volatile u_int16_t *a = (volatile u_int16_t *)src;
253	volatile u_int16_t *b = (volatile u_int16_t *)dst;
254
255	b[0] = a[0];
256	b[1] = a[1];
257#endif
258}
259
260/*
261 * Wait for the previous command to be accepted (but not necessarily
262 * completed).
263 */
264static __inline void
265fxp_scb_wait(struct fxp_softc *sc)
266{
267	int i = 10000;
268
269	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
270		DELAY(2);
271	if (i == 0)
272		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
273		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
274		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
275		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
276		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
277}
278
279static __inline void
280fxp_scb_cmd(struct fxp_softc *sc, int cmd)
281{
282
283	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
284		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
285		fxp_scb_wait(sc);
286	}
287	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
288}
289
290static __inline void
291fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
292{
293	int i = 10000;
294
295	while (!(*status & FXP_CB_STATUS_C) && --i)
296		DELAY(2);
297	if (i == 0)
298		device_printf(sc->dev, "DMA timeout\n");
299}
300
301/*
302 * Return identification string if this is device is ours.
303 */
304static int
305fxp_probe(device_t dev)
306{
307	u_int16_t devid;
308	struct fxp_ident *ident;
309
310	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
311		devid = pci_get_device(dev);
312		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
313			if (ident->devid == devid) {
314				device_set_desc(dev, ident->name);
315				return (0);
316			}
317		}
318	}
319	return (ENXIO);
320}
321
322static void
323fxp_powerstate_d0(device_t dev)
324{
325#if __FreeBSD_version >= 430002
326	u_int32_t iobase, membase, irq;
327
328	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
329		/* Save important PCI config data. */
330		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
331		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
332		irq = pci_read_config(dev, PCIR_INTLINE, 4);
333
334		/* Reset the power state. */
335		device_printf(dev, "chip is in D%d power mode "
336		    "-- setting to D0\n", pci_get_powerstate(dev));
337
338		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
339
340		/* Restore PCI config data. */
341		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
342		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
343		pci_write_config(dev, PCIR_INTLINE, irq, 4);
344	}
345#endif
346}
347
348static int
349fxp_attach(device_t dev)
350{
351	int error = 0;
352	struct fxp_softc *sc = device_get_softc(dev);
353	struct ifnet *ifp;
354	u_int32_t val;
355	u_int16_t data;
356	int i, rid, m1, m2, prefer_iomap;
357	int s;
358
359	bzero(sc, sizeof(*sc));
360	sc->dev = dev;
361	callout_handle_init(&sc->stat_ch);
362	sysctl_ctx_init(&sc->sysctl_ctx);
363	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
364
365	s = splimp();
366
367	/*
368	 * Enable bus mastering. Enable memory space too, in case
369	 * BIOS/Prom forgot about it.
370	 */
371	val = pci_read_config(dev, PCIR_COMMAND, 2);
372	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
373	pci_write_config(dev, PCIR_COMMAND, val, 2);
374	val = pci_read_config(dev, PCIR_COMMAND, 2);
375
376	fxp_powerstate_d0(dev);
377
378	/*
379	 * Figure out which we should try first - memory mapping or i/o mapping?
380	 * We default to memory mapping. Then we accept an override from the
381	 * command line. Then we check to see which one is enabled.
382	 */
383	m1 = PCIM_CMD_MEMEN;
384	m2 = PCIM_CMD_PORTEN;
385	prefer_iomap = 0;
386	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
387	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
388		m1 = PCIM_CMD_PORTEN;
389		m2 = PCIM_CMD_MEMEN;
390	}
391
392	if (val & m1) {
393		sc->rtp =
394		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
395		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
396		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
397	                                     0, ~0, 1, RF_ACTIVE);
398	}
399	if (sc->mem == NULL && (val & m2)) {
400		sc->rtp =
401		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
402		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
403		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
404                                            0, ~0, 1, RF_ACTIVE);
405	}
406
407	if (!sc->mem) {
408		device_printf(dev, "could not map device registers\n");
409		error = ENXIO;
410		goto fail;
411        }
412	if (bootverbose) {
413		device_printf(dev, "using %s space register mapping\n",
414		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
415	}
416
417	sc->sc_st = rman_get_bustag(sc->mem);
418	sc->sc_sh = rman_get_bushandle(sc->mem);
419
420	/*
421	 * Allocate our interrupt.
422	 */
423	rid = 0;
424	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
425				 RF_SHAREABLE | RF_ACTIVE);
426	if (sc->irq == NULL) {
427		device_printf(dev, "could not map interrupt\n");
428		error = ENXIO;
429		goto fail;
430	}
431
432	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
433			       fxp_intr, sc, &sc->ih);
434	if (error) {
435		device_printf(dev, "could not setup irq\n");
436		goto fail;
437	}
438
439	/*
440	 * Reset to a stable state.
441	 */
442	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
443	DELAY(10);
444
445	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
446	    M_DEVBUF, M_NOWAIT | M_ZERO);
447	if (sc->cbl_base == NULL)
448		goto failmem;
449
450	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
451	    M_NOWAIT | M_ZERO);
452	if (sc->fxp_stats == NULL)
453		goto failmem;
454
455	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
456	if (sc->mcsp == NULL)
457		goto failmem;
458
459	/*
460	 * Pre-allocate our receive buffers.
461	 */
462	for (i = 0; i < FXP_NRFABUFS; i++) {
463		if (fxp_add_rfabuf(sc, NULL) != 0) {
464			goto failmem;
465		}
466	}
467
468	/*
469	 * Find out how large of an SEEPROM we have.
470	 */
471	fxp_autosize_eeprom(sc);
472
473	/*
474	 * Determine whether we must use the 503 serial interface.
475	 */
476	fxp_read_eeprom(sc, &data, 6, 1);
477	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
478	    (data & FXP_PHY_SERIAL_ONLY))
479		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
480
481	/*
482	 * Create the sysctl tree
483	 */
484	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
485	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
486	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
487	if (sc->sysctl_tree == NULL)
488		goto fail;
489	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
490	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
491	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
492	    "FXP driver receive interrupt microcode bundling delay");
493	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
494	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
495	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
496	    "FXP driver receive interrupt microcode bundle size limit");
497
498	/*
499	 * Pull in device tunables.
500	 */
501	sc->tunable_int_delay = TUNABLE_INT_DELAY;
502	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
503	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
504	    "int_delay", &sc->tunable_int_delay);
505	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
506	    "bundle_max", &sc->tunable_bundle_max);
507
508	/*
509	 * Find out the chip revision; lump all 82557 revs together.
510	 */
511	fxp_read_eeprom(sc, &data, 5, 1);
512	if ((data >> 8) == 1)
513		sc->revision = FXP_REV_82557;
514	else
515		sc->revision = pci_get_revid(dev);
516
517	/*
518	 * Enable workarounds for certain chip revision deficiencies.
