if_fxp.c revision 44907
155714Skris/*
255714Skris * Copyright (c) 1995, David Greenman
355714Skris * All rights reserved.
455714Skris *
555714Skris * Modifications to support NetBSD and media selection:
655714Skris * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
755714Skris *
855714Skris * Redistribution and use in source and binary forms, with or without
955714Skris * modification, are permitted provided that the following conditions
1055714Skris * are met:
1155714Skris * 1. Redistributions of source code must retain the above copyright
1255714Skris *    notice unmodified, this list of conditions, and the following
1355714Skris *    disclaimer.
1455714Skris * 2. Redistributions in binary form must reproduce the above copyright
1555714Skris *    notice, this list of conditions and the following disclaimer in the
1655714Skris *    documentation and/or other materials provided with the distribution.
1755714Skris *
1855714Skris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1955714Skris * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	$Id: if_fxp.c,v 1.65 1999/03/17 16:44:53 luigi Exp $
31 */
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include "bpfilter.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/mbuf.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/socket.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#ifdef NS
51#include <netns/ns.h>
52#include <netns/ns_if.h>
53#endif
54
55#if NBPFILTER > 0
56#include <net/bpf.h>
57#endif
58
59#if defined(__NetBSD__)
60
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64
65#include <net/if_dl.h>
66#include <net/if_ether.h>
67
68#include <netinet/if_inarp.h>
69
70#include <vm/vm.h>
71
72#include <machine/cpu.h>
73#include <machine/bus.h>
74#include <machine/intr.h>
75
76#include <dev/pci/if_fxpreg.h>
77#include <dev/pci/if_fxpvar.h>
78
79#include <dev/pci/pcivar.h>
80#include <dev/pci/pcireg.h>
81#include <dev/pci/pcidevs.h>
82
83#ifdef __alpha__		/* XXX */
84/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
85#undef vtophys
86#define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
87#endif /* __alpha__ */
88
89#else /* __FreeBSD__ */
90
91#include <sys/sockio.h>
92
93#include <net/ethernet.h>
94#include <net/if_arp.h>
95
96#include <vm/vm.h>		/* for vtophys */
97#include <vm/pmap.h>		/* for vtophys */
98#include <machine/clock.h>	/* for DELAY */
99
100#include <pci/pcivar.h>
101#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
102#include <pci/if_fxpreg.h>
103#include <pci/if_fxpvar.h>
104
105#endif /* __NetBSD__ */
106
107#include "opt_bdg.h"
108#ifdef BRIDGE
109#include <net/if_types.h>
110#include <net/bridge.h>
111#endif
112
113/*
114 * NOTE!  On the Alpha, we have an alignment constraint.  The
115 * card DMAs the packet immediately following the RFA.  However,
116 * the first thing in the packet is a 14-byte Ethernet header.
117 * This means that the packet is misaligned.  To compensate,
118 * we actually offset the RFA 2 bytes into the cluster.  This
119 * alignes the packet after the Ethernet header at a 32-bit
120 * boundary.  HOWEVER!  This means that the RFA is misaligned!
121 */
122#define	RFA_ALIGNMENT_FUDGE	2
123
124/*
125 * Inline function to copy a 16-bit aligned 32-bit quantity.
126 */
127static __inline void fxp_lwcopy __P((volatile u_int32_t *,
128	volatile u_int32_t *));
129static __inline void
130fxp_lwcopy(src, dst)
131	volatile u_int32_t *src, *dst;
132{
133	volatile u_int16_t *a = (volatile u_int16_t *)src;
134	volatile u_int16_t *b = (volatile u_int16_t *)dst;
135
136	b[0] = a[0];
137	b[1] = a[1];
138}
139
140/*
141 * Template for default configuration parameters.
142 * See struct fxp_cb_config for the bit definitions.
143 */
144static u_char fxp_cb_config_template[] = {
145	0x0, 0x0,		/* cb_status */
146	0x80, 0x2,		/* cb_command */
147	0xff, 0xff, 0xff, 0xff,	/* link_addr */
148	0x16,	/*  0 */
149	0x8,	/*  1 */
150	0x0,	/*  2 */
151	0x0,	/*  3 */
152	0x0,	/*  4 */
153	0x80,	/*  5 */
154	0xb2,	/*  6 */
155	0x3,	/*  7 */
156	0x1,	/*  8 */
157	0x0,	/*  9 */
158	0x26,	/* 10 */
159	0x0,	/* 11 */
160	0x60,	/* 12 */
161	0x0,	/* 13 */
162	0xf2,	/* 14 */
163	0x48,	/* 15 */
164	0x0,	/* 16 */
165	0x40,	/* 17 */
166	0xf3,	/* 18 */
167	0x0,	/* 19 */
168	0x3f,	/* 20 */
169	0x5	/* 21 */
170};
171
172/* Supported media types. */
173struct fxp_supported_media {
174	const int	fsm_phy;	/* PHY type */
175	const int	*fsm_media;	/* the media array */
176	const int	fsm_nmedia;	/* the number of supported media */
177	const int	fsm_defmedia;	/* default media for this PHY */
178};
179
180static const int fxp_media_standard[] = {
181	IFM_ETHER|IFM_10_T,
182	IFM_ETHER|IFM_10_T|IFM_FDX,
183	IFM_ETHER|IFM_100_TX,
184	IFM_ETHER|IFM_100_TX|IFM_FDX,
185	IFM_ETHER|IFM_AUTO,
186};
187#define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
188
189static const int fxp_media_default[] = {
190	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
191};
192#define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
193
194static const struct fxp_supported_media fxp_media[] = {
195	{ FXP_PHY_DP83840, fxp_media_standard,
196	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
197	  FXP_MEDIA_STANDARD_DEFMEDIA },
198	{ FXP_PHY_DP83840A, fxp_media_standard,
199	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
200	  FXP_MEDIA_STANDARD_DEFMEDIA },
201	{ FXP_PHY_82553A, fxp_media_standard,
202	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
203	  FXP_MEDIA_STANDARD_DEFMEDIA },
204	{ FXP_PHY_82553C, fxp_media_standard,
205	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
206	  FXP_MEDIA_STANDARD_DEFMEDIA },
207	{ FXP_PHY_82555, fxp_media_standard,
208	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
209	  FXP_MEDIA_STANDARD_DEFMEDIA },
210	{ FXP_PHY_82555B, fxp_media_standard,
211	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
212	  FXP_MEDIA_STANDARD_DEFMEDIA },
213	{ FXP_PHY_80C24, fxp_media_default,
214	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
215	  FXP_MEDIA_DEFAULT_DEFMEDIA },
216};
217#define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
218
219static int fxp_mediachange	__P((struct ifnet *));
220static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
221static void fxp_set_media	__P((struct fxp_softc *, int));
222static __inline void fxp_scb_wait __P((struct fxp_softc *));
223static FXP_INTR_TYPE fxp_intr	__P((void *));
224static void fxp_start		__P((struct ifnet *));
225static int fxp_ioctl		__P((struct ifnet *,
226				     FXP_IOCTLCMD_TYPE, caddr_t));
227static void fxp_init		__P((void *));
228static void fxp_stop		__P((struct fxp_softc *));
229static void fxp_watchdog	__P((struct ifnet *));
230static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
231static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
232static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
233static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
234				     int, int));
235static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
236static void fxp_stats_update	__P((void *));
237static void fxp_mc_setup	__P((struct fxp_softc *));
238
239/*
240 * Set initial transmit threshold at 64 (512 bytes). This is
241 * increased by 64 (512 bytes) at a time, to maximum of 192
242 * (1536 bytes), if an underrun occurs.
