if_fxp.c revision 67090
1/*
2 * Copyright (c) 1995, David Greenman
3 * All rights reserved.
4 *
5 * Modifications to support media selection:
6 * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 67090 2000-10-13 18:59:29Z cp $
31 */
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59#include <machine/mutex.h>
60
61#include <net/ethernet.h>
62#include <net/if_arp.h>
63
64#include <vm/vm.h>		/* for vtophys */
65#include <vm/pmap.h>		/* for vtophys */
66#include <machine/clock.h>	/* for DELAY */
67
68#include <pci/pcivar.h>
69#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
70#include <pci/if_fxpreg.h>
71#include <pci/if_fxpvar.h>
72
73#ifdef __alpha__		/* XXX */
74/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
75#undef vtophys
76#define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
77#endif /* __alpha__ */
78
79/*
80 * NOTE!  On the Alpha, we have an alignment constraint.  The
81 * card DMAs the packet immediately following the RFA.  However,
82 * the first thing in the packet is a 14-byte Ethernet header.
83 * This means that the packet is misaligned.  To compensate,
84 * we actually offset the RFA 2 bytes into the cluster.  This
85 * alignes the packet after the Ethernet header at a 32-bit
86 * boundary.  HOWEVER!  This means that the RFA is misaligned!
87 */
88#define	RFA_ALIGNMENT_FUDGE	2
89
90/*
91 * Inline function to copy a 16-bit aligned 32-bit quantity.
92 */
93static __inline void fxp_lwcopy __P((volatile u_int32_t *,
94	volatile u_int32_t *));
95static __inline void
96fxp_lwcopy(src, dst)
97	volatile u_int32_t *src, *dst;
98{
99#ifdef __i386__
100	*dst = *src;
101#else
102	volatile u_int16_t *a = (volatile u_int16_t *)src;
103	volatile u_int16_t *b = (volatile u_int16_t *)dst;
104
105	b[0] = a[0];
106	b[1] = a[1];
107#endif
108}
109
110/*
111 * Template for default configuration parameters.
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x80, 0x2,		/* cb_command */
117	0xff, 0xff, 0xff, 0xff,	/* link_addr */
118	0x16,	/*  0 */
119	0x8,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x80,	/*  5 */
124	0xb2,	/*  6 */
125	0x3,	/*  7 */
126	0x1,	/*  8 */
127	0x0,	/*  9 */
128	0x26,	/* 10 */
129	0x0,	/* 11 */
130	0x60,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf3,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142/* Supported media types. */
143struct fxp_supported_media {
144	const int	fsm_phy;	/* PHY type */
145	const int	*fsm_media;	/* the media array */
146	const int	fsm_nmedia;	/* the number of supported media */
147	const int	fsm_defmedia;	/* default media for this PHY */
148};
149
150static const int fxp_media_standard[] = {
151	IFM_ETHER|IFM_10_T,
152	IFM_ETHER|IFM_10_T|IFM_FDX,
153	IFM_ETHER|IFM_100_TX,
154	IFM_ETHER|IFM_100_TX|IFM_FDX,
155	IFM_ETHER|IFM_AUTO,
156};
157#define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
158
159static const int fxp_media_default[] = {
160	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
161};
162#define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
163
164static const struct fxp_supported_media fxp_media[] = {
165	{ FXP_PHY_DP83840, fxp_media_standard,
166	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
167	  FXP_MEDIA_STANDARD_DEFMEDIA },
168	{ FXP_PHY_DP83840A, fxp_media_standard,
169	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
170	  FXP_MEDIA_STANDARD_DEFMEDIA },
171	{ FXP_PHY_82553A, fxp_media_standard,
172	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
173	  FXP_MEDIA_STANDARD_DEFMEDIA },
174	{ FXP_PHY_82553C, fxp_media_standard,
175	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
176	  FXP_MEDIA_STANDARD_DEFMEDIA },
177	{ FXP_PHY_82555, fxp_media_standard,
178	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
179	  FXP_MEDIA_STANDARD_DEFMEDIA },
180	{ FXP_PHY_82555B, fxp_media_standard,
181	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
182	  FXP_MEDIA_STANDARD_DEFMEDIA },
183	{ FXP_PHY_80C24, fxp_media_default,
184	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
185	  FXP_MEDIA_DEFAULT_DEFMEDIA },
186};
187#define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
188
189static int fxp_mediachange	__P((struct ifnet *));
190static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
191static void fxp_set_media	__P((struct fxp_softc *, int));
192static __inline void fxp_scb_wait __P((struct fxp_softc *));
193static __inline void fxp_dma_wait __P((volatile u_int16_t *, struct fxp_softc *sc));
194static void fxp_intr		__P((void *));
195static void fxp_start		__P((struct ifnet *));
196static int fxp_ioctl		__P((struct ifnet *,
197				     u_long, caddr_t));
198static void fxp_init		__P((void *));
199static void fxp_stop		__P((struct fxp_softc *));
200static void fxp_watchdog	__P((struct ifnet *));
201static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
202static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
203static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
204static void fxp_autosize_eeprom __P((struct fxp_softc *));
205static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
206				     int, int));
207static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
208static void fxp_stats_update	__P((void *));
209static void fxp_mc_setup	__P((struct fxp_softc *));
210
211/*
212 * Set initial transmit threshold at 64 (512 bytes). This is
213 * increased by 64 (512 bytes) at a time, to maximum of 192
214 * (1536 bytes), if an underrun occurs.
215 */
216static int tx_threshold = 64;
217
218/*
219 * Number of transmit control blocks. This determines the number
220 * of transmit buffers that can be chained in the CB list.
221 * This must be a power of two.
222 */
223#define FXP_NTXCB	128
224
225/*
226 * Number of completed TX commands at which point an interrupt
227 * will be generated to garbage collect the attached buffers.
228 * Must be at least one less than FXP_NTXCB, and should be
229 * enough less so that the transmitter doesn't becomes idle
230 * during the buffer rundown (which would reduce performance).
231 */
232#define FXP_CXINT_THRESH 120
233
234/*
235 * TxCB list index mask. This is used to do list wrap-around.
236 */
237#define FXP_TXCB_MASK	(FXP_NTXCB - 1)
238
239/*
240 * Number of receive frame area buffers. These are large so chose
241 * wisely.
242 */
243#define FXP_NRFABUFS	64
244
245/*
246 * Maximum number of seconds that the receiver can be idle before we
247 * assume it's dead and attempt to reset it by reprogramming the
248 * multicast filter. This is part of a work-around for a bug in the
249 * NIC. See fxp_stats_update().
250 */
251#define FXP_MAX_RX_IDLE	15
252
253/*
254 * Wait for the previous command to be accepted (but not necessarily
255 * completed).