519	 *
520	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
521	 * some systems based a normal 82559 design, have a defect where
522	 * the chip can cause a PCI protocol violation if it receives
523	 * a CU_RESUME command when it is entering the IDLE state.  The
524	 * workaround is to disable Dynamic Standby Mode, so the chip never
525	 * deasserts CLKRUN#, and always remains in an active state.
526	 *
527	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
528	 */
529	i = pci_get_device(dev);
530	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
531	    sc->revision >= FXP_REV_82559_A0) {
532		fxp_read_eeprom(sc, &data, 10, 1);
533		if (data & 0x02) {			/* STB enable */
534			u_int16_t cksum;
535			int i;
536
537			device_printf(dev,
538			    "Disabling dynamic standby mode in EEPROM\n");
539			data &= ~0x02;
540			fxp_write_eeprom(sc, &data, 10, 1);
541			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
542			cksum = 0;
543			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
544				fxp_read_eeprom(sc, &data, i, 1);
545				cksum += data;
546			}
547			i = (1 << sc->eeprom_size) - 1;
548			cksum = 0xBABA - cksum;
549			fxp_read_eeprom(sc, &data, i, 1);
550			fxp_write_eeprom(sc, &cksum, i, 1);
551			device_printf(dev,
552			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
553			    i, data, cksum);
554#if 1
555			/*
556			 * If the user elects to continue, try the software
557			 * workaround, as it is better than nothing.
558			 */
559			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
560#endif
561		}
562	}
563
564	/*
565	 * If we are not a 82557 chip, we can enable extended features.
566	 */
567	if (sc->revision != FXP_REV_82557) {
568		/*
569		 * If MWI is enabled in the PCI configuration, and there
570		 * is a valid cacheline size (8 or 16 dwords), then tell
571		 * the board to turn on MWI.
572		 */
573		if (val & PCIM_CMD_MWRICEN &&
574		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
575			sc->flags |= FXP_FLAG_MWI_ENABLE;
576
577		/* turn on the extended TxCB feature */
578		sc->flags |= FXP_FLAG_EXT_TXCB;
579
580		/* enable reception of long frames for VLAN */
581		sc->flags |= FXP_FLAG_LONG_PKT_EN;
582	}
583
584	/*
585	 * Read MAC address.
586	 */
587	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
588	device_printf(dev, "Ethernet address %6D%s\n",
589	    sc->arpcom.ac_enaddr, ":",
590	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
591	if (bootverbose) {
592		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
593		    pci_get_vendor(dev), pci_get_device(dev),
594		    pci_get_subvendor(dev), pci_get_subdevice(dev),
595		    pci_get_revid(dev));
596		fxp_read_eeprom(sc, &data, 10, 1);
597		device_printf(dev, "Dynamic Standby mode is %s\n",
598		    data & 0x02 ? "enabled" : "disabled");
599	}
600
601	/*
602	 * If this is only a 10Mbps device, then there is no MII, and
603	 * the PHY will use a serial interface instead.
604	 *
605	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
606	 * doesn't have a programming interface of any sort.  The
607	 * media is sensed automatically based on how the link partner
608	 * is configured.  This is, in essence, manual configuration.
609	 */
610	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
611		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
612		    fxp_serial_ifmedia_sts);
613		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
614		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
615	} else {
616		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
617		    fxp_ifmedia_sts)) {
618	                device_printf(dev, "MII without any PHY!\n");
619			error = ENXIO;
620			goto fail;
621		}
622	}
623
624	ifp = &sc->arpcom.ac_if;
625	ifp->if_unit = device_get_unit(dev);
626	ifp->if_name = "fxp";
627	ifp->if_output = ether_output;
628	ifp->if_baudrate = 100000000;
629	ifp->if_init = fxp_init;
630	ifp->if_softc = sc;
631	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
632	ifp->if_ioctl = fxp_ioctl;
633	ifp->if_start = fxp_start;
634	ifp->if_watchdog = fxp_watchdog;
635
636	/*
637	 * Attach the interface.
638	 */
639	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
640
641	/*
642	 * Tell the upper layer(s) we support long frames.
643	 */
644	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
645
646	/*
647	 * Let the system queue as many packets as we have available
648	 * TX descriptors.
649	 */
650	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
651
652	splx(s);
653	return (0);
654
655failmem:
656	device_printf(dev, "Failed to malloc memory\n");
657	error = ENOMEM;
658fail:
659	splx(s);
660	fxp_release(sc);
661	return (error);
662}
663
664/*
665 * release all resources
666 */
667static void
668fxp_release(struct fxp_softc *sc)
669{
670
671	bus_generic_detach(sc->dev);
672	if (sc->miibus)
673		device_delete_child(sc->dev, sc->miibus);
674
675	if (sc->cbl_base)
676		free(sc->cbl_base, M_DEVBUF);
677	if (sc->fxp_stats)
678		free(sc->fxp_stats, M_DEVBUF);
679	if (sc->mcsp)
680		free(sc->mcsp, M_DEVBUF);
681	if (sc->rfa_headm)
682		m_freem(sc->rfa_headm);
683
684	if (sc->ih)
685		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
686	if (sc->irq)
687		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
688	if (sc->mem)
689		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
690
691        sysctl_ctx_free(&sc->sysctl_ctx);
692
693	mtx_destroy(&sc->sc_mtx);
694}
695
696/*
697 * Detach interface.
698 */
699static int
700fxp_detach(device_t dev)
701{
702	struct fxp_softc *sc = device_get_softc(dev);
703	int s;
704
705	/* disable interrupts */
706	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
707
708	s = splimp();
709
710	/*
711	 * Stop DMA and drop transmit queue.
712	 */
713	fxp_stop(sc);
714
715	/*
716	 * Close down routes etc.
717	 */
718	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
719
720	/*
721	 * Free all media structures.
722	 */
723	ifmedia_removeall(&sc->sc_media);
724
725	splx(s);
726
727	/* Release our allocated resources. */
728	fxp_release(sc);
729
730	return (0);
731}
732
733/*
734 * Device shutdown routine. Called at system shutdown after sync. The
735 * main purpose of this routine is to shut off receiver DMA so that
736 * kernel memory doesn't get clobbered during warmboot.
737 */
738static int
739fxp_shutdown(device_t dev)
740{
741	/*
742	 * Make sure that DMA is disabled prior to reboot. Not doing
743	 * do could allow DMA to corrupt kernel memory during the
744	 * reboot before the driver initializes.
745	 */
746	fxp_stop((struct fxp_softc *) device_get_softc(dev));
747	return (0);
748}
749
750/*
751 * Device suspend routine.  Stop the interface and save some PCI
752 * settings in case the BIOS doesn't restore them properly on
753 * resume.
754 */
755static int
756fxp_suspend(device_t dev)
757{
758	struct fxp_softc *sc = device_get_softc(dev);
759	int i, s;
760
761	s = splimp();
762
763	fxp_stop(sc);
764
765	for (i = 0; i < 5; i++)
766		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
767	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
768	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
769	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
770	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
771
772	sc->suspended = 1;
773
774	splx(s);
775	return (0);
776}
777
778/*
779 * Device resume routine.  Restore some PCI settings in case the BIOS
780 * doesn't, re-enable busmastering, and restart the interface if
781 * appropriate.
