1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/dev/fxp/if_fxp.c 345186 2019-03-15 15:16:31Z markj $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/module.h>
50#include <sys/mutex.h>
51#include <sys/rman.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55
56#include <net/bpf.h>
57#include <net/ethernet.h>
58#include <net/if.h>
59#include <net/if_var.h>
60#include <net/if_arp.h>
61#include <net/if_dl.h>
62#include <net/if_media.h>
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/tcp.h>
70#include <netinet/udp.h>
71
72#include <machine/bus.h>
73#include <machine/in_cksum.h>
74#include <machine/resource.h>
75
76#include <dev/pci/pcivar.h>
77#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78
79#include <dev/mii/mii.h>
80#include <dev/mii/miivar.h>
81
82#include <dev/fxp/if_fxpreg.h>
83#include <dev/fxp/if_fxpvar.h>
84#include <dev/fxp/rcvbundl.h>
85
86MODULE_DEPEND(fxp, pci, 1, 1, 1);
87MODULE_DEPEND(fxp, ether, 1, 1, 1);
88MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89#include "miibus_if.h"
90
91/*
92 * NOTE!  On !x86 we typically have an alignment constraint.  The
93 * card DMAs the packet immediately following the RFA.  However,
94 * the first thing in the packet is a 14-byte Ethernet header.
95 * This means that the packet is misaligned.  To compensate,
96 * we actually offset the RFA 2 bytes into the cluster.  This
97 * alignes the packet after the Ethernet header at a 32-bit
98 * boundary.  HOWEVER!  This means that the RFA is misaligned!
99 */
100#define	RFA_ALIGNMENT_FUDGE	2
101
102/*
103 * Set initial transmit threshold at 64 (512 bytes). This is
104 * increased by 64 (512 bytes) at a time, to maximum of 192
105 * (1536 bytes), if an underrun occurs.
106 */
107static int tx_threshold = 64;
108
109/*
110 * The configuration byte map has several undefined fields which
111 * must be one or must be zero.  Set up a template for these bits.
112 * The actual configuration is performed in fxp_init_body.
113 *
114 * See struct fxp_cb_config for the bit definitions.
115 */
116static const u_char fxp_cb_config_template[] = {
117	0x0, 0x0,		/* cb_status */
118	0x0, 0x0,		/* cb_command */
119	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120	0x0,	/*  0 */
121	0x0,	/*  1 */
122	0x0,	/*  2 */
123	0x0,	/*  3 */
124	0x0,	/*  4 */
125	0x0,	/*  5 */
126	0x32,	/*  6 */
127	0x0,	/*  7 */
128	0x0,	/*  8 */
129	0x0,	/*  9 */
130	0x6,	/* 10 */
131	0x0,	/* 11 */
132	0x0,	/* 12 */
133	0x0,	/* 13 */
134	0xf2,	/* 14 */
135	0x48,	/* 15 */
136	0x0,	/* 16 */
137	0x40,	/* 17 */
138	0xf0,	/* 18 */
139	0x0,	/* 19 */
140	0x3f,	/* 20 */
141	0x5,	/* 21 */
142	0x0,	/* 22 */
143	0x0,	/* 23 */
144	0x0,	/* 24 */
145	0x0,	/* 25 */
146	0x0,	/* 26 */
147	0x0,	/* 27 */
148	0x0,	/* 28 */
149	0x0,	/* 29 */
150	0x0,	/* 30 */
151	0x0	/* 31 */
152};
153
154/*
155 * Claim various Intel PCI device identifiers for this driver.  The
156 * sub-vendor and sub-device field are extensively used to identify
157 * particular variants, but we don't currently differentiate between
158 * them.
159 */
160static const struct fxp_ident fxp_ident_table[] = {
161    { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
162    { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
163    { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164    { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
165    { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166    { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167    { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169    { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170    { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
171    { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172    { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174    { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175    { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
176    { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
177    { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
178    { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
179    { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
180    { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
181    { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
182    { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
183    { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
184    { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
185    { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
186    { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
187    { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
188    { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
189    { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
191    { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
192    { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
193    { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
194    { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
196    { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
197    { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
198    { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
200    { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
201    { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
202    { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
203    { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
204    { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
205    { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
206    { 0,      0,	-1,	0, NULL },
207};
208
209#ifdef FXP_IP_CSUM_WAR
210#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
211#else
212#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
213#endif
214
215static int		fxp_probe(device_t dev);
216static int		fxp_attach(device_t dev);
217static int		fxp_detach(device_t dev);
218static int		fxp_shutdown(device_t dev);
219static int		fxp_suspend(device_t dev);
220static int		fxp_resume(device_t dev);
221
222static const struct fxp_ident *fxp_find_ident(device_t dev);
223static void		fxp_intr(void *xsc);
224static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
225			    struct mbuf *m, uint16_t status, int pos);
226static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
227			    uint8_t statack, int count);
228static void 		fxp_init(void *xsc);
229static void 		fxp_init_body(struct fxp_softc *sc, int);
230static void 		fxp_tick(void *xsc);
231static void 		fxp_start(if_t ifp);
232static void 		fxp_start_body(if_t ifp);
233static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
234static void		fxp_txeof(struct fxp_softc *sc);
235static void		fxp_stop(struct fxp_softc *sc);
236static void 		fxp_release(struct fxp_softc *sc);
237static int		fxp_ioctl(if_t ifp, u_long command,
238			    caddr_t data);
239static void 		fxp_watchdog(struct fxp_softc *sc);
240static void		fxp_add_rfabuf(struct fxp_softc *sc,
241			    struct fxp_rx *rxp);
242static void		fxp_discard_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static int		fxp_new_rfabuf(struct fxp_softc *sc,
245			    struct fxp_rx *rxp);
246static int		fxp_mc_addrs(struct fxp_softc *sc);
247static void		fxp_mc_setup(struct fxp_softc *sc);
248static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
249			    int autosize);
250static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
251			    uint16_t data);
252static void		fxp_autosize_eeprom(struct fxp_softc *sc);
253static void		fxp_load_eeprom(struct fxp_softc *sc);
254static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
255			    int offset, int words);
256static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
257			    int offset, int words);
258static int		fxp_ifmedia_upd(if_t ifp);
259static void		fxp_ifmedia_sts(if_t ifp,
260			    struct ifmediareq *ifmr);
261static int		fxp_serial_ifmedia_upd(if_t ifp);
262static void		fxp_serial_ifmedia_sts(if_t ifp,
263			    struct ifmediareq *ifmr);
264static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
265static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
266			    int value);
267static void		fxp_miibus_statchg(device_t dev);
268static void		fxp_load_ucode(struct fxp_softc *sc);
269static void		fxp_update_stats(struct fxp_softc *sc);
270static void		fxp_sysctl_node(struct fxp_softc *sc);
271static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
272			    int low, int high);
273static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
274static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
275static void 		fxp_scb_wait(struct fxp_softc *sc);
276static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
277static void		fxp_dma_wait(struct fxp_softc *sc,
278			    volatile uint16_t *status, bus_dma_tag_t dmat,
279			    bus_dmamap_t map);
280
281static device_method_t fxp_methods[] = {
282	/* Device interface */
283	DEVMETHOD(device_probe,		fxp_probe),
284	DEVMETHOD(device_attach,	fxp_attach),
285	DEVMETHOD(device_detach,	fxp_detach),
286	DEVMETHOD(device_shutdown,	fxp_shutdown),
287	DEVMETHOD(device_suspend,	fxp_suspend),
288	DEVMETHOD(device_resume,	fxp_resume),
289
290	/* MII interface */
291	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
292	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
293	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
294
295	DEVMETHOD_END
296};
297
298static driver_t fxp_driver = {
299	"fxp",
300	fxp_methods,
301	sizeof(struct fxp_softc),
302};
303
304static devclass_t fxp_devclass;
305
306DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
307    SI_ORDER_ANY);
308DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
309
310static struct resource_spec fxp_res_spec_mem[] = {
311	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
312	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
313	{ -1, 0 }
314};
315
316static struct resource_spec fxp_res_spec_io[] = {
317	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
318	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
319	{ -1, 0 }
320};
321
322/*
323 * Wait for the previous command to be accepted (but not necessarily
324 * completed).
325 */
326static void
327fxp_scb_wait(struct fxp_softc *sc)
328{
329	union {
330		uint16_t w;
331		uint8_t b[2];
332	} flowctl;
333	int i = 10000;
334
335	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
336		DELAY(2);
337	if (i == 0) {
338		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
339		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
340		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
341		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
342		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
343		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
344	}
345}
346
347static void
348fxp_scb_cmd(struct fxp_softc *sc, int cmd)
349{
350
351	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
352		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
353		fxp_scb_wait(sc);
354	}
355	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
356}
357
358static void
359fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
360    bus_dma_tag_t dmat, bus_dmamap_t map)
361{
362	int i;
363
364	for (i = 10000; i > 0; i--) {
365		DELAY(2);
366		bus_dmamap_sync(dmat, map,
367		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
368		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
369			break;
370	}
371	if (i == 0)
372		device_printf(sc->dev, "DMA timeout\n");
373}
374
375static const struct fxp_ident *
376fxp_find_ident(device_t dev)
377{
378	uint16_t vendor;
379	uint16_t device;
380	uint8_t revid;
381	const struct fxp_ident *ident;
382
383	vendor = pci_get_vendor(dev);
384	device = pci_get_device(dev);
385	revid = pci_get_revid(dev);
386	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
387		if (ident->vendor == vendor && ident->device == device &&
388		    (ident->revid == revid || ident->revid == -1)) {
389			return (ident);
390		}
391	}
392	return (NULL);
393}
394
395/*
396 * Return identification string if this device is ours.
397 */
398static int
399fxp_probe(device_t dev)
400{
401	const struct fxp_ident *ident;
402
403	ident = fxp_find_ident(dev);
404	if (ident != NULL) {
405		device_set_desc(dev, ident->name);
406		return (BUS_PROBE_DEFAULT);
407	}
408	return (ENXIO);
409}
410
411static void
412fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
413{
414	uint32_t *addr;
415
416	if (error)
417		return;
418
419	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
420	addr = arg;
421	*addr = segs->ds_addr;
422}
423
424static int
425fxp_attach(device_t dev)
426{
427	struct fxp_softc *sc;
428	struct fxp_cb_tx *tcbp;
429	struct fxp_tx *txp;
430	struct fxp_rx *rxp;
431	if_t ifp;
432	uint32_t val;
433	uint16_t data;
434	u_char eaddr[ETHER_ADDR_LEN];
435	int error, flags, i, pmc, prefer_iomap;
436
437	error = 0;
438	sc = device_get_softc(dev);
439	sc->dev = dev;
440	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
441	    MTX_DEF);
442	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
443	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
444	    fxp_serial_ifmedia_sts);
445
446	ifp = sc->ifp = if_gethandle(IFT_ETHER);
447	if (ifp == (void *)NULL) {
448		device_printf(dev, "can not if_alloc()\n");
449		error = ENOSPC;
450		goto fail;
451	}
452
453	/*
454	 * Enable bus mastering.
455	 */
456	pci_enable_busmaster(dev);
457
458	/*
459	 * Figure out which we should try first - memory mapping or i/o mapping?
460	 * We default to memory mapping. Then we accept an override from the
461	 * command line. Then we check to see which one is enabled.
