if_fxp.c revision 66281
1/*
2 * Copyright (c) 1995, David Greenman
3 * All rights reserved.
4 *
5 * Modifications to support media selection:
6 * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 66281 2000-09-23 00:01:37Z jasone $
31 */
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59#include <machine/mutex.h>
60
61#include <net/ethernet.h>
62#include <net/if_arp.h>
63
64#include <vm/vm.h>		/* for vtophys */
65#include <vm/pmap.h>		/* for vtophys */
66#include <machine/clock.h>	/* for DELAY */
67
68#include <pci/pcivar.h>
69#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
70#include <pci/if_fxpreg.h>
71#include <pci/if_fxpvar.h>
72
73#ifdef __alpha__		/* XXX */
74/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
75#undef vtophys
76#define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
77#endif /* __alpha__ */
78
79/*
80 * NOTE!  On the Alpha, we have an alignment constraint.  The
81 * card DMAs the packet immediately following the RFA.  However,
82 * the first thing in the packet is a 14-byte Ethernet header.
83 * This means that the packet is misaligned.  To compensate,
84 * we actually offset the RFA 2 bytes into the cluster.  This
85 * alignes the packet after the Ethernet header at a 32-bit
86 * boundary.  HOWEVER!  This means that the RFA is misaligned!
87 */
88#define	RFA_ALIGNMENT_FUDGE	2
89
90/*
91 * Inline function to copy a 16-bit aligned 32-bit quantity.
92 */
93static __inline void fxp_lwcopy __P((volatile u_int32_t *,
94	volatile u_int32_t *));
95static __inline void
96fxp_lwcopy(src, dst)
97	volatile u_int32_t *src, *dst;
98{
99#ifdef __i386__
100	*dst = *src;
101#else
102	volatile u_int16_t *a = (volatile u_int16_t *)src;
103	volatile u_int16_t *b = (volatile u_int16_t *)dst;
104
105	b[0] = a[0];
106	b[1] = a[1];
107#endif
108}
109
110/*
111 * Template for default configuration parameters.
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x80, 0x2,		/* cb_command */
117	0xff, 0xff, 0xff, 0xff,	/* link_addr */
118	0x16,	/*  0 */
119	0x8,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x80,	/*  5 */
124	0xb2,	/*  6 */
125	0x3,	/*  7 */
126	0x1,	/*  8 */
127	0x0,	/*  9 */
128	0x26,	/* 10 */
129	0x0,	/* 11 */
130	0x60,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf3,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142/* Supported media types. */
143struct fxp_supported_media {
144	const int	fsm_phy;	/* PHY type */
145	const int	*fsm_media;	/* the media array */
146	const int	fsm_nmedia;	/* the number of supported media */
147	const int	fsm_defmedia;	/* default media for this PHY */
148};
149
150static const int fxp_media_standard[] = {
151	IFM_ETHER|IFM_10_T,
152	IFM_ETHER|IFM_10_T|IFM_FDX,
153	IFM_ETHER|IFM_100_TX,
154	IFM_ETHER|IFM_100_TX|IFM_FDX,
155	IFM_ETHER|IFM_AUTO,
156};
157#define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
158
159static const int fxp_media_default[] = {
160	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
161};
162#define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
163
164static const struct fxp_supported_media fxp_media[] = {
165	{ FXP_PHY_DP83840, fxp_media_standard,
166	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
167	  FXP_MEDIA_STANDARD_DEFMEDIA },
168	{ FXP_PHY_DP83840A, fxp_media_standard,
169	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
170	  FXP_MEDIA_STANDARD_DEFMEDIA },
171	{ FXP_PHY_82553A, fxp_media_standard,
172	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
173	  FXP_MEDIA_STANDARD_DEFMEDIA },
174	{ FXP_PHY_82553C, fxp_media_standard,
175	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
176	  FXP_MEDIA_STANDARD_DEFMEDIA },
177	{ FXP_PHY_82555, fxp_media_standard,
178	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
179	  FXP_MEDIA_STANDARD_DEFMEDIA },
180	{ FXP_PHY_82555B, fxp_media_standard,
181	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
182	  FXP_MEDIA_STANDARD_DEFMEDIA },
183	{ FXP_PHY_80C24, fxp_media_default,
184	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
185	  FXP_MEDIA_DEFAULT_DEFMEDIA },
186};
187#define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
188
189static int fxp_mediachange	__P((struct ifnet *));
190static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
191static void fxp_set_media	__P((struct fxp_softc *, int));
192static __inline void fxp_scb_wait __P((struct fxp_softc *));
193static __inline void fxp_dma_wait __P((volatile u_int16_t *, struct fxp_softc *sc));
194static void fxp_intr		__P((void *));
195static void fxp_start		__P((struct ifnet *));
196static int fxp_ioctl		__P((struct ifnet *,
197				     u_long, caddr_t));
198static void fxp_init		__P((void *));
199static void fxp_stop		__P((struct fxp_softc *));
200static void fxp_watchdog	__P((struct ifnet *));
201static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
202static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
203static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
204static void fxp_autosize_eeprom __P((struct fxp_softc *));
205static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
206				     int, int));
207static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
208static void fxp_stats_update	__P((void *));
209static void fxp_mc_setup	__P((struct fxp_softc *));
210
211/*
212 * Set initial transmit threshold at 64 (512 bytes). This is
213 * increased by 64 (512 bytes) at a time, to maximum of 192
214 * (1536 bytes), if an underrun occurs.
215 */
216static int tx_threshold = 64;
217
218/*
219 * Number of transmit control blocks. This determines the number
220 * of transmit buffers that can be chained in the CB list.
221 * This must be a power of two.
222 */
223#define FXP_NTXCB	128
224
225/*
226 * Number of completed TX commands at which point an interrupt
227 * will be generated to garbage collect the attached buffers.
228 * Must be at least one less than FXP_NTXCB, and should be
229 * enough less so that the transmitter doesn't becomes idle
230 * during the buffer rundown (which would reduce performance).
231 */
232#define FXP_CXINT_THRESH 120
233
234/*
235 * TxCB list index mask. This is used to do list wrap-around.
236 */
237#define FXP_TXCB_MASK	(FXP_NTXCB - 1)
238
239/*
240 * Number of receive frame area buffers. These are large so chose
241 * wisely.
242 */
243#define FXP_NRFABUFS	64
244
245/*
246 * Maximum number of seconds that the receiver can be idle before we
247 * assume it's dead and attempt to reset it by reprogramming the
248 * multicast filter. This is part of a work-around for a bug in the
249 * NIC. See fxp_stats_update().
250 */
251#define FXP_MAX_RX_IDLE	15
252
253/*
254 * Wait for the previous command to be accepted (but not necessarily
255 * completed).