256 */
257static __inline void
258fxp_scb_wait(sc)
259	struct fxp_softc *sc;
260{
261	int i = 10000;
262
263	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
264		DELAY(2);
265	if (i == 0)
266		printf("fxp%d: SCB timeout\n", FXP_UNIT(sc));
267}
268
269static __inline void
270fxp_dma_wait(status, sc)
271	volatile u_int16_t *status;
272	struct fxp_softc *sc;
273{
274	int i = 10000;
275
276	while (!(*status & FXP_CB_STATUS_C) && --i)
277		DELAY(2);
278	if (i == 0)
279		printf("fxp%d: DMA timeout\n", FXP_UNIT(sc));
280}
281
282/*
283 * Return identification string if this is device is ours.
284 */
285static int
286fxp_probe(device_t dev)
287{
288	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
289		switch (pci_get_device(dev)) {
290
291		case FXP_DEVICEID_i82557:
292			device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet");
293			return 0;
294		case FXP_DEVICEID_i82559:
295			device_set_desc(dev, "Intel InBusiness 10/100 Ethernet");
296			return 0;
297		case FXP_DEVICEID_i82559ER:
298			device_set_desc(dev, "Intel Embedded 10/100 Ethernet");
299			return 0;
300		case FXP_DEVICEID_i82562:
301			device_set_desc(dev, "Intel PLC 10/100 Ethernet");
302			return 0;
303		default:
304			break;
305		}
306	}
307
308	return ENXIO;
309}
310
311static int
312fxp_attach(device_t dev)
313{
314	int error = 0;
315	struct fxp_softc *sc = device_get_softc(dev);
316	struct ifnet *ifp;
317	u_long val;
318	int rid;
319
320	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF);
321	callout_handle_init(&sc->stat_ch);
322
323	FXP_LOCK(sc);
324
325	/*
326	 * Enable bus mastering.
327	 */
328	val = pci_read_config(dev, PCIR_COMMAND, 2);
329	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
330	pci_write_config(dev, PCIR_COMMAND, val, 2);
331
332	/*
333	 * Map control/status registers.
334	 */
335	rid = FXP_PCI_MMBA;
336	sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
337				     0, ~0, 1, RF_ACTIVE);
338	if (!sc->mem) {
339		device_printf(dev, "could not map memory\n");
340		error = ENXIO;
341		goto fail;
342        }
343
344	sc->sc_st = rman_get_bustag(sc->mem);
345	sc->sc_sh = rman_get_bushandle(sc->mem);
346
347	/*
348	 * Allocate our interrupt.
349	 */
350	rid = 0;
351	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
352				 RF_SHAREABLE | RF_ACTIVE);
353	if (sc->irq == NULL) {
354		device_printf(dev, "could not map interrupt\n");
355		error = ENXIO;
356		goto fail;
357	}
358
359	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
360			       fxp_intr, sc, &sc->ih);
361	if (error) {
362		device_printf(dev, "could not setup irq\n");
363		goto fail;
364	}
365
366	/* Do generic parts of attach. */
367	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
368		/* Failed! */
369		bus_teardown_intr(dev, sc->irq, sc->ih);
370		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
371		bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
372		error = ENXIO;
373		goto fail;
374	}
375
376	device_printf(dev, "Ethernet address %6D%s\n",
377	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
378
379	ifp = &sc->arpcom.ac_if;
380	ifp->if_unit = device_get_unit(dev);
381	ifp->if_name = "fxp";
382	ifp->if_output = ether_output;
383	ifp->if_baudrate = 100000000;
384	ifp->if_init = fxp_init;
385	ifp->if_softc = sc;
386	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
387	ifp->if_ioctl = fxp_ioctl;
388	ifp->if_start = fxp_start;
389	ifp->if_watchdog = fxp_watchdog;
390
391	/*
392	 * Attach the interface.
393	 */
394	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
395	/*
396	 * Let the system queue as many packets as we have available
397	 * TX descriptors.
398	 */
399	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
400
401	FXP_UNLOCK(sc);
402	return 0;
403
404 fail:
405	FXP_UNLOCK(sc);
406	mtx_destroy(&sc->sc_mtx);
407	return error;
408}
409
410/*
411 * Detach interface.
412 */
413static int
414fxp_detach(device_t dev)
415{
416	struct fxp_softc *sc = device_get_softc(dev);
417
418	FXP_LOCK(sc);
419
420	/*
421	 * Close down routes etc.
422	 */
423	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
424
425	/*
426	 * Stop DMA and drop transmit queue.
427	 */
428	fxp_stop(sc);
429
430	/*
431	 * Deallocate resources.
432	 */
433	bus_teardown_intr(dev, sc->irq, sc->ih);
434	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
435	bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
436
437	/*
438	 * Free all the receive buffers.
439	 */
440	if (sc->rfa_headm != NULL)
441		m_freem(sc->rfa_headm);
442
443	/*
444	 * Free all media structures.
445	 */
446	ifmedia_removeall(&sc->sc_media);
447
448	/*
449	 * Free anciliary structures.
450	 */
451	free(sc->cbl_base, M_DEVBUF);
452	free(sc->fxp_stats, M_DEVBUF);
453	free(sc->mcsp, M_DEVBUF);
454
455	FXP_UNLOCK(sc);
456	mtx_destroy(&sc->sc_mtx);
457
458	return 0;
459}
460
461/*
462 * Device shutdown routine. Called at system shutdown after sync. The
463 * main purpose of this routine is to shut off receiver DMA so that
464 * kernel memory doesn't get clobbered during warmboot.
465 */
466static int
467fxp_shutdown(device_t dev)
468{
469	/*
470	 * Make sure that DMA is disabled prior to reboot. Not doing
471	 * do could allow DMA to corrupt kernel memory during the
472	 * reboot before the driver initializes.
473	 */
474	fxp_stop((struct fxp_softc *) device_get_softc(dev));
475	return 0;
476}
477
478/*
479 * Device suspend routine.  Stop the interface and save some PCI
480 * settings in case the BIOS doesn't restore them properly on
481 * resume.
482 */
483static int
484fxp_suspend(device_t dev)
485{
486	struct fxp_softc *sc = device_get_softc(dev);
487	int i;
488
489	FXP_LOCK(sc);
490
491	fxp_stop(sc);
492
493	for (i=0; i<5; i++)
494		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
495	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
496	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
497	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
498	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
499
500	sc->suspended = 1;
501
502	FXP_UNLOCK(sc);
503
504	return 0;
505}
506
507/*
508 * Device resume routine.  Restore some PCI settings in case the BIOS
509 * doesn't, re-enable busmastering, and restart the interface if
510 * appropriate.