782 */
783static int
784fxp_resume(device_t dev)
785{
786	struct fxp_softc *sc = device_get_softc(dev);
787	struct ifnet *ifp = &sc->sc_if;
788	u_int16_t pci_command;
789	int i, s;
790
791	s = splimp();
792
793	fxp_powerstate_d0(dev);
794
795	/* better way to do this? */
796	for (i = 0; i < 5; i++)
797		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
798	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
799	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
800	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
801	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
802
803	/* reenable busmastering */
804	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
805	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
806	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
807
808	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
809	DELAY(10);
810
811	/* reinitialize interface if necessary */
812	if (ifp->if_flags & IFF_UP)
813		fxp_init(sc);
814
815	sc->suspended = 0;
816
817	splx(s);
818	return (0);
819}
820
821static void
822fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
823{
824	u_int16_t reg;
825	int x;
826
827	/*
828	 * Shift in data.
829	 */
830	for (x = 1 << (length - 1); x; x >>= 1) {
831		if (data & x)
832			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
833		else
834			reg = FXP_EEPROM_EECS;
835		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
836		DELAY(1);
837		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
838		DELAY(1);
839		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
840		DELAY(1);
841	}
842}
843
844/*
845 * Read from the serial EEPROM. Basically, you manually shift in
846 * the read opcode (one bit at a time) and then shift in the address,
847 * and then you shift out the data (all of this one bit at a time).
848 * The word size is 16 bits, so you have to provide the address for
849 * every 16 bits of data.
850 */
851static u_int16_t
852fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
853{
854	u_int16_t reg, data;
855	int x;
856
857	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
858	/*
859	 * Shift in read opcode.
860	 */
861	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
862	/*
863	 * Shift in address.
864	 */
865	data = 0;
866	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
867		if (offset & x)
868			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
869		else
870			reg = FXP_EEPROM_EECS;
871		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
872		DELAY(1);
873		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
874		DELAY(1);
875		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
876		DELAY(1);
877		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
878		data++;
879		if (autosize && reg == 0) {
880			sc->eeprom_size = data;
881			break;
882		}
883	}
884	/*
885	 * Shift out data.
886	 */
887	data = 0;
888	reg = FXP_EEPROM_EECS;
889	for (x = 1 << 15; x; x >>= 1) {
890		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
891		DELAY(1);
892		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
893			data |= x;
894		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
895		DELAY(1);
896	}
897	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
898	DELAY(1);
899
900	return (data);
901}
902
903static void
904fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
905{
906	int i;
907
908	/*
909	 * Erase/write enable.
910	 */
911	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
912	fxp_eeprom_shiftin(sc, 0x4, 3);
913	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
914	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
915	DELAY(1);
916	/*
917	 * Shift in write opcode, address, data.
918	 */
919	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
920	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
921	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
922	fxp_eeprom_shiftin(sc, data, 16);
923	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
924	DELAY(1);
925	/*
926	 * Wait for EEPROM to finish up.
927	 */
928	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
929	DELAY(1);
930	for (i = 0; i < 1000; i++) {
931		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
932			break;
933		DELAY(50);
934	}
935	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
936	DELAY(1);
937	/*
938	 * Erase/write disable.
939	 */
940	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941	fxp_eeprom_shiftin(sc, 0x4, 3);
942	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
943	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
944	DELAY(1);
945}
946
947/*
948 * From NetBSD:
949 *
950 * Figure out EEPROM size.
951 *
952 * 559's can have either 64-word or 256-word EEPROMs, the 558
953 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
954 * talks about the existance of 16 to 256 word EEPROMs.
955 *
956 * The only known sizes are 64 and 256, where the 256 version is used
957 * by CardBus cards to store CIS information.
958 *
959 * The address is shifted in msb-to-lsb, and after the last
960 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
961 * after which follows the actual data. We try to detect this zero, by
962 * probing the data-out bit in the EEPROM control register just after
963 * having shifted in a bit. If the bit is zero, we assume we've
964 * shifted enough address bits. The data-out should be tri-state,
965 * before this, which should translate to a logical one.
966 */
967static void
968fxp_autosize_eeprom(struct fxp_softc *sc)
969{
970
971	/* guess maximum size of 256 words */
972	sc->eeprom_size = 8;
973
974	/* autosize */
975	(void) fxp_eeprom_getword(sc, 0, 1);
976}
977
978static void
979fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
980{
981	int i;
982
983	for (i = 0; i < words; i++)
984		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
985}
986
987static void
988fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
989{
990	int i;
991
992	for (i = 0; i < words; i++)
993		fxp_eeprom_putword(sc, offset + i, data[i]);
994}
995
996/*
997 * Start packet transmission on the interface.
998 */
999static void
1000fxp_start(struct ifnet *ifp)
1001{
1002	struct fxp_softc *sc = ifp->if_softc;
1003	struct fxp_cb_tx *txp;
1004
1005	/*
1006	 * See if we need to suspend xmit until the multicast filter
1007	 * has been reprogrammed (which can only be done at the head
1008	 * of the command chain).
1009	 */
1010	if (sc->need_mcsetup) {
1011		return;
1012	}
1013
1014	txp = NULL;
1015
1016	/*
1017	 * We're finished if there is nothing more to add to the list or if
1018	 * we're all filled up with buffers to transmit.
1019	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1020	 *       a NOP command when needed.
1021	 */
1022	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1023		struct mbuf *m, *mb_head;
1024		int segment;
1025
1026		/*
1027		 * Grab a packet to transmit.
1028		 */
1029		IF_DEQUEUE(&ifp->if_snd, mb_head);
1030
1031		/*
1032		 * Get pointer to next available tx desc.
1033		 */
1034		txp = sc->cbl_last->next;
1035
1036		/*
1037		 * Go through each of the mbufs in the chain and initialize
1038		 * the transmit buffer descriptors with the physical address
1039		 * and size of the mbuf.
1040		 */
1041tbdinit:
1042		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1043			if (m->m_len != 0) {
1044				if (segment == FXP_NTXSEG)
1045					break;
1046				txp->tbd[segment].tb_addr =
1047				    vtophys(mtod(m, vm_offset_t));
1048				txp->tbd[segment].tb_size = m->m_len;
1049				segment++;
1050			}
1051		}
1052		if (m != NULL) {
1053			struct mbuf *mn;
1054
1055			/*
1056			 * We ran out of segments. We have to recopy this
1057			 * mbuf chain first. Bail out if we can't get the
1058			 * new buffers.