462	 */
463	prefer_iomap = 0;
464	resource_int_value(device_get_name(dev), device_get_unit(dev),
465	    "prefer_iomap", &prefer_iomap);
466	if (prefer_iomap)
467		sc->fxp_spec = fxp_res_spec_io;
468	else
469		sc->fxp_spec = fxp_res_spec_mem;
470
471	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
472	if (error) {
473		if (sc->fxp_spec == fxp_res_spec_mem)
474			sc->fxp_spec = fxp_res_spec_io;
475		else
476			sc->fxp_spec = fxp_res_spec_mem;
477		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
478	}
479	if (error) {
480		device_printf(dev, "could not allocate resources\n");
481		error = ENXIO;
482		goto fail;
483	}
484
485	if (bootverbose) {
486		device_printf(dev, "using %s space register mapping\n",
487		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
488	}
489
490	/*
491	 * Put CU/RU idle state and prepare full reset.
492	 */
493	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
494	DELAY(10);
495	/* Full reset and disable interrupts. */
496	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
497	DELAY(10);
498	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
499
500	/*
501	 * Find out how large of an SEEPROM we have.
502	 */
503	fxp_autosize_eeprom(sc);
504	fxp_load_eeprom(sc);
505
506	/*
507	 * Find out the chip revision; lump all 82557 revs together.
508	 */
509	sc->ident = fxp_find_ident(dev);
510	if (sc->ident->ich > 0) {
511		/* Assume ICH controllers are 82559. */
512		sc->revision = FXP_REV_82559_A0;
513	} else {
514		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
515		if ((data >> 8) == 1)
516			sc->revision = FXP_REV_82557;
517		else
518			sc->revision = pci_get_revid(dev);
519	}
520
521	/*
522	 * Check availability of WOL. 82559ER does not support WOL.
523	 */
524	if (sc->revision >= FXP_REV_82558_A4 &&
525	    sc->revision != FXP_REV_82559S_A) {
526		data = sc->eeprom[FXP_EEPROM_MAP_ID];
527		if ((data & 0x20) != 0 &&
528		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
529			sc->flags |= FXP_FLAG_WOLCAP;
530	}
531
532	if (sc->revision == FXP_REV_82550_C) {
533		/*
534		 * 82550C with server extension requires microcode to
535		 * receive fragmented UDP datagrams.  However if the
536		 * microcode is used for client-only featured 82550C
537		 * it locks up controller.
538		 */
539		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
540		if ((data & 0x0400) == 0)
541			sc->flags |= FXP_FLAG_NO_UCODE;
542	}
543
544	/* Receiver lock-up workaround detection. */
545	if (sc->revision < FXP_REV_82558_A4) {
546		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
547		if ((data & 0x03) != 0x03) {
548			sc->flags |= FXP_FLAG_RXBUG;
549			device_printf(dev, "Enabling Rx lock-up workaround\n");
550		}
551	}
552
553	/*
554	 * Determine whether we must use the 503 serial interface.
555	 */
556	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
557	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
558	    && (data & FXP_PHY_SERIAL_ONLY))
559		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
560
561	fxp_sysctl_node(sc);
562	/*
563	 * Enable workarounds for certain chip revision deficiencies.
564	 *
565	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
566	 * some systems based a normal 82559 design, have a defect where
567	 * the chip can cause a PCI protocol violation if it receives
568	 * a CU_RESUME command when it is entering the IDLE state.  The
569	 * workaround is to disable Dynamic Standby Mode, so the chip never
570	 * deasserts CLKRUN#, and always remains in an active state.
571	 *
572	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
573	 */
574	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
575	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
576		data = sc->eeprom[FXP_EEPROM_MAP_ID];
577		if (data & 0x02) {			/* STB enable */
578			uint16_t cksum;
579			int i;
580
581			device_printf(dev,
582			    "Disabling dynamic standby mode in EEPROM\n");
583			data &= ~0x02;
584			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
585			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
586			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
587			cksum = 0;
588			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
589				cksum += sc->eeprom[i];
590			i = (1 << sc->eeprom_size) - 1;
591			cksum = 0xBABA - cksum;
592			fxp_write_eeprom(sc, &cksum, i, 1);
593			device_printf(dev,
594			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
595			    i, sc->eeprom[i], cksum);
596			sc->eeprom[i] = cksum;
597			/*
598			 * If the user elects to continue, try the software
599			 * workaround, as it is better than nothing.
600			 */
601			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
602		}
603	}
604
605	/*
606	 * If we are not a 82557 chip, we can enable extended features.
607	 */
608	if (sc->revision != FXP_REV_82557) {
609		/*
610		 * If MWI is enabled in the PCI configuration, and there
611		 * is a valid cacheline size (8 or 16 dwords), then tell
612		 * the board to turn on MWI.
613		 */
614		val = pci_read_config(dev, PCIR_COMMAND, 2);
615		if (val & PCIM_CMD_MWRICEN &&
616		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
617			sc->flags |= FXP_FLAG_MWI_ENABLE;
618
619		/* turn on the extended TxCB feature */
620		sc->flags |= FXP_FLAG_EXT_TXCB;
621
622		/* enable reception of long frames for VLAN */
623		sc->flags |= FXP_FLAG_LONG_PKT_EN;
624	} else {
625		/* a hack to get long VLAN frames on a 82557 */
626		sc->flags |= FXP_FLAG_SAVE_BAD;
627	}
628
629	/* For 82559 or later chips, Rx checksum offload is supported. */
630	if (sc->revision >= FXP_REV_82559_A0) {
631		/* 82559ER does not support Rx checksum offloading. */
632		if (sc->ident->device != 0x1209)
633			sc->flags |= FXP_FLAG_82559_RXCSUM;
634	}
635	/*
636	 * Enable use of extended RFDs and TCBs for 82550
637	 * and later chips. Note: we need extended TXCB support
638	 * too, but that's already enabled by the code above.
639	 * Be careful to do this only on the right devices.
640	 */
641	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
642	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
643	    || sc->revision == FXP_REV_82551_10) {
644		sc->rfa_size = sizeof (struct fxp_rfa);
645		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
646		sc->flags |= FXP_FLAG_EXT_RFA;
647		/* Use extended RFA instead of 82559 checksum mode. */
648		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
649	} else {
650		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
651		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
652	}
653
654	/*
655	 * Allocate DMA tags and DMA safe memory.
656	 */
657	sc->maxtxseg = FXP_NTXSEG;
658	sc->maxsegsize = MCLBYTES;
659	if (sc->flags & FXP_FLAG_EXT_RFA) {
660		sc->maxtxseg--;
661		sc->maxsegsize = FXP_TSO_SEGSIZE;
662	}
663	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
664	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
665	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
666	    sc->maxtxseg, sc->maxsegsize, 0,
667	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
668	if (error) {
669		device_printf(dev, "could not create TX DMA tag\n");
670		goto fail;
671	}
672
673	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
674	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
675	    MCLBYTES, 1, MCLBYTES, 0,
676	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
677	if (error) {
678		device_printf(dev, "could not create RX DMA tag\n");
679		goto fail;
680	}
681
682	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
683	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
684	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
685	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
686	if (error) {
687		device_printf(dev, "could not create stats DMA tag\n");
688		goto fail;
689	}
690
691	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
692	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
693	if (error) {
694		device_printf(dev, "could not allocate stats DMA memory\n");
695		goto fail;
696	}
697	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
698	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
699	    BUS_DMA_NOWAIT);
700	if (error) {
701		device_printf(dev, "could not load the stats DMA buffer\n");
702		goto fail;
703	}
704
705	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
706	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
707	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
708	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
709	if (error) {
710		device_printf(dev, "could not create TxCB DMA tag\n");
711		goto fail;
712	}
713
714	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
715	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
716	if (error) {
717		device_printf(dev, "could not allocate TxCB DMA memory\n");
718		goto fail;
719	}
720
721	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
722	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
723	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
724	if (error) {
725		device_printf(dev, "could not load TxCB DMA buffer\n");
726		goto fail;
727	}
728
729	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
730	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
731	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
732	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
733	if (error) {
734		device_printf(dev,
735		    "could not create multicast setup DMA tag\n");
736		goto fail;
737	}
738
739	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
740	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
741	if (error) {
742		device_printf(dev,
743		    "could not allocate multicast setup DMA memory\n");
744		goto fail;
745	}
746	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
747	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
748	    BUS_DMA_NOWAIT);
749	if (error) {
750		device_printf(dev,
751		    "can't load the multicast setup DMA buffer\n");
752		goto fail;
753	}
754
755	/*
756	 * Pre-allocate the TX DMA maps and setup the pointers to
757	 * the TX command blocks.
758	 */
759	txp = sc->fxp_desc.tx_list;
760	tcbp = sc->fxp_desc.cbl_list;
761	for (i = 0; i < FXP_NTXCB; i++) {
762		txp[i].tx_cb = tcbp + i;
763		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
764		if (error) {
765			device_printf(dev, "can't create DMA map for TX\n");
766			goto fail;
767		}
768	}
769	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
770	if (error) {
771		device_printf(dev, "can't create spare DMA map\n");
772		goto fail;
773	}
774
775	/*
776	 * Pre-allocate our receive buffers.
777	 */
778	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
779	for (i = 0; i < FXP_NRFABUFS; i++) {
780		rxp = &sc->fxp_desc.rx_list[i];
781		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
782		if (error) {
783			device_printf(dev, "can't create DMA map for RX\n");
784			goto fail;
785		}
786		if (fxp_new_rfabuf(sc, rxp) != 0) {
787			error = ENOMEM;
788			goto fail;
789		}
790		fxp_add_rfabuf(sc, rxp);
791	}
792
793	/*
794	 * Read MAC address.
795	 */
796	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
797	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
798	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
799	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
800	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
801	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
802	if (bootverbose) {
803		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
804		    pci_get_vendor(dev), pci_get_device(dev),
805		    pci_get_subvendor(dev), pci_get_subdevice(dev),
806		    pci_get_revid(dev));
807		device_printf(dev, "Dynamic Standby mode is %s\n",
808		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
809		    "disabled");
810	}
811
812	/*
813	 * If this is only a 10Mbps device, then there is no MII, and
814	 * the PHY will use a serial interface instead.
815	 *
816	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
817	 * doesn't have a programming interface of any sort.  The
818	 * media is sensed automatically based on how the link partner
819	 * is configured.  This is, in essence, manual configuration.
820	 */
821	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
822		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
823		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
824	} else {
825		/*
826		 * i82557 wedge when isolating all of their PHYs.
827		 */
828		flags = MIIF_NOISOLATE;
829		if (sc->revision >= FXP_REV_82558_A4)
830			flags |= MIIF_DOPAUSE;
831		error = mii_attach(dev, &sc->miibus, ifp,
832		    (ifm_change_cb_t)fxp_ifmedia_upd,
833		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
834		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
835		if (error != 0) {
836			device_printf(dev, "attaching PHYs failed\n");
837			goto fail;
838		}
839	}
840
841	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
842	if_setdev(ifp, dev);
843	if_setinitfn(ifp, fxp_init);
844	if_setsoftc(ifp, sc);
845	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
846	if_setioctlfn(ifp, fxp_ioctl);
847	if_setstartfn(ifp, fxp_start);
848
849	if_setcapabilities(ifp, 0);
850	if_setcapenable(ifp, 0);
851
852	/* Enable checksum offload/TSO for 82550 or better chips */
853	if (sc->flags & FXP_FLAG_EXT_RFA) {
854		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
855		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
856		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
857	}
858
859	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
860		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
861		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
862	}
863
864	if (sc->flags & FXP_FLAG_WOLCAP) {
865		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
866		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
867	}
868
869#ifdef DEVICE_POLLING
870	/* Inform the world we support polling. */
871	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
872#endif
873
874	/*
875	 * Attach the interface.