256 */
257static __inline void
258fxp_scb_wait(sc)
259	struct fxp_softc *sc;
260{
261	int i = 10000;
262
263	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
264		DELAY(2);
265	if (i == 0)
266		printf("fxp%d: SCB timeout\n", FXP_UNIT(sc));
267}
268
269static __inline void
270fxp_dma_wait(status, sc)
271	volatile u_int16_t *status;
272	struct fxp_softc *sc;
273{
274	int i = 10000;
275
276	while (!(*status & FXP_CB_STATUS_C) && --i)
277		DELAY(2);
278	if (i == 0)
279		printf("fxp%d: DMA timeout\n", FXP_UNIT(sc));
280}
281
282/*
283 * Return identification string if this is device is ours.
284 */
285static int
286fxp_probe(device_t dev)
287{
288	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
289		switch (pci_get_device(dev)) {
290
291		case FXP_DEVICEID_i82557:
292			device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet");
293			return 0;
294		case FXP_DEVICEID_i82559:
295			device_set_desc(dev, "Intel InBusiness 10/100 Ethernet");
296			return 0;
297		case FXP_DEVICEID_i82559ER:
298			device_set_desc(dev, "Intel Embedded 10/100 Ethernet");
299			return 0;
300		case FXP_DEVICEID_i82562:
301			device_set_desc(dev, "Intel PLC 10/100 Ethernet");
302			return 0;
303		default:
304			break;
305		}
306	}
307
308	return ENXIO;
309}
310
311static int
312fxp_attach(device_t dev)
313{
314	int error = 0;
315	struct fxp_softc *sc = device_get_softc(dev);
316	struct ifnet *ifp;
317	u_long val;
318	int rid;
319
320	mtx_init(&sc->sc_mtx, "fxp", MTX_DEF);
321	callout_handle_init(&sc->stat_ch);
322
323	FXP_LOCK(sc);
324
325	/*
326	 * Enable bus mastering.
327	 */
328	val = pci_read_config(dev, PCIR_COMMAND, 2);
329	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
330	pci_write_config(dev, PCIR_COMMAND, val, 2);
331
332	/*
333	 * Map control/status registers.
334	 */
335	rid = FXP_PCI_MMBA;
336	sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
337				     0, ~0, 1, RF_ACTIVE);
338	if (!sc->mem) {
339		device_printf(dev, "could not map memory\n");
340		error = ENXIO;
341		goto fail;
342        }
343
344	sc->sc_st = rman_get_bustag(sc->mem);
345	sc->sc_sh = rman_get_bushandle(sc->mem);
346
347	/*
348	 * Allocate our interrupt.
349	 */
350	rid = 0;
351	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
352				 RF_SHAREABLE | RF_ACTIVE);
353	if (sc->irq == NULL) {
354		device_printf(dev, "could not map interrupt\n");
355		error = ENXIO;
356		goto fail;
357	}
358
359	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
360			       fxp_intr, sc, &sc->ih);
361	if (error) {
362		device_printf(dev, "could not setup irq\n");
363		goto fail;
364	}
365
366	/* Do generic parts of attach. */
367	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
368		/* Failed! */
369		bus_teardown_intr(dev, sc->irq, sc->ih);
370		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
371		bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
372		error = ENXIO;
373		goto fail;
374	}
375
376	device_printf(dev, "Ethernet address %6D%s\n",
377	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
378
379	ifp = &sc->arpcom.ac_if;
380	ifp->if_unit = device_get_unit(dev);
381	ifp->if_name = "fxp";
382	ifp->if_output = ether_output;
383	ifp->if_baudrate = 100000000;
384	ifp->if_init = fxp_init;
385	ifp->if_softc = sc;
386	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
387	ifp->if_ioctl = fxp_ioctl;
388	ifp->if_start = fxp_start;
389	ifp->if_watchdog = fxp_watchdog;
390
391	/*
392	 * Attach the interface.
393	 */
394	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
395	/*
396	 * Let the system queue as many packets as we have available
397	 * TX descriptors.
398	 */
399	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
400
401	FXP_UNLOCK(sc);
402	return 0;
403
404 fail:
405	FXP_UNLOCK(sc);
406	mtx_destroy(&sc->sc_mtx);
407	return error;
408}
409
410/*
411 * Detach interface.
412 */
413static int
414fxp_detach(device_t dev)
415{
416	struct fxp_softc *sc = device_get_softc(dev);
417
418	FXP_LOCK(sc);
419
420	/*
421	 * Close down routes etc.
422	 */
423	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
424
425	/*
426	 * Stop DMA and drop transmit queue.
427	 */
428	fxp_stop(sc);
429
430	/*
431	 * Deallocate resources.
432	 */
433	bus_teardown_intr(dev, sc->irq, sc->ih);
434	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
435	bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
436
437	/*
438	 * Free all the receive buffers.
439	 */
440	if (sc->rfa_headm != NULL)
441		m_freem(sc->rfa_headm);
442
443	/*
444	 * Free all media structures.
445	 */
446	ifmedia_removeall(&sc->sc_media);
447
448	/*
449	 * Free anciliary structures.
450	 */
451	free(sc->cbl_base, M_DEVBUF);
452	free(sc->fxp_stats, M_DEVBUF);
453	free(sc->mcsp, M_DEVBUF);
454
455	FXP_UNLOCK(sc);
456
457	return 0;
458}
459
460/*
461 * Device shutdown routine. Called at system shutdown after sync. The
462 * main purpose of this routine is to shut off receiver DMA so that
463 * kernel memory doesn't get clobbered during warmboot.
464 */
465static int
466fxp_shutdown(device_t dev)
467{
468	/*
469	 * Make sure that DMA is disabled prior to reboot. Not doing
470	 * do could allow DMA to corrupt kernel memory during the
471	 * reboot before the driver initializes.
472	 */
473	fxp_stop((struct fxp_softc *) device_get_softc(dev));
474	return 0;
475}
476
477/*
478 * Device suspend routine.  Stop the interface and save some PCI
479 * settings in case the BIOS doesn't restore them properly on
480 * resume.
481 */
482static int
483fxp_suspend(device_t dev)
484{
485	struct fxp_softc *sc = device_get_softc(dev);
486	int i;
487
488	FXP_LOCK(sc);
489
490	fxp_stop(sc);
491
492	for (i=0; i<5; i++)
493		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i*4, 4);
494	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
495	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
496	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
497	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
498
499	sc->suspended = 1;
500
501	FXP_UNLOCK(sc);
502
503	return 0;
504}
505
506/*
507 * Device resume routine.  Restore some PCI settings in case the BIOS
508 * doesn't, re-enable busmastering, and restart the interface if
509 * appropriate.