1059			 */
1060			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1061			if (mn == NULL) {
1062				m_freem(mb_head);
1063				break;
1064			}
1065			if (mb_head->m_pkthdr.len > MHLEN) {
1066				MCLGET(mn, M_DONTWAIT);
1067				if ((mn->m_flags & M_EXT) == 0) {
1068					m_freem(mn);
1069					m_freem(mb_head);
1070					break;
1071				}
1072			}
1073			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1074			    mtod(mn, caddr_t));
1075			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1076			m_freem(mb_head);
1077			mb_head = mn;
1078			goto tbdinit;
1079		}
1080
1081		txp->tbd_number = segment;
1082		txp->mb_head = mb_head;
1083		txp->cb_status = 0;
1084		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1085			txp->cb_command =
1086			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1087			    FXP_CB_COMMAND_S;
1088		} else {
1089			txp->cb_command =
1090			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1091			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1092			/*
1093			 * Set a 5 second timer just in case we don't hear
1094			 * from the card again.
1095			 */
1096			ifp->if_timer = 5;
1097		}
1098		txp->tx_threshold = tx_threshold;
1099
1100		/*
1101		 * Advance the end of list forward.
1102		 */
1103
1104#ifdef __alpha__
1105		/*
1106		 * On platforms which can't access memory in 16-bit
1107		 * granularities, we must prevent the card from DMA'ing
1108		 * up the status while we update the command field.
1109		 * This could cause us to overwrite the completion status.
1110		 */
1111		atomic_clear_short(&sc->cbl_last->cb_command,
1112		    FXP_CB_COMMAND_S);
1113#else
1114		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1115#endif /*__alpha__*/
1116		sc->cbl_last = txp;
1117
1118		/*
1119		 * Advance the beginning of the list forward if there are
1120		 * no other packets queued (when nothing is queued, cbl_first
1121		 * sits on the last TxCB that was sent out).
1122		 */
1123		if (sc->tx_queued == 0)
1124			sc->cbl_first = txp;
1125
1126		sc->tx_queued++;
1127
1128		/*
1129		 * Pass packet to bpf if there is a listener.
1130		 */
1131		if (ifp->if_bpf)
1132			bpf_mtap(ifp, mb_head);
1133	}
1134
1135	/*
1136	 * We're finished. If we added to the list, issue a RESUME to get DMA
1137	 * going again if suspended.
1138	 */
1139	if (txp != NULL) {
1140		fxp_scb_wait(sc);
1141		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1142	}
1143}
1144
1145static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1146
1147#ifdef DEVICE_POLLING
1148static poll_handler_t fxp_poll;
1149
1150static void
1151fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1152{
1153	struct fxp_softc *sc = ifp->if_softc;
1154	u_int8_t statack;
1155
1156	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1157		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1158		return;
1159	}
1160	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1161	    FXP_SCB_STATACK_FR;
1162	if (cmd == POLL_AND_CHECK_STATUS) {
1163		u_int8_t tmp;
1164
1165		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1166		if (tmp == 0xff || tmp == 0)
1167			return; /* nothing to do */
1168		tmp &= ~statack;
1169		/* ack what we can */
1170		if (tmp != 0)
1171			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1172		statack |= tmp;
1173	}
1174	fxp_intr_body(sc, statack, count);
1175}
1176#endif /* DEVICE_POLLING */
1177
1178/*
1179 * Process interface interrupts.
1180 */
1181static void
1182fxp_intr(void *xsc)
1183{
1184	struct fxp_softc *sc = xsc;
1185	u_int8_t statack;
1186
1187#ifdef DEVICE_POLLING
1188	struct ifnet *ifp = &sc->sc_if;
1189
1190	if (ifp->if_ipending & IFF_POLLING)
1191		return;
1192	if (ether_poll_register(fxp_poll, ifp)) {
1193		/* disable interrupts */
1194		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1195		fxp_poll(ifp, 0, 1);
1196		return;
1197	}
1198#endif
1199
1200	if (sc->suspended) {
1201		return;
1202	}
1203
1204	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1205		/*
1206		 * It should not be possible to have all bits set; the
1207		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1208		 * all bits are set, this may indicate that the card has
1209		 * been physically ejected, so ignore it.
1210		 */
1211		if (statack == 0xff)
1212			return;
1213
1214		/*
1215		 * First ACK all the interrupts in this pass.
1216		 */
1217		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1218		fxp_intr_body(sc, statack, -1);
1219	}
1220}
1221
1222static void
1223fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1224{
1225	struct ifnet *ifp = &sc->sc_if;
1226
1227		/*
1228		 * Free any finished transmit mbuf chains.
1229		 *
1230		 * Handle the CNA event likt a CXTNO event. It used to
1231		 * be that this event (control unit not ready) was not
1232		 * encountered, but it is now with the SMPng modifications.
1233		 * The exact sequence of events that occur when the interface
1234		 * is brought up are different now, and if this event
1235		 * goes unhandled, the configuration/rxfilter setup sequence
1236		 * can stall for several seconds. The result is that no
1237		 * packets go out onto the wire for about 5 to 10 seconds
1238		 * after the interface is ifconfig'ed for the first time.
1239		 */
1240		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1241			struct fxp_cb_tx *txp;
1242
1243			for (txp = sc->cbl_first; sc->tx_queued &&
1244			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1245			    txp = txp->next) {
1246				if (txp->mb_head != NULL) {
1247					m_freem(txp->mb_head);
1248					txp->mb_head = NULL;
1249				}
1250				sc->tx_queued--;
1251			}
1252			sc->cbl_first = txp;
1253			ifp->if_timer = 0;
1254			if (sc->tx_queued == 0) {
1255				if (sc->need_mcsetup)
1256					fxp_mc_setup(sc);
1257			}
1258			/*
1259			 * Try to start more packets transmitting.
1260			 */
1261			if (ifp->if_snd.ifq_head != NULL)
1262				fxp_start(ifp);
1263		}
1264		/*
1265		 * Process receiver interrupts. If a no-resource (RNR)
1266		 * condition exists, get whatever packets we can and
1267		 * re-start the receiver.
1268		 */
1269		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1270			struct mbuf *m;
1271			struct fxp_rfa *rfa;
1272rcvloop:
1273			m = sc->rfa_headm;
1274			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1275			    RFA_ALIGNMENT_FUDGE);
1276
1277#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1278			if (count < 0 || count-- > 0)
1279#endif
1280			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1281				/*
1282				 * Remove first packet from the chain.
1283				 */
1284				sc->rfa_headm = m->m_next;
1285				m->m_next = NULL;
1286
1287				/*
1288				 * Add a new buffer to the receive chain.
1289				 * If this fails, the old buffer is recycled
1290				 * instead.
1291				 */
1292				if (fxp_add_rfabuf(sc, m) == 0) {
1293					struct ether_header *eh;
1294					int total_len;
1295
1296					total_len = rfa->actual_size &
1297					    (MCLBYTES - 1);
1298					if (total_len <
1299					    sizeof(struct ether_header)) {
1300						m_freem(m);
1301						goto rcvloop;
1302					}
1303
1304					/*
1305					 * Drop the packet if it has CRC
1306					 * errors.  This test is only needed
1307					 * when doing 802.1q VLAN on the 82557
1308					 * chip.