243 */
244static int tx_threshold = 64;
245
246/*
247 * Number of transmit control blocks. This determines the number
248 * of transmit buffers that can be chained in the CB list.
249 * This must be a power of two.
250 */
251#define FXP_NTXCB	128
252
253/*
254 * Number of completed TX commands at which point an interrupt
255 * will be generated to garbage collect the attached buffers.
256 * Must be at least one less than FXP_NTXCB, and should be
257 * enough less so that the transmitter doesn't becomes idle
258 * during the buffer rundown (which would reduce performance).
259 */
260#define FXP_CXINT_THRESH 120
261
262/*
263 * TxCB list index mask. This is used to do list wrap-around.
264 */
265#define FXP_TXCB_MASK	(FXP_NTXCB - 1)
266
267/*
268 * Number of receive frame area buffers. These are large so chose
269 * wisely.
270 */
271#define FXP_NRFABUFS	64
272
273/*
274 * Maximum number of seconds that the receiver can be idle before we
275 * assume it's dead and attempt to reset it by reprogramming the
276 * multicast filter. This is part of a work-around for a bug in the
277 * NIC. See fxp_stats_update().
278 */
279#define FXP_MAX_RX_IDLE	15
280
281/*
282 * Wait for the previous command to be accepted (but not necessarily
283 * completed).
284 */
285static __inline void
286fxp_scb_wait(sc)
287	struct fxp_softc *sc;
288{
289	int i = 10000;
290
291	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i);
292}
293
294/*************************************************************
295 * Operating system-specific autoconfiguration glue
296 *************************************************************/
297
298#if defined(__NetBSD__)
299
300#ifdef __BROKEN_INDIRECT_CONFIG
301static int fxp_match __P((struct device *, void *, void *));
302#else
303static int fxp_match __P((struct device *, struct cfdata *, void *));
304#endif
305static void fxp_attach __P((struct device *, struct device *, void *));
306
307static void	fxp_shutdown __P((void *));
308
309/* Compensate for lack of a generic ether_ioctl() */
310static int	fxp_ether_ioctl __P((struct ifnet *,
311				    FXP_IOCTLCMD_TYPE, caddr_t));
312#define	ether_ioctl	fxp_ether_ioctl
313
314struct cfattach fxp_ca = {
315	sizeof(struct fxp_softc), fxp_match, fxp_attach
316};
317
318struct cfdriver fxp_cd = {
319	NULL, "fxp", DV_IFNET
320};
321
322/*
323 * Check if a device is an 82557.
324 */
325static int
326fxp_match(parent, match, aux)
327	struct device *parent;
328#ifdef __BROKEN_INDIRECT_CONFIG
329	void *match;
330#else
331	struct cfdata *match;
332#endif
333	void *aux;
334{
335	struct pci_attach_args *pa = aux;
336
337	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
338		return (0);
339
340	switch (PCI_PRODUCT(pa->pa_id)) {
341	case PCI_PRODUCT_INTEL_82557:
342		return (1);
343	}
344
345	return (0);
346}
347
348static void
349fxp_attach(parent, self, aux)
350	struct device *parent, *self;
351	void *aux;
352{
353	struct fxp_softc *sc = (struct fxp_softc *)self;
354	struct pci_attach_args *pa = aux;
355	pci_chipset_tag_t pc = pa->pa_pc;
356	pci_intr_handle_t ih;
357	const char *intrstr = NULL;
358	u_int8_t enaddr[6];
359	struct ifnet *ifp;
360
361	/*
362	 * Map control/status registers.
363	 */
364	if (pci_mapreg_map(pa, FXP_PCI_MMBA, PCI_MAPREG_TYPE_MEM, 0,
365	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
366		printf(": can't map registers\n");
367		return;
368	}
369	printf(": Intel EtherExpress Pro 10/100B Ethernet\n");
370
371	/*
372	 * Allocate our interrupt.
373	 */
374	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
375	    pa->pa_intrline, &ih)) {
376		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
377		return;
378	}
379	intrstr = pci_intr_string(pc, ih);
380	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc);
381	if (sc->sc_ih == NULL) {
382		printf("%s: couldn't establish interrupt",
383		    sc->sc_dev.dv_xname);
384		if (intrstr != NULL)
385			printf(" at %s", intrstr);
386		printf("\n");
387		return;
388	}
389	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
390
391	/* Do generic parts of attach. */
392	if (fxp_attach_common(sc, enaddr)) {
393		/* Failed! */
394		return;
395	}
396
397	printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname,
398	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : "");
399
400	ifp = &sc->sc_ethercom.ec_if;
401	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
402	ifp->if_softc = sc;
403	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
404	ifp->if_ioctl = fxp_ioctl;
405	ifp->if_start = fxp_start;
406	ifp->if_watchdog = fxp_watchdog;
407
408	/*
409	 * Attach the interface.
410	 */
411	if_attach(ifp);
412	/*
413	 * Let the system queue as many packets as we have available
414	 * TX descriptors.
415	 */
416	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
417	ether_ifattach(ifp, enaddr);
418#if NBPFILTER > 0
419	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
420	    sizeof(struct ether_header));
421#endif
422
423	/*
424	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
425	 * doing do could allow DMA to corrupt kernel memory during the
426	 * reboot before the driver initializes.
427	 */
428	shutdownhook_establish(fxp_shutdown, sc);
429}
430
431/*
432 * Device shutdown routine. Called at system shutdown after sync. The
433 * main purpose of this routine is to shut off receiver DMA so that
434 * kernel memory doesn't get clobbered during warmboot.
435 */
436static void
437fxp_shutdown(sc)
438	void *sc;
439{
440	fxp_stop((struct fxp_softc *) sc);
441}
442
443static int
444fxp_ether_ioctl(ifp, cmd, data)
445	struct ifnet *ifp;
446	FXP_IOCTLCMD_TYPE cmd;
447	caddr_t data;
448{
449	struct ifaddr *ifa = (struct ifaddr *) data;
450	struct fxp_softc *sc = ifp->if_softc;
451
452	switch (cmd) {
453	case SIOCSIFADDR:
454		ifp->if_flags |= IFF_UP;
455
456		switch (ifa->ifa_addr->sa_family) {
457#ifdef INET
458		case AF_INET:
459			fxp_init(sc);
460			arp_ifinit(ifp, ifa);
461			break;
462#endif
463#ifdef NS
464		case AF_NS:
465		    {
466			 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
467
468			 if (ns_nullhost(*ina))
469				ina->x_host = *(union ns_host *)
470				    LLADDR(ifp->if_sadl);
471			 else
472				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
473				    ifp->if_addrlen);
474			 /* Set new address. */
475			 fxp_init(sc);
476			 break;
477		    }
478#endif
479		default:
480			fxp_init(sc);
481			break;
482		}
483		break;
484
485	default:
486		return (EINVAL);
487	}
488
489	return (0);
490}
491
492#else /* __FreeBSD__ */
493
494static u_long fxp_count;
495static const char *fxp_probe		__P((pcici_t, pcidi_t));
496static void fxp_attach		__P((pcici_t, int));
497
498static void fxp_shutdown	__P((int, void *));
499
500static struct pci_device fxp_device = {
501	"fxp",
502	fxp_probe,
503	fxp_attach,
504	&fxp_count,
505	NULL
506};
507DATA_SET(pcidevice_set, fxp_device);
508
509/*
510 * Return identification string if this is device is ours.
