if_fxp.c revision 40559
1/*
2 * Copyright (c) 1995, David Greenman
3 * All rights reserved.
4 *
5 * Modifications to support NetBSD and media selection:
6 * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	$Id: if_fxp.c,v 1.57 1998/10/11 06:28:54 dg Exp $
31 */
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include "bpfilter.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/mbuf.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/socket.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#ifdef NS
51#include <netns/ns.h>
52#include <netns/ns_if.h>
53#endif
54
55#if NBPFILTER > 0
56#include <net/bpf.h>
57#endif
58
59#if defined(__NetBSD__)
60
61#include <sys/ioctl.h>
62#include <sys/errno.h>
63#include <sys/device.h>
64
65#include <net/if_dl.h>
66#include <net/if_ether.h>
67
68#include <netinet/if_inarp.h>
69
70#include <vm/vm.h>
71
72#include <machine/cpu.h>
73#include <machine/bus.h>
74#include <machine/intr.h>
75
76#include <dev/pci/if_fxpreg.h>
77#include <dev/pci/if_fxpvar.h>
78
79#include <dev/pci/pcivar.h>
80#include <dev/pci/pcireg.h>
81#include <dev/pci/pcidevs.h>
82
83#ifdef __alpha__		/* XXX */
84/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
85#undef vtophys
86#define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
87#endif /* __alpha__ */
88
89#else /* __FreeBSD__ */
90
91#include <sys/sockio.h>
92
93#include <net/ethernet.h>
94#include <net/if_arp.h>
95
96#include <vm/vm.h>		/* for vtophys */
97#include <vm/pmap.h>		/* for vtophys */
98#include <machine/clock.h>	/* for DELAY */
99
100#include <pci/pcivar.h>
101#include <pci/if_fxpreg.h>
102#include <pci/if_fxpvar.h>
103
104#endif /* __NetBSD__ */
105
106/*
107 * NOTE!  On the Alpha, we have an alignment constraint.  The
108 * card DMAs the packet immediately following the RFA.  However,
109 * the first thing in the packet is a 14-byte Ethernet header.
110 * This means that the packet is misaligned.  To compensate,
111 * we actually offset the RFA 2 bytes into the cluster.  This
112 * alignes the packet after the Ethernet header at a 32-bit
113 * boundary.  HOWEVER!  This means that the RFA is misaligned!
114 */
115#define	RFA_ALIGNMENT_FUDGE	2
116
117/*
118 * Inline function to copy a 16-bit aligned 32-bit quantity.
119 */
120static __inline void fxp_lwcopy __P((volatile u_int32_t *,
121	volatile u_int32_t *));
122static __inline void
123fxp_lwcopy(src, dst)
124	volatile u_int32_t *src, *dst;
125{
126	volatile u_int16_t *a = (u_int16_t *)src;
127	volatile u_int16_t *b = (u_int16_t *)dst;
128
129	b[0] = a[0];
130	b[1] = a[1];
131}
132
133/*
134 * Template for default configuration parameters.
135 * See struct fxp_cb_config for the bit definitions.