511 */
512static int
513fxp_resume(device_t dev)
514{
515	struct fxp_softc *sc = device_get_softc(dev);
516	struct ifnet *ifp = &sc->sc_if;
517	u_int16_t pci_command;
518	int i;
519
520	FXP_LOCK(sc);
521
522	/* better way to do this? */
523	for (i=0; i<5; i++)
524		pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
525	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
526	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
527	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
528	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
529
530	/* reenable busmastering */
531	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
532	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
533	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
534
535	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
536	DELAY(10);
537
538	/* reinitialize interface if necessary */
539	if (ifp->if_flags & IFF_UP)
540		fxp_init(sc);
541
542	sc->suspended = 0;
543
544	FXP_UNLOCK(sc);
545
546	return 0;
547}
548
549static device_method_t fxp_methods[] = {
550	/* Device interface */
551	DEVMETHOD(device_probe,		fxp_probe),
552	DEVMETHOD(device_attach,	fxp_attach),
553	DEVMETHOD(device_detach,	fxp_detach),
554	DEVMETHOD(device_shutdown,	fxp_shutdown),
555	DEVMETHOD(device_suspend,	fxp_suspend),
556	DEVMETHOD(device_resume,	fxp_resume),
557
558	{ 0, 0 }
559};
560
561static driver_t fxp_driver = {
562	"fxp",
563	fxp_methods,
564	sizeof(struct fxp_softc),
565};
566
567static devclass_t fxp_devclass;
568
569DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
570
571/*
572 * Do generic parts of attach.
573 */
574static int
575fxp_attach_common(sc, enaddr)
576	struct fxp_softc *sc;
577	u_int8_t *enaddr;
578{
579	u_int16_t data;
580	int i, nmedia, defmedia;
581	const int *media;
582
583	/*
584	 * Reset to a stable state.
585	 */
586	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
587	DELAY(10);
588
589	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
590	    M_DEVBUF, M_NOWAIT);
591	if (sc->cbl_base == NULL)
592		goto fail;
593	bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
594
595	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
596	if (sc->fxp_stats == NULL)
597		goto fail;
598	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
599
600	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
601	if (sc->mcsp == NULL)
602		goto fail;
603
604	/*
605	 * Pre-allocate our receive buffers.
606	 */
607	for (i = 0; i < FXP_NRFABUFS; i++) {
608		if (fxp_add_rfabuf(sc, NULL) != 0) {
609			goto fail;
610		}
611	}
612
613	/*
614	 * Find out how large of an SEEPROM we have.
615	 */
616	fxp_autosize_eeprom(sc);
617
618	/*
619	 * Get info about the primary PHY
620	 */
621	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
622	sc->phy_primary_addr = data & 0xff;
623	sc->phy_primary_device = (data >> 8) & 0x3f;
624	sc->phy_10Mbps_only = data >> 15;
625
626	/*
627	 * Read MAC address.
628	 */
629	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
630
631	/*
632	 * Initialize the media structures.
633	 */
634
635	media = fxp_media_default;
636	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
637	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
638
639	for (i = 0; i < NFXPMEDIA; i++) {
640		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
641			media = fxp_media[i].fsm_media;
642			nmedia = fxp_media[i].fsm_nmedia;
643			defmedia = fxp_media[i].fsm_defmedia;
644		}
645	}
646
647	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
648	for (i = 0; i < nmedia; i++) {
649		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
650			continue;
651		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
652	}
653	ifmedia_set(&sc->sc_media, defmedia);
654
655	return (0);
656
657 fail:
658	printf("fxp%d: Failed to malloc memory\n", FXP_UNIT(sc));
659	if (sc->cbl_base)
660		free(sc->cbl_base, M_DEVBUF);
661	if (sc->fxp_stats)
662		free(sc->fxp_stats, M_DEVBUF);
663	if (sc->mcsp)
664		free(sc->mcsp, M_DEVBUF);
665	/* frees entire chain */
666	if (sc->rfa_headm)
667		m_freem(sc->rfa_headm);
668
669	return (ENOMEM);
670}
671
672/*
673 * From NetBSD:
674 *
675 * Figure out EEPROM size.
676 *
677 * 559's can have either 64-word or 256-word EEPROMs, the 558
678 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
679 * talks about the existance of 16 to 256 word EEPROMs.
680 *
681 * The only known sizes are 64 and 256, where the 256 version is used
682 * by CardBus cards to store CIS information.
683 *
684 * The address is shifted in msb-to-lsb, and after the last
685 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
686 * after which follows the actual data. We try to detect this zero, by
687 * probing the data-out bit in the EEPROM control register just after
688 * having shifted in a bit. If the bit is zero, we assume we've
689 * shifted enough address bits. The data-out should be tri-state,
690 * before this, which should translate to a logical one.
691 *
692 * Other ways to do this would be to try to read a register with known
693 * contents with a varying number of address bits, but no such
694 * register seem to be available. The high bits of register 10 are 01
695 * on the 558 and 559, but apparently not on the 557.
696 *
697 * The Linux driver computes a checksum on the EEPROM data, but the
698 * value of this checksum is not very well documented.
699 */
700static void
701fxp_autosize_eeprom(sc)
702	struct fxp_softc *sc;
703{
704	u_int16_t reg;
705	int x;
706
707	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
708	/*
709	 * Shift in read opcode.
710	 */
711	for (x = 3; x > 0; x--) {
712		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
713			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
714		} else {
715			reg = FXP_EEPROM_EECS;
716		}
717		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
718		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
719		    reg | FXP_EEPROM_EESK);
720		DELAY(1);
721		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
722		DELAY(1);
723	}
724	/*
725	 * Shift in address.
726	 * Wait for the dummy zero following a correct address shift.
727	 */
728	for (x = 1; x <= 8; x++) {
729		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
730		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
731			FXP_EEPROM_EECS | FXP_EEPROM_EESK);
732		DELAY(1);
733		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0)
734			break;
735		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
736		DELAY(1);
737	}
738	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
739	DELAY(1);
740	sc->eeprom_size = x;
741}
742/*
743 * Read from the serial EEPROM. Basically, you manually shift in
744 * the read opcode (one bit at a time) and then shift in the address,
745 * and then you shift out the data (all of this one bit at a time).
746 * The word size is 16 bits, so you have to provide the address for
747 * every 16 bits of data.
748 */
749static void
750fxp_read_eeprom(sc, data, offset, words)
751	struct fxp_softc *sc;
752	u_short *data;
753	int offset;
754	int words;
755{
756	u_int16_t reg;
757	int i, x;
758
759	for (i = 0; i < words; i++) {
760		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
761		/*
762		 * Shift in read opcode.
763		 */
764		for (x = 3; x > 0; x--) {
765			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
766				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
767			} else {
768				reg = FXP_EEPROM_EECS;
769			}
770			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
771			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
772			    reg | FXP_EEPROM_EESK);
773			DELAY(1);
774			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
775			DELAY(1);
776		}
777		/*
778		 * Shift in address.