511 */
512static const char *
513fxp_probe(config_id, device_id)
514	pcici_t config_id;
515	pcidi_t device_id;
516{
517	if (((device_id & 0xffff) == FXP_VENDORID_INTEL) &&
518	    ((device_id >> 16) & 0xffff) == FXP_DEVICEID_i82557)
519		return ("Intel EtherExpress Pro 10/100B Ethernet");
520
521	return NULL;
522}
523
524static void
525fxp_attach(config_id, unit)
526	pcici_t config_id;
527	int unit;
528{
529	struct fxp_softc *sc;
530	vm_offset_t pbase;
531	struct ifnet *ifp;
532	int s;
533	u_long val;
534
535	sc = malloc(sizeof(struct fxp_softc), M_DEVBUF, M_NOWAIT);
536	if (sc == NULL)
537		return;
538	bzero(sc, sizeof(struct fxp_softc));
539	callout_handle_init(&sc->stat_ch);
540
541	s = splimp();
542
543	/*
544	 * Enable bus mastering.
545	 */
546	val = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
547	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
548	pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, val);
549
550	/*
551	 * Map control/status registers.
552	 */
553	if (!pci_map_mem(config_id, FXP_PCI_MMBA,
554	    (vm_offset_t *)&sc->csr, &pbase)) {
555		printf("fxp%d: couldn't map memory\n", unit);
556		goto fail;
557	}
558
559	/*
560	 * Allocate our interrupt.
561	 */
562	if (!pci_map_int(config_id, fxp_intr, sc, &net_imask)) {
563		printf("fxp%d: couldn't map interrupt\n", unit);
564		goto fail;
565	}
566
567	/* Do generic parts of attach. */
568	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
569		/* Failed! */
570		(void) pci_unmap_int(config_id);
571		goto fail;
572	}
573
574	printf("fxp%d: Ethernet address %6D%s\n", unit,
575	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
576
577	ifp = &sc->arpcom.ac_if;
578	ifp->if_unit = unit;
579	ifp->if_name = "fxp";
580	ifp->if_output = ether_output;
581	ifp->if_baudrate = 100000000;
582	ifp->if_init = fxp_init;
583	ifp->if_softc = sc;
584	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
585	ifp->if_ioctl = fxp_ioctl;
586	ifp->if_start = fxp_start;
587	ifp->if_watchdog = fxp_watchdog;
588
589	/*
590	 * Attach the interface.
591	 */
592	if_attach(ifp);
593	/*
594	 * Let the system queue as many packets as we have available
595	 * TX descriptors.
596	 */
597	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
598	ether_ifattach(ifp);
599#if NBPFILTER > 0
600	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
601#endif
602
603	/*
604	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
605	 * doing do could allow DMA to corrupt kernel memory during the
606	 * reboot before the driver initializes.
607	 */
608	at_shutdown(fxp_shutdown, sc, SHUTDOWN_POST_SYNC);
609
610	splx(s);
611	return;
612
613 fail:
614	free(sc, M_DEVBUF);
615	splx(s);
616}
617
618/*
619 * Device shutdown routine. Called at system shutdown after sync. The
620 * main purpose of this routine is to shut off receiver DMA so that
621 * kernel memory doesn't get clobbered during warmboot.
622 */
623static void
624fxp_shutdown(howto, sc)
625	int howto;
626	void *sc;
627{
628	fxp_stop((struct fxp_softc *) sc);
629}
630
631#endif /* __NetBSD__ */
632
633/*************************************************************
634 * End of operating system-specific autoconfiguration glue
635 *************************************************************/
636
637/*
638 * Do generic parts of attach.
639 */
640static int
641fxp_attach_common(sc, enaddr)
642	struct fxp_softc *sc;
643	u_int8_t *enaddr;
644{
645	u_int16_t data;
646	int i, nmedia, defmedia;
647	const int *media;
648
649	/*
650	 * Reset to a stable state.
651	 */
652	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
653	DELAY(10);
654
655	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
656	    M_DEVBUF, M_NOWAIT);
657	if (sc->cbl_base == NULL)
658		goto fail;
659	bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
660
661	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
662	if (sc->fxp_stats == NULL)
663		goto fail;
664	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
665
666	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
667	if (sc->mcsp == NULL)
668		goto fail;
669
670	/*
671	 * Pre-allocate our receive buffers.
672	 */
673	for (i = 0; i < FXP_NRFABUFS; i++) {
674		if (fxp_add_rfabuf(sc, NULL) != 0) {
675			goto fail;
676		}
677	}
678
679	/*
680	 * Get info about the primary PHY
681	 */
682	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
683	sc->phy_primary_addr = data & 0xff;
684	sc->phy_primary_device = (data >> 8) & 0x3f;
685	sc->phy_10Mbps_only = data >> 15;
686
687	/*
688	 * Read MAC address.
689	 */
690	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
691
692	/*
693	 * Initialize the media structures.
694	 */
695
696	media = fxp_media_default;
697	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
698	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
699
700	for (i = 0; i < NFXPMEDIA; i++) {
701		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
702			media = fxp_media[i].fsm_media;
703			nmedia = fxp_media[i].fsm_nmedia;
704			defmedia = fxp_media[i].fsm_defmedia;
705		}
706	}
707
708	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
709	for (i = 0; i < nmedia; i++) {
710		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
711			continue;
712		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
713	}
714	ifmedia_set(&sc->sc_media, defmedia);
715
716	return (0);
717
718 fail:
719	printf(FXP_FORMAT ": Failed to malloc memory\n", FXP_ARGS(sc));
720	if (sc->cbl_base)
721		free(sc->cbl_base, M_DEVBUF);
722	if (sc->fxp_stats)
723		free(sc->fxp_stats, M_DEVBUF);
724	if (sc->mcsp)
725		free(sc->mcsp, M_DEVBUF);
726	/* frees entire chain */
727	if (sc->rfa_headm)
728		m_freem(sc->rfa_headm);
729
730	return (ENOMEM);
731}
732
733/*
734 * Read from the serial EEPROM. Basically, you manually shift in
735 * the read opcode (one bit at a time) and then shift in the address,
736 * and then you shift out the data (all of this one bit at a time).
737 * The word size is 16 bits, so you have to provide the address for
738 * every 16 bits of data.
739 */
740static void
741fxp_read_eeprom(sc, data, offset, words)
742	struct fxp_softc *sc;
743	u_short *data;
744	int offset;
745	int words;
746{
747	u_int16_t reg;
748	int i, x;
749
750	for (i = 0; i < words; i++) {
751		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
752		/*
753		 * Shift in read opcode.