1309					 */
1310					if (rfa->rfa_status &
1311					    FXP_RFA_STATUS_CRC) {
1312						m_freem(m);
1313						goto rcvloop;
1314					}
1315
1316					m->m_pkthdr.rcvif = ifp;
1317					m->m_pkthdr.len = m->m_len = total_len;
1318					eh = mtod(m, struct ether_header *);
1319					m->m_data +=
1320					    sizeof(struct ether_header);
1321					m->m_len -=
1322					    sizeof(struct ether_header);
1323					m->m_pkthdr.len = m->m_len;
1324					ether_input(ifp, eh, m);
1325				}
1326				goto rcvloop;
1327			}
1328			if (statack & FXP_SCB_STATACK_RNR) {
1329				fxp_scb_wait(sc);
1330				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1331				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1332					RFA_ALIGNMENT_FUDGE);
1333				fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1334			}
1335		}
1336}
1337
1338/*
1339 * Update packet in/out/collision statistics. The i82557 doesn't
1340 * allow you to access these counters without doing a fairly
1341 * expensive DMA to get _all_ of the statistics it maintains, so
1342 * we do this operation here only once per second. The statistics
1343 * counters in the kernel are updated from the previous dump-stats
1344 * DMA and then a new dump-stats DMA is started. The on-chip
1345 * counters are zeroed when the DMA completes. If we can't start
1346 * the DMA immediately, we don't wait - we just prepare to read
1347 * them again next time.
1348 */
1349static void
1350fxp_tick(void *xsc)
1351{
1352	struct fxp_softc *sc = xsc;
1353	struct ifnet *ifp = &sc->sc_if;
1354	struct fxp_stats *sp = sc->fxp_stats;
1355	struct fxp_cb_tx *txp;
1356	int s;
1357
1358	ifp->if_opackets += sp->tx_good;
1359	ifp->if_collisions += sp->tx_total_collisions;
1360	if (sp->rx_good) {
1361		ifp->if_ipackets += sp->rx_good;
1362		sc->rx_idle_secs = 0;
1363	} else {
1364		/*
1365		 * Receiver's been idle for another second.
1366		 */
1367		sc->rx_idle_secs++;
1368	}
1369	ifp->if_ierrors +=
1370	    sp->rx_crc_errors +
1371	    sp->rx_alignment_errors +
1372	    sp->rx_rnr_errors +
1373	    sp->rx_overrun_errors;
1374	/*
1375	 * If any transmit underruns occured, bump up the transmit
1376	 * threshold by another 512 bytes (64 * 8).
1377	 */
1378	if (sp->tx_underruns) {
1379		ifp->if_oerrors += sp->tx_underruns;
1380		if (tx_threshold < 192)
1381			tx_threshold += 64;
1382	}
1383	s = splimp();
1384	/*
1385	 * Release any xmit buffers that have completed DMA. This isn't
1386	 * strictly necessary to do here, but it's advantagous for mbufs
1387	 * with external storage to be released in a timely manner rather
1388	 * than being defered for a potentially long time. This limits
1389	 * the delay to a maximum of one second.
1390	 */
1391	for (txp = sc->cbl_first; sc->tx_queued &&
1392	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1393	    txp = txp->next) {
1394		if (txp->mb_head != NULL) {
1395			m_freem(txp->mb_head);
1396			txp->mb_head = NULL;
1397		}
1398		sc->tx_queued--;
1399	}
1400	sc->cbl_first = txp;
1401	/*
1402	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1403	 * then assume the receiver has locked up and attempt to clear
1404	 * the condition by reprogramming the multicast filter. This is
1405	 * a work-around for a bug in the 82557 where the receiver locks
1406	 * up if it gets certain types of garbage in the syncronization
1407	 * bits prior to the packet header. This bug is supposed to only
1408	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1409	 * mode as well (perhaps due to a 10/100 speed transition).
1410	 */
1411	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1412		sc->rx_idle_secs = 0;
1413		fxp_mc_setup(sc);
1414	}
1415	/*
1416	 * If there is no pending command, start another stats
1417	 * dump. Otherwise punt for now.
1418	 */
1419	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1420		/*
1421		 * Start another stats dump.
1422		 */
1423		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1424	} else {
1425		/*
1426		 * A previous command is still waiting to be accepted.
1427		 * Just zero our copy of the stats and wait for the
1428		 * next timer event to update them.
1429		 */
1430		sp->tx_good = 0;
1431		sp->tx_underruns = 0;
1432		sp->tx_total_collisions = 0;
1433
1434		sp->rx_good = 0;
1435		sp->rx_crc_errors = 0;
1436		sp->rx_alignment_errors = 0;
1437		sp->rx_rnr_errors = 0;
1438		sp->rx_overrun_errors = 0;
1439	}
1440	if (sc->miibus != NULL)
1441		mii_tick(device_get_softc(sc->miibus));
1442	splx(s);
1443	/*
1444	 * Schedule another timeout one second from now.
1445	 */
1446	sc->stat_ch = timeout(fxp_tick, sc, hz);
1447}
1448
1449/*
1450 * Stop the interface. Cancels the statistics updater and resets
1451 * the interface.
1452 */
1453static void
1454fxp_stop(struct fxp_softc *sc)
1455{
1456	struct ifnet *ifp = &sc->sc_if;
1457	struct fxp_cb_tx *txp;
1458	int i;
1459
1460	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1461	ifp->if_timer = 0;
1462
1463#ifdef DEVICE_POLLING
1464	ether_poll_deregister(ifp);
1465#endif
1466	/*
1467	 * Cancel stats updater.
1468	 */
1469	untimeout(fxp_tick, sc, sc->stat_ch);
1470
1471	/*
1472	 * Issue software reset, which also unloads the microcode.
1473	 */
1474	sc->flags &= ~FXP_FLAG_UCODE;
1475	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1476	DELAY(50);
1477
1478	/*
1479	 * Release any xmit buffers.
1480	 */
1481	txp = sc->cbl_base;
1482	if (txp != NULL) {
1483		for (i = 0; i < FXP_NTXCB; i++) {
1484			if (txp[i].mb_head != NULL) {
1485				m_freem(txp[i].mb_head);
1486				txp[i].mb_head = NULL;
1487			}
1488		}
1489	}
1490	sc->tx_queued = 0;
1491
1492	/*
1493	 * Free all the receive buffers then reallocate/reinitialize
1494	 */
1495	if (sc->rfa_headm != NULL)
1496		m_freem(sc->rfa_headm);
1497	sc->rfa_headm = NULL;
1498	sc->rfa_tailm = NULL;
1499	for (i = 0; i < FXP_NRFABUFS; i++) {
1500		if (fxp_add_rfabuf(sc, NULL) != 0) {
1501			/*
1502			 * This "can't happen" - we're at splimp()
1503			 * and we just freed all the buffers we need
1504			 * above.