510 */
511static int
512fxp_resume(device_t dev)
513{
514	struct fxp_softc *sc = device_get_softc(dev);
515	struct ifnet *ifp = &sc->sc_if;
516	u_int16_t pci_command;
517	int i;
518
519	FXP_LOCK(sc);
520
521	/* better way to do this? */
522	for (i=0; i<5; i++)
523		pci_write_config(dev, PCIR_MAPS + i*4, sc->saved_maps[i], 4);
524	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
525	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
526	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
527	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
528
529	/* reenable busmastering */
530	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
531	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
532	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
533
534	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
535	DELAY(10);
536
537	/* reinitialize interface if necessary */
538	if (ifp->if_flags & IFF_UP)
539		fxp_init(sc);
540
541	sc->suspended = 0;
542
543	FXP_UNLOCK(sc);
544
545	return 0;
546}
547
548static device_method_t fxp_methods[] = {
549	/* Device interface */
550	DEVMETHOD(device_probe,		fxp_probe),
551	DEVMETHOD(device_attach,	fxp_attach),
552	DEVMETHOD(device_detach,	fxp_detach),
553	DEVMETHOD(device_shutdown,	fxp_shutdown),
554	DEVMETHOD(device_suspend,	fxp_suspend),
555	DEVMETHOD(device_resume,	fxp_resume),
556
557	{ 0, 0 }
558};
559
560static driver_t fxp_driver = {
561	"fxp",
562	fxp_methods,
563	sizeof(struct fxp_softc),
564};
565
566static devclass_t fxp_devclass;
567
568DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
569
570/*
571 * Do generic parts of attach.
572 */
573static int
574fxp_attach_common(sc, enaddr)
575	struct fxp_softc *sc;
576	u_int8_t *enaddr;
577{
578	u_int16_t data;
579	int i, nmedia, defmedia;
580	const int *media;
581
582	/*
583	 * Reset to a stable state.
584	 */
585	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
586	DELAY(10);
587
588	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
589	    M_DEVBUF, M_NOWAIT);
590	if (sc->cbl_base == NULL)
591		goto fail;
592	bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
593
594	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
595	if (sc->fxp_stats == NULL)
596		goto fail;
597	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
598
599	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
600	if (sc->mcsp == NULL)
601		goto fail;
602
603	/*
604	 * Pre-allocate our receive buffers.
605	 */
606	for (i = 0; i < FXP_NRFABUFS; i++) {
607		if (fxp_add_rfabuf(sc, NULL) != 0) {
608			goto fail;
609		}
610	}
611
612	/*
613	 * Find out how large of an SEEPROM we have.
614	 */
615	fxp_autosize_eeprom(sc);
616
617	/*
618	 * Get info about the primary PHY
619	 */
620	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
621	sc->phy_primary_addr = data & 0xff;
622	sc->phy_primary_device = (data >> 8) & 0x3f;
623	sc->phy_10Mbps_only = data >> 15;
624
625	/*
626	 * Read MAC address.
627	 */
628	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
629
630	/*
631	 * Initialize the media structures.
632	 */
633
634	media = fxp_media_default;
635	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
636	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
637
638	for (i = 0; i < NFXPMEDIA; i++) {
639		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
640			media = fxp_media[i].fsm_media;
641			nmedia = fxp_media[i].fsm_nmedia;
642			defmedia = fxp_media[i].fsm_defmedia;
643		}
644	}
645
646	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
647	for (i = 0; i < nmedia; i++) {
648		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
649			continue;
650		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
651	}
652	ifmedia_set(&sc->sc_media, defmedia);
653
654	return (0);
655
656 fail:
657	printf("fxp%d: Failed to malloc memory\n", FXP_UNIT(sc));
658	if (sc->cbl_base)
659		free(sc->cbl_base, M_DEVBUF);
660	if (sc->fxp_stats)
661		free(sc->fxp_stats, M_DEVBUF);
662	if (sc->mcsp)
663		free(sc->mcsp, M_DEVBUF);
664	/* frees entire chain */
665	if (sc->rfa_headm)
666		m_freem(sc->rfa_headm);
667
668	return (ENOMEM);
669}
670
671/*
672 * From NetBSD:
673 *
674 * Figure out EEPROM size.
675 *
676 * 559's can have either 64-word or 256-word EEPROMs, the 558
677 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
678 * talks about the existance of 16 to 256 word EEPROMs.
679 *
680 * The only known sizes are 64 and 256, where the 256 version is used
681 * by CardBus cards to store CIS information.
682 *
683 * The address is shifted in msb-to-lsb, and after the last
684 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
685 * after which follows the actual data. We try to detect this zero, by
686 * probing the data-out bit in the EEPROM control register just after
687 * having shifted in a bit. If the bit is zero, we assume we've
688 * shifted enough address bits. The data-out should be tri-state,
689 * before this, which should translate to a logical one.
690 *
691 * Other ways to do this would be to try to read a register with known
692 * contents with a varying number of address bits, but no such
693 * register seem to be available. The high bits of register 10 are 01
694 * on the 558 and 559, but apparently not on the 557.
695 *
696 * The Linux driver computes a checksum on the EEPROM data, but the
697 * value of this checksum is not very well documented.
698 */
699static void
700fxp_autosize_eeprom(sc)
701	struct fxp_softc *sc;
702{
703	u_int16_t reg;
704	int x;
705
706	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
707	/*
708	 * Shift in read opcode.
709	 */
710	for (x = 3; x > 0; x--) {
711		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
712			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
713		} else {
714			reg = FXP_EEPROM_EECS;
715		}
716		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
717		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
718		    reg | FXP_EEPROM_EESK);
719		DELAY(1);
720		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
721		DELAY(1);
722	}
723	/*
724	 * Shift in address.
725	 * Wait for the dummy zero following a correct address shift.
726	 */
727	for (x = 1; x <= 8; x++) {
728		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
729		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
730			FXP_EEPROM_EECS | FXP_EEPROM_EESK);
731		DELAY(1);
732		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0)
733			break;
734		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
735		DELAY(1);
736	}
737	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
738	DELAY(1);
739	sc->eeprom_size = x;
740}
741/*
742 * Read from the serial EEPROM. Basically, you manually shift in
743 * the read opcode (one bit at a time) and then shift in the address,
744 * and then you shift out the data (all of this one bit at a time).
745 * The word size is 16 bits, so you have to provide the address for
746 * every 16 bits of data.
747 */
748static void
749fxp_read_eeprom(sc, data, offset, words)
750	struct fxp_softc *sc;
751	u_short *data;
752	int offset;
753	int words;
754{
755	u_int16_t reg;
756	int i, x;
757
758	for (i = 0; i < words; i++) {
759		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
760		/*
761		 * Shift in read opcode.
762		 */
763		for (x = 3; x > 0; x--) {
764			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
765				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
766			} else {
767				reg = FXP_EEPROM_EECS;
768			}
769			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
770			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
771			    reg | FXP_EEPROM_EESK);
772			DELAY(1);
773			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
774			DELAY(1);
775		}
776		/*
777		 * Shift in address.