754		 */
755		for (x = 3; x > 0; x--) {
756			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
757				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
758			} else {
759				reg = FXP_EEPROM_EECS;
760			}
761			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
762			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
763			    reg | FXP_EEPROM_EESK);
764			DELAY(1);
765			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
766			DELAY(1);
767		}
768		/*
769		 * Shift in address.
770		 */
771		for (x = 6; x > 0; x--) {
772			if ((i + offset) & (1 << (x - 1))) {
773				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
774			} else {
775				reg = FXP_EEPROM_EECS;
776			}
777			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
778			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
779			    reg | FXP_EEPROM_EESK);
780			DELAY(1);
781			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
782			DELAY(1);
783		}
784		reg = FXP_EEPROM_EECS;
785		data[i] = 0;
786		/*
787		 * Shift out data.
788		 */
789		for (x = 16; x > 0; x--) {
790			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
791			    reg | FXP_EEPROM_EESK);
792			DELAY(1);
793			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
794			    FXP_EEPROM_EEDO)
795				data[i] |= (1 << (x - 1));
796			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
797			DELAY(1);
798		}
799		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
800		DELAY(1);
801	}
802}
803
804/*
805 * Start packet transmission on the interface.
806 */
807static void
808fxp_start(ifp)
809	struct ifnet *ifp;
810{
811	struct fxp_softc *sc = ifp->if_softc;
812	struct fxp_cb_tx *txp;
813
814	/*
815	 * See if we need to suspend xmit until the multicast filter
816	 * has been reprogrammed (which can only be done at the head
817	 * of the command chain).
818	 */
819	if (sc->need_mcsetup)
820		return;
821
822	txp = NULL;
823
824	/*
825	 * We're finished if there is nothing more to add to the list or if
826	 * we're all filled up with buffers to transmit.
827	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
828	 *       a NOP command when needed.
829	 */
830	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
831		struct mbuf *m, *mb_head;
832		int segment;
833
834		/*
835		 * Grab a packet to transmit.
836		 */
837		IF_DEQUEUE(&ifp->if_snd, mb_head);
838
839		/*
840		 * Get pointer to next available tx desc.
841		 */
842		txp = sc->cbl_last->next;
843
844		/*
845		 * Go through each of the mbufs in the chain and initialize
846		 * the transmit buffer descriptors with the physical address
847		 * and size of the mbuf.
848		 */
849tbdinit:
850		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
851			if (m->m_len != 0) {
852				if (segment == FXP_NTXSEG)
853					break;
854				txp->tbd[segment].tb_addr =
855				    vtophys(mtod(m, vm_offset_t));
856				txp->tbd[segment].tb_size = m->m_len;
857				segment++;
858			}
859		}
860		if (m != NULL) {
861			struct mbuf *mn;
862
863			/*
864			 * We ran out of segments. We have to recopy this mbuf
865			 * chain first. Bail out if we can't get the new buffers.
866			 */
867			MGETHDR(mn, M_DONTWAIT, MT_DATA);
868			if (mn == NULL) {
869				m_freem(mb_head);
870				break;
871			}
872			if (mb_head->m_pkthdr.len > MHLEN) {
873				MCLGET(mn, M_DONTWAIT);
874				if ((mn->m_flags & M_EXT) == 0) {
875					m_freem(mn);
876					m_freem(mb_head);
877					break;
878				}
879			}
880			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
881			    mtod(mn, caddr_t));
882			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
883			m_freem(mb_head);
884			mb_head = mn;
885			goto tbdinit;
886		}
887
888		txp->tbd_number = segment;
889		txp->mb_head = mb_head;
890		txp->cb_status = 0;
891		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
892			txp->cb_command =
893			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
894		} else {
895			txp->cb_command =
896			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
897			/*
898			 * Set a 5 second timer just in case we don't hear from the
899			 * card again.
900			 */
901			ifp->if_timer = 5;
902		}
903		txp->tx_threshold = tx_threshold;
904
905		/*
906		 * Advance the end of list forward.
907		 */
908		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
909		sc->cbl_last = txp;
910
911		/*
912		 * Advance the beginning of the list forward if there are
913		 * no other packets queued (when nothing is queued, cbl_first
914		 * sits on the last TxCB that was sent out).
915		 */
916		if (sc->tx_queued == 0)
917			sc->cbl_first = txp;
918
919		sc->tx_queued++;
920
921#if NBPFILTER > 0
922		/*
923		 * Pass packet to bpf if there is a listener.
924		 */
925		if (ifp->if_bpf)
926			bpf_mtap(FXP_BPFTAP_ARG(ifp), mb_head);
927#endif
928	}
929
930	/*
931	 * We're finished. If we added to the list, issue a RESUME to get DMA
932	 * going again if suspended.
933	 */
934	if (txp != NULL) {
935		fxp_scb_wait(sc);
936		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
937	}
938}
939
940/*
941 * Process interface interrupts.
942 */
943static FXP_INTR_TYPE
944fxp_intr(arg)
945	void *arg;
946{
947	struct fxp_softc *sc = arg;
948	struct ifnet *ifp = &sc->sc_if;
949	u_int8_t statack;
950#if defined(__NetBSD__)
951	int claimed = 0;
952#endif
953
954	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
955#if defined(__NetBSD__)
956		claimed = 1;
957#endif
958		/*
959		 * First ACK all the interrupts in this pass.
960		 */
961		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
962
963		/*
964		 * Free any finished transmit mbuf chains.
965		 */
966		if (statack & FXP_SCB_STATACK_CXTNO) {
967			struct fxp_cb_tx *txp;
968
969			for (txp = sc->cbl_first; sc->tx_queued &&
970			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
971			    txp = txp->next) {
972				if (txp->mb_head != NULL) {
973					m_freem(txp->mb_head);
974					txp->mb_head = NULL;
975				}
976				sc->tx_queued--;
977			}
978			sc->cbl_first = txp;
979			ifp->if_timer = 0;
980			if (sc->tx_queued == 0) {
981				if (sc->need_mcsetup)
982					fxp_mc_setup(sc);
983			}
984			/*
985			 * Try to start more packets transmitting.
986			 */
987			if (ifp->if_snd.ifq_head != NULL)
988				fxp_start(ifp);
989		}
990		/*
991		 * Process receiver interrupts. If a no-resource (RNR)
992		 * condition exists, get whatever packets we can and
993		 * re-start the receiver.
994		 */
995		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
996			struct mbuf *m;
997			struct fxp_rfa *rfa;
998rcvloop:
999			m = sc->rfa_headm;
1000			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1001			    RFA_ALIGNMENT_FUDGE);
1002
1003			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1004				/*
1005				 * Remove first packet from the chain.
1006				 */
1007				sc->rfa_headm = m->m_next;
1008				m->m_next = NULL;
1009
1010				/*
1011				 * Add a new buffer to the receive chain.
1012				 * If this fails, the old buffer is recycled
1013				 * instead.