876	 */
877	ether_ifattach(ifp, eaddr);
878
879	/*
880	 * Tell the upper layer(s) we support long frames.
881	 * Must appear after the call to ether_ifattach() because
882	 * ether_ifattach() sets ifi_hdrlen to the default value.
883	 */
884	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
885	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
886	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
887	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
888		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
889		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
890		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
891		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
892	}
893
894	/*
895	 * Let the system queue as many packets as we have available
896	 * TX descriptors.
897	 */
898	if_setsendqlen(ifp, FXP_NTXCB - 1);
899	if_setsendqready(ifp);
900
901	/*
902	 * Hook our interrupt after all initialization is complete.
903	 */
904	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
905			       NULL, fxp_intr, sc, &sc->ih);
906	if (error) {
907		device_printf(dev, "could not setup irq\n");
908		ether_ifdetach(sc->ifp);
909		goto fail;
910	}
911
912	/*
913	 * Configure hardware to reject magic frames otherwise
914	 * system will hang on recipt of magic frames.
915	 */
916	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
917		FXP_LOCK(sc);
918		/* Clear wakeup events. */
919		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
920		fxp_init_body(sc, 0);
921		fxp_stop(sc);
922		FXP_UNLOCK(sc);
923	}
924
925fail:
926	if (error)
927		fxp_release(sc);
928	return (error);
929}
930
931/*
932 * Release all resources.  The softc lock should not be held and the
933 * interrupt should already be torn down.
934 */
935static void
936fxp_release(struct fxp_softc *sc)
937{
938	struct fxp_rx *rxp;
939	struct fxp_tx *txp;
940	int i;
941
942	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
943	KASSERT(sc->ih == NULL,
944	    ("fxp_release() called with intr handle still active"));
945	if (sc->miibus)
946		device_delete_child(sc->dev, sc->miibus);
947	bus_generic_detach(sc->dev);
948	ifmedia_removeall(&sc->sc_media);
949	if (sc->fxp_desc.cbl_list) {
950		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
951		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
952		    sc->cbl_map);
953	}
954	if (sc->fxp_stats) {
955		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
956		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
957	}
958	if (sc->mcsp) {
959		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
960		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
961	}
962	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
963	if (sc->fxp_rxmtag) {
964		for (i = 0; i < FXP_NRFABUFS; i++) {
965			rxp = &sc->fxp_desc.rx_list[i];
966			if (rxp->rx_mbuf != NULL) {
967				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
968				    BUS_DMASYNC_POSTREAD);
969				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
970				m_freem(rxp->rx_mbuf);
971			}
972			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
973		}
974		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
975		bus_dma_tag_destroy(sc->fxp_rxmtag);
976	}
977	if (sc->fxp_txmtag) {
978		for (i = 0; i < FXP_NTXCB; i++) {
979			txp = &sc->fxp_desc.tx_list[i];
980			if (txp->tx_mbuf != NULL) {
981				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
982				    BUS_DMASYNC_POSTWRITE);
983				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
984				m_freem(txp->tx_mbuf);
985			}
986			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
987		}
988		bus_dma_tag_destroy(sc->fxp_txmtag);
989	}
990	if (sc->fxp_stag)
991		bus_dma_tag_destroy(sc->fxp_stag);
992	if (sc->cbl_tag)
993		bus_dma_tag_destroy(sc->cbl_tag);
994	if (sc->mcs_tag)
995		bus_dma_tag_destroy(sc->mcs_tag);
996	if (sc->ifp)
997		if_free(sc->ifp);
998
999	mtx_destroy(&sc->sc_mtx);
1000}
1001
1002/*
1003 * Detach interface.
1004 */
1005static int
1006fxp_detach(device_t dev)
1007{
1008	struct fxp_softc *sc = device_get_softc(dev);
1009
1010#ifdef DEVICE_POLLING
1011	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1012		ether_poll_deregister(sc->ifp);
1013#endif
1014
1015	FXP_LOCK(sc);
1016	/*
1017	 * Stop DMA and drop transmit queue, but disable interrupts first.
1018	 */
1019	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1020	fxp_stop(sc);
1021	FXP_UNLOCK(sc);
1022	callout_drain(&sc->stat_ch);
1023
1024	/*
1025	 * Close down routes etc.
1026	 */
1027	ether_ifdetach(sc->ifp);
1028
1029	/*
1030	 * Unhook interrupt before dropping lock. This is to prevent
1031	 * races with fxp_intr().
1032	 */
1033	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1034	sc->ih = NULL;
1035
1036	/* Release our allocated resources. */
1037	fxp_release(sc);
1038	return (0);
1039}
1040
1041/*
1042 * Device shutdown routine. Called at system shutdown after sync. The
1043 * main purpose of this routine is to shut off receiver DMA so that
1044 * kernel memory doesn't get clobbered during warmboot.
1045 */
1046static int
1047fxp_shutdown(device_t dev)
1048{
1049
1050	/*
1051	 * Make sure that DMA is disabled prior to reboot. Not doing
1052	 * do could allow DMA to corrupt kernel memory during the
1053	 * reboot before the driver initializes.
1054	 */
1055	return (fxp_suspend(dev));
1056}
1057
1058/*
1059 * Device suspend routine.  Stop the interface and save some PCI
1060 * settings in case the BIOS doesn't restore them properly on
1061 * resume.
1062 */
1063static int
1064fxp_suspend(device_t dev)
1065{
1066	struct fxp_softc *sc = device_get_softc(dev);
1067	if_t ifp;
1068	int pmc;
1069	uint16_t pmstat;
1070
1071	FXP_LOCK(sc);
1072
1073	ifp = sc->ifp;
1074	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1075		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1076		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1077		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1078			/* Request PME. */
1079			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1080			sc->flags |= FXP_FLAG_WOL;
1081			/* Reconfigure hardware to accept magic frames. */
1082			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1083			fxp_init_body(sc, 0);
1084		}
1085		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1086	}
1087	fxp_stop(sc);
1088
1089	sc->suspended = 1;
1090
1091	FXP_UNLOCK(sc);
1092	return (0);
1093}
1094
1095/*
1096 * Device resume routine. re-enable busmastering, and restart the interface if
1097 * appropriate.
1098 */
1099static int
1100fxp_resume(device_t dev)
1101{
1102	struct fxp_softc *sc = device_get_softc(dev);
1103	if_t ifp = sc->ifp;
1104	int pmc;
1105	uint16_t pmstat;
1106
1107	FXP_LOCK(sc);
1108
1109	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1110		sc->flags &= ~FXP_FLAG_WOL;
1111		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1112		/* Disable PME and clear PME status. */
1113		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1114		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1115		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1116			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1117			    CSR_READ_1(sc, FXP_CSR_PMDR));
1118	}
1119
1120	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1121	DELAY(10);
1122
1123	/* reinitialize interface if necessary */
1124	if (if_getflags(ifp) & IFF_UP)
1125		fxp_init_body(sc, 1);
1126
1127	sc->suspended = 0;
1128
1129	FXP_UNLOCK(sc);
1130	return (0);
1131}
1132
1133static void
1134fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1135{
1136	uint16_t reg;
1137	int x;
1138
1139	/*
1140	 * Shift in data.
1141	 */
1142	for (x = 1 << (length - 1); x; x >>= 1) {
1143		if (data & x)
1144			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1145		else
1146			reg = FXP_EEPROM_EECS;
1147		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1148		DELAY(1);
1149		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1150		DELAY(1);
1151		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152		DELAY(1);
1153	}
1154}
1155
1156/*
1157 * Read from the serial EEPROM. Basically, you manually shift in
1158 * the read opcode (one bit at a time) and then shift in the address,
1159 * and then you shift out the data (all of this one bit at a time).
1160 * The word size is 16 bits, so you have to provide the address for
1161 * every 16 bits of data.
1162 */
1163static uint16_t
1164fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1165{
1166	uint16_t reg, data;
1167	int x;
1168
1169	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1170	/*
1171	 * Shift in read opcode.
1172	 */
1173	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1174	/*
1175	 * Shift in address.
1176	 */
1177	data = 0;
1178	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1179		if (offset & x)
1180			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1181		else
1182			reg = FXP_EEPROM_EECS;
1183		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1184		DELAY(1);
1185		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1186		DELAY(1);
1187		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1188		DELAY(1);
1189		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1190		data++;
1191		if (autosize && reg == 0) {
1192			sc->eeprom_size = data;
1193			break;
1194		}
1195	}
1196	/*
1197	 * Shift out data.
1198	 */
1199	data = 0;
1200	reg = FXP_EEPROM_EECS;
1201	for (x = 1 << 15; x; x >>= 1) {
1202		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1203		DELAY(1);
1204		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1205			data |= x;
1206		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1207		DELAY(1);
1208	}
1209	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1210	DELAY(1);
1211
1212	return (data);
1213}
1214
1215static void
1216fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1217{
1218	int i;
1219
1220	/*
1221	 * Erase/write enable.
1222	 */
1223	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1224	fxp_eeprom_shiftin(sc, 0x4, 3);
1225	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1226	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1227	DELAY(1);
1228	/*
1229	 * Shift in write opcode, address, data.
1230	 */
1231	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1232	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1233	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1234	fxp_eeprom_shiftin(sc, data, 16);
1235	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1236	DELAY(1);
1237	/*
1238	 * Wait for EEPROM to finish up.
1239	 */
1240	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1241	DELAY(1);
1242	for (i = 0; i < 1000; i++) {
1243		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1244			break;
1245		DELAY(50);
1246	}
1247	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1248	DELAY(1);
1249	/*
1250	 * Erase/write disable.
1251	 */
1252	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1253	fxp_eeprom_shiftin(sc, 0x4, 3);
1254	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1255	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1256	DELAY(1);
1257}
1258
1259/*
1260 * From NetBSD:
1261 *
1262 * Figure out EEPROM size.
1263 *
1264 * 559's can have either 64-word or 256-word EEPROMs, the 558
1265 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1266 * talks about the existence of 16 to 256 word EEPROMs.
1267 *
1268 * The only known sizes are 64 and 256, where the 256 version is used
1269 * by CardBus cards to store CIS information.
1270 *
1271 * The address is shifted in msb-to-lsb, and after the last
1272 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1273 * after which follows the actual data. We try to detect this zero, by
1274 * probing the data-out bit in the EEPROM control register just after
1275 * having shifted in a bit. If the bit is zero, we assume we've
1276 * shifted enough address bits. The data-out should be tri-state,
1277 * before this, which should translate to a logical one.
1278 */
1279static void
1280fxp_autosize_eeprom(struct fxp_softc *sc)
1281{
1282
1283	/* guess maximum size of 256 words */
1284	sc->eeprom_size = 8;
1285
1286	/* autosize */
1287	(void) fxp_eeprom_getword(sc, 0, 1);
1288}
1289
1290static void
1291fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1292{
1293	int i;
1294
1295	for (i = 0; i < words; i++)
1296		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1297}
1298
1299static void
1300fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1301{
1302	int i;
1303
1304	for (i = 0; i < words; i++)
1305		fxp_eeprom_putword(sc, offset + i, data[i]);
1306}
1307
1308static void
1309fxp_load_eeprom(struct fxp_softc *sc)
1310{
1311	int i;
1312	uint16_t cksum;
1313
1314	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1315	cksum = 0;
1316	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1317		cksum += sc->eeprom[i];
1318	cksum = 0xBABA - cksum;
1319	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1320		device_printf(sc->dev,
1321		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1322		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1323}
1324
1325/*
1326 * Grab the softc lock and call the real fxp_start_body() routine
1327 */
1328static void
1329fxp_start(if_t ifp)
1330{
1331	struct fxp_softc *sc = if_getsoftc(ifp);
1332
1333	FXP_LOCK(sc);
1334	fxp_start_body(ifp);
1335	FXP_UNLOCK(sc);
1336}
1337
1338/*
1339 * Start packet transmission on the interface.