778		 */
779		for (x = sc->eeprom_size; x > 0; x--) {
780			if ((i + offset) & (1 << (x - 1))) {
781				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
782			} else {
783				reg = FXP_EEPROM_EECS;
784			}
785			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
786			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
787			    reg | FXP_EEPROM_EESK);
788			DELAY(1);
789			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
790			DELAY(1);
791		}
792		reg = FXP_EEPROM_EECS;
793		data[i] = 0;
794		/*
795		 * Shift out data.
796		 */
797		for (x = 16; x > 0; x--) {
798			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
799			    reg | FXP_EEPROM_EESK);
800			DELAY(1);
801			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
802			    FXP_EEPROM_EEDO)
803				data[i] |= (1 << (x - 1));
804			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
805			DELAY(1);
806		}
807		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
808		DELAY(1);
809	}
810}
811
812/*
813 * Start packet transmission on the interface.
814 */
815static void
816fxp_start(ifp)
817	struct ifnet *ifp;
818{
819	struct fxp_softc *sc = ifp->if_softc;
820	struct fxp_cb_tx *txp;
821
822	FXP_LOCK(sc);
823	/*
824	 * See if we need to suspend xmit until the multicast filter
825	 * has been reprogrammed (which can only be done at the head
826	 * of the command chain).
827	 */
828	if (sc->need_mcsetup) {
829		FXP_UNLOCK(sc);
830		return;
831	}
832
833	txp = NULL;
834
835	/*
836	 * We're finished if there is nothing more to add to the list or if
837	 * we're all filled up with buffers to transmit.
838	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
839	 *       a NOP command when needed.
840	 */
841	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
842		struct mbuf *m, *mb_head;
843		int segment;
844
845		/*
846		 * Grab a packet to transmit.
847		 */
848		IF_DEQUEUE(&ifp->if_snd, mb_head);
849
850		/*
851		 * Get pointer to next available tx desc.
852		 */
853		txp = sc->cbl_last->next;
854
855		/*
856		 * Go through each of the mbufs in the chain and initialize
857		 * the transmit buffer descriptors with the physical address
858		 * and size of the mbuf.
859		 */
860tbdinit:
861		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
862			if (m->m_len != 0) {
863				if (segment == FXP_NTXSEG)
864					break;
865				txp->tbd[segment].tb_addr =
866				    vtophys(mtod(m, vm_offset_t));
867				txp->tbd[segment].tb_size = m->m_len;
868				segment++;
869			}
870		}
871		if (m != NULL) {
872			struct mbuf *mn;
873
874			/*
875			 * We ran out of segments. We have to recopy this mbuf
876			 * chain first. Bail out if we can't get the new buffers.
877			 */
878			MGETHDR(mn, M_DONTWAIT, MT_DATA);
879			if (mn == NULL) {
880				m_freem(mb_head);
881				break;
882			}
883			if (mb_head->m_pkthdr.len > MHLEN) {
884				MCLGET(mn, M_DONTWAIT);
885				if ((mn->m_flags & M_EXT) == 0) {
886					m_freem(mn);
887					m_freem(mb_head);
888					break;
889				}
890			}
891			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
892			    mtod(mn, caddr_t));
893			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
894			m_freem(mb_head);
895			mb_head = mn;
896			goto tbdinit;
897		}
898
899		txp->tbd_number = segment;
900		txp->mb_head = mb_head;
901		txp->cb_status = 0;
902		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
903			txp->cb_command =
904			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
905		} else {
906			txp->cb_command =
907			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
908			/*
909			 * Set a 5 second timer just in case we don't hear from the
910			 * card again.
911			 */
912			ifp->if_timer = 5;
913		}
914		txp->tx_threshold = tx_threshold;
915
916		/*
917		 * Advance the end of list forward.
918		 */
919
920#ifdef __alpha__
921		/*
922		 * On platforms which can't access memory in 16-bit
923		 * granularities, we must prevent the card from DMA'ing
924		 * up the status while we update the command field.
925		 * This could cause us to overwrite the completion status.
926		 */
927		atomic_clear_short(&sc->cbl_last->cb_command,
928		    FXP_CB_COMMAND_S);
929#else
930		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
931#endif /*__alpha__*/
932		sc->cbl_last = txp;
933
934		/*
935		 * Advance the beginning of the list forward if there are
936		 * no other packets queued (when nothing is queued, cbl_first
937		 * sits on the last TxCB that was sent out).
938		 */
939		if (sc->tx_queued == 0)
940			sc->cbl_first = txp;
941
942		sc->tx_queued++;
943
944		/*
945		 * Pass packet to bpf if there is a listener.
946		 */
947		if (ifp->if_bpf)
948			bpf_mtap(ifp, mb_head);
949	}
950
951	/*
952	 * We're finished. If we added to the list, issue a RESUME to get DMA
953	 * going again if suspended.
954	 */
955	if (txp != NULL) {
956		fxp_scb_wait(sc);
957		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
958	}
959	FXP_UNLOCK(sc);
960}
961
962/*
963 * Process interface interrupts.
964 */
965static void
966fxp_intr(arg)
967	void *arg;
968{
969	struct fxp_softc *sc = arg;
970	struct ifnet *ifp = &sc->sc_if;
971	u_int8_t statack;
972
973	FXP_LOCK(sc);
974
975	if (sc->suspended) {
976		FXP_UNLOCK(sc);
977		return;
978	}
979
980	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
981		/*
982		 * First ACK all the interrupts in this pass.
983		 */
984		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
985
986		/*
987		 * Free any finished transmit mbuf chains.
988		 *
989		 * Handle the CNA event likt a CXTNO event. It used to
990		 * be that this event (control unit not ready) was not
991		 * encountered, but it is now with the SMPng modifications.
992		 * The exact sequence of events that occur when the interface
993		 * is brought up are different now, and if this event
994		 * goes unhandled, the configuration/rxfilter setup sequence
995		 * can stall for several seconds. The result is that no
996		 * packets go out onto the wire for about 5 to 10 seconds
997		 * after the interface is ifconfig'ed for the first time.
998		 */
999		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1000			struct fxp_cb_tx *txp;
1001
1002			for (txp = sc->cbl_first; sc->tx_queued &&
1003			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1004			    txp = txp->next) {
1005				if (txp->mb_head != NULL) {
1006					m_freem(txp->mb_head);
1007					txp->mb_head = NULL;
1008				}
1009				sc->tx_queued--;
1010			}
1011			sc->cbl_first = txp;
1012			ifp->if_timer = 0;
1013			if (sc->tx_queued == 0) {
1014				if (sc->need_mcsetup)
1015					fxp_mc_setup(sc);
1016			}
1017			/*
1018			 * Try to start more packets transmitting.
1019			 */
1020			if (ifp->if_snd.ifq_head != NULL)
1021				fxp_start(ifp);
1022		}
1023		/*
1024		 * Process receiver interrupts. If a no-resource (RNR)
1025		 * condition exists, get whatever packets we can and
1026		 * re-start the receiver.