779		 */
780		for (x = sc->eeprom_size; x > 0; x--) {
781			if ((i + offset) & (1 << (x - 1))) {
782				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
783			} else {
784				reg = FXP_EEPROM_EECS;
785			}
786			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
787			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
788			    reg | FXP_EEPROM_EESK);
789			DELAY(1);
790			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
791			DELAY(1);
792		}
793		reg = FXP_EEPROM_EECS;
794		data[i] = 0;
795		/*
796		 * Shift out data.
797		 */
798		for (x = 16; x > 0; x--) {
799			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
800			    reg | FXP_EEPROM_EESK);
801			DELAY(1);
802			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
803			    FXP_EEPROM_EEDO)
804				data[i] |= (1 << (x - 1));
805			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
806			DELAY(1);
807		}
808		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
809		DELAY(1);
810	}
811}
812
813/*
814 * Start packet transmission on the interface.
815 */
816static void
817fxp_start(ifp)
818	struct ifnet *ifp;
819{
820	struct fxp_softc *sc = ifp->if_softc;
821	struct fxp_cb_tx *txp;
822
823	FXP_LOCK(sc);
824	/*
825	 * See if we need to suspend xmit until the multicast filter
826	 * has been reprogrammed (which can only be done at the head
827	 * of the command chain).
828	 */
829	if (sc->need_mcsetup) {
830		FXP_UNLOCK(sc);
831		return;
832	}
833
834	txp = NULL;
835
836	/*
837	 * We're finished if there is nothing more to add to the list or if
838	 * we're all filled up with buffers to transmit.
839	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
840	 *       a NOP command when needed.
841	 */
842	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
843		struct mbuf *m, *mb_head;
844		int segment;
845
846		/*
847		 * Grab a packet to transmit.
848		 */
849		IF_DEQUEUE(&ifp->if_snd, mb_head);
850
851		/*
852		 * Get pointer to next available tx desc.
853		 */
854		txp = sc->cbl_last->next;
855
856		/*
857		 * Go through each of the mbufs in the chain and initialize
858		 * the transmit buffer descriptors with the physical address
859		 * and size of the mbuf.
860		 */
861tbdinit:
862		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
863			if (m->m_len != 0) {
864				if (segment == FXP_NTXSEG)
865					break;
866				txp->tbd[segment].tb_addr =
867				    vtophys(mtod(m, vm_offset_t));
868				txp->tbd[segment].tb_size = m->m_len;
869				segment++;
870			}
871		}
872		if (m != NULL) {
873			struct mbuf *mn;
874
875			/*
876			 * We ran out of segments. We have to recopy this mbuf
877			 * chain first. Bail out if we can't get the new buffers.
878			 */
879			MGETHDR(mn, M_DONTWAIT, MT_DATA);
880			if (mn == NULL) {
881				m_freem(mb_head);
882				break;
883			}
884			if (mb_head->m_pkthdr.len > MHLEN) {
885				MCLGET(mn, M_DONTWAIT);
886				if ((mn->m_flags & M_EXT) == 0) {
887					m_freem(mn);
888					m_freem(mb_head);
889					break;
890				}
891			}
892			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
893			    mtod(mn, caddr_t));
894			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
895			m_freem(mb_head);
896			mb_head = mn;
897			goto tbdinit;
898		}
899
900		txp->tbd_number = segment;
901		txp->mb_head = mb_head;
902		txp->cb_status = 0;
903		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
904			txp->cb_command =
905			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
906		} else {
907			txp->cb_command =
908			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
909			/*
910			 * Set a 5 second timer just in case we don't hear from the
911			 * card again.
912			 */
913			ifp->if_timer = 5;
914		}
915		txp->tx_threshold = tx_threshold;
916
917		/*
918		 * Advance the end of list forward.
919		 */
920
921#ifdef __alpha__
922		/*
923		 * On platforms which can't access memory in 16-bit
924		 * granularities, we must prevent the card from DMA'ing
925		 * up the status while we update the command field.
926		 * This could cause us to overwrite the completion status.
927		 */
928		atomic_clear_short(&sc->cbl_last->cb_command,
929		    FXP_CB_COMMAND_S);
930#else
931		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
932#endif /*__alpha__*/
933		sc->cbl_last = txp;
934
935		/*
936		 * Advance the beginning of the list forward if there are
937		 * no other packets queued (when nothing is queued, cbl_first
938		 * sits on the last TxCB that was sent out).
939		 */
940		if (sc->tx_queued == 0)
941			sc->cbl_first = txp;
942
943		sc->tx_queued++;
944
945		/*
946		 * Pass packet to bpf if there is a listener.
947		 */
948		if (ifp->if_bpf)
949			bpf_mtap(ifp, mb_head);
950	}
951
952	/*
953	 * We're finished. If we added to the list, issue a RESUME to get DMA
954	 * going again if suspended.
955	 */
956	if (txp != NULL) {
957		fxp_scb_wait(sc);
958		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
959	}
960	FXP_UNLOCK(sc);
961}
962
963/*
964 * Process interface interrupts.
965 */
966static void
967fxp_intr(arg)
968	void *arg;
969{
970	struct fxp_softc *sc = arg;
971	struct ifnet *ifp = &sc->sc_if;
972	u_int8_t statack;
973
974	FXP_LOCK(sc);
975
976	if (sc->suspended) {
977		FXP_UNLOCK(sc);
978		return;
979	}
980
981	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
982		/*
983		 * First ACK all the interrupts in this pass.
984		 */
985		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
986
987		/*
988		 * Free any finished transmit mbuf chains.
989		 *
990		 * Handle the CNA event likt a CXTNO event. It used to
991		 * be that this event (control unit not ready) was not
992		 * encountered, but it is now with the SMPng modifications.
993		 * The exact sequence of events that occur when the interface
994		 * is brought up are different now, and if this event
995		 * goes unhandled, the configuration/rxfilter setup sequence
996		 * can stall for several seconds. The result is that no
997		 * packets go out onto the wire for about 5 to 10 seconds
998		 * after the interface is ifconfig'ed for the first time.
999		 */
1000		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1001			struct fxp_cb_tx *txp;
1002
1003			for (txp = sc->cbl_first; sc->tx_queued &&
1004			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1005			    txp = txp->next) {
1006				if (txp->mb_head != NULL) {
1007					m_freem(txp->mb_head);
1008					txp->mb_head = NULL;
1009				}
1010				sc->tx_queued--;
1011			}
1012			sc->cbl_first = txp;
1013			ifp->if_timer = 0;
1014			if (sc->tx_queued == 0) {
1015				if (sc->need_mcsetup)
1016					fxp_mc_setup(sc);
1017			}
1018			/*
1019			 * Try to start more packets transmitting.
1020			 */
1021			if (ifp->if_snd.ifq_head != NULL)
1022				fxp_start(ifp);
1023		}
1024		/*
1025		 * Process receiver interrupts. If a no-resource (RNR)
1026		 * condition exists, get whatever packets we can and
1027		 * re-start the receiver.