1505			 */
1506			panic("fxp_stop: no buffers!");
1507		}
1508	}
1509}
1510
1511/*
1512 * Watchdog/transmission transmit timeout handler. Called when a
1513 * transmission is started on the interface, but no interrupt is
1514 * received before the timeout. This usually indicates that the
1515 * card has wedged for some reason.
1516 */
1517static void
1518fxp_watchdog(struct ifnet *ifp)
1519{
1520	struct fxp_softc *sc = ifp->if_softc;
1521
1522	device_printf(sc->dev, "device timeout\n");
1523	ifp->if_oerrors++;
1524
1525	fxp_init(sc);
1526}
1527
1528static void
1529fxp_init(void *xsc)
1530{
1531	struct fxp_softc *sc = xsc;
1532	struct ifnet *ifp = &sc->sc_if;
1533	struct fxp_cb_config *cbp;
1534	struct fxp_cb_ias *cb_ias;
1535	struct fxp_cb_tx *txp;
1536	struct fxp_cb_mcs *mcsp;
1537	int i, prm, s;
1538
1539	s = splimp();
1540	/*
1541	 * Cancel any pending I/O
1542	 */
1543	fxp_stop(sc);
1544
1545	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1546
1547	/*
1548	 * Initialize base of CBL and RFA memory. Loading with zero
1549	 * sets it up for regular linear addressing.
1550	 */
1551	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1552	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1553
1554	fxp_scb_wait(sc);
1555	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1556
1557	/*
1558	 * Initialize base of dump-stats buffer.
1559	 */
1560	fxp_scb_wait(sc);
1561	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1562	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1563
1564	/*
1565	 * Attempt to load microcode if requested.
1566	 */
1567	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1568		fxp_load_ucode(sc);
1569
1570	/*
1571	 * Initialize the multicast address list.
1572	 */
1573	if (fxp_mc_addrs(sc)) {
1574		mcsp = sc->mcsp;
1575		mcsp->cb_status = 0;
1576		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1577		mcsp->link_addr = -1;
1578		/*
1579	 	 * Start the multicast setup command.
1580		 */
1581		fxp_scb_wait(sc);
1582		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1583		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1584		/* ...and wait for it to complete. */
1585		fxp_dma_wait(&mcsp->cb_status, sc);
1586	}
1587
1588	/*
1589	 * We temporarily use memory that contains the TxCB list to
1590	 * construct the config CB. The TxCB list memory is rebuilt
1591	 * later.
1592	 */
1593	cbp = (struct fxp_cb_config *) sc->cbl_base;
1594
1595	/*
1596	 * This bcopy is kind of disgusting, but there are a bunch of must be
1597	 * zero and must be one bits in this structure and this is the easiest
1598	 * way to initialize them all to proper values.
1599	 */
1600	bcopy(fxp_cb_config_template,
1601		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1602		sizeof(fxp_cb_config_template));
1603
1604	cbp->cb_status =	0;
1605	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1606	cbp->link_addr =	-1;	/* (no) next command */
1607	cbp->byte_count =	22;	/* (22) bytes to config */
1608	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1609	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1610	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1611	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1612	cbp->type_enable =	0;	/* actually reserved */
1613	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1614	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1615	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1616	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1617	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1618	cbp->late_scb =		0;	/* (don't) defer SCB update */
1619	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1620	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1621	cbp->ci_int =		1;	/* interrupt on CU idle */
1622	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1623	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1624	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1625	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1626	cbp->disc_short_rx =	!prm;	/* discard short packets */
1627	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1628	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1629	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1630	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1631	cbp->csma_dis =		0;	/* (don't) disable link */
1632	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1633	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1634	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1635	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1636	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1637	cbp->nsai =		1;	/* (don't) disable source addr insert */
1638	cbp->preamble_length =	2;	/* (7 byte) preamble */
1639	cbp->loopback =		0;	/* (don't) loopback */
1640	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1641	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1642	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1643	cbp->promiscuous =	prm;	/* promiscuous mode */
1644	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1645	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1646	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1647	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1648	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1649
1650	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1651	cbp->padding =		1;	/* (do) pad short tx packets */
1652	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1653	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1654	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1655	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1656					/* must set wake_en in PMCSR also */
1657	cbp->force_fdx =	0;	/* (don't) force full duplex */
1658	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1659	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1660	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1661
1662	if (sc->revision == FXP_REV_82557) {
1663		/*
1664		 * The 82557 has no hardware flow control, the values
1665		 * below are the defaults for the chip.
1666		 */
1667		cbp->fc_delay_lsb =	0;
1668		cbp->fc_delay_msb =	0x40;
1669		cbp->pri_fc_thresh =	3;
1670		cbp->tx_fc_dis =	0;
1671		cbp->rx_fc_restop =	0;
1672		cbp->rx_fc_restart =	0;
1673		cbp->fc_filter =	0;
1674		cbp->pri_fc_loc =	1;
1675	} else {
1676		cbp->fc_delay_lsb =	0x1f;
1677		cbp->fc_delay_msb =	0x01;
1678		cbp->pri_fc_thresh =	3;
1679		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1680		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1681		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1682		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1683		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1684	}
1685
1686	/*
1687	 * Start the config command/DMA.
1688	 */
1689	fxp_scb_wait(sc);
1690	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1691	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1692	/* ...and wait for it to complete. */
1693	fxp_dma_wait(&cbp->cb_status, sc);
1694
1695	/*
1696	 * Now initialize the station address. Temporarily use the TxCB
1697	 * memory area like we did above for the config CB.
1698	 */
1699	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1700	cb_ias->cb_status = 0;
1701	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1702	cb_ias->link_addr = -1;
1703	bcopy(sc->arpcom.ac_enaddr,
1704	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1705	    sizeof(sc->arpcom.ac_enaddr));
1706
1707	/*
1708	 * Start the IAS (Individual Address Setup) command/DMA.
1709	 */
1710	fxp_scb_wait(sc);
1711	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1712	/* ...and wait for it to complete. */
1713	fxp_dma_wait(&cb_ias->cb_status, sc);
1714
1715	/*
1716	 * Initialize transmit control block (TxCB) list.
1717	 */
1718
1719	txp = sc->cbl_base;
1720	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1721	for (i = 0; i < FXP_NTXCB; i++) {
1722		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1723		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1724		txp[i].link_addr =
1725		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1726		if (sc->flags & FXP_FLAG_EXT_TXCB)
1727			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1728		else
1729			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1730		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1731	}
1732	/*
1733	 * Set the suspend flag on the first TxCB and start the control
1734	 * unit. It will execute the NOP and then suspend.
1735	 */
1736	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1737	sc->cbl_first = sc->cbl_last = txp;
1738	sc->tx_queued = 1;
1739
1740	fxp_scb_wait(sc);
1741	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1742
1743	/*
1744	 * Initialize receiver buffer area - RFA.
1745	 */
1746	fxp_scb_wait(sc);
1747	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1748	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1749	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1750
1751	/*
1752	 * Set current media.