1027		 */
1028		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1029			struct mbuf *m;
1030			struct fxp_rfa *rfa;
1031rcvloop:
1032			m = sc->rfa_headm;
1033			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1034			    RFA_ALIGNMENT_FUDGE);
1035
1036			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1037				/*
1038				 * Remove first packet from the chain.
1039				 */
1040				sc->rfa_headm = m->m_next;
1041				m->m_next = NULL;
1042
1043				/*
1044				 * Add a new buffer to the receive chain.
1045				 * If this fails, the old buffer is recycled
1046				 * instead.
1047				 */
1048				if (fxp_add_rfabuf(sc, m) == 0) {
1049					struct ether_header *eh;
1050					int total_len;
1051
1052					total_len = rfa->actual_size &
1053					    (MCLBYTES - 1);
1054					if (total_len <
1055					    sizeof(struct ether_header)) {
1056						m_freem(m);
1057						goto rcvloop;
1058					}
1059					m->m_pkthdr.rcvif = ifp;
1060					m->m_pkthdr.len = m->m_len = total_len;
1061					eh = mtod(m, struct ether_header *);
1062					m->m_data +=
1063					    sizeof(struct ether_header);
1064					m->m_len -=
1065					    sizeof(struct ether_header);
1066					m->m_pkthdr.len = m->m_len;
1067					ether_input(ifp, eh, m);
1068				}
1069				goto rcvloop;
1070			}
1071			if (statack & FXP_SCB_STATACK_RNR) {
1072				fxp_scb_wait(sc);
1073				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1074				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1075					RFA_ALIGNMENT_FUDGE);
1076				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1077				    FXP_SCB_COMMAND_RU_START);
1078			}
1079		}
1080	}
1081	FXP_UNLOCK(sc);
1082}
1083
1084/*
1085 * Update packet in/out/collision statistics. The i82557 doesn't
1086 * allow you to access these counters without doing a fairly
1087 * expensive DMA to get _all_ of the statistics it maintains, so
1088 * we do this operation here only once per second. The statistics
1089 * counters in the kernel are updated from the previous dump-stats
1090 * DMA and then a new dump-stats DMA is started. The on-chip
1091 * counters are zeroed when the DMA completes. If we can't start
1092 * the DMA immediately, we don't wait - we just prepare to read
1093 * them again next time.
1094 */
1095static void
1096fxp_stats_update(arg)
1097	void *arg;
1098{
1099	struct fxp_softc *sc = arg;
1100	struct ifnet *ifp = &sc->sc_if;
1101	struct fxp_stats *sp = sc->fxp_stats;
1102	struct fxp_cb_tx *txp;
1103
1104	ifp->if_opackets += sp->tx_good;
1105	ifp->if_collisions += sp->tx_total_collisions;
1106	if (sp->rx_good) {
1107		ifp->if_ipackets += sp->rx_good;
1108		sc->rx_idle_secs = 0;
1109	} else {
1110		/*
1111		 * Receiver's been idle for another second.
1112		 */
1113		sc->rx_idle_secs++;
1114	}
1115	ifp->if_ierrors +=
1116	    sp->rx_crc_errors +
1117	    sp->rx_alignment_errors +
1118	    sp->rx_rnr_errors +
1119	    sp->rx_overrun_errors;
1120	/*
1121	 * If any transmit underruns occured, bump up the transmit
1122	 * threshold by another 512 bytes (64 * 8).
1123	 */
1124	if (sp->tx_underruns) {
1125		ifp->if_oerrors += sp->tx_underruns;
1126		if (tx_threshold < 192)
1127			tx_threshold += 64;
1128	}
1129	FXP_LOCK(sc);
1130	/*
1131	 * Release any xmit buffers that have completed DMA. This isn't
1132	 * strictly necessary to do here, but it's advantagous for mbufs
1133	 * with external storage to be released in a timely manner rather
1134	 * than being defered for a potentially long time. This limits
1135	 * the delay to a maximum of one second.
1136	 */
1137	for (txp = sc->cbl_first; sc->tx_queued &&
1138	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1139	    txp = txp->next) {
1140		if (txp->mb_head != NULL) {
1141			m_freem(txp->mb_head);
1142			txp->mb_head = NULL;
1143		}
1144		sc->tx_queued--;
1145	}
1146	sc->cbl_first = txp;
1147	/*
1148	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1149	 * then assume the receiver has locked up and attempt to clear
1150	 * the condition by reprogramming the multicast filter. This is
1151	 * a work-around for a bug in the 82557 where the receiver locks
1152	 * up if it gets certain types of garbage in the syncronization
1153	 * bits prior to the packet header. This bug is supposed to only
1154	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1155	 * mode as well (perhaps due to a 10/100 speed transition).
1156	 */
1157	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1158		sc->rx_idle_secs = 0;
1159		fxp_mc_setup(sc);
1160	}
1161	/*
1162	 * If there is no pending command, start another stats
1163	 * dump. Otherwise punt for now.
1164	 */
1165	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1166		/*
1167		 * Start another stats dump.
1168		 */
1169		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1170		    FXP_SCB_COMMAND_CU_DUMPRESET);
1171	} else {
1172		/*
1173		 * A previous command is still waiting to be accepted.
1174		 * Just zero our copy of the stats and wait for the
1175		 * next timer event to update them.
1176		 */
1177		sp->tx_good = 0;
1178		sp->tx_underruns = 0;
1179		sp->tx_total_collisions = 0;
1180
1181		sp->rx_good = 0;
1182		sp->rx_crc_errors = 0;
1183		sp->rx_alignment_errors = 0;
1184		sp->rx_rnr_errors = 0;
1185		sp->rx_overrun_errors = 0;
1186	}
1187	FXP_UNLOCK(sc);
1188	/*
1189	 * Schedule another timeout one second from now.
1190	 */
1191	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1192}
1193
1194/*
1195 * Stop the interface. Cancels the statistics updater and resets
1196 * the interface.
1197 */
1198static void
1199fxp_stop(sc)
1200	struct fxp_softc *sc;
1201{
1202	struct ifnet *ifp = &sc->sc_if;
1203	struct fxp_cb_tx *txp;
1204	int i;
1205
1206	FXP_LOCK(sc);
1207
1208	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1209	ifp->if_timer = 0;
1210
1211	/*
1212	 * Cancel stats updater.
1213	 */
1214	untimeout(fxp_stats_update, sc, sc->stat_ch);
1215
1216	/*
1217	 * Issue software reset
1218	 */
1219	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1220	DELAY(10);
1221
1222	/*
1223	 * Release any xmit buffers.