1014				 */
1015				if (fxp_add_rfabuf(sc, m) == 0) {
1016					struct ether_header *eh;
1017					u_int16_t total_len;
1018
1019					total_len = rfa->actual_size &
1020					    (MCLBYTES - 1);
1021					if (total_len <
1022					    sizeof(struct ether_header)) {
1023						m_freem(m);
1024						goto rcvloop;
1025					}
1026					m->m_pkthdr.rcvif = ifp;
1027					m->m_pkthdr.len = m->m_len =
1028					    total_len ;
1029					eh = mtod(m, struct ether_header *);
1030#if NBPFILTER > 0
1031					if (ifp->if_bpf)
1032						bpf_tap(FXP_BPFTAP_ARG(ifp),
1033						    mtod(m, caddr_t),
1034						    total_len);
1035#endif /* NBPFILTER > 0 */
1036#ifdef BRIDGE
1037                                        if (do_bridge) {
1038                                            struct ifnet *bdg_ifp ;
1039                                            bdg_ifp = bridge_in(m);
1040                                            if (bdg_ifp == BDG_DROP)
1041                                                goto dropit ;
1042                                            if (bdg_ifp != BDG_LOCAL)
1043                                                bdg_forward(&m, bdg_ifp);
1044                                            if (bdg_ifp != BDG_LOCAL &&
1045                                                    bdg_ifp != BDG_BCAST &&
1046                                                    bdg_ifp != BDG_MCAST)
1047                                                goto dropit ;
1048                                            goto getit ;
1049                                        }
1050#endif
1051					/*
1052					 * Only pass this packet up
1053					 * if it is for us.
1054					 */
1055					if ((ifp->if_flags &
1056					    IFF_PROMISC) &&
1057					    (rfa->rfa_status &
1058					    FXP_RFA_STATUS_IAMATCH) &&
1059					    (eh->ether_dhost[0] & 1)
1060					    == 0) {
1061dropit:
1062					    if (m)
1063						m_freem(m);
1064					    goto rcvloop;
1065					}
1066getit:
1067					m->m_data +=
1068					    sizeof(struct ether_header);
1069					m->m_len -=
1070					    sizeof(struct ether_header);
1071					m->m_pkthdr.len = m->m_len ;
1072					ether_input(ifp, eh, m);
1073				}
1074				goto rcvloop;
1075			}
1076			if (statack & FXP_SCB_STATACK_RNR) {
1077				fxp_scb_wait(sc);
1078				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1079				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1080					RFA_ALIGNMENT_FUDGE);
1081				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1082				    FXP_SCB_COMMAND_RU_START);
1083			}
1084		}
1085	}
1086#if defined(__NetBSD__)
1087	return (claimed);
1088#endif
1089}
1090
1091/*
1092 * Update packet in/out/collision statistics. The i82557 doesn't
1093 * allow you to access these counters without doing a fairly
1094 * expensive DMA to get _all_ of the statistics it maintains, so
1095 * we do this operation here only once per second. The statistics
1096 * counters in the kernel are updated from the previous dump-stats
1097 * DMA and then a new dump-stats DMA is started. The on-chip
1098 * counters are zeroed when the DMA completes. If we can't start
1099 * the DMA immediately, we don't wait - we just prepare to read
1100 * them again next time.
1101 */
1102static void
1103fxp_stats_update(arg)
1104	void *arg;
1105{
1106	struct fxp_softc *sc = arg;
1107	struct ifnet *ifp = &sc->sc_if;
1108	struct fxp_stats *sp = sc->fxp_stats;
1109	struct fxp_cb_tx *txp;
1110	int s;
1111
1112	ifp->if_opackets += sp->tx_good;
1113	ifp->if_collisions += sp->tx_total_collisions;
1114	if (sp->rx_good) {
1115		ifp->if_ipackets += sp->rx_good;
1116		sc->rx_idle_secs = 0;
1117	} else {
1118		/*
1119		 * Receiver's been idle for another second.
1120		 */
1121		sc->rx_idle_secs++;
1122	}
1123	ifp->if_ierrors +=
1124	    sp->rx_crc_errors +
1125	    sp->rx_alignment_errors +
1126	    sp->rx_rnr_errors +
1127	    sp->rx_overrun_errors;
1128	/*
1129	 * If any transmit underruns occured, bump up the transmit
1130	 * threshold by another 512 bytes (64 * 8).
1131	 */
1132	if (sp->tx_underruns) {
1133		ifp->if_oerrors += sp->tx_underruns;
1134		if (tx_threshold < 192)
1135			tx_threshold += 64;
1136	}
1137	s = splimp();
1138	/*
1139	 * Release any xmit buffers that have completed DMA. This isn't
1140	 * strictly necessary to do here, but it's advantagous for mbufs
1141	 * with external storage to be released in a timely manner rather
1142	 * than being defered for a potentially long time. This limits
1143	 * the delay to a maximum of one second.
1144	 */
1145	for (txp = sc->cbl_first; sc->tx_queued &&
1146	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1147	    txp = txp->next) {
1148		if (txp->mb_head != NULL) {
1149			m_freem(txp->mb_head);
1150			txp->mb_head = NULL;
1151		}
1152		sc->tx_queued--;
1153	}
1154	sc->cbl_first = txp;
1155	/*
1156	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1157	 * then assume the receiver has locked up and attempt to clear
1158	 * the condition by reprogramming the multicast filter. This is
1159	 * a work-around for a bug in the 82557 where the receiver locks
1160	 * up if it gets certain types of garbage in the syncronization
1161	 * bits prior to the packet header. This bug is supposed to only
1162	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1163	 * mode as well (perhaps due to a 10/100 speed transition).
1164	 */
1165	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1166		sc->rx_idle_secs = 0;
1167		fxp_mc_setup(sc);
1168	}
1169	/*
1170	 * If there is no pending command, start another stats
1171	 * dump. Otherwise punt for now.
1172	 */
1173	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1174		/*
1175		 * Start another stats dump.
1176		 */
1177		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1178		    FXP_SCB_COMMAND_CU_DUMPRESET);
1179	} else {
1180		/*
1181		 * A previous command is still waiting to be accepted.
1182		 * Just zero our copy of the stats and wait for the
1183		 * next timer event to update them.
1184		 */
1185		sp->tx_good = 0;
1186		sp->tx_underruns = 0;
1187		sp->tx_total_collisions = 0;
1188
1189		sp->rx_good = 0;
1190		sp->rx_crc_errors = 0;
1191		sp->rx_alignment_errors = 0;
1192		sp->rx_rnr_errors = 0;
1193		sp->rx_overrun_errors = 0;
1194	}
1195	splx(s);
1196	/*
1197	 * Schedule another timeout one second from now.
1198	 */
1199	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1200}
1201
1202/*
1203 * Stop the interface. Cancels the statistics updater and resets
1204 * the interface.
1205 */
1206static void
1207fxp_stop(sc)
1208	struct fxp_softc *sc;
1209{
1210	struct ifnet *ifp = &sc->sc_if;
1211	struct fxp_cb_tx *txp;
1212	int i;
1213
1214	/*
1215	 * Cancel stats updater.
1216	 */
1217	untimeout(fxp_stats_update, sc, sc->stat_ch);
1218
1219	/*
1220	 * Issue software reset
1221	 */
1222	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1223	DELAY(10);
1224
1225	/*
1226	 * Release any xmit buffers.