1753	 */
1754	if (sc->miibus != NULL)
1755		mii_mediachg(device_get_softc(sc->miibus));
1756
1757	ifp->if_flags |= IFF_RUNNING;
1758	ifp->if_flags &= ~IFF_OACTIVE;
1759
1760	/*
1761	 * Enable interrupts.
1762	 */
1763	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1764	splx(s);
1765
1766	/*
1767	 * Start stats updater.
1768	 */
1769	sc->stat_ch = timeout(fxp_tick, sc, hz);
1770}
1771
1772static int
1773fxp_serial_ifmedia_upd(struct ifnet *ifp)
1774{
1775
1776	return (0);
1777}
1778
1779static void
1780fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1781{
1782
1783	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1784}
1785
1786/*
1787 * Change media according to request.
1788 */
1789static int
1790fxp_ifmedia_upd(struct ifnet *ifp)
1791{
1792	struct fxp_softc *sc = ifp->if_softc;
1793	struct mii_data *mii;
1794
1795	mii = device_get_softc(sc->miibus);
1796	mii_mediachg(mii);
1797	return (0);
1798}
1799
1800/*
1801 * Notify the world which media we're using.
1802 */
1803static void
1804fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1805{
1806	struct fxp_softc *sc = ifp->if_softc;
1807	struct mii_data *mii;
1808
1809	mii = device_get_softc(sc->miibus);
1810	mii_pollstat(mii);
1811	ifmr->ifm_active = mii->mii_media_active;
1812	ifmr->ifm_status = mii->mii_media_status;
1813
1814	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1815		sc->cu_resume_bug = 1;
1816	else
1817		sc->cu_resume_bug = 0;
1818}
1819
1820/*
1821 * Add a buffer to the end of the RFA buffer list.
1822 * Return 0 if successful, 1 for failure. A failure results in
1823 * adding the 'oldm' (if non-NULL) on to the end of the list -
1824 * tossing out its old contents and recycling it.
1825 * The RFA struct is stuck at the beginning of mbuf cluster and the
1826 * data pointer is fixed up to point just past it.
1827 */
1828static int
1829fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1830{
1831	u_int32_t v;
1832	struct mbuf *m;
1833	struct fxp_rfa *rfa, *p_rfa;
1834
1835	MGETHDR(m, M_DONTWAIT, MT_DATA);
1836	if (m != NULL) {
1837		MCLGET(m, M_DONTWAIT);
1838		if ((m->m_flags & M_EXT) == 0) {
1839			m_freem(m);
1840			if (oldm == NULL)
1841				return 1;
1842			m = oldm;
1843			m->m_data = m->m_ext.ext_buf;
1844		}
1845	} else {
1846		if (oldm == NULL)
1847			return 1;
1848		m = oldm;
1849		m->m_data = m->m_ext.ext_buf;
1850	}
1851
1852	/*
1853	 * Move the data pointer up so that the incoming data packet
1854	 * will be 32-bit aligned.
1855	 */
1856	m->m_data += RFA_ALIGNMENT_FUDGE;
1857
1858	/*
1859	 * Get a pointer to the base of the mbuf cluster and move
1860	 * data start past it.
1861	 */
1862	rfa = mtod(m, struct fxp_rfa *);
1863	m->m_data += sizeof(struct fxp_rfa);
1864	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1865
1866	/*
1867	 * Initialize the rest of the RFA.  Note that since the RFA
1868	 * is misaligned, we cannot store values directly.  Instead,
1869	 * we use an optimized, inline copy.
1870	 */
1871
1872	rfa->rfa_status = 0;
1873	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1874	rfa->actual_size = 0;
1875
1876	v = -1;
1877	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1878	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1879
1880	/*
1881	 * If there are other buffers already on the list, attach this
1882	 * one to the end by fixing up the tail to point to this one.
1883	 */
1884	if (sc->rfa_headm != NULL) {
1885		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1886		    RFA_ALIGNMENT_FUDGE);
1887		sc->rfa_tailm->m_next = m;
1888		v = vtophys(rfa);
1889		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1890		p_rfa->rfa_control = 0;
1891	} else {
1892		sc->rfa_headm = m;
1893	}
1894	sc->rfa_tailm = m;
1895
1896	return (m == oldm);
1897}
1898
1899static volatile int
1900fxp_miibus_readreg(device_t dev, int phy, int reg)
1901{
1902	struct fxp_softc *sc = device_get_softc(dev);
1903	int count = 10000;
1904	int value;
1905
1906	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1907	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1908
1909	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1910	    && count--)
1911		DELAY(10);
1912
1913	if (count <= 0)
1914		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1915
1916	return (value & 0xffff);
1917}
1918
1919static void
1920fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1921{
1922	struct fxp_softc *sc = device_get_softc(dev);
1923	int count = 10000;
1924
1925	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1926	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1927	    (value & 0xffff));
1928
1929	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1930	    count--)
1931		DELAY(10);
1932
1933	if (count <= 0)
1934		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1935}
1936
1937static int
1938fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1939{
1940	struct fxp_softc *sc = ifp->if_softc;
1941	struct ifreq *ifr = (struct ifreq *)data;
1942	struct mii_data *mii;
1943	int s, error = 0;
1944
1945	s = splimp();
1946
1947	switch (command) {
1948	case SIOCSIFADDR:
1949	case SIOCGIFADDR:
1950	case SIOCSIFMTU:
1951		error = ether_ioctl(ifp, command, data);
1952		break;
1953
1954	case SIOCSIFFLAGS:
1955		if (ifp->if_flags & IFF_ALLMULTI)
1956			sc->flags |= FXP_FLAG_ALL_MCAST;
1957		else
1958			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1959
1960		/*
1961		 * If interface is marked up and not running, then start it.
1962		 * If it is marked down and running, stop it.
1963		 * XXX If it's up then re-initialize it. This is so flags
1964		 * such as IFF_PROMISC are handled.
1965		 */
1966		if (ifp->if_flags & IFF_UP) {
1967			fxp_init(sc);
1968		} else {
1969			if (ifp->if_flags & IFF_RUNNING)
1970				fxp_stop(sc);
1971		}
1972		break;
1973
1974	case SIOCADDMULTI:
1975	case SIOCDELMULTI:
1976		if (ifp->if_flags & IFF_ALLMULTI)
1977			sc->flags |= FXP_FLAG_ALL_MCAST;
1978		else
1979			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1980		/*
1981		 * Multicast list has changed; set the hardware filter
1982		 * accordingly.
1983		 */
1984		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1985			fxp_mc_setup(sc);
1986		/*
1987		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1988		 * again rather than else {}.
1989		 */
1990		if (sc->flags & FXP_FLAG_ALL_MCAST)
1991			fxp_init(sc);
1992		error = 0;
1993		break;
1994
1995	case SIOCSIFMEDIA:
1996	case SIOCGIFMEDIA:
1997		if (sc->miibus != NULL) {
1998			mii = device_get_softc(sc->miibus);
1999                        error = ifmedia_ioctl(ifp, ifr,
2000                            &mii->mii_media, command);
2001		} else {
2002                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2003		}
2004		break;
2005
2006	default:
2007		error = EINVAL;
2008	}
2009	splx(s);
2010	return (error);
2011}
2012
2013/*
2014 * Fill in the multicast address list and return number of entries.