1224	 */
1225	txp = sc->cbl_base;
1226	if (txp != NULL) {
1227		for (i = 0; i < FXP_NTXCB; i++) {
1228			if (txp[i].mb_head != NULL) {
1229				m_freem(txp[i].mb_head);
1230				txp[i].mb_head = NULL;
1231			}
1232		}
1233	}
1234	sc->tx_queued = 0;
1235
1236	/*
1237	 * Free all the receive buffers then reallocate/reinitialize
1238	 */
1239	if (sc->rfa_headm != NULL)
1240		m_freem(sc->rfa_headm);
1241	sc->rfa_headm = NULL;
1242	sc->rfa_tailm = NULL;
1243	for (i = 0; i < FXP_NRFABUFS; i++) {
1244		if (fxp_add_rfabuf(sc, NULL) != 0) {
1245			/*
1246			 * This "can't happen" - we're at splimp()
1247			 * and we just freed all the buffers we need
1248			 * above.
1249			 */
1250			panic("fxp_stop: no buffers!");
1251		}
1252	}
1253
1254	FXP_UNLOCK(sc);
1255}
1256
1257/*
1258 * Watchdog/transmission transmit timeout handler. Called when a
1259 * transmission is started on the interface, but no interrupt is
1260 * received before the timeout. This usually indicates that the
1261 * card has wedged for some reason.
1262 */
1263static void
1264fxp_watchdog(ifp)
1265	struct ifnet *ifp;
1266{
1267	struct fxp_softc *sc = ifp->if_softc;
1268
1269	printf("fxp%d: device timeout\n", FXP_UNIT(sc));
1270	ifp->if_oerrors++;
1271
1272	fxp_init(sc);
1273}
1274
1275static void
1276fxp_init(xsc)
1277	void *xsc;
1278{
1279	struct fxp_softc *sc = xsc;
1280	struct ifnet *ifp = &sc->sc_if;
1281	struct fxp_cb_config *cbp;
1282	struct fxp_cb_ias *cb_ias;
1283	struct fxp_cb_tx *txp;
1284	int i, prm;
1285
1286	FXP_LOCK(sc);
1287	/*
1288	 * Cancel any pending I/O
1289	 */
1290	fxp_stop(sc);
1291
1292	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1293
1294	/*
1295	 * Initialize base of CBL and RFA memory. Loading with zero
1296	 * sets it up for regular linear addressing.
1297	 */
1298	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1299	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1300
1301	fxp_scb_wait(sc);
1302	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1303
1304	/*
1305	 * Initialize base of dump-stats buffer.
1306	 */
1307	fxp_scb_wait(sc);
1308	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1309	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1310
1311	/*
1312	 * We temporarily use memory that contains the TxCB list to
1313	 * construct the config CB. The TxCB list memory is rebuilt
1314	 * later.
1315	 */
1316	cbp = (struct fxp_cb_config *) sc->cbl_base;
1317
1318	/*
1319	 * This bcopy is kind of disgusting, but there are a bunch of must be
1320	 * zero and must be one bits in this structure and this is the easiest
1321	 * way to initialize them all to proper values.
1322	 */
1323	bcopy(fxp_cb_config_template,
1324		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1325		sizeof(fxp_cb_config_template));
1326
1327	cbp->cb_status =	0;
1328	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1329	cbp->link_addr =	-1;	/* (no) next command */
1330	cbp->byte_count =	22;	/* (22) bytes to config */
1331	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1332	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1333	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1334	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1335	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1336	cbp->dma_bce =		0;	/* (disable) dma max counters */
1337	cbp->late_scb =		0;	/* (don't) defer SCB update */
1338	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1339	cbp->ci_int =		1;	/* interrupt on CU idle */
1340	cbp->save_bf =		prm;	/* save bad frames */
1341	cbp->disc_short_rx =	!prm;	/* discard short packets */
1342	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1343	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1344	cbp->nsai =		1;	/* (don't) disable source addr insert */
1345	cbp->preamble_length =	2;	/* (7 byte) preamble */
1346	cbp->loopback =		0;	/* (don't) loopback */
1347	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1348	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1349	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1350	cbp->promiscuous =	prm;	/* promiscuous mode */
1351	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1352	cbp->crscdt =		0;	/* (CRS only) */
1353	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1354	cbp->padding =		1;	/* (do) pad short tx packets */
1355	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1356	cbp->force_fdx =	0;	/* (don't) force full duplex */
1357	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1358	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1359	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1360
1361	/*
1362	 * Start the config command/DMA.
1363	 */
1364	fxp_scb_wait(sc);
1365	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1366	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1367	/* ...and wait for it to complete. */
1368	fxp_dma_wait(&cbp->cb_status, sc);
1369
1370	/*
1371	 * Now initialize the station address. Temporarily use the TxCB
1372	 * memory area like we did above for the config CB.
1373	 */
1374	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1375	cb_ias->cb_status = 0;
1376	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1377	cb_ias->link_addr = -1;
1378	bcopy(sc->arpcom.ac_enaddr,
1379	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1380	    sizeof(sc->arpcom.ac_enaddr));
1381
1382	/*
1383	 * Start the IAS (Individual Address Setup) command/DMA.
1384	 */
1385	fxp_scb_wait(sc);
1386	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1387	/* ...and wait for it to complete. */
1388	fxp_dma_wait(&cb_ias->cb_status, sc);
1389
1390	/*
1391	 * Initialize transmit control block (TxCB) list.
1392	 */
1393
1394	txp = sc->cbl_base;
1395	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1396	for (i = 0; i < FXP_NTXCB; i++) {
1397		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1398		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1399		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1400		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1401		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1402	}
1403	/*
1404	 * Set the suspend flag on the first TxCB and start the control
1405	 * unit. It will execute the NOP and then suspend.
1406	 */
1407	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1408	sc->cbl_first = sc->cbl_last = txp;
1409	sc->tx_queued = 1;
1410
1411	fxp_scb_wait(sc);
1412	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1413
1414	/*
1415	 * Initialize receiver buffer area - RFA.
1416	 */
1417	fxp_scb_wait(sc);
1418	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1419	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1420	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1421
1422	/*
1423	 * Set current media.
1424	 */
1425	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1426
1427	ifp->if_flags |= IFF_RUNNING;
1428	ifp->if_flags &= ~IFF_OACTIVE;
1429	FXP_UNLOCK(sc);
1430
1431	/*
1432	 * Start stats updater.
1433	 */
1434	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1435}
1436
1437static void
1438fxp_set_media(sc, media)
1439	struct fxp_softc *sc;
1440	int media;
1441{
1442
1443	switch (sc->phy_primary_device) {
1444	case FXP_PHY_DP83840:
1445	case FXP_PHY_DP83840A:
1446		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1447		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1448		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1449		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1450		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1451		/* fall through */
1452	case FXP_PHY_82553A:
1453	case FXP_PHY_82553C: /* untested */
1454	case FXP_PHY_82555:
1455	case FXP_PHY_82555B:
1456		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1457			int flags;
1458
1459			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1460			    FXP_PHY_BMCR_SPEED_100M : 0;
1461			flags |= (media & IFM_FDX) ?