1340 * This routine must be called with the softc lock held, and is an
1341 * internal entry point only.
1342 */
1343static void
1344fxp_start_body(if_t ifp)
1345{
1346	struct fxp_softc *sc = if_getsoftc(ifp);
1347	struct mbuf *mb_head;
1348	int txqueued;
1349
1350	FXP_LOCK_ASSERT(sc, MA_OWNED);
1351
1352	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1353	    IFF_DRV_RUNNING)
1354		return;
1355
1356	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1357		fxp_txeof(sc);
1358	/*
1359	 * We're finished if there is nothing more to add to the list or if
1360	 * we're all filled up with buffers to transmit.
1361	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1362	 *       a NOP command when needed.
1363	 */
1364	txqueued = 0;
1365	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1366
1367		/*
1368		 * Grab a packet to transmit.
1369		 */
1370		mb_head = if_dequeue(ifp);
1371		if (mb_head == NULL)
1372			break;
1373
1374		if (fxp_encap(sc, &mb_head)) {
1375			if (mb_head == NULL)
1376				break;
1377			if_sendq_prepend(ifp, mb_head);
1378			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1379		}
1380		txqueued++;
1381		/*
1382		 * Pass packet to bpf if there is a listener.
1383		 */
1384		if_bpfmtap(ifp, mb_head);
1385	}
1386
1387	/*
1388	 * We're finished. If we added to the list, issue a RESUME to get DMA
1389	 * going again if suspended.
1390	 */
1391	if (txqueued > 0) {
1392		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1393		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394		fxp_scb_wait(sc);
1395		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1396		/*
1397		 * Set a 5 second timer just in case we don't hear
1398		 * from the card again.
1399		 */
1400		sc->watchdog_timer = 5;
1401	}
1402}
1403
1404static int
1405fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1406{
1407	if_t ifp;
1408	struct mbuf *m;
1409	struct fxp_tx *txp;
1410	struct fxp_cb_tx *cbp;
1411	struct tcphdr *tcp;
1412	bus_dma_segment_t segs[FXP_NTXSEG];
1413	int error, i, nseg, tcp_payload;
1414
1415	FXP_LOCK_ASSERT(sc, MA_OWNED);
1416	ifp = sc->ifp;
1417
1418	tcp_payload = 0;
1419	tcp = NULL;
1420	/*
1421	 * Get pointer to next available tx desc.
1422	 */
1423	txp = sc->fxp_desc.tx_last->tx_next;
1424
1425	/*
1426	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1427	 * Ethernet Controller Family Open Source Software
1428	 * Developer Manual says:
1429	 *   Using software parsing is only allowed with legal
1430	 *   TCP/IP or UDP/IP packets.
1431	 *   ...
1432	 *   For all other datagrams, hardware parsing must
1433	 *   be used.
1434	 * Software parsing appears to truncate ICMP and
1435	 * fragmented UDP packets that contain one to three
1436	 * bytes in the second (and final) mbuf of the packet.
1437	 */
1438	if (sc->flags & FXP_FLAG_EXT_RFA)
1439		txp->tx_cb->ipcb_ip_activation_high =
1440		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1441
1442	m = *m_head;
1443	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1444		/*
1445		 * 82550/82551 requires ethernet/IP/TCP headers must be
1446		 * contained in the first active transmit buffer.
1447		 */
1448		struct ether_header *eh;
1449		struct ip *ip;
1450		uint32_t ip_off, poff;
1451
1452		if (M_WRITABLE(*m_head) == 0) {
1453			/* Get a writable copy. */
1454			m = m_dup(*m_head, M_NOWAIT);
1455			m_freem(*m_head);
1456			if (m == NULL) {
1457				*m_head = NULL;
1458				return (ENOBUFS);
1459			}
1460			*m_head = m;
1461		}
1462		ip_off = sizeof(struct ether_header);
1463		m = m_pullup(*m_head, ip_off);
1464		if (m == NULL) {
1465			*m_head = NULL;
1466			return (ENOBUFS);
1467		}
1468		eh = mtod(m, struct ether_header *);
1469		/* Check the existence of VLAN tag. */
1470		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1471			ip_off = sizeof(struct ether_vlan_header);
1472			m = m_pullup(m, ip_off);
1473			if (m == NULL) {
1474				*m_head = NULL;
1475				return (ENOBUFS);
1476			}
1477		}
1478		m = m_pullup(m, ip_off + sizeof(struct ip));
1479		if (m == NULL) {
1480			*m_head = NULL;
1481			return (ENOBUFS);
1482		}
1483		ip = (struct ip *)(mtod(m, char *) + ip_off);
1484		poff = ip_off + (ip->ip_hl << 2);
1485		m = m_pullup(m, poff + sizeof(struct tcphdr));
1486		if (m == NULL) {
1487			*m_head = NULL;
1488			return (ENOBUFS);
1489		}
1490		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1491		m = m_pullup(m, poff + (tcp->th_off << 2));
1492		if (m == NULL) {
1493			*m_head = NULL;
1494			return (ENOBUFS);
1495		}
1496
1497		/*
1498		 * Since 82550/82551 doesn't modify IP length and pseudo
1499		 * checksum in the first frame driver should compute it.
1500		 */
1501		ip = (struct ip *)(mtod(m, char *) + ip_off);
1502		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1503		ip->ip_sum = 0;
1504		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1505		    (tcp->th_off << 2));
1506		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1507		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1508		    m->m_pkthdr.tso_segsz));
1509		/* Compute total TCP payload. */
1510		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1511		tcp_payload -= tcp->th_off << 2;
1512		*m_head = m;
1513	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1514		/*
1515		 * Deal with TCP/IP checksum offload. Note that
1516		 * in order for TCP checksum offload to work,
1517		 * the pseudo header checksum must have already
1518		 * been computed and stored in the checksum field
1519		 * in the TCP header. The stack should have
1520		 * already done this for us.
1521		 */
1522		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1523		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1524			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1525
1526#ifdef FXP_IP_CSUM_WAR
1527		/*
1528		 * XXX The 82550 chip appears to have trouble
1529		 * dealing with IP header checksums in very small
1530		 * datagrams, namely fragments from 1 to 3 bytes
1531		 * in size. For example, say you want to transmit
1532		 * a UDP packet of 1473 bytes. The packet will be
1533		 * fragmented over two IP datagrams, the latter
1534		 * containing only one byte of data. The 82550 will
1535		 * botch the header checksum on the 1-byte fragment.
1536		 * As long as the datagram contains 4 or more bytes
1537		 * of data, you're ok.
1538		 *
1539                 * The following code attempts to work around this
1540		 * problem: if the datagram is less than 38 bytes
1541		 * in size (14 bytes ether header, 20 bytes IP header,
1542		 * plus 4 bytes of data), we punt and compute the IP
1543		 * header checksum by hand. This workaround doesn't
1544		 * work very well, however, since it can be fooled
1545		 * by things like VLAN tags and IP options that make
1546		 * the header sizes/offsets vary.
1547		 */
1548
1549		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1550			if (m->m_pkthdr.len < 38) {
1551				struct ip *ip;
1552				m->m_data += ETHER_HDR_LEN;
1553				ip = mtod(m, struct ip *);
1554				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1555				m->m_data -= ETHER_HDR_LEN;
1556				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1557			} else {
1558				txp->tx_cb->ipcb_ip_activation_high =
1559				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1560				txp->tx_cb->ipcb_ip_schedule |=
1561				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1562			}
1563		}
1564#endif
1565	}
1566
1567	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1568	    segs, &nseg, 0);
1569	if (error == EFBIG) {
1570		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1571		if (m == NULL) {
1572			m_freem(*m_head);
1573			*m_head = NULL;
1574			return (ENOMEM);
1575		}
1576		*m_head = m;
1577		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1578		    *m_head, segs, &nseg, 0);
1579		if (error != 0) {
1580			m_freem(*m_head);
1581			*m_head = NULL;
1582			return (ENOMEM);
1583		}
1584	} else if (error != 0)
1585		return (error);
1586	if (nseg == 0) {
1587		m_freem(*m_head);
1588		*m_head = NULL;
1589		return (EIO);
1590	}
1591
1592	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1593	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1594
1595	cbp = txp->tx_cb;
1596	for (i = 0; i < nseg; i++) {
1597		/*
1598		 * If this is an 82550/82551, then we're using extended
1599		 * TxCBs _and_ we're using checksum offload. This means
1600		 * that the TxCB is really an IPCB. One major difference
1601		 * between the two is that with plain extended TxCBs,
1602		 * the bottom half of the TxCB contains two entries from
1603		 * the TBD array, whereas IPCBs contain just one entry:
1604		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1605		 * checksum offload control bits. So to make things work
1606		 * right, we have to start filling in the TBD array
1607		 * starting from a different place depending on whether
1608		 * the chip is an 82550/82551 or not.
1609		 */
1610		if (sc->flags & FXP_FLAG_EXT_RFA) {
1611			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1612			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1613		} else {
1614			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1615			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1616		}
1617	}
1618	if (sc->flags & FXP_FLAG_EXT_RFA) {
1619		/* Configure dynamic TBD for 82550/82551. */
1620		cbp->tbd_number = 0xFF;
1621		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1622	} else
1623		cbp->tbd_number = nseg;
1624	/* Configure TSO. */
1625	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1626		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1627		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1628		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1629		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1630		    FXP_IPCB_TCP_PACKET |
1631		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1632	}
1633	/* Configure VLAN hardware tag insertion. */
1634	if ((m->m_flags & M_VLANTAG) != 0) {
1635		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1636		txp->tx_cb->ipcb_ip_activation_high |=
1637		    FXP_IPCB_INSERTVLAN_ENABLE;
1638	}
1639
1640	txp->tx_mbuf = m;
1641	txp->tx_cb->cb_status = 0;
1642	txp->tx_cb->byte_count = 0;
1643	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1644		txp->tx_cb->cb_command =
1645		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646		    FXP_CB_COMMAND_S);
1647	else
1648		txp->tx_cb->cb_command =
1649		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1650		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1651	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1652		txp->tx_cb->tx_threshold = tx_threshold;
1653
1654	/*
1655	 * Advance the end of list forward.
1656	 */
1657	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1658	sc->fxp_desc.tx_last = txp;
1659
1660	/*
1661	 * Advance the beginning of the list forward if there are
1662	 * no other packets queued (when nothing is queued, tx_first
1663	 * sits on the last TxCB that was sent out).
