if_fxp.c revision 76545
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 76545 2001-05-13 05:38:59Z jlemon $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include "vlan.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/socket.h>
44
45#include <net/if.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48
49#ifdef NS
50#include <netns/ns.h>
51#include <netns/ns_if.h>
52#endif
53
54#include <net/bpf.h>
55#include <sys/sockio.h>
56#include <sys/bus.h>
57#include <machine/bus.h>
58#include <sys/rman.h>
59#include <machine/resource.h>
60
61#include <net/ethernet.h>
62#include <net/if_arp.h>
63
64#include <vm/vm.h>		/* for vtophys */
65#include <vm/pmap.h>		/* for vtophys */
66#include <machine/clock.h>	/* for DELAY */
67
68#if NVLAN > 0
69#include <net/if_types.h>
70#include <net/if_vlan_var.h>
71#endif
72
73#include <pci/pcivar.h>
74#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81
82MODULE_DEPEND(fxp, miibus, 1, 1, 1);
83#include "miibus_if.h"
84
85/*
86 * NOTE!  On the Alpha, we have an alignment constraint.  The
87 * card DMAs the packet immediately following the RFA.  However,
88 * the first thing in the packet is a 14-byte Ethernet header.
89 * This means that the packet is misaligned.  To compensate,
90 * we actually offset the RFA 2 bytes into the cluster.  This
91 * alignes the packet after the Ethernet header at a 32-bit
92 * boundary.  HOWEVER!  This means that the RFA is misaligned!
93 */
94#define	RFA_ALIGNMENT_FUDGE	2
95
96/*
97 * Set initial transmit threshold at 64 (512 bytes). This is
98 * increased by 64 (512 bytes) at a time, to maximum of 192
99 * (1536 bytes), if an underrun occurs.
100 */
101static int tx_threshold = 64;
102
103/*
104 * The configuration byte map has several undefined fields which
105 * must be one or must be zero.  Set up a template for these bits
106 * only, (assuming a 82557 chip) leaving the actual configuration
107 * to fxp_init.
108 *
109 * See struct fxp_cb_config for the bit definitions.
110 */
111static u_char fxp_cb_config_template[] = {
112	0x0, 0x0,		/* cb_status */
113	0x0, 0x0,		/* cb_command */
114	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115	0x0,	/*  0 */
116	0x0,	/*  1 */
117	0x0,	/*  2 */
118	0x0,	/*  3 */
119	0x0,	/*  4 */
120	0x0,	/*  5 */
121	0x32,	/*  6 */
122	0x0,	/*  7 */
123	0x0,	/*  8 */
124	0x0,	/*  9 */
125	0x6,	/* 10 */
126	0x0,	/* 11 */
127	0x0,	/* 12 */
128	0x0,	/* 13 */
129	0xf2,	/* 14 */
130	0x48,	/* 15 */
131	0x0,	/* 16 */
132	0x40,	/* 17 */
133	0xf0,	/* 18 */
134	0x0,	/* 19 */
135	0x3f,	/* 20 */
136	0x5	/* 21 */
137};
138
139struct fxp_ident {
140	u_int16_t	devid;
141	char 		*name;
142};
143
144/*
145 * Claim various Intel PCI device identifiers for this driver.  The
146 * sub-vendor and sub-device field are extensively used to identify
147 * particular variants, but we don't currently differentiate between
148 * them.
149 */
150static struct fxp_ident fxp_ident_table[] = {
151    { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
152    { 0x2449,		"Intel Pro/100 Ethernet" },
153    { 0x1209,		"Intel Embedded 10/100 Ethernet" },
154    { 0x1029,		"Intel Pro/100 Ethernet" },
155    { 0x1030,		"Intel Pro/100 Ethernet" },
156    { 0x1031,		"Intel Pro/100 Ethernet" },
157    { 0x1032,		"Intel Pro/100 Ethernet" },
158    { 0x1033,		"Intel Pro/100 Ethernet" },
159    { 0x1034,		"Intel Pro/100 Ethernet" },
160    { 0x1035,		"Intel Pro/100 Ethernet" },
161    { 0x1036,		"Intel Pro/100 Ethernet" },
162    { 0x1037,		"Intel Pro/100 Ethernet" },
163    { 0x1038,		"Intel Pro/100 Ethernet" },
164    { 0,		NULL },
165};
166
167static int		fxp_probe(device_t dev);
168static int		fxp_attach(device_t dev);
169static int		fxp_detach(device_t dev);
170static int		fxp_shutdown(device_t dev);
171static int		fxp_suspend(device_t dev);
172static int		fxp_resume(device_t dev);
173
174static void		fxp_intr(void *xsc);
175static void 		fxp_init(void *xsc);
176static void 		fxp_tick(void *xsc);
177static void 		fxp_start(struct ifnet *ifp);
178static void		fxp_stop(struct fxp_softc *sc);
179static void 		fxp_release(struct fxp_softc *sc);
180static int		fxp_ioctl(struct ifnet *ifp, u_long command,
181			    caddr_t data);
182static void 		fxp_watchdog(struct ifnet *ifp);
183static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
184static void		fxp_mc_setup(struct fxp_softc *sc);
185static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
186			    int autosize);
187static void		fxp_autosize_eeprom(struct fxp_softc *sc);
188static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
189			    int offset, int words);
190static int		fxp_ifmedia_upd(struct ifnet *ifp);
191static void		fxp_ifmedia_sts(struct ifnet *ifp,
192			    struct ifmediareq *ifmr);
193static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
194static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
195			    struct ifmediareq *ifmr);
196static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
197static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
198			    int value);
199static __inline void	fxp_lwcopy(volatile u_int32_t *src,
200			    volatile u_int32_t *dst);
201static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
202static __inline void	fxp_dma_wait(volatile u_int16_t *status,
203			    struct fxp_softc *sc);
204
205static device_method_t fxp_methods[] = {
206	/* Device interface */
207	DEVMETHOD(device_probe,		fxp_probe),
208	DEVMETHOD(device_attach,	fxp_attach),
209	DEVMETHOD(device_detach,	fxp_detach),
210	DEVMETHOD(device_shutdown,	fxp_shutdown),
211	DEVMETHOD(device_suspend,	fxp_suspend),
212	DEVMETHOD(device_resume,	fxp_resume),
213
214	/* MII interface */
215	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
216	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
217
218	{ 0, 0 }
219};
220
221static driver_t fxp_driver = {
222	"fxp",
223	fxp_methods,
224	sizeof(struct fxp_softc),
225};
226
227static devclass_t fxp_devclass;
228
229DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
230DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
231DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
232
233/*
234 * Inline function to copy a 16-bit aligned 32-bit quantity.