1028		 */
1029		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1030			struct mbuf *m;
1031			struct fxp_rfa *rfa;
1032rcvloop:
1033			m = sc->rfa_headm;
1034			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1035			    RFA_ALIGNMENT_FUDGE);
1036
1037			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1038				/*
1039				 * Remove first packet from the chain.
1040				 */
1041				sc->rfa_headm = m->m_next;
1042				m->m_next = NULL;
1043
1044				/*
1045				 * Add a new buffer to the receive chain.
1046				 * If this fails, the old buffer is recycled
1047				 * instead.
1048				 */
1049				if (fxp_add_rfabuf(sc, m) == 0) {
1050					struct ether_header *eh;
1051					int total_len;
1052
1053					total_len = rfa->actual_size &
1054					    (MCLBYTES - 1);
1055					if (total_len <
1056					    sizeof(struct ether_header)) {
1057						m_freem(m);
1058						goto rcvloop;
1059					}
1060					m->m_pkthdr.rcvif = ifp;
1061					m->m_pkthdr.len = m->m_len = total_len;
1062					eh = mtod(m, struct ether_header *);
1063					m->m_data +=
1064					    sizeof(struct ether_header);
1065					m->m_len -=
1066					    sizeof(struct ether_header);
1067					m->m_pkthdr.len = m->m_len;
1068					ether_input(ifp, eh, m);
1069				}
1070				goto rcvloop;
1071			}
1072			if (statack & FXP_SCB_STATACK_RNR) {
1073				fxp_scb_wait(sc);
1074				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1075				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1076					RFA_ALIGNMENT_FUDGE);
1077				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1078				    FXP_SCB_COMMAND_RU_START);
1079			}
1080		}
1081	}
1082	FXP_UNLOCK(sc);
1083}
1084
1085/*
1086 * Update packet in/out/collision statistics. The i82557 doesn't
1087 * allow you to access these counters without doing a fairly
1088 * expensive DMA to get _all_ of the statistics it maintains, so
1089 * we do this operation here only once per second. The statistics
1090 * counters in the kernel are updated from the previous dump-stats
1091 * DMA and then a new dump-stats DMA is started. The on-chip
1092 * counters are zeroed when the DMA completes. If we can't start
1093 * the DMA immediately, we don't wait - we just prepare to read
1094 * them again next time.
1095 */
1096static void
1097fxp_stats_update(arg)
1098	void *arg;
1099{
1100	struct fxp_softc *sc = arg;
1101	struct ifnet *ifp = &sc->sc_if;
1102	struct fxp_stats *sp = sc->fxp_stats;
1103	struct fxp_cb_tx *txp;
1104
1105	ifp->if_opackets += sp->tx_good;
1106	ifp->if_collisions += sp->tx_total_collisions;
1107	if (sp->rx_good) {
1108		ifp->if_ipackets += sp->rx_good;
1109		sc->rx_idle_secs = 0;
1110	} else {
1111		/*
1112		 * Receiver's been idle for another second.
1113		 */
1114		sc->rx_idle_secs++;
1115	}
1116	ifp->if_ierrors +=
1117	    sp->rx_crc_errors +
1118	    sp->rx_alignment_errors +
1119	    sp->rx_rnr_errors +
1120	    sp->rx_overrun_errors;
1121	/*
1122	 * If any transmit underruns occured, bump up the transmit
1123	 * threshold by another 512 bytes (64 * 8).
1124	 */
1125	if (sp->tx_underruns) {
1126		ifp->if_oerrors += sp->tx_underruns;
1127		if (tx_threshold < 192)
1128			tx_threshold += 64;
1129	}
1130	FXP_LOCK(sc);
1131	/*
1132	 * Release any xmit buffers that have completed DMA. This isn't
1133	 * strictly necessary to do here, but it's advantagous for mbufs
1134	 * with external storage to be released in a timely manner rather
1135	 * than being defered for a potentially long time. This limits
1136	 * the delay to a maximum of one second.
1137	 */
1138	for (txp = sc->cbl_first; sc->tx_queued &&
1139	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1140	    txp = txp->next) {
1141		if (txp->mb_head != NULL) {
1142			m_freem(txp->mb_head);
1143			txp->mb_head = NULL;
1144		}
1145		sc->tx_queued--;
1146	}
1147	sc->cbl_first = txp;
1148	/*
1149	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1150	 * then assume the receiver has locked up and attempt to clear
1151	 * the condition by reprogramming the multicast filter. This is
1152	 * a work-around for a bug in the 82557 where the receiver locks
1153	 * up if it gets certain types of garbage in the syncronization
1154	 * bits prior to the packet header. This bug is supposed to only
1155	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1156	 * mode as well (perhaps due to a 10/100 speed transition).
1157	 */
1158	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1159		sc->rx_idle_secs = 0;
1160		fxp_mc_setup(sc);
1161	}
1162	/*
1163	 * If there is no pending command, start another stats
1164	 * dump. Otherwise punt for now.
1165	 */
1166	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1167		/*
1168		 * Start another stats dump.
1169		 */
1170		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1171		    FXP_SCB_COMMAND_CU_DUMPRESET);
1172	} else {
1173		/*
1174		 * A previous command is still waiting to be accepted.
1175		 * Just zero our copy of the stats and wait for the
1176		 * next timer event to update them.
1177		 */
1178		sp->tx_good = 0;
1179		sp->tx_underruns = 0;
1180		sp->tx_total_collisions = 0;
1181
1182		sp->rx_good = 0;
1183		sp->rx_crc_errors = 0;
1184		sp->rx_alignment_errors = 0;
1185		sp->rx_rnr_errors = 0;
1186		sp->rx_overrun_errors = 0;
1187	}
1188	FXP_UNLOCK(sc);
1189	/*
1190	 * Schedule another timeout one second from now.
1191	 */
1192	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1193}
1194
1195/*
1196 * Stop the interface. Cancels the statistics updater and resets
1197 * the interface.
1198 */
1199static void
1200fxp_stop(sc)
1201	struct fxp_softc *sc;
1202{
1203	struct ifnet *ifp = &sc->sc_if;
1204	struct fxp_cb_tx *txp;
1205	int i;
1206
1207	FXP_LOCK(sc);
1208
1209	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1210	ifp->if_timer = 0;
1211
1212	/*
1213	 * Cancel stats updater.
1214	 */
1215	untimeout(fxp_stats_update, sc, sc->stat_ch);
1216
1217	/*
1218	 * Issue software reset
1219	 */
1220	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1221	DELAY(10);
1222
1223	/*
1224	 * Release any xmit buffers.