1664	 */
1665	if (sc->tx_queued == 0)
1666		sc->fxp_desc.tx_first = txp;
1667
1668	sc->tx_queued++;
1669
1670	return (0);
1671}
1672
1673#ifdef DEVICE_POLLING
1674static poll_handler_t fxp_poll;
1675
1676static int
1677fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1678{
1679	struct fxp_softc *sc = if_getsoftc(ifp);
1680	uint8_t statack;
1681	int rx_npkts = 0;
1682
1683	FXP_LOCK(sc);
1684	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1685		FXP_UNLOCK(sc);
1686		return (rx_npkts);
1687	}
1688
1689	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1690	    FXP_SCB_STATACK_FR;
1691	if (cmd == POLL_AND_CHECK_STATUS) {
1692		uint8_t tmp;
1693
1694		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1695		if (tmp == 0xff || tmp == 0) {
1696			FXP_UNLOCK(sc);
1697			return (rx_npkts); /* nothing to do */
1698		}
1699		tmp &= ~statack;
1700		/* ack what we can */
1701		if (tmp != 0)
1702			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1703		statack |= tmp;
1704	}
1705	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1706	FXP_UNLOCK(sc);
1707	return (rx_npkts);
1708}
1709#endif /* DEVICE_POLLING */
1710
1711/*
1712 * Process interface interrupts.
1713 */
1714static void
1715fxp_intr(void *xsc)
1716{
1717	struct fxp_softc *sc = xsc;
1718	if_t ifp = sc->ifp;
1719	uint8_t statack;
1720
1721	FXP_LOCK(sc);
1722	if (sc->suspended) {
1723		FXP_UNLOCK(sc);
1724		return;
1725	}
1726
1727#ifdef DEVICE_POLLING
1728	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1729		FXP_UNLOCK(sc);
1730		return;
1731	}
1732#endif
1733	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1734		/*
1735		 * It should not be possible to have all bits set; the
1736		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1737		 * all bits are set, this may indicate that the card has
1738		 * been physically ejected, so ignore it.
1739		 */
1740		if (statack == 0xff) {
1741			FXP_UNLOCK(sc);
1742			return;
1743		}
1744
1745		/*
1746		 * First ACK all the interrupts in this pass.
1747		 */
1748		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1749		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1750			fxp_intr_body(sc, ifp, statack, -1);
1751	}
1752	FXP_UNLOCK(sc);
1753}
1754
1755static void
1756fxp_txeof(struct fxp_softc *sc)
1757{
1758	if_t ifp;
1759	struct fxp_tx *txp;
1760
1761	ifp = sc->ifp;
1762	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1763	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1764	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1765	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1766	    txp = txp->tx_next) {
1767		if (txp->tx_mbuf != NULL) {
1768			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1769			    BUS_DMASYNC_POSTWRITE);
1770			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1771			m_freem(txp->tx_mbuf);
1772			txp->tx_mbuf = NULL;
1773			/* clear this to reset csum offload bits */
1774			txp->tx_cb->tbd[0].tb_addr = 0;
1775		}
1776		sc->tx_queued--;
1777		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1778	}
1779	sc->fxp_desc.tx_first = txp;
1780	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1781	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1782	if (sc->tx_queued == 0)
1783		sc->watchdog_timer = 0;
1784}
1785
1786static void
1787fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1788    uint16_t status, int pos)
1789{
1790	struct ether_header *eh;
1791	struct ip *ip;
1792	struct udphdr *uh;
1793	int32_t hlen, len, pktlen, temp32;
1794	uint16_t csum, *opts;
1795
1796	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1797		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1798			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1799				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1800			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1801				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1802			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1803			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1804				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1805				    CSUM_PSEUDO_HDR;
1806				m->m_pkthdr.csum_data = 0xffff;
1807			}
1808		}
1809		return;
1810	}
1811
1812	pktlen = m->m_pkthdr.len;
1813	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1814		return;
1815	eh = mtod(m, struct ether_header *);
1816	if (eh->ether_type != htons(ETHERTYPE_IP))
1817		return;
1818	ip = (struct ip *)(eh + 1);
1819	if (ip->ip_v != IPVERSION)
1820		return;
1821
1822	hlen = ip->ip_hl << 2;
1823	pktlen -= sizeof(struct ether_header);
1824	if (hlen < sizeof(struct ip))
1825		return;
1826	if (ntohs(ip->ip_len) < hlen)
1827		return;
1828	if (ntohs(ip->ip_len) != pktlen)
1829		return;
1830	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1831		return;	/* can't handle fragmented packet */
1832
1833	switch (ip->ip_p) {
1834	case IPPROTO_TCP:
1835		if (pktlen < (hlen + sizeof(struct tcphdr)))
1836			return;
1837		break;
1838	case IPPROTO_UDP:
1839		if (pktlen < (hlen + sizeof(struct udphdr)))
1840			return;
1841		uh = (struct udphdr *)((caddr_t)ip + hlen);
1842		if (uh->uh_sum == 0)
1843			return; /* no checksum */
1844		break;
1845	default:
1846		return;
1847	}
1848	/* Extract computed checksum. */
1849	csum = be16dec(mtod(m, char *) + pos);
1850	/* checksum fixup for IP options */
1851	len = hlen - sizeof(struct ip);
1852	if (len > 0) {
1853		opts = (uint16_t *)(ip + 1);
1854		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1855			temp32 = csum - *opts;
1856			temp32 = (temp32 >> 16) + (temp32 & 65535);
1857			csum = temp32 & 65535;
1858		}
1859	}
1860	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1861	m->m_pkthdr.csum_data = csum;
1862}
1863
1864static int
1865fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1866    int count)
1867{
1868	struct mbuf *m;
1869	struct fxp_rx *rxp;
1870	struct fxp_rfa *rfa;
1871	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1872	int rx_npkts;
1873	uint16_t status;
1874
1875	rx_npkts = 0;
1876	FXP_LOCK_ASSERT(sc, MA_OWNED);
1877
1878	if (rnr)
1879		sc->rnr++;
1880#ifdef DEVICE_POLLING
1881	/* Pick up a deferred RNR condition if `count' ran out last time. */
1882	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1883		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1884		rnr = 1;
1885	}
1886#endif
1887
1888	/*
1889	 * Free any finished transmit mbuf chains.
1890	 *
1891	 * Handle the CNA event likt a CXTNO event. It used to
1892	 * be that this event (control unit not ready) was not
1893	 * encountered, but it is now with the SMPng modifications.
1894	 * The exact sequence of events that occur when the interface
1895	 * is brought up are different now, and if this event
1896	 * goes unhandled, the configuration/rxfilter setup sequence
1897	 * can stall for several seconds. The result is that no
1898	 * packets go out onto the wire for about 5 to 10 seconds
1899	 * after the interface is ifconfig'ed for the first time.
1900	 */
1901	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1902		fxp_txeof(sc);
1903
1904	/*
1905	 * Try to start more packets transmitting.
1906	 */
1907	if (!if_sendq_empty(ifp))
1908		fxp_start_body(ifp);
1909
1910	/*
1911	 * Just return if nothing happened on the receive side.
1912	 */
1913	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1914		return (rx_npkts);
1915
1916	/*
1917	 * Process receiver interrupts. If a no-resource (RNR)
1918	 * condition exists, get whatever packets we can and
1919	 * re-start the receiver.
1920	 *
1921	 * When using polling, we do not process the list to completion,
1922	 * so when we get an RNR interrupt we must defer the restart
1923	 * until we hit the last buffer with the C bit set.
1924	 * If we run out of cycles and rfa_headm has the C bit set,
1925	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1926	 * that the info will be used in the subsequent polling cycle.
1927	 */
1928	for (;;) {
1929		rxp = sc->fxp_desc.rx_head;
1930		m = rxp->rx_mbuf;
1931		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1932		    RFA_ALIGNMENT_FUDGE);
1933		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1934		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1935
1936#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1937		if (count >= 0 && count-- == 0) {
1938			if (rnr) {
1939				/* Defer RNR processing until the next time. */
1940				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1941				rnr = 0;
1942			}
1943			break;
1944		}
1945#endif /* DEVICE_POLLING */
1946
1947		status = le16toh(rfa->rfa_status);
1948		if ((status & FXP_RFA_STATUS_C) == 0)
1949			break;
1950
1951		if ((status & FXP_RFA_STATUS_RNR) != 0)
1952			rnr++;
1953		/*
1954		 * Advance head forward.
1955		 */
1956		sc->fxp_desc.rx_head = rxp->rx_next;
1957
1958		/*
1959		 * Add a new buffer to the receive chain.
1960		 * If this fails, the old buffer is recycled
1961		 * instead.
1962		 */
1963		if (fxp_new_rfabuf(sc, rxp) == 0) {
1964			int total_len;
1965
1966			/*
1967			 * Fetch packet length (the top 2 bits of
1968			 * actual_size are flags set by the controller
1969			 * upon completion), and drop the packet in case
1970			 * of bogus length or CRC errors.
1971			 */
1972			total_len = le16toh(rfa->actual_size) & 0x3fff;
1973			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1974			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1975				/* Adjust for appended checksum bytes. */
1976				total_len -= 2;
1977			}
1978			if (total_len < (int)sizeof(struct ether_header) ||
1979			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1980			    sc->rfa_size) ||
1981			    status & (FXP_RFA_STATUS_CRC |
1982			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1983				m_freem(m);
1984				fxp_add_rfabuf(sc, rxp);
1985				continue;
1986			}
1987
1988			m->m_pkthdr.len = m->m_len = total_len;
1989			if_setrcvif(m, ifp);
1990
1991                        /* Do IP checksum checking. */
1992			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1993				fxp_rxcsum(sc, ifp, m, status, total_len);
1994			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1995			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1996				m->m_pkthdr.ether_vtag =
1997				    ntohs(rfa->rfax_vlan_id);
1998				m->m_flags |= M_VLANTAG;
1999			}
2000			/*
2001			 * Drop locks before calling if_input() since it
2002			 * may re-enter fxp_start() in the netisr case.
2003			 * This would result in a lock reversal.  Better
2004			 * performance might be obtained by chaining all
2005			 * packets received, dropping the lock, and then
2006			 * calling if_input() on each one.
2007			 */
2008			FXP_UNLOCK(sc);
2009			if_input(ifp, m);
2010			FXP_LOCK(sc);
2011			rx_npkts++;
2012			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2013				return (rx_npkts);
2014		} else {
2015			/* Reuse RFA and loaded DMA map. */
2016			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2017			fxp_discard_rfabuf(sc, rxp);
2018		}
2019		fxp_add_rfabuf(sc, rxp);
2020	}
2021	if (rnr) {
2022		fxp_scb_wait(sc);
2023		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2024		    sc->fxp_desc.rx_head->rx_addr);
2025		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2026	}
2027	return (rx_npkts);
2028}
2029
2030static void
2031fxp_update_stats(struct fxp_softc *sc)
2032{
2033	if_t ifp = sc->ifp;
2034	struct fxp_stats *sp = sc->fxp_stats;
2035	struct fxp_hwstats *hsp;
2036	uint32_t *status;
2037
2038	FXP_LOCK_ASSERT(sc, MA_OWNED);
2039
2040	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2041	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2042	/* Update statistical counters. */
2043	if (sc->revision >= FXP_REV_82559_A0)
2044		status = &sp->completion_status;
2045	else if (sc->revision >= FXP_REV_82558_A4)
2046		status = (uint32_t *)&sp->tx_tco;
2047	else
2048		status = &sp->tx_pause;
2049	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2050		hsp = &sc->fxp_hwstats;
2051		hsp->tx_good += le32toh(sp->tx_good);
2052		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2053		hsp->tx_latecols += le32toh(sp->tx_latecols);
2054		hsp->tx_underruns += le32toh(sp->tx_underruns);
2055		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2056		hsp->tx_deffered += le32toh(sp->tx_deffered);
2057		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2058		hsp->tx_multiple_collisions +=
2059		    le32toh(sp->tx_multiple_collisions);
2060		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2061		hsp->rx_good += le32toh(sp->rx_good);
2062		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2063		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2064		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2065		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2066		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2067		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2068		hsp->tx_pause += le32toh(sp->tx_pause);
2069		hsp->rx_pause += le32toh(sp->rx_pause);
2070		hsp->rx_controls += le32toh(sp->rx_controls);
2071		hsp->tx_tco += le16toh(sp->tx_tco);
2072		hsp->rx_tco += le16toh(sp->rx_tco);
2073
2074		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2075		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2076		    le32toh(sp->tx_total_collisions));
2077		if (sp->rx_good) {
2078			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2079			    le32toh(sp->rx_good));
2080			sc->rx_idle_secs = 0;
2081		} else if (sc->flags & FXP_FLAG_RXBUG) {
2082			/*
2083			 * Receiver's been idle for another second.