235 */
236static __inline void
237fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
238{
239#ifdef __i386__
240	*dst = *src;
241#else
242	volatile u_int16_t *a = (volatile u_int16_t *)src;
243	volatile u_int16_t *b = (volatile u_int16_t *)dst;
244
245	b[0] = a[0];
246	b[1] = a[1];
247#endif
248}
249
250/*
251 * Wait for the previous command to be accepted (but not necessarily
252 * completed).
253 */
254static __inline void
255fxp_scb_wait(struct fxp_softc *sc)
256{
257	int i = 10000;
258
259	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
260		DELAY(2);
261	if (i == 0)
262		device_printf(sc->dev, "SCB timeout: 0x%x, 0x%x, 0x%x 0x%x\n",
263		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
264		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
265		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
266		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
267}
268
269static __inline void
270fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
271{
272	int i = 10000;
273
274	while (!(*status & FXP_CB_STATUS_C) && --i)
275		DELAY(2);
276	if (i == 0)
277		device_printf(sc->dev, "DMA timeout\n");
278}
279
280/*
281 * Return identification string if this is device is ours.
282 */
283static int
284fxp_probe(device_t dev)
285{
286	u_int16_t devid;
287	struct fxp_ident *ident;
288
289	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
290		devid = pci_get_device(dev);
291		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
292			if (ident->devid == devid) {
293				device_set_desc(dev, ident->name);
294				return (0);
295			}
296		}
297	}
298	return (ENXIO);
299}
300
301static int
302fxp_attach(device_t dev)
303{
304	int error = 0;
305	struct fxp_softc *sc = device_get_softc(dev);
306	struct ifnet *ifp;
307	u_int32_t val;
308	u_int16_t data;
309	int i, rid, m1, m2, prefer_iomap;
310	int s;
311
312	bzero(sc, sizeof(*sc));
313	sc->dev = dev;
314	callout_handle_init(&sc->stat_ch);
315	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
316
317	s = splimp();
318
319	/*
320	 * Enable bus mastering. Enable memory space too, in case
321	 * BIOS/Prom forgot about it.
322	 */
323	val = pci_read_config(dev, PCIR_COMMAND, 2);
324	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
325	pci_write_config(dev, PCIR_COMMAND, val, 2);
326	val = pci_read_config(dev, PCIR_COMMAND, 2);
327
328#if __FreeBSD_version >= 500000
329	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
330		u_int32_t		iobase, membase, irq;
331
332		/* Save important PCI config data. */
333		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
334		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
335		irq = pci_read_config(dev, PCIR_INTLINE, 4);
336
337		/* Reset the power state. */
338		device_printf(dev, "chip is in D%d power mode "
339		    "-- setting to D0\n", pci_get_powerstate(dev));
340
341		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
342
343		/* Restore PCI config data. */
344		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
345		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
346		pci_write_config(dev, PCIR_INTLINE, irq, 4);
347	}
348#endif
349
350	/*
351	 * Figure out which we should try first - memory mapping or i/o mapping?
352	 * We default to memory mapping. Then we accept an override from the
353	 * command line. Then we check to see which one is enabled.
354	 */
355	m1 = PCIM_CMD_MEMEN;
356	m2 = PCIM_CMD_PORTEN;
357	prefer_iomap = 0;
358	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
359	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
360		m1 = PCIM_CMD_PORTEN;
361		m2 = PCIM_CMD_MEMEN;
362	}
363
364	if (val & m1) {
365		sc->rtp =
366		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
367		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
368		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
369	                                     0, ~0, 1, RF_ACTIVE);
370	}
371	if (sc->mem == NULL && (val & m2)) {
372		sc->rtp =
373		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
374		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
375		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
376                                            0, ~0, 1, RF_ACTIVE);
377	}
378
379	if (!sc->mem) {
380		device_printf(dev, "could not map device registers\n");
381		error = ENXIO;
382		goto fail;
383        }
384	if (bootverbose) {
385		device_printf(dev, "using %s space register mapping\n",
386		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
387	}
388
389	sc->sc_st = rman_get_bustag(sc->mem);
390	sc->sc_sh = rman_get_bushandle(sc->mem);
391
392	/*
393	 * Allocate our interrupt.
394	 */
395	rid = 0;
396	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
397				 RF_SHAREABLE | RF_ACTIVE);
398	if (sc->irq == NULL) {
399		device_printf(dev, "could not map interrupt\n");
400		error = ENXIO;
401		goto fail;
402	}
403
404	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
405			       fxp_intr, sc, &sc->ih);
406	if (error) {
407		device_printf(dev, "could not setup irq\n");
408		goto fail;
409	}
410
411	/*
412	 * Reset to a stable state.
413	 */
414	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
415	DELAY(10);
416
417	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
418	    M_DEVBUF, M_NOWAIT | M_ZERO);
419	if (sc->cbl_base == NULL)
420		goto failmem;
421
422	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
423	    M_NOWAIT | M_ZERO);
424	if (sc->fxp_stats == NULL)
425		goto failmem;
426
427	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
428	if (sc->mcsp == NULL)
429		goto failmem;
430
431	/*
432	 * Pre-allocate our receive buffers.
433	 */
434	for (i = 0; i < FXP_NRFABUFS; i++) {
435		if (fxp_add_rfabuf(sc, NULL) != 0) {
436			goto failmem;
437		}
438	}
439
440	/*
441	 * Find out how large of an SEEPROM we have.
442	 */
443	fxp_autosize_eeprom(sc);
444
445	/*
446	 * Determine whether we must use the 503 serial interface.
447	 */
448	fxp_read_eeprom(sc, &data, 6, 1);
449	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
450	    (data & FXP_PHY_SERIAL_ONLY))
451		sc->flags &= FXP_FLAG_SERIAL_MEDIA;
452
453	/*
454	 * Find out the basic controller type; we currently only
455	 * differentiate between a 82557 and greater.
456	 */
457	fxp_read_eeprom(sc, &data, 5, 1);
458	if ((data >> 8) == 1)
459		sc->chip = FXP_CHIP_82557;
460
461	/*
462	 * If we are not a 82557 chip, we can enable extended features.
463	 */
464	if (sc->chip != FXP_CHIP_82557) {
465		/*
466		 * If there is a valid cacheline size (8 or 16 dwords),
467		 * then turn on MWI.
468		 */
469		if (pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
470			sc->flags |= FXP_FLAG_MWI_ENABLE;
471
472		/* turn on the extended TxCB feature */
473		sc->flags |= FXP_FLAG_EXT_TXCB;
474#if NVLAN > 0
475		/* enable reception of long frames for VLAN */
476		sc->flags |= FXP_FLAG_LONG_PKT_EN;
477#endif
478	}
479
480	/*
481	 * Read MAC address.