1225	 */
1226	txp = sc->cbl_base;
1227	if (txp != NULL) {
1228		for (i = 0; i < FXP_NTXCB; i++) {
1229			if (txp[i].mb_head != NULL) {
1230				m_freem(txp[i].mb_head);
1231				txp[i].mb_head = NULL;
1232			}
1233		}
1234	}
1235	sc->tx_queued = 0;
1236
1237	/*
1238	 * Free all the receive buffers then reallocate/reinitialize
1239	 */
1240	if (sc->rfa_headm != NULL)
1241		m_freem(sc->rfa_headm);
1242	sc->rfa_headm = NULL;
1243	sc->rfa_tailm = NULL;
1244	for (i = 0; i < FXP_NRFABUFS; i++) {
1245		if (fxp_add_rfabuf(sc, NULL) != 0) {
1246			/*
1247			 * This "can't happen" - we're at splimp()
1248			 * and we just freed all the buffers we need
1249			 * above.
1250			 */
1251			panic("fxp_stop: no buffers!");
1252		}
1253	}
1254
1255	FXP_UNLOCK(sc);
1256}
1257
1258/*
1259 * Watchdog/transmission transmit timeout handler. Called when a
1260 * transmission is started on the interface, but no interrupt is
1261 * received before the timeout. This usually indicates that the
1262 * card has wedged for some reason.
1263 */
1264static void
1265fxp_watchdog(ifp)
1266	struct ifnet *ifp;
1267{
1268	struct fxp_softc *sc = ifp->if_softc;
1269
1270	printf("fxp%d: device timeout\n", FXP_UNIT(sc));
1271	ifp->if_oerrors++;
1272
1273	fxp_init(sc);
1274}
1275
1276static void
1277fxp_init(xsc)
1278	void *xsc;
1279{
1280	struct fxp_softc *sc = xsc;
1281	struct ifnet *ifp = &sc->sc_if;
1282	struct fxp_cb_config *cbp;
1283	struct fxp_cb_ias *cb_ias;
1284	struct fxp_cb_tx *txp;
1285	int i, prm;
1286
1287	FXP_LOCK(sc);
1288	/*
1289	 * Cancel any pending I/O
1290	 */
1291	fxp_stop(sc);
1292
1293	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1294
1295	/*
1296	 * Initialize base of CBL and RFA memory. Loading with zero
1297	 * sets it up for regular linear addressing.
1298	 */
1299	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1300	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1301
1302	fxp_scb_wait(sc);
1303	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1304
1305	/*
1306	 * Initialize base of dump-stats buffer.
1307	 */
1308	fxp_scb_wait(sc);
1309	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1310	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1311
1312	/*
1313	 * We temporarily use memory that contains the TxCB list to
1314	 * construct the config CB. The TxCB list memory is rebuilt
1315	 * later.
1316	 */
1317	cbp = (struct fxp_cb_config *) sc->cbl_base;
1318
1319	/*
1320	 * This bcopy is kind of disgusting, but there are a bunch of must be
1321	 * zero and must be one bits in this structure and this is the easiest
1322	 * way to initialize them all to proper values.
1323	 */
1324	bcopy(fxp_cb_config_template,
1325		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1326		sizeof(fxp_cb_config_template));
1327
1328	cbp->cb_status =	0;
1329	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1330	cbp->link_addr =	-1;	/* (no) next command */
1331	cbp->byte_count =	22;	/* (22) bytes to config */
1332	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1333	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1334	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1335	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1336	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1337	cbp->dma_bce =		0;	/* (disable) dma max counters */
1338	cbp->late_scb =		0;	/* (don't) defer SCB update */
1339	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1340	cbp->ci_int =		1;	/* interrupt on CU idle */
1341	cbp->save_bf =		prm;	/* save bad frames */
1342	cbp->disc_short_rx =	!prm;	/* discard short packets */
1343	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1344	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1345	cbp->nsai =		1;	/* (don't) disable source addr insert */
1346	cbp->preamble_length =	2;	/* (7 byte) preamble */
1347	cbp->loopback =		0;	/* (don't) loopback */
1348	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1349	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1350	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1351	cbp->promiscuous =	prm;	/* promiscuous mode */
1352	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1353	cbp->crscdt =		0;	/* (CRS only) */
1354	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1355	cbp->padding =		1;	/* (do) pad short tx packets */
1356	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1357	cbp->force_fdx =	0;	/* (don't) force full duplex */
1358	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1359	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1360	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1361
1362	/*
1363	 * Start the config command/DMA.
1364	 */
1365	fxp_scb_wait(sc);
1366	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1367	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1368	/* ...and wait for it to complete. */
1369	fxp_dma_wait(&cbp->cb_status, sc);
1370
1371	/*
1372	 * Now initialize the station address. Temporarily use the TxCB
1373	 * memory area like we did above for the config CB.
1374	 */
1375	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1376	cb_ias->cb_status = 0;
1377	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1378	cb_ias->link_addr = -1;
1379	bcopy(sc->arpcom.ac_enaddr,
1380	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1381	    sizeof(sc->arpcom.ac_enaddr));
1382
1383	/*
1384	 * Start the IAS (Individual Address Setup) command/DMA.
1385	 */
1386	fxp_scb_wait(sc);
1387	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1388	/* ...and wait for it to complete. */
1389	fxp_dma_wait(&cb_ias->cb_status, sc);
1390
1391	/*
1392	 * Initialize transmit control block (TxCB) list.
1393	 */
1394
1395	txp = sc->cbl_base;
1396	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1397	for (i = 0; i < FXP_NTXCB; i++) {
1398		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1399		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1400		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1401		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1402		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1403	}
1404	/*
1405	 * Set the suspend flag on the first TxCB and start the control
1406	 * unit. It will execute the NOP and then suspend.
1407	 */
1408	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1409	sc->cbl_first = sc->cbl_last = txp;
1410	sc->tx_queued = 1;
1411
1412	fxp_scb_wait(sc);
1413	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1414
1415	/*
1416	 * Initialize receiver buffer area - RFA.
1417	 */
1418	fxp_scb_wait(sc);
1419	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1420	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1421	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1422
1423	/*
1424	 * Set current media.
1425	 */
1426	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1427
1428	ifp->if_flags |= IFF_RUNNING;
1429	ifp->if_flags &= ~IFF_OACTIVE;
1430	FXP_UNLOCK(sc);
1431
1432	/*
1433	 * Start stats updater.
1434	 */
1435	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1436}
1437
1438static void
1439fxp_set_media(sc, media)
1440	struct fxp_softc *sc;
1441	int media;
1442{
1443
1444	switch (sc->phy_primary_device) {
1445	case FXP_PHY_DP83840:
1446	case FXP_PHY_DP83840A:
1447		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1448		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1449		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1450		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1451		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1452		/* fall through */
1453	case FXP_PHY_82553A:
1454	case FXP_PHY_82553C: /* untested */
1455	case FXP_PHY_82555:
1456	case FXP_PHY_82555B:
1457		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1458			int flags;
1459
1460			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1461			    FXP_PHY_BMCR_SPEED_100M : 0;
1462			flags |= (media & IFM_FDX) ?