2015 */
2016static int
2017fxp_mc_addrs(struct fxp_softc *sc)
2018{
2019	struct fxp_cb_mcs *mcsp = sc->mcsp;
2020	struct ifnet *ifp = &sc->sc_if;
2021	struct ifmultiaddr *ifma;
2022	int nmcasts;
2023
2024	nmcasts = 0;
2025	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2026#if __FreeBSD_version < 500000
2027		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2028#else
2029		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2030#endif
2031			if (ifma->ifma_addr->sa_family != AF_LINK)
2032				continue;
2033			if (nmcasts >= MAXMCADDR) {
2034				sc->flags |= FXP_FLAG_ALL_MCAST;
2035				nmcasts = 0;
2036				break;
2037			}
2038			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2039			    (void *)(uintptr_t)(volatile void *)
2040				&sc->mcsp->mc_addr[nmcasts][0], 6);
2041			nmcasts++;
2042		}
2043	}
2044	mcsp->mc_cnt = nmcasts * 6;
2045	return (nmcasts);
2046}
2047
2048/*
2049 * Program the multicast filter.
2050 *
2051 * We have an artificial restriction that the multicast setup command
2052 * must be the first command in the chain, so we take steps to ensure
2053 * this. By requiring this, it allows us to keep up the performance of
2054 * the pre-initialized command ring (esp. link pointers) by not actually
2055 * inserting the mcsetup command in the ring - i.e. its link pointer
2056 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2057 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2058 * lead into the regular TxCB ring when it completes.
2059 *
2060 * This function must be called at splimp.
2061 */
2062static void
2063fxp_mc_setup(struct fxp_softc *sc)
2064{
2065	struct fxp_cb_mcs *mcsp = sc->mcsp;
2066	struct ifnet *ifp = &sc->sc_if;
2067	int count;
2068
2069	/*
2070	 * If there are queued commands, we must wait until they are all
2071	 * completed. If we are already waiting, then add a NOP command
2072	 * with interrupt option so that we're notified when all commands
2073	 * have been completed - fxp_start() ensures that no additional
2074	 * TX commands will be added when need_mcsetup is true.
2075	 */
2076	if (sc->tx_queued) {
2077		struct fxp_cb_tx *txp;
2078
2079		/*
2080		 * need_mcsetup will be true if we are already waiting for the
2081		 * NOP command to be completed (see below). In this case, bail.
2082		 */
2083		if (sc->need_mcsetup)
2084			return;
2085		sc->need_mcsetup = 1;
2086
2087		/*
2088		 * Add a NOP command with interrupt so that we are notified
2089		 * when all TX commands have been processed.
2090		 */
2091		txp = sc->cbl_last->next;
2092		txp->mb_head = NULL;
2093		txp->cb_status = 0;
2094		txp->cb_command = FXP_CB_COMMAND_NOP |
2095		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2096		/*
2097		 * Advance the end of list forward.
2098		 */
2099		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2100		sc->cbl_last = txp;
2101		sc->tx_queued++;
2102		/*
2103		 * Issue a resume in case the CU has just suspended.
2104		 */
2105		fxp_scb_wait(sc);
2106		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2107		/*
2108		 * Set a 5 second timer just in case we don't hear from the
2109		 * card again.
2110		 */
2111		ifp->if_timer = 5;
2112
2113		return;
2114	}
2115	sc->need_mcsetup = 0;
2116
2117	/*
2118	 * Initialize multicast setup descriptor.
2119	 */
2120	mcsp->next = sc->cbl_base;
2121	mcsp->mb_head = NULL;
2122	mcsp->cb_status = 0;
2123	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2124	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2125	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2126	(void) fxp_mc_addrs(sc);
2127	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2128	sc->tx_queued = 1;
2129
2130	/*
2131	 * Wait until command unit is not active. This should never
2132	 * be the case when nothing is queued, but make sure anyway.
2133	 */
2134	count = 100;
2135	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2136	    FXP_SCB_CUS_ACTIVE && --count)
2137		DELAY(10);
2138	if (count == 0) {
2139		device_printf(sc->dev, "command queue timeout\n");
2140		return;
2141	}
2142
2143	/*
2144	 * Start the multicast setup command.
2145	 */
2146	fxp_scb_wait(sc);
2147	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2148	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2149
2150	ifp->if_timer = 2;
2151	return;
2152}
2153
2154static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2155static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2156static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2157static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2158static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2159static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2160
2161#define UCODE(x)	x, sizeof(x)
2162
2163struct ucode {
2164	u_int32_t	revision;
2165	u_int32_t	*ucode;
2166	int		length;
2167	u_short		int_delay_offset;
2168	u_short		bundle_max_offset;
2169} ucode_table[] = {
2170	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2171	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2172	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2173	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2174	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2175	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2176	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2177	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2178	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2179	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2180	{ 0, NULL, 0, 0, 0 }
2181};
2182
2183static void
2184fxp_load_ucode(struct fxp_softc *sc)
2185{
2186	struct ucode *uc;
2187	struct fxp_cb_ucode *cbp;
2188
2189	for (uc = ucode_table; uc->ucode != NULL; uc++)
2190		if (sc->revision == uc->revision)
2191			break;
2192	if (uc->ucode == NULL)
2193		return;
2194	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2195	cbp->cb_status = 0;
2196	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2197	cbp->link_addr = -1;    	/* (no) next command */
2198	memcpy(cbp->ucode, uc->ucode, uc->length);
2199	if (uc->int_delay_offset)
2200		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2201		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2202	if (uc->bundle_max_offset)
2203		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2204		    sc->tunable_bundle_max;
2205	/*
2206	 * Download the ucode to the chip.
2207	 */
2208	fxp_scb_wait(sc);
2209	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2210	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2211	/* ...and wait for it to complete. */
2212	fxp_dma_wait(&cbp->cb_status, sc);
2213	device_printf(sc->dev,
2214	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2215	    sc->tunable_int_delay,
2216	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2217	sc->flags |= FXP_FLAG_UCODE;
2218}
2219
2220static int
2221sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2222{
2223	int error, value;
2224
2225	value = *(int *)arg1;
2226	error = sysctl_handle_int(oidp, &value, 0, req);
2227	if (error || !req->newptr)
2228		return (error);
2229	if (value < low || value > high)
2230		return (EINVAL);
2231	*(int *)arg1 = value;
2232	return (0);
2233}
2234
2235/*
2236 * Interrupt delay is expressed in microseconds, a multiplier is used
2237 * to convert this to the appropriate clock ticks before using.
2238 */
2239static int
2240sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2241{
2242	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2243}
2244
2245static int
2246sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2247{
2248	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2249}
2250