482	 */
483	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
484	device_printf(dev, "Ethernet address %6D%s\n",
485	    sc->arpcom.ac_enaddr, ":",
486	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
487	if (bootverbose) {
488		device_printf(dev, "PCI IDs: %04x %04x %04x %04x\n",
489		    pci_get_vendor(dev), pci_get_device(dev),
490		    pci_get_subvendor(dev), pci_get_subdevice(dev));
491		device_printf(dev, "Chip Type: %d\n", sc->chip);
492	}
493
494	/*
495	 * If this is only a 10Mbps device, then there is no MII, and
496	 * the PHY will use a serial interface instead.
497	 *
498	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
499	 * doesn't have a programming interface of any sort.  The
500	 * media is sensed automatically based on how the link partner
501	 * is configured.  This is, in essence, manual configuration.
502	 */
503	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
504		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
505		    fxp_serial_ifmedia_sts);
506		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
507		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
508	} else {
509		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
510		    fxp_ifmedia_sts)) {
511	                device_printf(dev, "MII without any PHY!\n");
512			error = ENXIO;
513			goto fail;
514		}
515	}
516
517	ifp = &sc->arpcom.ac_if;
518	ifp->if_unit = device_get_unit(dev);
519	ifp->if_name = "fxp";
520	ifp->if_output = ether_output;
521	ifp->if_baudrate = 100000000;
522	ifp->if_init = fxp_init;
523	ifp->if_softc = sc;
524	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
525	ifp->if_ioctl = fxp_ioctl;
526	ifp->if_start = fxp_start;
527	ifp->if_watchdog = fxp_watchdog;
528
529	/*
530	 * Attach the interface.
531	 */
532	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
533
534#if NVLAN > 0
535	/*
536	 * Tell the upper layer(s) we support long frames.
537	 */
538	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
539#endif
540
541	/*
542	 * Let the system queue as many packets as we have available
543	 * TX descriptors.
544	 */
545	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
546
547	splx(s);
548	return (0);
549
550failmem:
551	device_printf(dev, "Failed to malloc memory\n");
552	error = ENOMEM;
553fail:
554	splx(s);
555	fxp_release(sc);
556	return (error);
557}
558
559/*
560 * release all resources
561 */
562static void
563fxp_release(struct fxp_softc *sc)
564{
565
566	bus_generic_detach(sc->dev);
567	if (sc->miibus)
568		device_delete_child(sc->dev, sc->miibus);
569
570	if (sc->cbl_base)
571		free(sc->cbl_base, M_DEVBUF);
572	if (sc->fxp_stats)
573		free(sc->fxp_stats, M_DEVBUF);
574	if (sc->mcsp)
575		free(sc->mcsp, M_DEVBUF);
576	if (sc->rfa_headm)
577		m_freem(sc->rfa_headm);
578
579	if (sc->ih)
580		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
581	if (sc->irq)
582		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
583	if (sc->mem)
584		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
585	mtx_destroy(&sc->sc_mtx);
586}
587
588/*
589 * Detach interface.
590 */
591static int
592fxp_detach(device_t dev)
593{
594	struct fxp_softc *sc = device_get_softc(dev);
595	int s;
596
597	s = splimp();
598
599	/*
600	 * Stop DMA and drop transmit queue.
601	 */
602	fxp_stop(sc);
603
604	/*
605	 * Close down routes etc.
606	 */
607	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
608
609	/*
610	 * Free all media structures.
611	 */
612	ifmedia_removeall(&sc->sc_media);
613
614	splx(s);
615
616	/* Release our allocated resources. */
617	fxp_release(sc);
618
619	return (0);
620}
621
622/*
623 * Device shutdown routine. Called at system shutdown after sync. The
624 * main purpose of this routine is to shut off receiver DMA so that
625 * kernel memory doesn't get clobbered during warmboot.
626 */
627static int
628fxp_shutdown(device_t dev)
629{
630	/*
631	 * Make sure that DMA is disabled prior to reboot. Not doing
632	 * do could allow DMA to corrupt kernel memory during the
633	 * reboot before the driver initializes.
634	 */
635	fxp_stop((struct fxp_softc *) device_get_softc(dev));
636	return (0);
637}
638
639/*
640 * Device suspend routine.  Stop the interface and save some PCI
641 * settings in case the BIOS doesn't restore them properly on
642 * resume.
643 */
644static int
645fxp_suspend(device_t dev)
646{
647	struct fxp_softc *sc = device_get_softc(dev);
648	int i, s;
649
650	s = splimp();
651
652	fxp_stop(sc);
653
654	for (i=0; i<5; i++)
655		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
656	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
657	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
658	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
659	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
660
661	sc->suspended = 1;
662
663	splx(s);
664	return (0);
665}
666
667/*
668 * Device resume routine.  Restore some PCI settings in case the BIOS
669 * doesn't, re-enable busmastering, and restart the interface if
670 * appropriate.
671 */
672static int
673fxp_resume(device_t dev)
674{
675	struct fxp_softc *sc = device_get_softc(dev);
676	struct ifnet *ifp = &sc->sc_if;
677	u_int16_t pci_command;
678	int i, s;
679
680	s = splimp();
681
682	/* better way to do this? */
683	for (i=0; i<5; i++)
684		pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
685	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
686	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
687	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
688	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
689
690	/* reenable busmastering */
691	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
692	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
693	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
694
695	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
696	DELAY(10);
697
698	/* reinitialize interface if necessary */
699	if (ifp->if_flags & IFF_UP)
700		fxp_init(sc);
701
702	sc->suspended = 0;
703
704	splx(s);
705	return (0);
706}
707
708/*
709 * Read from the serial EEPROM. Basically, you manually shift in
710 * the read opcode (one bit at a time) and then shift in the address,
711 * and then you shift out the data (all of this one bit at a time).
712 * The word size is 16 bits, so you have to provide the address for
713 * every 16 bits of data.
714 */
715static u_int16_t
716fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
717{
718	u_int16_t reg, data;
719	int x;
720
721	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
722	/*
723	 * Shift in read opcode.
724	 */
725	for (x = 1 << 2; x; x >>= 1) {
726		if (FXP_EEPROM_OPC_READ & x)
727			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
728		else
729			reg = FXP_EEPROM_EECS;
730		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
731		DELAY(1);
732		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
733		DELAY(1);
734		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
735		DELAY(1);
736	}
737	/*
738	 * Shift in address.
739	 */
740	data = 0;
741	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
742		if (offset & x)
743			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
744		else
745			reg = FXP_EEPROM_EECS;
746		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
747		DELAY(1);
748		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
749		DELAY(1);
750		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
751		DELAY(1);
752		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
753		data++;
754		if (autosize && reg == 0) {
755			sc->eeprom_size = data;
756			break;
757		}
758	}
759	/*
760	 * Shift out data.