1462			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1463			fxp_mdi_write(sc, sc->phy_primary_addr,
1464			    FXP_PHY_BMCR,
1465			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1466			    FXP_PHY_BMCR) &
1467			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1468			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1469		} else {
1470			fxp_mdi_write(sc, sc->phy_primary_addr,
1471			    FXP_PHY_BMCR,
1472			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1473			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1474		}
1475		break;
1476	/*
1477	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1478	 * nothing.
1479	 */
1480	case FXP_PHY_80C24:
1481		break;
1482	default:
1483		printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n",
1484		     FXP_UNIT(sc), sc->phy_primary_device,
1485		     sc->phy_primary_addr);
1486	}
1487}
1488
1489/*
1490 * Change media according to request.
1491 */
1492int
1493fxp_mediachange(ifp)
1494	struct ifnet *ifp;
1495{
1496	struct fxp_softc *sc = ifp->if_softc;
1497	struct ifmedia *ifm = &sc->sc_media;
1498
1499	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1500		return (EINVAL);
1501
1502	fxp_set_media(sc, ifm->ifm_media);
1503	return (0);
1504}
1505
1506/*
1507 * Notify the world which media we're using.
1508 */
1509void
1510fxp_mediastatus(ifp, ifmr)
1511	struct ifnet *ifp;
1512	struct ifmediareq *ifmr;
1513{
1514	struct fxp_softc *sc = ifp->if_softc;
1515	int flags, stsflags;
1516
1517	switch (sc->phy_primary_device) {
1518	case FXP_PHY_82555:
1519	case FXP_PHY_82555B:
1520	case FXP_PHY_DP83840:
1521	case FXP_PHY_DP83840A:
1522		ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
1523		ifmr->ifm_active = IFM_ETHER;
1524		/*
1525		 * the following is not an error.
1526		 * You need to read this register twice to get current
1527		 * status. This is correct documented behaviour, the
1528		 * first read gets latched values.
1529		 */
1530		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1531		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1532		if (stsflags & FXP_PHY_STS_LINK_STS)
1533				ifmr->ifm_status |= IFM_ACTIVE;
1534
1535		/*
1536		 * If we are in auto mode, then try report the result.
1537		 */
1538		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1539		if (flags & FXP_PHY_BMCR_AUTOEN) {
1540			ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
1541			if (stsflags & FXP_PHY_STS_AUTO_DONE) {
1542				/*
1543				 * Intel and National parts report
1544				 * differently on what they found.
1545				 */
1546				if ((sc->phy_primary_device == FXP_PHY_82555)
1547				|| (sc->phy_primary_device == FXP_PHY_82555B)) {
1548					flags = fxp_mdi_read(sc,
1549						sc->phy_primary_addr,
1550						FXP_PHY_USC);
1551
1552					if (flags & FXP_PHY_USC_SPEED)
1553						ifmr->ifm_active |= IFM_100_TX;
1554					else
1555						ifmr->ifm_active |= IFM_10_T;
1556
1557					if (flags & FXP_PHY_USC_DUPLEX)
1558						ifmr->ifm_active |= IFM_FDX;
1559				} else { /* it's National. only know speed  */
1560					flags = fxp_mdi_read(sc,
1561						sc->phy_primary_addr,
1562						FXP_DP83840_PAR);
1563
1564					if (flags & FXP_DP83840_PAR_SPEED_10)
1565						ifmr->ifm_active |= IFM_10_T;
1566					else
1567						ifmr->ifm_active |= IFM_100_TX;
1568				}
1569			}
1570		} else { /* in manual mode.. just report what we were set to */
1571			if (flags & FXP_PHY_BMCR_SPEED_100M)
1572				ifmr->ifm_active |= IFM_100_TX;
1573			else
1574				ifmr->ifm_active |= IFM_10_T;
1575
1576			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1577				ifmr->ifm_active |= IFM_FDX;
1578		}
1579		break;
1580
1581	case FXP_PHY_80C24:
1582	default:
1583		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1584	}
1585}
1586
1587/*
1588 * Add a buffer to the end of the RFA buffer list.
1589 * Return 0 if successful, 1 for failure. A failure results in
1590 * adding the 'oldm' (if non-NULL) on to the end of the list -
1591 * tossing out its old contents and recycling it.
1592 * The RFA struct is stuck at the beginning of mbuf cluster and the
1593 * data pointer is fixed up to point just past it.
1594 */
1595static int
1596fxp_add_rfabuf(sc, oldm)
1597	struct fxp_softc *sc;
1598	struct mbuf *oldm;
1599{
1600	u_int32_t v;
1601	struct mbuf *m;
1602	struct fxp_rfa *rfa, *p_rfa;
1603
1604	MGETHDR(m, M_DONTWAIT, MT_DATA);
1605	if (m != NULL) {
1606		MCLGET(m, M_DONTWAIT);
1607		if ((m->m_flags & M_EXT) == 0) {
1608			m_freem(m);
1609			if (oldm == NULL)
1610				return 1;
1611			m = oldm;
1612			m->m_data = m->m_ext.ext_buf;
1613		}
1614	} else {
1615		if (oldm == NULL)
1616			return 1;
1617		m = oldm;
1618		m->m_data = m->m_ext.ext_buf;
1619	}
1620
1621	/*
1622	 * Move the data pointer up so that the incoming data packet
1623	 * will be 32-bit aligned.
1624	 */
1625	m->m_data += RFA_ALIGNMENT_FUDGE;
1626
1627	/*
1628	 * Get a pointer to the base of the mbuf cluster and move
1629	 * data start past it.
1630	 */
1631	rfa = mtod(m, struct fxp_rfa *);
1632	m->m_data += sizeof(struct fxp_rfa);
1633	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1634
1635	/*
1636	 * Initialize the rest of the RFA.  Note that since the RFA
1637	 * is misaligned, we cannot store values directly.  Instead,
1638	 * we use an optimized, inline copy.
1639	 */
1640
1641	rfa->rfa_status = 0;
1642	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1643	rfa->actual_size = 0;
1644
1645	v = -1;
1646	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1647	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1648
1649	/*
1650	 * If there are other buffers already on the list, attach this
1651	 * one to the end by fixing up the tail to point to this one.