1463			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1464			fxp_mdi_write(sc, sc->phy_primary_addr,
1465			    FXP_PHY_BMCR,
1466			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1467			    FXP_PHY_BMCR) &
1468			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1469			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1470		} else {
1471			fxp_mdi_write(sc, sc->phy_primary_addr,
1472			    FXP_PHY_BMCR,
1473			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1474			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1475		}
1476		break;
1477	/*
1478	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1479	 * nothing.
1480	 */
1481	case FXP_PHY_80C24:
1482		break;
1483	default:
1484		printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n",
1485		     FXP_UNIT(sc), sc->phy_primary_device,
1486		     sc->phy_primary_addr);
1487	}
1488}
1489
1490/*
1491 * Change media according to request.
1492 */
1493int
1494fxp_mediachange(ifp)
1495	struct ifnet *ifp;
1496{
1497	struct fxp_softc *sc = ifp->if_softc;
1498	struct ifmedia *ifm = &sc->sc_media;
1499
1500	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1501		return (EINVAL);
1502
1503	fxp_set_media(sc, ifm->ifm_media);
1504	return (0);
1505}
1506
1507/*
1508 * Notify the world which media we're using.
1509 */
1510void
1511fxp_mediastatus(ifp, ifmr)
1512	struct ifnet *ifp;
1513	struct ifmediareq *ifmr;
1514{
1515	struct fxp_softc *sc = ifp->if_softc;
1516	int flags, stsflags;
1517
1518	switch (sc->phy_primary_device) {
1519	case FXP_PHY_82555:
1520	case FXP_PHY_82555B:
1521	case FXP_PHY_DP83840:
1522	case FXP_PHY_DP83840A:
1523		ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
1524		ifmr->ifm_active = IFM_ETHER;
1525		/*
1526		 * the following is not an error.
1527		 * You need to read this register twice to get current
1528		 * status. This is correct documented behaviour, the
1529		 * first read gets latched values.
1530		 */
1531		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1532		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1533		if (stsflags & FXP_PHY_STS_LINK_STS)
1534				ifmr->ifm_status |= IFM_ACTIVE;
1535
1536		/*
1537		 * If we are in auto mode, then try report the result.
1538		 */
1539		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1540		if (flags & FXP_PHY_BMCR_AUTOEN) {
1541			ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
1542			if (stsflags & FXP_PHY_STS_AUTO_DONE) {
1543				/*
1544				 * Intel and National parts report
1545				 * differently on what they found.
1546				 */
1547				if ((sc->phy_primary_device == FXP_PHY_82555)
1548				|| (sc->phy_primary_device == FXP_PHY_82555B)) {
1549					flags = fxp_mdi_read(sc,
1550						sc->phy_primary_addr,
1551						FXP_PHY_USC);
1552
1553					if (flags & FXP_PHY_USC_SPEED)
1554						ifmr->ifm_active |= IFM_100_TX;
1555					else
1556						ifmr->ifm_active |= IFM_10_T;
1557
1558					if (flags & FXP_PHY_USC_DUPLEX)
1559						ifmr->ifm_active |= IFM_FDX;
1560				} else { /* it's National. only know speed  */
1561					flags = fxp_mdi_read(sc,
1562						sc->phy_primary_addr,
1563						FXP_DP83840_PAR);
1564
1565					if (flags & FXP_DP83840_PAR_SPEED_10)
1566						ifmr->ifm_active |= IFM_10_T;
1567					else
1568						ifmr->ifm_active |= IFM_100_TX;
1569				}
1570			}
1571		} else { /* in manual mode.. just report what we were set to */
1572			if (flags & FXP_PHY_BMCR_SPEED_100M)
1573				ifmr->ifm_active |= IFM_100_TX;
1574			else
1575				ifmr->ifm_active |= IFM_10_T;
1576
1577			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1578				ifmr->ifm_active |= IFM_FDX;
1579		}
1580		break;
1581
1582	case FXP_PHY_80C24:
1583	default:
1584		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1585	}
1586}
1587
1588/*
1589 * Add a buffer to the end of the RFA buffer list.
1590 * Return 0 if successful, 1 for failure. A failure results in
1591 * adding the 'oldm' (if non-NULL) on to the end of the list -
1592 * tossing out its old contents and recycling it.
1593 * The RFA struct is stuck at the beginning of mbuf cluster and the
1594 * data pointer is fixed up to point just past it.
1595 */
1596static int
1597fxp_add_rfabuf(sc, oldm)
1598	struct fxp_softc *sc;
1599	struct mbuf *oldm;
1600{
1601	u_int32_t v;
1602	struct mbuf *m;
1603	struct fxp_rfa *rfa, *p_rfa;
1604
1605	MGETHDR(m, M_DONTWAIT, MT_DATA);
1606	if (m != NULL) {
1607		MCLGET(m, M_DONTWAIT);
1608		if ((m->m_flags & M_EXT) == 0) {
1609			m_freem(m);
1610			if (oldm == NULL)
1611				return 1;
1612			m = oldm;
1613			m->m_data = m->m_ext.ext_buf;
1614		}
1615	} else {
1616		if (oldm == NULL)
1617			return 1;
1618		m = oldm;
1619		m->m_data = m->m_ext.ext_buf;
1620	}
1621
1622	/*
1623	 * Move the data pointer up so that the incoming data packet
1624	 * will be 32-bit aligned.
1625	 */
1626	m->m_data += RFA_ALIGNMENT_FUDGE;
1627
1628	/*
1629	 * Get a pointer to the base of the mbuf cluster and move
1630	 * data start past it.
1631	 */
1632	rfa = mtod(m, struct fxp_rfa *);
1633	m->m_data += sizeof(struct fxp_rfa);
1634	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1635
1636	/*
1637	 * Initialize the rest of the RFA.  Note that since the RFA
1638	 * is misaligned, we cannot store values directly.  Instead,
1639	 * we use an optimized, inline copy.
1640	 */
1641
1642	rfa->rfa_status = 0;
1643	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1644	rfa->actual_size = 0;
1645
1646	v = -1;
1647	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1648	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1649
1650	/*
1651	 * If there are other buffers already on the list, attach this
1652	 * one to the end by fixing up the tail to point to this one.