761	 */
762	data = 0;
763	reg = FXP_EEPROM_EECS;
764	for (x = 1 << 15; x; x >>= 1) {
765		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
766		DELAY(1);
767		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
768			data |= x;
769		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
770		DELAY(1);
771	}
772	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
773	DELAY(1);
774
775	return (data);
776}
777
778/*
779 * From NetBSD:
780 *
781 * Figure out EEPROM size.
782 *
783 * 559's can have either 64-word or 256-word EEPROMs, the 558
784 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
785 * talks about the existance of 16 to 256 word EEPROMs.
786 *
787 * The only known sizes are 64 and 256, where the 256 version is used
788 * by CardBus cards to store CIS information.
789 *
790 * The address is shifted in msb-to-lsb, and after the last
791 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
792 * after which follows the actual data. We try to detect this zero, by
793 * probing the data-out bit in the EEPROM control register just after
794 * having shifted in a bit. If the bit is zero, we assume we've
795 * shifted enough address bits. The data-out should be tri-state,
796 * before this, which should translate to a logical one.
797 *
798 * Other ways to do this would be to try to read a register with known
799 * contents with a varying number of address bits, but no such
800 * register seem to be available. The high bits of register 10 are 01
801 * on the 558 and 559, but apparently not on the 557.
802 *
803 * The Linux driver computes a checksum on the EEPROM data, but the
804 * value of this checksum is not very well documented.
805 */
806static void
807fxp_autosize_eeprom(struct fxp_softc *sc)
808{
809
810	/* guess maximum size of 256 words */
811	sc->eeprom_size = 8;
812
813	/* autosize */
814	(void) fxp_eeprom_getword(sc, 0, 1);
815}
816
817static void
818fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
819{
820	int i;
821
822	for (i = 0; i < words; i++)
823		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
824}
825
826/*
827 * Start packet transmission on the interface.
828 */
829static void
830fxp_start(struct ifnet *ifp)
831{
832	struct fxp_softc *sc = ifp->if_softc;
833	struct fxp_cb_tx *txp;
834
835	/*
836	 * See if we need to suspend xmit until the multicast filter
837	 * has been reprogrammed (which can only be done at the head
838	 * of the command chain).
839	 */
840	if (sc->need_mcsetup) {
841		return;
842	}
843
844	txp = NULL;
845
846	/*
847	 * We're finished if there is nothing more to add to the list or if
848	 * we're all filled up with buffers to transmit.
849	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
850	 *       a NOP command when needed.
851	 */
852	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
853		struct mbuf *m, *mb_head;
854		int segment;
855
856		/*
857		 * Grab a packet to transmit.
858		 */
859		IF_DEQUEUE(&ifp->if_snd, mb_head);
860
861		/*
862		 * Get pointer to next available tx desc.
863		 */
864		txp = sc->cbl_last->next;
865
866		/*
867		 * Go through each of the mbufs in the chain and initialize
868		 * the transmit buffer descriptors with the physical address
869		 * and size of the mbuf.
870		 */
871tbdinit:
872		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
873			if (m->m_len != 0) {
874				if (segment == FXP_NTXSEG)
875					break;
876				txp->tbd[segment].tb_addr =
877				    vtophys(mtod(m, vm_offset_t));
878				txp->tbd[segment].tb_size = m->m_len;
879				segment++;
880			}
881		}
882		if (m != NULL) {
883			struct mbuf *mn;
884
885			/*
886			 * We ran out of segments. We have to recopy this
887			 * mbuf chain first. Bail out if we can't get the
888			 * new buffers.
889			 */
890			MGETHDR(mn, M_DONTWAIT, MT_DATA);
891			if (mn == NULL) {
892				m_freem(mb_head);
893				break;
894			}
895			if (mb_head->m_pkthdr.len > MHLEN) {
896				MCLGET(mn, M_DONTWAIT);
897				if ((mn->m_flags & M_EXT) == 0) {
898					m_freem(mn);
899					m_freem(mb_head);
900					break;
901				}
902			}
903			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
904			    mtod(mn, caddr_t));
905			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
906			m_freem(mb_head);
907			mb_head = mn;
908			goto tbdinit;
909		}
910
911		txp->tbd_number = segment;
912		txp->mb_head = mb_head;
913		txp->cb_status = 0;
914		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
915			txp->cb_command =
916			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
917			    FXP_CB_COMMAND_S;
918		} else {
919			txp->cb_command =
920			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
921			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
922			/*
923			 * Set a 5 second timer just in case we don't hear
924			 * from the card again.
925			 */
926			ifp->if_timer = 5;
927		}
928		txp->tx_threshold = tx_threshold;
929
930		/*
931		 * Advance the end of list forward.
932		 */
933
934#ifdef __alpha__
935		/*
936		 * On platforms which can't access memory in 16-bit
937		 * granularities, we must prevent the card from DMA'ing
938		 * up the status while we update the command field.
939		 * This could cause us to overwrite the completion status.
940		 */
941		atomic_clear_short(&sc->cbl_last->cb_command,
942		    FXP_CB_COMMAND_S);
943#else
944		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
945#endif /*__alpha__*/
946		sc->cbl_last = txp;
947
948		/*
949		 * Advance the beginning of the list forward if there are
950		 * no other packets queued (when nothing is queued, cbl_first
951		 * sits on the last TxCB that was sent out).
952		 */
953		if (sc->tx_queued == 0)
954			sc->cbl_first = txp;
955
956		sc->tx_queued++;
957
958		/*
959		 * Pass packet to bpf if there is a listener.
960		 */
961		if (ifp->if_bpf)
962			bpf_mtap(ifp, mb_head);
963	}
964
965	/*
966	 * We're finished. If we added to the list, issue a RESUME to get DMA
967	 * going again if suspended.
968	 */
969	if (txp != NULL) {
970		fxp_scb_wait(sc);
971		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
972	}
973}
974
975/*
976 * Process interface interrupts.
977 */
978static void
979fxp_intr(void *xsc)
980{
981	struct fxp_softc *sc = xsc;
982	struct ifnet *ifp = &sc->sc_if;
983	u_int8_t statack;
984
985
986	if (sc->suspended) {
987		return;
988	}
989
990	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
991		/*
992		 * First ACK all the interrupts in this pass.
993		 */
994		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
995
996		/*
997		 * Free any finished transmit mbuf chains.
998		 *
999		 * Handle the CNA event likt a CXTNO event. It used to
1000		 * be that this event (control unit not ready) was not
1001		 * encountered, but it is now with the SMPng modifications.