2084			 */
2085			sc->rx_idle_secs++;
2086		}
2087		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2088		    le32toh(sp->rx_crc_errors) +
2089		    le32toh(sp->rx_alignment_errors) +
2090		    le32toh(sp->rx_rnr_errors) +
2091		    le32toh(sp->rx_overrun_errors));
2092		/*
2093		 * If any transmit underruns occurred, bump up the transmit
2094		 * threshold by another 512 bytes (64 * 8).
2095		 */
2096		if (sp->tx_underruns) {
2097			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2098			    le32toh(sp->tx_underruns));
2099			if (tx_threshold < 192)
2100				tx_threshold += 64;
2101		}
2102		*status = 0;
2103		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2104		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2105	}
2106}
2107
2108/*
2109 * Update packet in/out/collision statistics. The i82557 doesn't
2110 * allow you to access these counters without doing a fairly
2111 * expensive DMA to get _all_ of the statistics it maintains, so
2112 * we do this operation here only once per second. The statistics
2113 * counters in the kernel are updated from the previous dump-stats
2114 * DMA and then a new dump-stats DMA is started. The on-chip
2115 * counters are zeroed when the DMA completes. If we can't start
2116 * the DMA immediately, we don't wait - we just prepare to read
2117 * them again next time.
2118 */
2119static void
2120fxp_tick(void *xsc)
2121{
2122	struct fxp_softc *sc = xsc;
2123	if_t ifp = sc->ifp;
2124
2125	FXP_LOCK_ASSERT(sc, MA_OWNED);
2126
2127	/* Update statistical counters. */
2128	fxp_update_stats(sc);
2129
2130	/*
2131	 * Release any xmit buffers that have completed DMA. This isn't
2132	 * strictly necessary to do here, but it's advantagous for mbufs
2133	 * with external storage to be released in a timely manner rather
2134	 * than being defered for a potentially long time. This limits
2135	 * the delay to a maximum of one second.
2136	 */
2137	fxp_txeof(sc);
2138
2139	/*
2140	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2141	 * then assume the receiver has locked up and attempt to clear
2142	 * the condition by reprogramming the multicast filter. This is
2143	 * a work-around for a bug in the 82557 where the receiver locks
2144	 * up if it gets certain types of garbage in the synchronization
2145	 * bits prior to the packet header. This bug is supposed to only
2146	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2147	 * mode as well (perhaps due to a 10/100 speed transition).
2148	 */
2149	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2150		sc->rx_idle_secs = 0;
2151		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2152			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2153			fxp_init_body(sc, 1);
2154		}
2155		return;
2156	}
2157	/*
2158	 * If there is no pending command, start another stats
2159	 * dump. Otherwise punt for now.
2160	 */
2161	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2162		/*
2163		 * Start another stats dump.
2164		 */
2165		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2166	}
2167	if (sc->miibus != NULL)
2168		mii_tick(device_get_softc(sc->miibus));
2169
2170	/*
2171	 * Check that chip hasn't hung.
2172	 */
2173	fxp_watchdog(sc);
2174
2175	/*
2176	 * Schedule another timeout one second from now.
2177	 */
2178	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2179}
2180
2181/*
2182 * Stop the interface. Cancels the statistics updater and resets
2183 * the interface.
2184 */
2185static void
2186fxp_stop(struct fxp_softc *sc)
2187{
2188	if_t ifp = sc->ifp;
2189	struct fxp_tx *txp;
2190	int i;
2191
2192	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2193	sc->watchdog_timer = 0;
2194
2195	/*
2196	 * Cancel stats updater.
2197	 */
2198	callout_stop(&sc->stat_ch);
2199
2200	/*
2201	 * Preserve PCI configuration, configure, IA/multicast
2202	 * setup and put RU and CU into idle state.
2203	 */
2204	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2205	DELAY(50);
2206	/* Disable interrupts. */
2207	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2208
2209	fxp_update_stats(sc);
2210
2211	/*
2212	 * Release any xmit buffers.
2213	 */
2214	txp = sc->fxp_desc.tx_list;
2215	if (txp != NULL) {
2216		for (i = 0; i < FXP_NTXCB; i++) {
2217			if (txp[i].tx_mbuf != NULL) {
2218				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2219				    BUS_DMASYNC_POSTWRITE);
2220				bus_dmamap_unload(sc->fxp_txmtag,
2221				    txp[i].tx_map);
2222				m_freem(txp[i].tx_mbuf);
2223				txp[i].tx_mbuf = NULL;
2224				/* clear this to reset csum offload bits */
2225				txp[i].tx_cb->tbd[0].tb_addr = 0;
2226			}
2227		}
2228	}
2229	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2230	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2231	sc->tx_queued = 0;
2232}
2233
2234/*
2235 * Watchdog/transmission transmit timeout handler. Called when a
2236 * transmission is started on the interface, but no interrupt is
2237 * received before the timeout. This usually indicates that the
2238 * card has wedged for some reason.
2239 */
2240static void
2241fxp_watchdog(struct fxp_softc *sc)
2242{
2243	if_t ifp = sc->ifp;
2244
2245	FXP_LOCK_ASSERT(sc, MA_OWNED);
2246
2247	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2248		return;
2249
2250	device_printf(sc->dev, "device timeout\n");
2251	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2252
2253	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2254	fxp_init_body(sc, 1);
2255}
2256
2257/*
2258 * Acquire locks and then call the real initialization function.  This
2259 * is necessary because ether_ioctl() calls if_init() and this would
2260 * result in mutex recursion if the mutex was held.
2261 */
2262static void
2263fxp_init(void *xsc)
2264{
2265	struct fxp_softc *sc = xsc;
2266
2267	FXP_LOCK(sc);
2268	fxp_init_body(sc, 1);
2269	FXP_UNLOCK(sc);
2270}
2271
2272/*
2273 * Perform device initialization. This routine must be called with the
2274 * softc lock held.
2275 */
2276static void
2277fxp_init_body(struct fxp_softc *sc, int setmedia)
2278{
2279	if_t ifp = sc->ifp;
2280	struct mii_data *mii;
2281	struct fxp_cb_config *cbp;
2282	struct fxp_cb_ias *cb_ias;
2283	struct fxp_cb_tx *tcbp;
2284	struct fxp_tx *txp;
2285	int i, prm;
2286
2287	FXP_LOCK_ASSERT(sc, MA_OWNED);
2288
2289	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2290		return;
2291
2292	/*
2293	 * Cancel any pending I/O
2294	 */
2295	fxp_stop(sc);
2296
2297	/*
2298	 * Issue software reset, which also unloads the microcode.
2299	 */
2300	sc->flags &= ~FXP_FLAG_UCODE;
2301	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2302	DELAY(50);
2303
2304	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2305
2306	/*
2307	 * Initialize base of CBL and RFA memory. Loading with zero
2308	 * sets it up for regular linear addressing.
2309	 */
2310	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2311	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2312
2313	fxp_scb_wait(sc);
2314	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2315
2316	/*
2317	 * Initialize base of dump-stats buffer.
2318	 */
2319	fxp_scb_wait(sc);
2320	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2321	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2322	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2323	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2324	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2325
2326	/*
2327	 * Attempt to load microcode if requested.
2328	 * For ICH based controllers do not load microcode.
2329	 */
2330	if (sc->ident->ich == 0) {
2331		if (if_getflags(ifp) & IFF_LINK0 &&
2332		    (sc->flags & FXP_FLAG_UCODE) == 0)
2333			fxp_load_ucode(sc);
2334	}
2335
2336	/*
2337	 * Set IFF_ALLMULTI status. It's needed in configure action
2338	 * command.
2339	 */
2340	fxp_mc_addrs(sc);
2341
2342	/*
2343	 * We temporarily use memory that contains the TxCB list to
2344	 * construct the config CB. The TxCB list memory is rebuilt
2345	 * later.
2346	 */
2347	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2348
2349	/*
2350	 * This bcopy is kind of disgusting, but there are a bunch of must be
2351	 * zero and must be one bits in this structure and this is the easiest
2352	 * way to initialize them all to proper values.
2353	 */
2354	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2355
2356	cbp->cb_status =	0;
2357	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2358	    FXP_CB_COMMAND_EL);
2359	cbp->link_addr =	0xffffffff;	/* (no) next command */
2360	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2361	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2362	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2363	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2364	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2365	cbp->type_enable =	0;	/* actually reserved */
2366	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2367	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2368	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2369	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2370	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2371	cbp->late_scb =		0;	/* (don't) defer SCB update */
2372	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2373	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2374	cbp->ci_int =		1;	/* interrupt on CU idle */
2375	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2376	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2377	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2378	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2379	cbp->disc_short_rx =	!prm;	/* discard short packets */
2380	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2381	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2382	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2383	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2384	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2385	cbp->csma_dis =		0;	/* (don't) disable link */
2386	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2387	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2388	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2389	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2390	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2391	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2392	cbp->nsai =		1;	/* (don't) disable source addr insert */
2393	cbp->preamble_length =	2;	/* (7 byte) preamble */
2394	cbp->loopback =		0;	/* (don't) loopback */
2395	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2396	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2397	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2398	cbp->promiscuous =	prm;	/* promiscuous mode */
2399	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2400	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2401	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2402	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2403	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2404
2405	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2406	cbp->padding =		1;	/* (do) pad short tx packets */
2407	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2408	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2409	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2410	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2411	cbp->force_fdx =	0;	/* (don't) force full duplex */
2412	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2413	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2414	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2415	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2416	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2417	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2418
2419	if (sc->revision == FXP_REV_82557) {
2420		/*
2421		 * The 82557 has no hardware flow control, the values
2422		 * below are the defaults for the chip.