1652	 */
1653	if (sc->rfa_headm != NULL) {
1654		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1655		    RFA_ALIGNMENT_FUDGE);
1656		sc->rfa_tailm->m_next = m;
1657		v = vtophys(rfa);
1658		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1659		p_rfa->rfa_control = 0;
1660	} else {
1661		sc->rfa_headm = m;
1662	}
1663	sc->rfa_tailm = m;
1664
1665	return (m == oldm);
1666}
1667
1668static volatile int
1669fxp_mdi_read(sc, phy, reg)
1670	struct fxp_softc *sc;
1671	int phy;
1672	int reg;
1673{
1674	int count = 10000;
1675	int value;
1676
1677	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1678	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1679
1680	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1681	    && count--)
1682		DELAY(10);
1683
1684	if (count <= 0)
1685		printf("fxp%d: fxp_mdi_read: timed out\n", FXP_UNIT(sc));
1686
1687	return (value & 0xffff);
1688}
1689
1690static void
1691fxp_mdi_write(sc, phy, reg, value)
1692	struct fxp_softc *sc;
1693	int phy;
1694	int reg;
1695	int value;
1696{
1697	int count = 10000;
1698
1699	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1700	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1701	    (value & 0xffff));
1702
1703	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1704	    count--)
1705		DELAY(10);
1706
1707	if (count <= 0)
1708		printf("fxp%d: fxp_mdi_write: timed out\n", FXP_UNIT(sc));
1709}
1710
1711static int
1712fxp_ioctl(ifp, command, data)
1713	struct ifnet *ifp;
1714	u_long command;
1715	caddr_t data;
1716{
1717	struct fxp_softc *sc = ifp->if_softc;
1718	struct ifreq *ifr = (struct ifreq *)data;
1719	int error = 0;
1720
1721	FXP_LOCK(sc);
1722
1723	switch (command) {
1724
1725	case SIOCSIFADDR:
1726	case SIOCGIFADDR:
1727	case SIOCSIFMTU:
1728		error = ether_ioctl(ifp, command, data);
1729		break;
1730
1731	case SIOCSIFFLAGS:
1732		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1733
1734		/*
1735		 * If interface is marked up and not running, then start it.
1736		 * If it is marked down and running, stop it.
1737		 * XXX If it's up then re-initialize it. This is so flags
1738		 * such as IFF_PROMISC are handled.
1739		 */
1740		if (ifp->if_flags & IFF_UP) {
1741			fxp_init(sc);
1742		} else {
1743			if (ifp->if_flags & IFF_RUNNING)
1744				fxp_stop(sc);
1745		}
1746		break;
1747
1748	case SIOCADDMULTI:
1749	case SIOCDELMULTI:
1750		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1751		/*
1752		 * Multicast list has changed; set the hardware filter
1753		 * accordingly.
1754		 */
1755		if (!sc->all_mcasts)
1756			fxp_mc_setup(sc);
1757		/*
1758		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1759		 * again rather than else {}.
1760		 */
1761		if (sc->all_mcasts)
1762			fxp_init(sc);
1763		error = 0;
1764		break;
1765
1766	case SIOCSIFMEDIA:
1767	case SIOCGIFMEDIA:
1768		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1769		break;
1770
1771	default:
1772		error = EINVAL;
1773	}
1774	FXP_UNLOCK(sc);
1775	return (error);
1776}
1777
1778/*
1779 * Program the multicast filter.
1780 *
1781 * We have an artificial restriction that the multicast setup command
1782 * must be the first command in the chain, so we take steps to ensure
1783 * this. By requiring this, it allows us to keep up the performance of
1784 * the pre-initialized command ring (esp. link pointers) by not actually
1785 * inserting the mcsetup command in the ring - i.e. its link pointer
1786 * points to the TxCB ring, but the mcsetup descriptor itself is not part
1787 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1788 * lead into the regular TxCB ring when it completes.
1789 *
1790 * This function must be called at splimp.
1791 */
1792static void
1793fxp_mc_setup(sc)
1794	struct fxp_softc *sc;
1795{
1796	struct fxp_cb_mcs *mcsp = sc->mcsp;
1797	struct ifnet *ifp = &sc->sc_if;
1798	struct ifmultiaddr *ifma;
1799	int nmcasts;
1800	int count;
1801
1802	/*
1803	 * If there are queued commands, we must wait until they are all
1804	 * completed. If we are already waiting, then add a NOP command
1805	 * with interrupt option so that we're notified when all commands
1806	 * have been completed - fxp_start() ensures that no additional
1807	 * TX commands will be added when need_mcsetup is true.
1808	 */
1809	if (sc->tx_queued) {
1810		struct fxp_cb_tx *txp;
1811
1812		/*
1813		 * need_mcsetup will be true if we are already waiting for the
1814		 * NOP command to be completed (see below). In this case, bail.
1815		 */
1816		if (sc->need_mcsetup)
1817			return;
1818		sc->need_mcsetup = 1;
1819
1820		/*
1821		 * Add a NOP command with interrupt so that we are notified when all
1822		 * TX commands have been processed.
1823		 */
1824		txp = sc->cbl_last->next;
1825		txp->mb_head = NULL;
1826		txp->cb_status = 0;
1827		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1828		/*
1829		 * Advance the end of list forward.
1830		 */
1831		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1832		sc->cbl_last = txp;
1833		sc->tx_queued++;
1834		/*
1835		 * Issue a resume in case the CU has just suspended.
1836		 */
1837		fxp_scb_wait(sc);
1838		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1839		/*
1840		 * Set a 5 second timer just in case we don't hear from the
1841		 * card again.
1842		 */
1843		ifp->if_timer = 5;
1844
1845		return;
1846	}
1847	sc->need_mcsetup = 0;
1848
1849	/*
1850	 * Initialize multicast setup descriptor.
1851	 */
1852	mcsp->next = sc->cbl_base;
1853	mcsp->mb_head = NULL;
1854	mcsp->cb_status = 0;
1855	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1856	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1857
1858	nmcasts = 0;
1859	if (!sc->all_mcasts) {
1860		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1861		    ifma = ifma->ifma_link.le_next) {
1862			if (ifma->ifma_addr->sa_family != AF_LINK)
1863				continue;
1864			if (nmcasts >= MAXMCADDR) {
1865				sc->all_mcasts = 1;
1866				nmcasts = 0;
1867				break;
1868			}
1869			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1870			    (void *)(uintptr_t)(volatile void *)
1871				&sc->mcsp->mc_addr[nmcasts][0], 6);
1872			nmcasts++;
1873		}
1874	}
1875	mcsp->mc_cnt = nmcasts * 6;
1876	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1877	sc->tx_queued = 1;
1878
1879	/*
1880	 * Wait until command unit is not active. This should never
1881	 * be the case when nothing is queued, but make sure anyway.
1882	 */
1883	count = 100;
1884	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1885	    FXP_SCB_CUS_ACTIVE && --count)
1886		DELAY(10);
1887	if (count == 0) {
1888		printf("fxp%d: command queue timeout\n", FXP_UNIT(sc));
1889		return;
1890	}
1891
1892	/*
1893	 * Start the multicast setup command.
1894	 */
1895	fxp_scb_wait(sc);
1896	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1897	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1898
1899	ifp->if_timer = 2;
1900	return;
1901}
1902