1002		 * The exact sequence of events that occur when the interface
1003		 * is brought up are different now, and if this event
1004		 * goes unhandled, the configuration/rxfilter setup sequence
1005		 * can stall for several seconds. The result is that no
1006		 * packets go out onto the wire for about 5 to 10 seconds
1007		 * after the interface is ifconfig'ed for the first time.
1008		 */
1009		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1010			struct fxp_cb_tx *txp;
1011
1012			for (txp = sc->cbl_first; sc->tx_queued &&
1013			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1014			    txp = txp->next) {
1015				if (txp->mb_head != NULL) {
1016					m_freem(txp->mb_head);
1017					txp->mb_head = NULL;
1018				}
1019				sc->tx_queued--;
1020			}
1021			sc->cbl_first = txp;
1022			ifp->if_timer = 0;
1023			if (sc->tx_queued == 0) {
1024				if (sc->need_mcsetup)
1025					fxp_mc_setup(sc);
1026			}
1027			/*
1028			 * Try to start more packets transmitting.
1029			 */
1030			if (ifp->if_snd.ifq_head != NULL)
1031				fxp_start(ifp);
1032		}
1033		/*
1034		 * Process receiver interrupts. If a no-resource (RNR)
1035		 * condition exists, get whatever packets we can and
1036		 * re-start the receiver.
1037		 */
1038		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1039			struct mbuf *m;
1040			struct fxp_rfa *rfa;
1041rcvloop:
1042			m = sc->rfa_headm;
1043			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1044			    RFA_ALIGNMENT_FUDGE);
1045
1046			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1047				/*
1048				 * Remove first packet from the chain.
1049				 */
1050				sc->rfa_headm = m->m_next;
1051				m->m_next = NULL;
1052
1053				/*
1054				 * Add a new buffer to the receive chain.
1055				 * If this fails, the old buffer is recycled
1056				 * instead.
1057				 */
1058				if (fxp_add_rfabuf(sc, m) == 0) {
1059					struct ether_header *eh;
1060					int total_len;
1061
1062					total_len = rfa->actual_size &
1063					    (MCLBYTES - 1);
1064					if (total_len <
1065					    sizeof(struct ether_header)) {
1066						m_freem(m);
1067						goto rcvloop;
1068					}
1069#if NVLAN > 0
1070					/*
1071					 * Drop the packet if it has CRC
1072					 * errors.  This test is only needed
1073					 * when doing 802.1q VLAN on the 82557
1074					 * chip.
1075					 */
1076					if (rfa->rfa_status &
1077					    FXP_RFA_STATUS_CRC) {
1078						m_freem(m);
1079						goto rcvloop;
1080					}
1081#endif
1082					m->m_pkthdr.rcvif = ifp;
1083					m->m_pkthdr.len = m->m_len = total_len;
1084					eh = mtod(m, struct ether_header *);
1085					m->m_data +=
1086					    sizeof(struct ether_header);
1087					m->m_len -=
1088					    sizeof(struct ether_header);
1089					m->m_pkthdr.len = m->m_len;
1090					ether_input(ifp, eh, m);
1091				}
1092				goto rcvloop;
1093			}
1094			if (statack & FXP_SCB_STATACK_RNR) {
1095				fxp_scb_wait(sc);
1096				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1097				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1098					RFA_ALIGNMENT_FUDGE);
1099				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1100				    FXP_SCB_COMMAND_RU_START);
1101			}
1102		}
1103	}
1104}
1105
1106/*
1107 * Update packet in/out/collision statistics. The i82557 doesn't
1108 * allow you to access these counters without doing a fairly
1109 * expensive DMA to get _all_ of the statistics it maintains, so
1110 * we do this operation here only once per second. The statistics
1111 * counters in the kernel are updated from the previous dump-stats
1112 * DMA and then a new dump-stats DMA is started. The on-chip
1113 * counters are zeroed when the DMA completes. If we can't start
1114 * the DMA immediately, we don't wait - we just prepare to read
1115 * them again next time.
1116 */
1117static void
1118fxp_tick(void *xsc)
1119{
1120	struct fxp_softc *sc = xsc;
1121	struct ifnet *ifp = &sc->sc_if;
1122	struct fxp_stats *sp = sc->fxp_stats;
1123	struct fxp_cb_tx *txp;
1124	int s;
1125
1126	ifp->if_opackets += sp->tx_good;
1127	ifp->if_collisions += sp->tx_total_collisions;
1128	if (sp->rx_good) {
1129		ifp->if_ipackets += sp->rx_good;
1130		sc->rx_idle_secs = 0;
1131	} else {
1132		/*
1133		 * Receiver's been idle for another second.
1134		 */
1135		sc->rx_idle_secs++;
1136	}
1137	ifp->if_ierrors +=
1138	    sp->rx_crc_errors +
1139	    sp->rx_alignment_errors +
1140	    sp->rx_rnr_errors +
1141	    sp->rx_overrun_errors;
1142	/*
1143	 * If any transmit underruns occured, bump up the transmit
1144	 * threshold by another 512 bytes (64 * 8).
1145	 */
1146	if (sp->tx_underruns) {
1147		ifp->if_oerrors += sp->tx_underruns;
1148		if (tx_threshold < 192)
1149			tx_threshold += 64;
1150	}
1151	s = splimp();
1152	/*
1153	 * Release any xmit buffers that have completed DMA. This isn't
1154	 * strictly necessary to do here, but it's advantagous for mbufs
1155	 * with external storage to be released in a timely manner rather
1156	 * than being defered for a potentially long time. This limits
1157	 * the delay to a maximum of one second.
1158	 */
1159	for (txp = sc->cbl_first; sc->tx_queued &&
1160	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1161	    txp = txp->next) {
1162		if (txp->mb_head != NULL) {
1163			m_freem(txp->mb_head);
1164			txp->mb_head = NULL;
1165		}
1166		sc->tx_queued--;
1167	}
1168	sc->cbl_first = txp;
1169	/*
1170	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1171	 * then assume the receiver has locked up and attempt to clear
1172	 * the condition by reprogramming the multicast filter. This is
1173	 * a work-around for a bug in the 82557 where the receiver locks
1174	 * up if it gets certain types of garbage in the syncronization
1175	 * bits prior to the packet header. This bug is supposed to only
1176	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1177	 * mode as well (perhaps due to a 10/100 speed transition).
1178	 */
1179	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1180		sc->rx_idle_secs = 0;
1181		fxp_mc_setup(sc);
1182	}
1183	/*
1184	 * If there is no pending command, start another stats
1185	 * dump. Otherwise punt for now.
1186	 */
1187	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1188		/*
1189		 * Start another stats dump.
1190		 */
1191		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1192		    FXP_SCB_COMMAND_CU_DUMPRESET);
1193	} else {
1194		/*
1195		 * A previous command is still waiting to be accepted.