2423		 */
2424		cbp->fc_delay_lsb =	0;
2425		cbp->fc_delay_msb =	0x40;
2426		cbp->pri_fc_thresh =	3;
2427		cbp->tx_fc_dis =	0;
2428		cbp->rx_fc_restop =	0;
2429		cbp->rx_fc_restart =	0;
2430		cbp->fc_filter =	0;
2431		cbp->pri_fc_loc =	1;
2432	} else {
2433		/* Set pause RX FIFO threshold to 1KB. */
2434		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2435		/* Set pause time. */
2436		cbp->fc_delay_lsb =	0xff;
2437		cbp->fc_delay_msb =	0xff;
2438		cbp->pri_fc_thresh =	3;
2439		mii = device_get_softc(sc->miibus);
2440		if ((IFM_OPTIONS(mii->mii_media_active) &
2441		    IFM_ETH_TXPAUSE) != 0)
2442			/* enable transmit FC */
2443			cbp->tx_fc_dis = 0;
2444		else
2445			/* disable transmit FC */
2446			cbp->tx_fc_dis = 1;
2447		if ((IFM_OPTIONS(mii->mii_media_active) &
2448		    IFM_ETH_RXPAUSE) != 0) {
2449			/* enable FC restart/restop frames */
2450			cbp->rx_fc_restart = 1;
2451			cbp->rx_fc_restop = 1;
2452		} else {
2453			/* disable FC restart/restop frames */
2454			cbp->rx_fc_restart = 0;
2455			cbp->rx_fc_restop = 0;
2456		}
2457		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2458		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2459	}
2460
2461	/* Enable 82558 and 82559 extended statistics functionality. */
2462	if (sc->revision >= FXP_REV_82558_A4) {
2463		if (sc->revision >= FXP_REV_82559_A0) {
2464			/*
2465			 * Extend configuration table size to 32
2466			 * to include TCO configuration.
2467			 */
2468			cbp->byte_count = 32;
2469			cbp->ext_stats_dis = 1;
2470			/* Enable TCO stats. */
2471			cbp->tno_int_or_tco_en = 1;
2472			cbp->gamla_rx = 1;
2473		} else
2474			cbp->ext_stats_dis = 0;
2475	}
2476
2477	/*
2478	 * Start the config command/DMA.
2479	 */
2480	fxp_scb_wait(sc);
2481	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2482	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2483	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2484	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2485	/* ...and wait for it to complete. */
2486	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2487
2488	/*
2489	 * Now initialize the station address. Temporarily use the TxCB
2490	 * memory area like we did above for the config CB.
2491	 */
2492	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2493	cb_ias->cb_status = 0;
2494	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2495	cb_ias->link_addr = 0xffffffff;
2496	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2497
2498	/*
2499	 * Start the IAS (Individual Address Setup) command/DMA.
2500	 */
2501	fxp_scb_wait(sc);
2502	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2503	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2504	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2505	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2506	/* ...and wait for it to complete. */
2507	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2508
2509	/*
2510	 * Initialize the multicast address list.
2511	 */
2512	fxp_mc_setup(sc);
2513
2514	/*
2515	 * Initialize transmit control block (TxCB) list.
2516	 */
2517	txp = sc->fxp_desc.tx_list;
2518	tcbp = sc->fxp_desc.cbl_list;
2519	bzero(tcbp, FXP_TXCB_SZ);
2520	for (i = 0; i < FXP_NTXCB; i++) {
2521		txp[i].tx_mbuf = NULL;
2522		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2523		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2524		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2525		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2526		if (sc->flags & FXP_FLAG_EXT_TXCB)
2527			tcbp[i].tbd_array_addr =
2528			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2529		else
2530			tcbp[i].tbd_array_addr =
2531			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2532		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2533	}
2534	/*
2535	 * Set the suspend flag on the first TxCB and start the control
2536	 * unit. It will execute the NOP and then suspend.
2537	 */
2538	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2539	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2540	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2541	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2542	sc->tx_queued = 1;
2543
2544	fxp_scb_wait(sc);
2545	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2546	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2547
2548	/*
2549	 * Initialize receiver buffer area - RFA.
2550	 */
2551	fxp_scb_wait(sc);
2552	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2553	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2554
2555	if (sc->miibus != NULL && setmedia != 0)
2556		mii_mediachg(device_get_softc(sc->miibus));
2557
2558	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2559
2560	/*
2561	 * Enable interrupts.
2562	 */
2563#ifdef DEVICE_POLLING
2564	/*
2565	 * ... but only do that if we are not polling. And because (presumably)
2566	 * the default is interrupts on, we need to disable them explicitly!
2567	 */
2568	if (if_getcapenable(ifp) & IFCAP_POLLING )
2569		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2570	else
2571#endif /* DEVICE_POLLING */
2572	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2573
2574	/*
2575	 * Start stats updater.
2576	 */
2577	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2578}
2579
2580static int
2581fxp_serial_ifmedia_upd(if_t ifp)
2582{
2583
2584	return (0);
2585}
2586
2587static void
2588fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2589{
2590
2591	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2592}
2593
2594/*
2595 * Change media according to request.
2596 */
2597static int
2598fxp_ifmedia_upd(if_t ifp)
2599{
2600	struct fxp_softc *sc = if_getsoftc(ifp);
2601	struct mii_data *mii;
2602	struct mii_softc	*miisc;
2603
2604	mii = device_get_softc(sc->miibus);
2605	FXP_LOCK(sc);
2606	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2607		PHY_RESET(miisc);
2608	mii_mediachg(mii);
2609	FXP_UNLOCK(sc);
2610	return (0);
2611}
2612
2613/*
2614 * Notify the world which media we're using.
2615 */
2616static void
2617fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2618{
2619	struct fxp_softc *sc = if_getsoftc(ifp);
2620	struct mii_data *mii;
2621
2622	mii = device_get_softc(sc->miibus);
2623	FXP_LOCK(sc);
2624	mii_pollstat(mii);
2625	ifmr->ifm_active = mii->mii_media_active;
2626	ifmr->ifm_status = mii->mii_media_status;
2627	FXP_UNLOCK(sc);
2628}
2629
2630/*
2631 * Add a buffer to the end of the RFA buffer list.
2632 * Return 0 if successful, 1 for failure. A failure results in
2633 * reusing the RFA buffer.
2634 * The RFA struct is stuck at the beginning of mbuf cluster and the
2635 * data pointer is fixed up to point just past it.
2636 */
2637static int
2638fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2639{
2640	struct mbuf *m;
2641	struct fxp_rfa *rfa;
2642	bus_dmamap_t tmp_map;
2643	int error;
2644
2645	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2646	if (m == NULL)
2647		return (ENOBUFS);
2648
2649	/*
2650	 * Move the data pointer up so that the incoming data packet
2651	 * will be 32-bit aligned.
2652	 */
2653	m->m_data += RFA_ALIGNMENT_FUDGE;
2654
2655	/*
2656	 * Get a pointer to the base of the mbuf cluster and move
2657	 * data start past it.
2658	 */
2659	rfa = mtod(m, struct fxp_rfa *);
2660	m->m_data += sc->rfa_size;
2661	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2662
2663	rfa->rfa_status = 0;
2664	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2665	rfa->actual_size = 0;
2666	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2667	    sc->rfa_size;
2668
2669	/*
2670	 * Initialize the rest of the RFA.  Note that since the RFA
2671	 * is misaligned, we cannot store values directly.  We're thus
2672	 * using the le32enc() function which handles endianness and
2673	 * is also alignment-safe.
2674	 */
2675	le32enc(&rfa->link_addr, 0xffffffff);
2676	le32enc(&rfa->rbd_addr, 0xffffffff);
2677
2678	/* Map the RFA into DMA memory. */
2679	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2680	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2681	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2682	if (error) {
2683		m_freem(m);
2684		return (error);
2685	}
2686
2687	if (rxp->rx_mbuf != NULL)
2688		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2689	tmp_map = sc->spare_map;
2690	sc->spare_map = rxp->rx_map;
2691	rxp->rx_map = tmp_map;
2692	rxp->rx_mbuf = m;
2693
2694	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2695	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2696	return (0);
2697}
2698
2699static void
2700fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2701{
2702	struct fxp_rfa *p_rfa;
2703	struct fxp_rx *p_rx;
2704
2705	/*
2706	 * If there are other buffers already on the list, attach this
2707	 * one to the end by fixing up the tail to point to this one.
2708	 */
2709	if (sc->fxp_desc.rx_head != NULL) {
2710		p_rx = sc->fxp_desc.rx_tail;
2711		p_rfa = (struct fxp_rfa *)
2712		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2713		p_rx->rx_next = rxp;
2714		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2715		p_rfa->rfa_control = 0;
2716		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2717		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2718	} else {
2719		rxp->rx_next = NULL;
2720		sc->fxp_desc.rx_head = rxp;
2721	}
2722	sc->fxp_desc.rx_tail = rxp;
2723}
2724
2725static void
2726fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2727{
2728	struct mbuf *m;
2729	struct fxp_rfa *rfa;
2730
2731	m = rxp->rx_mbuf;
2732	m->m_data = m->m_ext.ext_buf;
2733	/*
2734	 * Move the data pointer up so that the incoming data packet
2735	 * will be 32-bit aligned.
2736	 */
2737	m->m_data += RFA_ALIGNMENT_FUDGE;
2738
2739	/*
2740	 * Get a pointer to the base of the mbuf cluster and move
2741	 * data start past it.
2742	 */
2743	rfa = mtod(m, struct fxp_rfa *);
2744	m->m_data += sc->rfa_size;
2745	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2746
2747	rfa->rfa_status = 0;
2748	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2749	rfa->actual_size = 0;
2750
2751	/*
2752	 * Initialize the rest of the RFA.  Note that since the RFA
2753	 * is misaligned, we cannot store values directly.  We're thus
2754	 * using the le32enc() function which handles endianness and
2755	 * is also alignment-safe.
2756	 */
2757	le32enc(&rfa->link_addr, 0xffffffff);
2758	le32enc(&rfa->rbd_addr, 0xffffffff);
2759
2760	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2761	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2762}
2763
2764static int
2765fxp_miibus_readreg(device_t dev, int phy, int reg)
2766{
2767	struct fxp_softc *sc = device_get_softc(dev);
2768	int count = 10000;
2769	int value;
2770
2771	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2772	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2773
2774	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2775	    && count--)
2776		DELAY(10);
2777
2778	if (count <= 0)
2779		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2780
2781	return (value & 0xffff);
2782}
2783
2784static int
2785fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2786{
2787	struct fxp_softc *sc = device_get_softc(dev);
2788	int count = 10000;
2789
2790	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2791	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2792	    (value & 0xffff));
2793
2794	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2795	    count--)
2796		DELAY(10);
2797
2798	if (count <= 0)
2799		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2800	return (0);
2801}
2802
2803static void
2804fxp_miibus_statchg(device_t dev)
2805{
2806	struct fxp_softc *sc;
2807	struct mii_data *mii;
2808	if_t ifp;
2809
2810	sc = device_get_softc(dev);
2811	mii = device_get_softc(sc->miibus);
2812	ifp = sc->ifp;
2813	if (mii == NULL || ifp == (void *)NULL ||
2814	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2815	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2816	    (IFM_AVALID | IFM_ACTIVE))
2817		return;
2818
2819	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2820	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2821		sc->cu_resume_bug = 1;
2822	else
2823		sc->cu_resume_bug = 0;
2824	/*
2825	 * Call fxp_init_body in order to adjust the flow control settings.
2826	 * Note that the 82557 doesn't support hardware flow control.
2827	 */
2828	if (sc->revision == FXP_REV_82557)
2829		return;
2830	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2831	fxp_init_body(sc, 0);
2832}
2833
2834static int
2835fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2836{
2837	struct fxp_softc *sc = if_getsoftc(ifp);
2838	struct ifreq *ifr = (struct ifreq *)data;
2839	struct mii_data *mii;
2840	int flag, mask, error = 0, reinit;
2841
2842	switch (command) {
2843	case SIOCSIFFLAGS:
2844		FXP_LOCK(sc);
2845		/*
2846		 * If interface is marked up and not running, then start it.
2847		 * If it is marked down and running, stop it.
2848		 * XXX If it's up then re-initialize it. This is so flags
2849		 * such as IFF_PROMISC are handled.