1653	 */
1654	if (sc->rfa_headm != NULL) {
1655		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1656		    RFA_ALIGNMENT_FUDGE);
1657		sc->rfa_tailm->m_next = m;
1658		v = vtophys(rfa);
1659		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1660		p_rfa->rfa_control = 0;
1661	} else {
1662		sc->rfa_headm = m;
1663	}
1664	sc->rfa_tailm = m;
1665
1666	return (m == oldm);
1667}
1668
1669static volatile int
1670fxp_mdi_read(sc, phy, reg)
1671	struct fxp_softc *sc;
1672	int phy;
1673	int reg;
1674{
1675	int count = 10000;
1676	int value;
1677
1678	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1679	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1680
1681	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1682	    && count--)
1683		DELAY(10);
1684
1685	if (count <= 0)
1686		printf("fxp%d: fxp_mdi_read: timed out\n", FXP_UNIT(sc));
1687
1688	return (value & 0xffff);
1689}
1690
1691static void
1692fxp_mdi_write(sc, phy, reg, value)
1693	struct fxp_softc *sc;
1694	int phy;
1695	int reg;
1696	int value;
1697{
1698	int count = 10000;
1699
1700	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1701	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1702	    (value & 0xffff));
1703
1704	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1705	    count--)
1706		DELAY(10);
1707
1708	if (count <= 0)
1709		printf("fxp%d: fxp_mdi_write: timed out\n", FXP_UNIT(sc));
1710}
1711
1712static int
1713fxp_ioctl(ifp, command, data)
1714	struct ifnet *ifp;
1715	u_long command;
1716	caddr_t data;
1717{
1718	struct fxp_softc *sc = ifp->if_softc;
1719	struct ifreq *ifr = (struct ifreq *)data;
1720	int error = 0;
1721
1722	FXP_LOCK(sc);
1723
1724	switch (command) {
1725
1726	case SIOCSIFADDR:
1727	case SIOCGIFADDR:
1728	case SIOCSIFMTU:
1729		error = ether_ioctl(ifp, command, data);
1730		break;
1731
1732	case SIOCSIFFLAGS:
1733		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1734
1735		/*
1736		 * If interface is marked up and not running, then start it.
1737		 * If it is marked down and running, stop it.
1738		 * XXX If it's up then re-initialize it. This is so flags
1739		 * such as IFF_PROMISC are handled.
1740		 */
1741		if (ifp->if_flags & IFF_UP) {
1742			fxp_init(sc);
1743		} else {
1744			if (ifp->if_flags & IFF_RUNNING)
1745				fxp_stop(sc);
1746		}
1747		break;
1748
1749	case SIOCADDMULTI:
1750	case SIOCDELMULTI:
1751		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1752		/*
1753		 * Multicast list has changed; set the hardware filter
1754		 * accordingly.
1755		 */
1756		if (!sc->all_mcasts)
1757			fxp_mc_setup(sc);
1758		/*
1759		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1760		 * again rather than else {}.
1761		 */
1762		if (sc->all_mcasts)
1763			fxp_init(sc);
1764		error = 0;
1765		break;
1766
1767	case SIOCSIFMEDIA:
1768	case SIOCGIFMEDIA:
1769		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1770		break;
1771
1772	default:
1773		error = EINVAL;
1774	}
1775	FXP_UNLOCK(sc);
1776	return (error);
1777}
1778
1779/*
1780 * Program the multicast filter.
1781 *
1782 * We have an artificial restriction that the multicast setup command
1783 * must be the first command in the chain, so we take steps to ensure
1784 * this. By requiring this, it allows us to keep up the performance of
1785 * the pre-initialized command ring (esp. link pointers) by not actually
1786 * inserting the mcsetup command in the ring - i.e. its link pointer
1787 * points to the TxCB ring, but the mcsetup descriptor itself is not part
1788 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1789 * lead into the regular TxCB ring when it completes.
1790 *
1791 * This function must be called at splimp.
1792 */
1793static void
1794fxp_mc_setup(sc)
1795	struct fxp_softc *sc;
1796{
1797	struct fxp_cb_mcs *mcsp = sc->mcsp;
1798	struct ifnet *ifp = &sc->sc_if;
1799	struct ifmultiaddr *ifma;
1800	int nmcasts;
1801	int count;
1802
1803	/*
1804	 * If there are queued commands, we must wait until they are all
1805	 * completed. If we are already waiting, then add a NOP command
1806	 * with interrupt option so that we're notified when all commands
1807	 * have been completed - fxp_start() ensures that no additional
1808	 * TX commands will be added when need_mcsetup is true.
1809	 */
1810	if (sc->tx_queued) {
1811		struct fxp_cb_tx *txp;
1812
1813		/*
1814		 * need_mcsetup will be true if we are already waiting for the
1815		 * NOP command to be completed (see below). In this case, bail.
1816		 */
1817		if (sc->need_mcsetup)
1818			return;
1819		sc->need_mcsetup = 1;
1820
1821		/*
1822		 * Add a NOP command with interrupt so that we are notified when all
1823		 * TX commands have been processed.
1824		 */
1825		txp = sc->cbl_last->next;
1826		txp->mb_head = NULL;
1827		txp->cb_status = 0;
1828		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1829		/*
1830		 * Advance the end of list forward.
1831		 */
1832		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1833		sc->cbl_last = txp;
1834		sc->tx_queued++;
1835		/*
1836		 * Issue a resume in case the CU has just suspended.
1837		 */
1838		fxp_scb_wait(sc);
1839		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1840		/*
1841		 * Set a 5 second timer just in case we don't hear from the
1842		 * card again.
1843		 */
1844		ifp->if_timer = 5;
1845
1846		return;
1847	}
1848	sc->need_mcsetup = 0;
1849
1850	/*
1851	 * Initialize multicast setup descriptor.
1852	 */
1853	mcsp->next = sc->cbl_base;
1854	mcsp->mb_head = NULL;
1855	mcsp->cb_status = 0;
1856	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1857	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1858
1859	nmcasts = 0;
1860	if (!sc->all_mcasts) {
1861		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1862		    ifma = ifma->ifma_link.le_next) {
1863			if (ifma->ifma_addr->sa_family != AF_LINK)
1864				continue;
1865			if (nmcasts >= MAXMCADDR) {
1866				sc->all_mcasts = 1;
1867				nmcasts = 0;
1868				break;
1869			}
1870			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1871			    (void *)(uintptr_t)(volatile void *)
1872				&sc->mcsp->mc_addr[nmcasts][0], 6);
1873			nmcasts++;
1874		}
1875	}
1876	mcsp->mc_cnt = nmcasts * 6;
1877	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1878	sc->tx_queued = 1;
1879
1880	/*
1881	 * Wait until command unit is not active. This should never
1882	 * be the case when nothing is queued, but make sure anyway.
1883	 */
1884	count = 100;
1885	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1886	    FXP_SCB_CUS_ACTIVE && --count)
1887		DELAY(10);
1888	if (count == 0) {
1889		printf("fxp%d: command queue timeout\n", FXP_UNIT(sc));
1890		return;
1891	}
1892
1893	/*
1894	 * Start the multicast setup command.
1895	 */
1896	fxp_scb_wait(sc);
1897	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1898	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1899
1900	ifp->if_timer = 2;
1901	return;
1902}
1903