1227	 */
1228	txp = sc->cbl_base;
1229	if (txp != NULL) {
1230		for (i = 0; i < FXP_NTXCB; i++) {
1231			if (txp[i].mb_head != NULL) {
1232				m_freem(txp[i].mb_head);
1233				txp[i].mb_head = NULL;
1234			}
1235		}
1236	}
1237	sc->tx_queued = 0;
1238
1239	/*
1240	 * Free all the receive buffers then reallocate/reinitialize
1241	 */
1242	if (sc->rfa_headm != NULL)
1243		m_freem(sc->rfa_headm);
1244	sc->rfa_headm = NULL;
1245	sc->rfa_tailm = NULL;
1246	for (i = 0; i < FXP_NRFABUFS; i++) {
1247		if (fxp_add_rfabuf(sc, NULL) != 0) {
1248			/*
1249			 * This "can't happen" - we're at splimp()
1250			 * and we just freed all the buffers we need
1251			 * above.
1252			 */
1253			panic("fxp_stop: no buffers!");
1254		}
1255	}
1256
1257	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1258	ifp->if_timer = 0;
1259}
1260
1261/*
1262 * Watchdog/transmission transmit timeout handler. Called when a
1263 * transmission is started on the interface, but no interrupt is
1264 * received before the timeout. This usually indicates that the
1265 * card has wedged for some reason.
1266 */
1267static void
1268fxp_watchdog(ifp)
1269	struct ifnet *ifp;
1270{
1271	struct fxp_softc *sc = ifp->if_softc;
1272
1273	printf(FXP_FORMAT ": device timeout\n", FXP_ARGS(sc));
1274	ifp->if_oerrors++;
1275
1276	fxp_init(sc);
1277}
1278
1279static void
1280fxp_init(xsc)
1281	void *xsc;
1282{
1283	struct fxp_softc *sc = xsc;
1284	struct ifnet *ifp = &sc->sc_if;
1285	struct fxp_cb_config *cbp;
1286	struct fxp_cb_ias *cb_ias;
1287	struct fxp_cb_tx *txp;
1288	int i, s, prm;
1289
1290	s = splimp();
1291	/*
1292	 * Cancel any pending I/O
1293	 */
1294	fxp_stop(sc);
1295
1296	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1297
1298	/*
1299	 * Initialize base of CBL and RFA memory. Loading with zero
1300	 * sets it up for regular linear addressing.
1301	 */
1302	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1303	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1304
1305	fxp_scb_wait(sc);
1306	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1307
1308	/*
1309	 * Initialize base of dump-stats buffer.
1310	 */
1311	fxp_scb_wait(sc);
1312	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1313	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1314
1315	/*
1316	 * We temporarily use memory that contains the TxCB list to
1317	 * construct the config CB. The TxCB list memory is rebuilt
1318	 * later.
1319	 */
1320	cbp = (struct fxp_cb_config *) sc->cbl_base;
1321
1322	/*
1323	 * This bcopy is kind of disgusting, but there are a bunch of must be
1324	 * zero and must be one bits in this structure and this is the easiest
1325	 * way to initialize them all to proper values.
1326	 */
1327	bcopy(fxp_cb_config_template, (volatile void *)&cbp->cb_status,
1328		sizeof(fxp_cb_config_template));
1329
1330	cbp->cb_status =	0;
1331	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1332	cbp->link_addr =	-1;	/* (no) next command */
1333	cbp->byte_count =	22;	/* (22) bytes to config */
1334	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1335	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1336	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1337	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1338	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1339	cbp->dma_bce =		0;	/* (disable) dma max counters */
1340	cbp->late_scb =		0;	/* (don't) defer SCB update */
1341	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1342	cbp->ci_int =		1;	/* interrupt on CU idle */
1343	cbp->save_bf =		prm;	/* save bad frames */
1344	cbp->disc_short_rx =	!prm;	/* discard short packets */
1345	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1346	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1347	cbp->nsai =		1;	/* (don't) disable source addr insert */
1348	cbp->preamble_length =	2;	/* (7 byte) preamble */
1349	cbp->loopback =		0;	/* (don't) loopback */
1350	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1351	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1352	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1353	cbp->promiscuous =	prm;	/* promiscuous mode */
1354	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1355	cbp->crscdt =		0;	/* (CRS only) */
1356	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1357	cbp->padding =		1;	/* (do) pad short tx packets */
1358	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1359	cbp->force_fdx =	0;	/* (don't) force full duplex */
1360	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1361	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1362	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1363
1364	/*
1365	 * Start the config command/DMA.
1366	 */
1367	fxp_scb_wait(sc);
1368	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1369	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1370	/* ...and wait for it to complete. */
1371	while (!(cbp->cb_status & FXP_CB_STATUS_C));
1372
1373	/*
1374	 * Now initialize the station address. Temporarily use the TxCB
1375	 * memory area like we did above for the config CB.
1376	 */
1377	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1378	cb_ias->cb_status = 0;
1379	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1380	cb_ias->link_addr = -1;
1381#if defined(__NetBSD__)
1382	bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6);
1383#else
1384	bcopy(sc->arpcom.ac_enaddr, (volatile void *)cb_ias->macaddr,
1385	    sizeof(sc->arpcom.ac_enaddr));
1386#endif /* __NetBSD__ */
1387
1388	/*
1389	 * Start the IAS (Individual Address Setup) command/DMA.
1390	 */
1391	fxp_scb_wait(sc);
1392	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1393	/* ...and wait for it to complete. */
1394	while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
1395
1396	/*
1397	 * Initialize transmit control block (TxCB) list.
1398	 */
1399
1400	txp = sc->cbl_base;
1401	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1402	for (i = 0; i < FXP_NTXCB; i++) {
1403		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1404		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1405		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1406		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1407		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1408	}
1409	/*
1410	 * Set the suspend flag on the first TxCB and start the control
1411	 * unit. It will execute the NOP and then suspend.
1412	 */
1413	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1414	sc->cbl_first = sc->cbl_last = txp;
1415	sc->tx_queued = 1;
1416
1417	fxp_scb_wait(sc);
1418	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1419
1420	/*
1421	 * Initialize receiver buffer area - RFA.
1422	 */
1423	fxp_scb_wait(sc);
1424	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1425	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1426	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1427
1428	/*
1429	 * Set current media.
1430	 */
1431	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1432
1433	ifp->if_flags |= IFF_RUNNING;
1434	ifp->if_flags &= ~IFF_OACTIVE;
1435	splx(s);
1436
1437	/*
1438	 * Start stats updater.
1439	 */
1440	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1441}
1442
1443static void
1444fxp_set_media(sc, media)
1445	struct fxp_softc *sc;
1446	int media;
1447{
1448
1449	switch (sc->phy_primary_device) {
1450	case FXP_PHY_DP83840:
1451	case FXP_PHY_DP83840A:
1452		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1453		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1454		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1455		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1456		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1457		/* fall through */
1458	case FXP_PHY_82553A:
1459	case FXP_PHY_82553C: /* untested */
1460	case FXP_PHY_82555:
1461	case FXP_PHY_82555B:
1462		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1463			int flags;
1464
1465			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1466			    FXP_PHY_BMCR_SPEED_100M : 0;
1467			flags |= (media & IFM_FDX) ?