2850		 */
2851		if (if_getflags(ifp) & IFF_UP) {
2852			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2853			    ((if_getflags(ifp) ^ sc->if_flags) &
2854			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2855				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2856				fxp_init_body(sc, 0);
2857			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2858				fxp_init_body(sc, 1);
2859		} else {
2860			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2861				fxp_stop(sc);
2862		}
2863		sc->if_flags = if_getflags(ifp);
2864		FXP_UNLOCK(sc);
2865		break;
2866
2867	case SIOCADDMULTI:
2868	case SIOCDELMULTI:
2869		FXP_LOCK(sc);
2870		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2871			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2872			fxp_init_body(sc, 0);
2873		}
2874		FXP_UNLOCK(sc);
2875		break;
2876
2877	case SIOCSIFMEDIA:
2878	case SIOCGIFMEDIA:
2879		if (sc->miibus != NULL) {
2880			mii = device_get_softc(sc->miibus);
2881                        error = ifmedia_ioctl(ifp, ifr,
2882                            &mii->mii_media, command);
2883		} else {
2884                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2885		}
2886		break;
2887
2888	case SIOCSIFCAP:
2889		reinit = 0;
2890		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2891#ifdef DEVICE_POLLING
2892		if (mask & IFCAP_POLLING) {
2893			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2894				error = ether_poll_register(fxp_poll, ifp);
2895				if (error)
2896					return(error);
2897				FXP_LOCK(sc);
2898				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2899				    FXP_SCB_INTR_DISABLE);
2900				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2901				FXP_UNLOCK(sc);
2902			} else {
2903				error = ether_poll_deregister(ifp);
2904				/* Enable interrupts in any case */
2905				FXP_LOCK(sc);
2906				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2907				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2908				FXP_UNLOCK(sc);
2909			}
2910		}
2911#endif
2912		FXP_LOCK(sc);
2913		if ((mask & IFCAP_TXCSUM) != 0 &&
2914		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2915			if_togglecapenable(ifp, IFCAP_TXCSUM);
2916			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2917				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2918			else
2919				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2920		}
2921		if ((mask & IFCAP_RXCSUM) != 0 &&
2922		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2923			if_togglecapenable(ifp, IFCAP_RXCSUM);
2924			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2925				reinit++;
2926		}
2927		if ((mask & IFCAP_TSO4) != 0 &&
2928		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2929			if_togglecapenable(ifp, IFCAP_TSO4);
2930			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2931				if_sethwassistbits(ifp, CSUM_TSO, 0);
2932			else
2933				if_sethwassistbits(ifp, 0, CSUM_TSO);
2934		}
2935		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2936		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2937			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2938		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2939		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2940			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2941			if (sc->revision != FXP_REV_82557)
2942				flag = FXP_FLAG_LONG_PKT_EN;
2943			else /* a hack to get long frames on the old chip */
2944				flag = FXP_FLAG_SAVE_BAD;
2945			sc->flags ^= flag;
2946			if (if_getflags(ifp) & IFF_UP)
2947				reinit++;
2948		}
2949		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2950		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2951			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2952		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2953		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2954			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2955		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2956		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2957			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2958			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2959				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2960				    IFCAP_VLAN_HWCSUM);
2961			reinit++;
2962		}
2963		if (reinit > 0 &&
2964		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2965			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2966			fxp_init_body(sc, 0);
2967		}
2968		FXP_UNLOCK(sc);
2969		if_vlancap(ifp);
2970		break;
2971
2972	default:
2973		error = ether_ioctl(ifp, command, data);
2974	}
2975	return (error);
2976}
2977
2978/*
2979 * Fill in the multicast address list and return number of entries.
2980 */
2981static int
2982fxp_mc_addrs(struct fxp_softc *sc)
2983{
2984	struct fxp_cb_mcs *mcsp = sc->mcsp;
2985	if_t ifp = sc->ifp;
2986	int nmcasts = 0;
2987
2988	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2989		if_maddr_rlock(ifp);
2990		if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
2991		if (nmcasts >= MAXMCADDR) {
2992			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2993			nmcasts = 0;
2994		}
2995		if_maddr_runlock(ifp);
2996	}
2997	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2998	return (nmcasts);
2999}
3000
3001/*
3002 * Program the multicast filter.
3003 *
3004 * We have an artificial restriction that the multicast setup command
3005 * must be the first command in the chain, so we take steps to ensure
3006 * this. By requiring this, it allows us to keep up the performance of
3007 * the pre-initialized command ring (esp. link pointers) by not actually
3008 * inserting the mcsetup command in the ring - i.e. its link pointer
3009 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3010 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3011 * lead into the regular TxCB ring when it completes.
3012 */
3013static void
3014fxp_mc_setup(struct fxp_softc *sc)
3015{
3016	struct fxp_cb_mcs *mcsp;
3017	int count;
3018
3019	FXP_LOCK_ASSERT(sc, MA_OWNED);
3020
3021	mcsp = sc->mcsp;
3022	mcsp->cb_status = 0;
3023	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3024	mcsp->link_addr = 0xffffffff;
3025	fxp_mc_addrs(sc);
3026
3027	/*
3028	 * Wait until command unit is idle. This should never be the
3029	 * case when nothing is queued, but make sure anyway.
3030	 */
3031	count = 100;
3032	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3033	    FXP_SCB_CUS_IDLE && --count)
3034		DELAY(10);
3035	if (count == 0) {
3036		device_printf(sc->dev, "command queue timeout\n");
3037		return;
3038	}
3039
3040	/*
3041	 * Start the multicast setup command.
3042	 */
3043	fxp_scb_wait(sc);
3044	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3045	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3046	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3047	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3048	/* ...and wait for it to complete. */
3049	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3050}
3051
3052static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3053static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3054static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3055static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3056static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3057static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3058static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3059
3060#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3061
3062static const struct ucode {
3063	uint32_t	revision;
3064	uint32_t	*ucode;
3065	int		length;
3066	u_short		int_delay_offset;
3067	u_short		bundle_max_offset;
3068} ucode_table[] = {
3069	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3070	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3071	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3072	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3073	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3074	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3075	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3076	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3077	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3078	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3079	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3080	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3081	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3082	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3083	{ 0, NULL, 0, 0, 0 }
3084};
3085
3086static void
3087fxp_load_ucode(struct fxp_softc *sc)
3088{
3089	const struct ucode *uc;
3090	struct fxp_cb_ucode *cbp;
3091	int i;
3092
3093	if (sc->flags & FXP_FLAG_NO_UCODE)
3094		return;
3095
3096	for (uc = ucode_table; uc->ucode != NULL; uc++)
3097		if (sc->revision == uc->revision)
3098			break;
3099	if (uc->ucode == NULL)
3100		return;
3101	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3102	cbp->cb_status = 0;
3103	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3104	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3105	for (i = 0; i < uc->length; i++)
3106		cbp->ucode[i] = htole32(uc->ucode[i]);
3107	if (uc->int_delay_offset)
3108		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3109		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3110	if (uc->bundle_max_offset)
3111		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3112		    htole16(sc->tunable_bundle_max);
3113	/*
3114	 * Download the ucode to the chip.
3115	 */
3116	fxp_scb_wait(sc);
3117	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3118	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3119	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3120	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3121	/* ...and wait for it to complete. */
3122	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3123	device_printf(sc->dev,
3124	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3125	    sc->tunable_int_delay,
3126	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3127	sc->flags |= FXP_FLAG_UCODE;
3128	bzero(cbp, FXP_TXCB_SZ);
3129}
3130
3131#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3132	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3133
3134static void
3135fxp_sysctl_node(struct fxp_softc *sc)
3136{
3137	struct sysctl_ctx_list *ctx;
3138	struct sysctl_oid_list *child, *parent;
3139	struct sysctl_oid *tree;
3140	struct fxp_hwstats *hsp;
3141
3142	ctx = device_get_sysctl_ctx(sc->dev);
3143	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3144
3145	SYSCTL_ADD_PROC(ctx, child,
3146	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3147	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3148	    "FXP driver receive interrupt microcode bundling delay");
3149	SYSCTL_ADD_PROC(ctx, child,
3150	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3151	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3152	    "FXP driver receive interrupt microcode bundle size limit");
3153	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3154	    "FXP RNR events");
3155
3156	/*
3157	 * Pull in device tunables.
3158	 */
3159	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3160	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3161	(void) resource_int_value(device_get_name(sc->dev),
3162	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3163	(void) resource_int_value(device_get_name(sc->dev),
3164	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3165	sc->rnr = 0;
3166
3167	hsp = &sc->fxp_hwstats;
3168	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3169	    NULL, "FXP statistics");
3170	parent = SYSCTL_CHILDREN(tree);
3171
3172	/* Rx MAC statistics. */
3173	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3174	    NULL, "Rx MAC statistics");
3175	child = SYSCTL_CHILDREN(tree);
3176	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3177	    &hsp->rx_good, "Good frames");
3178	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3179	    &hsp->rx_crc_errors, "CRC errors");
3180	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3181	    &hsp->rx_alignment_errors, "Alignment errors");
3182	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3183	    &hsp->rx_rnr_errors, "RNR errors");
3184	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3185	    &hsp->rx_overrun_errors, "Overrun errors");
3186	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3187	    &hsp->rx_cdt_errors, "Collision detect errors");
3188	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3189	    &hsp->rx_shortframes, "Short frame errors");
3190	if (sc->revision >= FXP_REV_82558_A4) {
3191		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3192		    &hsp->rx_pause, "Pause frames");
3193		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3194		    &hsp->rx_controls, "Unsupported control frames");
3195	}
3196	if (sc->revision >= FXP_REV_82559_A0)
3197		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3198		    &hsp->rx_tco, "TCO frames");
3199
3200	/* Tx MAC statistics. */
3201	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3202	    NULL, "Tx MAC statistics");
3203	child = SYSCTL_CHILDREN(tree);
3204	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3205	    &hsp->tx_good, "Good frames");
3206	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3207	    &hsp->tx_maxcols, "Maximum collisions errors");
3208	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3209	    &hsp->tx_latecols, "Late collisions errors");
3210	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3211	    &hsp->tx_underruns, "Underrun errors");
3212	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3213	    &hsp->tx_lostcrs, "Lost carrier sense");
3214	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3215	    &hsp->tx_deffered, "Deferred");
3216	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3217	    &hsp->tx_single_collisions, "Single collisions");
3218	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3219	    &hsp->tx_multiple_collisions, "Multiple collisions");
3220	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3221	    &hsp->tx_total_collisions, "Total collisions");
3222	if (sc->revision >= FXP_REV_82558_A4)
3223		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3224		    &hsp->tx_pause, "Pause frames");
3225	if (sc->revision >= FXP_REV_82559_A0)
3226		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3227		    &hsp->tx_tco, "TCO frames");
3228}
3229
3230#undef FXP_SYSCTL_STAT_ADD
3231
3232static int
3233sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3234{
3235	int error, value;
3236
3237	value = *(int *)arg1;
3238	error = sysctl_handle_int(oidp, &value, 0, req);
3239	if (error || !req->newptr)
3240		return (error);
3241	if (value < low || value > high)
3242		return (EINVAL);
3243	*(int *)arg1 = value;
3244	return (0);
3245}
3246
3247/*
3248 * Interrupt delay is expressed in microseconds, a multiplier is used
3249 * to convert this to the appropriate clock ticks before using.
3250 */
3251static int
3252sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3253{
3254
3255	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3256}
3257
3258static int
3259sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3260{
3261
3262	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3263}
3264