1196		 * Just zero our copy of the stats and wait for the
1197		 * next timer event to update them.
1198		 */
1199		sp->tx_good = 0;
1200		sp->tx_underruns = 0;
1201		sp->tx_total_collisions = 0;
1202
1203		sp->rx_good = 0;
1204		sp->rx_crc_errors = 0;
1205		sp->rx_alignment_errors = 0;
1206		sp->rx_rnr_errors = 0;
1207		sp->rx_overrun_errors = 0;
1208	}
1209
1210	if (sc->miibus != NULL)
1211		mii_tick(device_get_softc(sc->miibus));
1212
1213	/*
1214	 * Schedule another timeout one second from now.
1215	 */
1216	sc->stat_ch = timeout(fxp_tick, sc, hz);
1217}
1218
1219/*
1220 * Stop the interface. Cancels the statistics updater and resets
1221 * the interface.
1222 */
1223static void
1224fxp_stop(struct fxp_softc *sc)
1225{
1226	struct ifnet *ifp = &sc->sc_if;
1227	struct fxp_cb_tx *txp;
1228	int i;
1229
1230
1231	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1232	ifp->if_timer = 0;
1233
1234	/*
1235	 * Cancel stats updater.
1236	 */
1237	untimeout(fxp_tick, sc, sc->stat_ch);
1238
1239	/*
1240	 * Issue software reset
1241	 */
1242	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1243	DELAY(10);
1244
1245	/*
1246	 * Release any xmit buffers.
1247	 */
1248	txp = sc->cbl_base;
1249	if (txp != NULL) {
1250		for (i = 0; i < FXP_NTXCB; i++) {
1251			if (txp[i].mb_head != NULL) {
1252				m_freem(txp[i].mb_head);
1253				txp[i].mb_head = NULL;
1254			}
1255		}
1256	}
1257	sc->tx_queued = 0;
1258
1259	/*
1260	 * Free all the receive buffers then reallocate/reinitialize
1261	 */
1262	if (sc->rfa_headm != NULL)
1263		m_freem(sc->rfa_headm);
1264	sc->rfa_headm = NULL;
1265	sc->rfa_tailm = NULL;
1266	for (i = 0; i < FXP_NRFABUFS; i++) {
1267		if (fxp_add_rfabuf(sc, NULL) != 0) {
1268			/*
1269			 * This "can't happen" - we're at splimp()
1270			 * and we just freed all the buffers we need
1271			 * above.
1272			 */
1273			panic("fxp_stop: no buffers!");
1274		}
1275	}
1276}
1277
1278/*
1279 * Watchdog/transmission transmit timeout handler. Called when a
1280 * transmission is started on the interface, but no interrupt is
1281 * received before the timeout. This usually indicates that the
1282 * card has wedged for some reason.
1283 */
1284static void
1285fxp_watchdog(struct ifnet *ifp)
1286{
1287	struct fxp_softc *sc = ifp->if_softc;
1288
1289	device_printf(sc->dev, "device timeout\n");
1290	ifp->if_oerrors++;
1291
1292	fxp_init(sc);
1293}
1294
1295static void
1296fxp_init(void *xsc)
1297{
1298	struct fxp_softc *sc = xsc;
1299	struct ifnet *ifp = &sc->sc_if;
1300	struct fxp_cb_config *cbp;
1301	struct fxp_cb_ias *cb_ias;
1302	struct fxp_cb_tx *txp;
1303	int i, prm, s;
1304
1305	s = splimp();
1306	/*
1307	 * Cancel any pending I/O
1308	 */
1309	fxp_stop(sc);
1310
1311	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1312
1313	/*
1314	 * Initialize base of CBL and RFA memory. Loading with zero
1315	 * sets it up for regular linear addressing.
1316	 */
1317	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1318	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1319
1320	fxp_scb_wait(sc);
1321	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1322
1323	/*
1324	 * Initialize base of dump-stats buffer.
1325	 */
1326	fxp_scb_wait(sc);
1327	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1328	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1329
1330	/*
1331	 * We temporarily use memory that contains the TxCB list to
1332	 * construct the config CB. The TxCB list memory is rebuilt
1333	 * later.
1334	 */
1335	cbp = (struct fxp_cb_config *) sc->cbl_base;
1336
1337	/*
1338	 * This bcopy is kind of disgusting, but there are a bunch of must be
1339	 * zero and must be one bits in this structure and this is the easiest
1340	 * way to initialize them all to proper values.
1341	 */
1342	bcopy(fxp_cb_config_template,
1343		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1344		sizeof(fxp_cb_config_template));
1345
1346	cbp->cb_status =	0;
1347	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1348	cbp->link_addr =	-1;	/* (no) next command */
1349	cbp->byte_count =	22;	/* (22) bytes to config */
1350	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1351	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1352	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1353	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1354	cbp->type_enable =	0;	/* actually reserved */
1355	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1356	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1357	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1358	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1359	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1360	cbp->late_scb =		0;	/* (don't) defer SCB update */
1361	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1362	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1363	cbp->ci_int =		1;	/* interrupt on CU idle */
1364	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1365	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1366	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1367#if NVLAN > 0
1368	cbp->save_bf =		sc->chip == FXP_CHIP_82557 ? 1 : prm;
1369#else
1370	cbp->save_bf =		prm;	/* save bad frames */
1371#endif
1372	cbp->disc_short_rx =	!prm;	/* discard short packets */
1373	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1374	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1375	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1376	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1377	cbp->csma_dis =		0;	/* (don't) disable link */
1378	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1379	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1380	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1381	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1382	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1383	cbp->nsai =		1;	/* (don't) disable source addr insert */
1384	cbp->preamble_length =	2;	/* (7 byte) preamble */
1385	cbp->loopback =		0;	/* (don't) loopback */
1386	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1387	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1388	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1389	cbp->promiscuous =	prm;	/* promiscuous mode */
1390	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1391	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1392	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1393	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1394	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1395
1396	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1397	cbp->padding =		1;	/* (do) pad short tx packets */
1398	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1399	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1400	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1401	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1402					/* must set wake_en in PMCSR also */
1403	cbp->force_fdx =	0;	/* (don't) force full duplex */
1404	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1405	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1406	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1407
1408	if (sc->chip == FXP_CHIP_82557) {
1409		/*
1410		 * The 82557 has no hardware flow control, the values
1411		 * below are the defaults for the chip.