1468			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1469			fxp_mdi_write(sc, sc->phy_primary_addr,
1470			    FXP_PHY_BMCR,
1471			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1472			    FXP_PHY_BMCR) &
1473			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1474			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1475		} else {
1476			fxp_mdi_write(sc, sc->phy_primary_addr,
1477			    FXP_PHY_BMCR,
1478			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1479			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1480		}
1481		break;
1482	/*
1483	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1484	 * nothing.
1485	 */
1486	case FXP_PHY_80C24:
1487		break;
1488	default:
1489		printf(FXP_FORMAT
1490		    ": warning: unsupported PHY, type = %d, addr = %d\n",
1491		     FXP_ARGS(sc), sc->phy_primary_device,
1492		     sc->phy_primary_addr);
1493	}
1494}
1495
1496/*
1497 * Change media according to request.
1498 */
1499int
1500fxp_mediachange(ifp)
1501	struct ifnet *ifp;
1502{
1503	struct fxp_softc *sc = ifp->if_softc;
1504	struct ifmedia *ifm = &sc->sc_media;
1505
1506	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1507		return (EINVAL);
1508
1509	fxp_set_media(sc, ifm->ifm_media);
1510	return (0);
1511}
1512
1513/*
1514 * Notify the world which media we're using.
1515 */
1516void
1517fxp_mediastatus(ifp, ifmr)
1518	struct ifnet *ifp;
1519	struct ifmediareq *ifmr;
1520{
1521	struct fxp_softc *sc = ifp->if_softc;
1522	int flags, stsflags;
1523
1524	switch (sc->phy_primary_device) {
1525	case FXP_PHY_82555:
1526	case FXP_PHY_82555B:
1527	case FXP_PHY_DP83840:
1528	case FXP_PHY_DP83840A:
1529		ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
1530		ifmr->ifm_active = IFM_ETHER;
1531		/*
1532		 * the following is not an error.
1533		 * You need to read this register twice to get current
1534		 * status. This is correct documented behaviour, the
1535		 * first read gets latched values.
1536		 */
1537		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1538		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1539		if (stsflags & FXP_PHY_STS_LINK_STS)
1540				ifmr->ifm_status |= IFM_ACTIVE;
1541
1542		/*
1543		 * If we are in auto mode, then try report the result.
1544		 */
1545		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1546		if (flags & FXP_PHY_BMCR_AUTOEN) {
1547			ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
1548			if (stsflags & FXP_PHY_STS_AUTO_DONE) {
1549				/*
1550				 * Intel and National parts report
1551				 * differently on what they found.
1552				 */
1553				if ((sc->phy_primary_device == FXP_PHY_82555)
1554				|| (sc->phy_primary_device == FXP_PHY_82555B)) {
1555					flags = fxp_mdi_read(sc,
1556						sc->phy_primary_addr,
1557						FXP_PHY_USC);
1558
1559					if (flags & FXP_PHY_USC_SPEED)
1560						ifmr->ifm_active |= IFM_100_TX;
1561					else
1562						ifmr->ifm_active |= IFM_10_T;
1563
1564					if (flags & FXP_PHY_USC_DUPLEX)
1565						ifmr->ifm_active |= IFM_FDX;
1566				} else { /* it's National. only know speed  */
1567					flags = fxp_mdi_read(sc,
1568						sc->phy_primary_addr,
1569						FXP_DP83840_PAR);
1570
1571					if (flags & FXP_DP83840_PAR_SPEED_10)
1572						ifmr->ifm_active |= IFM_10_T;
1573					else
1574						ifmr->ifm_active |= IFM_100_TX;
1575				}
1576			}
1577		} else { /* in manual mode.. just report what we were set to */
1578			if (flags & FXP_PHY_BMCR_SPEED_100M)
1579				ifmr->ifm_active |= IFM_100_TX;
1580			else
1581				ifmr->ifm_active |= IFM_10_T;
1582
1583			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1584				ifmr->ifm_active |= IFM_FDX;
1585		}
1586		break;
1587
1588	case FXP_PHY_80C24:
1589	default:
1590		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1591	}
1592}
1593
1594/*
1595 * Add a buffer to the end of the RFA buffer list.
1596 * Return 0 if successful, 1 for failure. A failure results in
1597 * adding the 'oldm' (if non-NULL) on to the end of the list -
1598 * tossing out its old contents and recycling it.
1599 * The RFA struct is stuck at the beginning of mbuf cluster and the
1600 * data pointer is fixed up to point just past it.
1601 */
1602static int
1603fxp_add_rfabuf(sc, oldm)
1604	struct fxp_softc *sc;
1605	struct mbuf *oldm;
1606{
1607	u_int32_t v;
1608	struct mbuf *m;
1609	struct fxp_rfa *rfa, *p_rfa;
1610
1611	MGETHDR(m, M_DONTWAIT, MT_DATA);
1612	if (m != NULL) {
1613		MCLGET(m, M_DONTWAIT);
1614		if ((m->m_flags & M_EXT) == 0) {
1615			m_freem(m);
1616			if (oldm == NULL)
1617				return 1;
1618			m = oldm;
1619			m->m_data = m->m_ext.ext_buf;
1620		}
1621	} else {
1622		if (oldm == NULL)
1623			return 1;
1624		m = oldm;
1625		m->m_data = m->m_ext.ext_buf;
1626	}
1627
1628	/*
1629	 * Move the data pointer up so that the incoming data packet
1630	 * will be 32-bit aligned.
1631	 */
1632	m->m_data += RFA_ALIGNMENT_FUDGE;
1633
1634	/*
1635	 * Get a pointer to the base of the mbuf cluster and move
1636	 * data start past it.
1637	 */
1638	rfa = mtod(m, struct fxp_rfa *);
1639	m->m_data += sizeof(struct fxp_rfa);
1640	rfa->size = MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE;
1641
1642	/*
1643	 * Initialize the rest of the RFA.  Note that since the RFA
1644	 * is misaligned, we cannot store values directly.  Instead,
1645	 * we use an optimized, inline copy.
1646	 */
1647	rfa->rfa_status = 0;
1648	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1649	rfa->actual_size = 0;
1650
1651	v = -1;
1652	fxp_lwcopy(&v, &rfa->link_addr);
1653	fxp_lwcopy(&v, &rfa->rbd_addr);
1654
1655	/*
1656	 * If there are other buffers already on the list, attach this
1657	 * one to the end by fixing up the tail to point to this one.