1412		 */
1413		cbp->fc_delay_lsb =	0;
1414		cbp->fc_delay_msb =	0x40;
1415		cbp->pri_fc_thresh =	3;
1416		cbp->tx_fc_dis =	0;
1417		cbp->rx_fc_restop =	0;
1418		cbp->rx_fc_restart =	0;
1419		cbp->fc_filter =	0;
1420		cbp->pri_fc_loc =	1;
1421	} else {
1422		cbp->fc_delay_lsb =	0x1f;
1423		cbp->fc_delay_msb =	0x01;
1424		cbp->pri_fc_thresh =	3;
1425		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1426		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1427		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1428		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1429		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1430	}
1431
1432	/*
1433	 * Start the config command/DMA.
1434	 */
1435	fxp_scb_wait(sc);
1436	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1437	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1438	/* ...and wait for it to complete. */
1439	fxp_dma_wait(&cbp->cb_status, sc);
1440
1441	/*
1442	 * Now initialize the station address. Temporarily use the TxCB
1443	 * memory area like we did above for the config CB.
1444	 */
1445	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1446	cb_ias->cb_status = 0;
1447	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1448	cb_ias->link_addr = -1;
1449	bcopy(sc->arpcom.ac_enaddr,
1450	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1451	    sizeof(sc->arpcom.ac_enaddr));
1452
1453	/*
1454	 * Start the IAS (Individual Address Setup) command/DMA.
1455	 */
1456	fxp_scb_wait(sc);
1457	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1458	/* ...and wait for it to complete. */
1459	fxp_dma_wait(&cb_ias->cb_status, sc);
1460
1461	/*
1462	 * Initialize transmit control block (TxCB) list.
1463	 */
1464
1465	txp = sc->cbl_base;
1466	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1467	for (i = 0; i < FXP_NTXCB; i++) {
1468		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1469		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1470		txp[i].link_addr =
1471		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1472		if (sc->flags & FXP_FLAG_EXT_TXCB)
1473			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1474		else
1475			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1476		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1477	}
1478	/*
1479	 * Set the suspend flag on the first TxCB and start the control
1480	 * unit. It will execute the NOP and then suspend.
1481	 */
1482	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1483	sc->cbl_first = sc->cbl_last = txp;
1484	sc->tx_queued = 1;
1485
1486	fxp_scb_wait(sc);
1487	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1488
1489	/*
1490	 * Initialize receiver buffer area - RFA.
1491	 */
1492	fxp_scb_wait(sc);
1493	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1494	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1495	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1496
1497	/*
1498	 * Set current media.
1499	 */
1500	if (sc->miibus != NULL)
1501		mii_mediachg(device_get_softc(sc->miibus));
1502
1503	ifp->if_flags |= IFF_RUNNING;
1504	ifp->if_flags &= ~IFF_OACTIVE;
1505
1506	/*
1507	 * Enable interrupts.
1508	 */
1509	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1510	splx(s);
1511
1512	/*
1513	 * Start stats updater.
1514	 */
1515	sc->stat_ch = timeout(fxp_tick, sc, hz);
1516}
1517
1518static int
1519fxp_serial_ifmedia_upd(struct ifnet *ifp)
1520{
1521
1522	return (0);
1523}
1524
1525static void
1526fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1527{
1528
1529	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1530}
1531
1532/*
1533 * Change media according to request.
1534 */
1535static int
1536fxp_ifmedia_upd(struct ifnet *ifp)
1537{
1538	struct fxp_softc *sc = ifp->if_softc;
1539	struct mii_data *mii;
1540
1541	mii = device_get_softc(sc->miibus);
1542	mii_mediachg(mii);
1543	return (0);
1544}
1545
1546/*
1547 * Notify the world which media we're using.
1548 */
1549static void
1550fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1551{
1552	struct fxp_softc *sc = ifp->if_softc;
1553	struct mii_data *mii;
1554
1555	mii = device_get_softc(sc->miibus);
1556	mii_pollstat(mii);
1557	ifmr->ifm_active = mii->mii_media_active;
1558	ifmr->ifm_status = mii->mii_media_status;
1559}
1560
1561/*
1562 * Add a buffer to the end of the RFA buffer list.
1563 * Return 0 if successful, 1 for failure. A failure results in
1564 * adding the 'oldm' (if non-NULL) on to the end of the list -
1565 * tossing out its old contents and recycling it.
1566 * The RFA struct is stuck at the beginning of mbuf cluster and the
1567 * data pointer is fixed up to point just past it.
1568 */
1569static int
1570fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1571{
1572	u_int32_t v;
1573	struct mbuf *m;
1574	struct fxp_rfa *rfa, *p_rfa;
1575
1576	MGETHDR(m, M_DONTWAIT, MT_DATA);
1577	if (m != NULL) {
1578		MCLGET(m, M_DONTWAIT);
1579		if ((m->m_flags & M_EXT) == 0) {
1580			m_freem(m);
1581			if (oldm == NULL)
1582				return 1;
1583			m = oldm;
1584			m->m_data = m->m_ext.ext_buf;
1585		}
1586	} else {
1587		if (oldm == NULL)
1588			return 1;
1589		m = oldm;
1590		m->m_data = m->m_ext.ext_buf;
1591	}
1592
1593	/*
1594	 * Move the data pointer up so that the incoming data packet
1595	 * will be 32-bit aligned.
1596	 */
1597	m->m_data += RFA_ALIGNMENT_FUDGE;
1598
1599	/*
1600	 * Get a pointer to the base of the mbuf cluster and move
1601	 * data start past it.
1602	 */
1603	rfa = mtod(m, struct fxp_rfa *);
1604	m->m_data += sizeof(struct fxp_rfa);
1605	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1606
1607	/*
1608	 * Initialize the rest of the RFA.  Note that since the RFA
1609	 * is misaligned, we cannot store values directly.  Instead,
1610	 * we use an optimized, inline copy.
1611	 */
1612
1613	rfa->rfa_status = 0;
1614	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1615	rfa->actual_size = 0;
1616
1617	v = -1;
1618	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1619	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1620
1621	/*
1622	 * If there are other buffers already on the list, attach this
1623	 * one to the end by fixing up the tail to point to this one.
1624	 */
1625	if (sc->rfa_headm != NULL) {
1626		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1627		    RFA_ALIGNMENT_FUDGE);
1628		sc->rfa_tailm->m_next = m;
1629		v = vtophys(rfa);
1630		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1631		p_rfa->rfa_control = 0;
1632	} else {
1633		sc->rfa_headm = m;
1634	}
1635	sc->rfa_tailm = m;
1636
1637	return (m == oldm);
1638}
1639
1640static volatile int
1641fxp_miibus_readreg(device_t dev, int phy, int reg)
1642{
1643	struct fxp_softc *sc = device_get_softc(dev);
1644	int count = 10000;
1645	int value;
1646
1647	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1648	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1649
1650	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1651	    && count--)
1652		DELAY(10);
1653
1654	if (count <= 0)
1655		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1656
1657	return (value & 0xffff);
1658}
1659
1660static void
1661fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1662{
1663	struct fxp_softc *sc = device_get_softc(dev);
1664	int count = 10000;
1665
1666	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1667	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1668	    (value & 0xffff));
1669
1670	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1671	    count--)
1672		DELAY(10);
1673
1674	if (count <= 0)
1675		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1676}
1677
1678static int
1679fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1680{
1681	struct fxp_softc *sc = ifp->if_softc;
1682	struct ifreq *ifr = (struct ifreq *)data;
1683	struct mii_data *mii;
1684	int s, error = 0;
1685
1686	s = splimp();
1687
1688	switch (command) {
1689	case SIOCSIFADDR:
1690	case SIOCGIFADDR:
1691	case SIOCSIFMTU:
1692		error = ether_ioctl(ifp, command, data);
1693		break;
1694
1695	case SIOCSIFFLAGS:
1696		if (ifp->if_flags & IFF_ALLMULTI)
1697			sc->flags |= FXP_FLAG_ALL_MCAST;
1698		else
1699			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1700
1701		/*
1702		 * If interface is marked up and not running, then start it.
1703		 * If it is marked down and running, stop it.
1704		 * XXX If it's up then re-initialize it. This is so flags
1705		 * such as IFF_PROMISC are handled.
1706		 */
1707		if (ifp->if_flags & IFF_UP) {
1708			fxp_init(sc);
1709		} else {
1710			if (ifp->if_flags & IFF_RUNNING)
1711				fxp_stop(sc);
1712		}
1713		break;
1714
1715	case SIOCADDMULTI:
1716	case SIOCDELMULTI:
1717		if (ifp->if_flags & IFF_ALLMULTI)
1718			sc->flags |= FXP_FLAG_ALL_MCAST;
1719		else
1720			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1721		/*
1722		 * Multicast list has changed; set the hardware filter
1723		 * accordingly.
1724		 */
1725		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1726			fxp_mc_setup(sc);
1727		/*
1728		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1729		 * again rather than else {}.
1730		 */
1731		if (sc->flags & FXP_FLAG_ALL_MCAST)
1732			fxp_init(sc);
1733		error = 0;
1734		break;
1735
1736	case SIOCSIFMEDIA:
1737	case SIOCGIFMEDIA:
1738		if (sc->miibus != NULL) {
1739			mii = device_get_softc(sc->miibus);
1740                        error = ifmedia_ioctl(ifp, ifr,
1741                            &mii->mii_media, command);
1742		} else {
1743                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1744		}
1745		break;
1746
1747	default:
1748		error = EINVAL;
1749	}
1750	splx(s);
1751	return (error);
1752}
1753
1754/*
1755 * Program the multicast filter.
1756 *
1757 * We have an artificial restriction that the multicast setup command
1758 * must be the first command in the chain, so we take steps to ensure
1759 * this. By requiring this, it allows us to keep up the performance of
1760 * the pre-initialized command ring (esp. link pointers) by not actually
1761 * inserting the mcsetup command in the ring - i.e. its link pointer
1762 * points to the TxCB ring, but the mcsetup descriptor itself is not part
1763 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1764 * lead into the regular TxCB ring when it completes.
1765 *
1766 * This function must be called at splimp.
1767 */
1768static void
1769fxp_mc_setup(struct fxp_softc *sc)
1770{
1771	struct fxp_cb_mcs *mcsp = sc->mcsp;
1772	struct ifnet *ifp = &sc->sc_if;
1773	struct ifmultiaddr *ifma;
1774	int nmcasts;
1775	int count;
1776
1777	/*
1778	 * If there are queued commands, we must wait until they are all
1779	 * completed. If we are already waiting, then add a NOP command
1780	 * with interrupt option so that we're notified when all commands
1781	 * have been completed - fxp_start() ensures that no additional
1782	 * TX commands will be added when need_mcsetup is true.
1783	 */
1784	if (sc->tx_queued) {
1785		struct fxp_cb_tx *txp;
1786
1787		/*
1788		 * need_mcsetup will be true if we are already waiting for the
1789		 * NOP command to be completed (see below). In this case, bail.
1790		 */
1791		if (sc->need_mcsetup)
1792			return;
1793		sc->need_mcsetup = 1;
1794
1795		/*
1796		 * Add a NOP command with interrupt so that we are notified when all
1797		 * TX commands have been processed.
1798		 */
1799		txp = sc->cbl_last->next;
1800		txp->mb_head = NULL;
1801		txp->cb_status = 0;
1802		txp->cb_command = FXP_CB_COMMAND_NOP |
1803		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1804		/*
1805		 * Advance the end of list forward.
1806		 */
1807		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1808		sc->cbl_last = txp;
1809		sc->tx_queued++;
1810		/*
1811		 * Issue a resume in case the CU has just suspended.
1812		 */
1813		fxp_scb_wait(sc);
1814		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1815		/*
1816		 * Set a 5 second timer just in case we don't hear from the
1817		 * card again.
1818		 */
1819		ifp->if_timer = 5;
1820
1821		return;
1822	}
1823	sc->need_mcsetup = 0;
1824
1825	/*
1826	 * Initialize multicast setup descriptor.
1827	 */
1828	mcsp->next = sc->cbl_base;
1829	mcsp->mb_head = NULL;
1830	mcsp->cb_status = 0;
1831	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
1832	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1833	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1834
1835	nmcasts = 0;
1836	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
1837#if __FreeBSD_version < 500000
1838		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1839#else
1840		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1841#endif
1842			if (ifma->ifma_addr->sa_family != AF_LINK)
1843				continue;
1844			if (nmcasts >= MAXMCADDR) {
1845				sc->flags |= FXP_FLAG_ALL_MCAST;
1846				nmcasts = 0;
1847				break;
1848			}
1849			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1850			    (void *)(uintptr_t)(volatile void *)
1851				&sc->mcsp->mc_addr[nmcasts][0], 6);
1852			nmcasts++;
1853		}
1854	}
1855	mcsp->mc_cnt = nmcasts * 6;
1856	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1857	sc->tx_queued = 1;
1858
1859	/*
1860	 * Wait until command unit is not active. This should never
1861	 * be the case when nothing is queued, but make sure anyway.
1862	 */
1863	count = 100;
1864	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1865	    FXP_SCB_CUS_ACTIVE && --count)
1866		DELAY(10);
1867	if (count == 0) {
1868		device_printf(sc->dev, "command queue timeout\n");
1869		return;
1870	}
1871
1872	/*
1873	 * Start the multicast setup command.
1874	 */
1875	fxp_scb_wait(sc);
1876	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1877	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1878
1879	ifp->if_timer = 2;
1880	return;
1881}
1882