1658	 */
1659	if (sc->rfa_headm != NULL) {
1660		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1661		    RFA_ALIGNMENT_FUDGE);
1662		sc->rfa_tailm->m_next = m;
1663		v = vtophys(rfa);
1664		fxp_lwcopy(&v, &p_rfa->link_addr);
1665		p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL;
1666	} else {
1667		sc->rfa_headm = m;
1668	}
1669	sc->rfa_tailm = m;
1670
1671	return (m == oldm);
1672}
1673
1674static volatile int
1675fxp_mdi_read(sc, phy, reg)
1676	struct fxp_softc *sc;
1677	int phy;
1678	int reg;
1679{
1680	int count = 10000;
1681	int value;
1682
1683	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1684	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1685
1686	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1687	    && count--)
1688		DELAY(10);
1689
1690	if (count <= 0)
1691		printf(FXP_FORMAT ": fxp_mdi_read: timed out\n",
1692		    FXP_ARGS(sc));
1693
1694	return (value & 0xffff);
1695}
1696
1697static void
1698fxp_mdi_write(sc, phy, reg, value)
1699	struct fxp_softc *sc;
1700	int phy;
1701	int reg;
1702	int value;
1703{
1704	int count = 10000;
1705
1706	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1707	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1708	    (value & 0xffff));
1709
1710	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1711	    count--)
1712		DELAY(10);
1713
1714	if (count <= 0)
1715		printf(FXP_FORMAT ": fxp_mdi_write: timed out\n",
1716		    FXP_ARGS(sc));
1717}
1718
1719static int
1720fxp_ioctl(ifp, command, data)
1721	struct ifnet *ifp;
1722	FXP_IOCTLCMD_TYPE command;
1723	caddr_t data;
1724{
1725	struct fxp_softc *sc = ifp->if_softc;
1726	struct ifreq *ifr = (struct ifreq *)data;
1727	int s, error = 0;
1728
1729	s = splimp();
1730
1731	switch (command) {
1732
1733	case SIOCSIFADDR:
1734#if !defined(__NetBSD__)
1735	case SIOCGIFADDR:
1736	case SIOCSIFMTU:
1737#endif
1738		error = ether_ioctl(ifp, command, data);
1739		break;
1740
1741	case SIOCSIFFLAGS:
1742		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1743
1744		/*
1745		 * If interface is marked up and not running, then start it.
1746		 * If it is marked down and running, stop it.
1747		 * XXX If it's up then re-initialize it. This is so flags
1748		 * such as IFF_PROMISC are handled.
1749		 */
1750		if (ifp->if_flags & IFF_UP) {
1751			fxp_init(sc);
1752		} else {
1753			if (ifp->if_flags & IFF_RUNNING)
1754				fxp_stop(sc);
1755		}
1756		break;
1757
1758	case SIOCADDMULTI:
1759	case SIOCDELMULTI:
1760		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1761#if defined(__NetBSD__)
1762		error = (command == SIOCADDMULTI) ?
1763		    ether_addmulti(ifr, &sc->sc_ethercom) :
1764		    ether_delmulti(ifr, &sc->sc_ethercom);
1765
1766		if (error == ENETRESET) {
1767			/*
1768			 * Multicast list has changed; set the hardware
1769			 * filter accordingly.
1770			 */
1771			if (!sc->all_mcasts)
1772				fxp_mc_setup(sc);
1773			/*
1774			 * fxp_mc_setup() can turn on all_mcasts if we run
1775			 * out of space, so check it again rather than else {}.
1776			 */
1777			if (sc->all_mcasts)
1778				fxp_init(sc);
1779			error = 0;
1780		}
1781#else /* __FreeBSD__ */
1782		/*
1783		 * Multicast list has changed; set the hardware filter
1784		 * accordingly.
1785		 */
1786		if (!sc->all_mcasts)
1787			fxp_mc_setup(sc);
1788		/*
1789		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1790		 * again rather than else {}.
1791		 */
1792		if (sc->all_mcasts)
1793			fxp_init(sc);
1794		error = 0;
1795#endif /* __NetBSD__ */
1796		break;
1797
1798	case SIOCSIFMEDIA:
1799	case SIOCGIFMEDIA:
1800		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1801		break;
1802
1803	default:
1804		error = EINVAL;
1805	}
1806	(void) splx(s);
1807	return (error);
1808}
1809
1810/*
1811 * Program the multicast filter.
1812 *
1813 * We have an artificial restriction that the multicast setup command
1814 * must be the first command in the chain, so we take steps to ensure
1815 * this. By requiring this, it allows us to keep up the performance of
1816 * the pre-initialized command ring (esp. link pointers) by not actually
1817 * inserting the mcsetup command in the ring - i.e. its link pointer
1818 * points to the TxCB ring, but the mcsetup descriptor itself is not part
1819 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1820 * lead into the regular TxCB ring when it completes.
1821 *
1822 * This function must be called at splimp.
1823 */
1824static void
1825fxp_mc_setup(sc)
1826	struct fxp_softc *sc;
1827{
1828	struct fxp_cb_mcs *mcsp = sc->mcsp;
1829	struct ifnet *ifp = &sc->sc_if;
1830	struct ifmultiaddr *ifma;
1831	int nmcasts;
1832
1833	/*
1834	 * If there are queued commands, we must wait until they are all
1835	 * completed. If we are already waiting, then add a NOP command
1836	 * with interrupt option so that we're notified when all commands
1837	 * have been completed - fxp_start() ensures that no additional
1838	 * TX commands will be added when need_mcsetup is true.
1839	 */
1840	if (sc->tx_queued) {
1841		struct fxp_cb_tx *txp;
1842
1843		/*
1844		 * need_mcsetup will be true if we are already waiting for the
1845		 * NOP command to be completed (see below). In this case, bail.
1846		 */
1847		if (sc->need_mcsetup)
1848			return;
1849		sc->need_mcsetup = 1;
1850
1851		/*
1852		 * Add a NOP command with interrupt so that we are notified when all
1853		 * TX commands have been processed.
1854		 */
1855		txp = sc->cbl_last->next;
1856		txp->mb_head = NULL;
1857		txp->cb_status = 0;
1858		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1859		/*
1860		 * Advance the end of list forward.
1861		 */
1862		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1863		sc->cbl_last = txp;
1864		sc->tx_queued++;
1865		/*
1866		 * Issue a resume in case the CU has just suspended.
1867		 */
1868		fxp_scb_wait(sc);
1869		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1870		/*
1871		 * Set a 5 second timer just in case we don't hear from the
1872		 * card again.
1873		 */
1874		ifp->if_timer = 5;
1875
1876		return;
1877	}
1878	sc->need_mcsetup = 0;
1879
1880	/*
1881	 * Initialize multicast setup descriptor.
1882	 */
1883	mcsp->next = sc->cbl_base;
1884	mcsp->mb_head = NULL;
1885	mcsp->cb_status = 0;
1886	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1887	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1888
1889	nmcasts = 0;
1890	if (!sc->all_mcasts) {
1891		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1892		    ifma = ifma->ifma_link.le_next) {
1893			if (ifma->ifma_addr->sa_family != AF_LINK)
1894				continue;
1895			if (nmcasts >= MAXMCADDR) {
1896				sc->all_mcasts = 1;
1897				nmcasts = 0;
1898				break;
1899			}
1900			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1901			    (volatile void *) &sc->mcsp->mc_addr[nmcasts][0], 6);
1902			nmcasts++;
1903		}
1904	}
1905	mcsp->mc_cnt = nmcasts * 6;
1906	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1907	sc->tx_queued = 1;
1908
1909	/*
1910	 * Wait until command unit is not active. This should never
1911	 * be the case when nothing is queued, but make sure anyway.
1912	 */
1913	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1914	    FXP_SCB_CUS_ACTIVE) ;
1915
1916	/*
1917	 * Start the multicast setup command.
1918	 */
1919	fxp_scb_wait(sc);
1920	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1921	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1922
1923	ifp->if_timer = 2;
1924	return;
1925}
1926