136 */
137static u_char fxp_cb_config_template[] = {
138	0x0, 0x0,		/* cb_status */
139	0x80, 0x2,		/* cb_command */
140	0xff, 0xff, 0xff, 0xff,	/* link_addr */
141	0x16,	/*  0 */
142	0x8,	/*  1 */
143	0x0,	/*  2 */
144	0x0,	/*  3 */
145	0x0,	/*  4 */
146	0x80,	/*  5 */
147	0xb2,	/*  6 */
148	0x3,	/*  7 */
149	0x1,	/*  8 */
150	0x0,	/*  9 */
151	0x26,	/* 10 */
152	0x0,	/* 11 */
153	0x60,	/* 12 */
154	0x0,	/* 13 */
155	0xf2,	/* 14 */
156	0x48,	/* 15 */
157	0x0,	/* 16 */
158	0x40,	/* 17 */
159	0xf3,	/* 18 */
160	0x0,	/* 19 */
161	0x3f,	/* 20 */
162	0x5	/* 21 */
163};
164
165/* Supported media types. */
166struct fxp_supported_media {
167	const int	fsm_phy;	/* PHY type */
168	const int	*fsm_media;	/* the media array */
169	const int	fsm_nmedia;	/* the number of supported media */
170	const int	fsm_defmedia;	/* default media for this PHY */
171};
172
173static const int fxp_media_standard[] = {
174	IFM_ETHER|IFM_10_T,
175	IFM_ETHER|IFM_10_T|IFM_FDX,
176	IFM_ETHER|IFM_100_TX,
177	IFM_ETHER|IFM_100_TX|IFM_FDX,
178	IFM_ETHER|IFM_AUTO,
179};
180#define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
181
182static const int fxp_media_default[] = {
183	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
184};
185#define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
186
187static const struct fxp_supported_media fxp_media[] = {
188	{ FXP_PHY_DP83840, fxp_media_standard,
189	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
190	  FXP_MEDIA_STANDARD_DEFMEDIA },
191	{ FXP_PHY_DP83840A, fxp_media_standard,
192	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
193	  FXP_MEDIA_STANDARD_DEFMEDIA },
194	{ FXP_PHY_82553A, fxp_media_standard,
195	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
196	  FXP_MEDIA_STANDARD_DEFMEDIA },
197	{ FXP_PHY_82553C, fxp_media_standard,
198	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
199	  FXP_MEDIA_STANDARD_DEFMEDIA },
200	{ FXP_PHY_82555, fxp_media_standard,
201	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
202	  FXP_MEDIA_STANDARD_DEFMEDIA },
203	{ FXP_PHY_82555B, fxp_media_standard,
204	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
205	  FXP_MEDIA_STANDARD_DEFMEDIA },
206	{ FXP_PHY_80C24, fxp_media_default,
207	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
208	  FXP_MEDIA_DEFAULT_DEFMEDIA },
209};
210#define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
211
212static int fxp_mediachange	__P((struct ifnet *));
213static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
214static void fxp_set_media	__P((struct fxp_softc *, int));
215static __inline void fxp_scb_wait __P((struct fxp_softc *));
216static FXP_INTR_TYPE fxp_intr	__P((void *));
217static void fxp_start		__P((struct ifnet *));
218static int fxp_ioctl		__P((struct ifnet *,
219				     FXP_IOCTLCMD_TYPE, caddr_t));
220static void fxp_init		__P((void *));
221static void fxp_stop		__P((struct fxp_softc *));
222static void fxp_watchdog	__P((struct ifnet *));
223static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
224static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
225static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
226static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
227				     int, int));
228static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
229static void fxp_stats_update	__P((void *));
230static void fxp_mc_setup	__P((struct fxp_softc *));
231
232/*
233 * Set initial transmit threshold at 64 (512 bytes). This is
234 * increased by 64 (512 bytes) at a time, to maximum of 192
235 * (1536 bytes), if an underrun occurs.
236 */
237static int tx_threshold = 64;
238
239/*
240 * Number of transmit control blocks. This determines the number
241 * of transmit buffers that can be chained in the CB list.
242 * This must be a power of two.
243 */
244#define FXP_NTXCB	128
245
246/*
247 * Number of completed TX commands at which point an interrupt
248 * will be generated to garbage collect the attached buffers.
249 * Must be at least one less than FXP_NTXCB, and should be
250 * enough less so that the transmitter doesn't becomes idle
251 * during the buffer rundown (which would reduce performance).
252 */
253#define FXP_CXINT_THRESH 120
254
255/*
256 * TxCB list index mask. This is used to do list wrap-around.
257 */
258#define FXP_TXCB_MASK	(FXP_NTXCB - 1)
259
260/*
261 * Number of receive frame area buffers. These are large so chose
262 * wisely.
263 */
264#define FXP_NRFABUFS	64
265
266/*
267 * Maximum number of seconds that the receiver can be idle before we
268 * assume it's dead and attempt to reset it by reprogramming the
269 * multicast filter. This is part of a work-around for a bug in the
270 * NIC. See fxp_stats_update().
271 */
272#define FXP_MAX_RX_IDLE	15
273
274/*
275 * Wait for the previous command to be accepted (but not necessarily
276 * completed).
277 */
278static __inline void
279fxp_scb_wait(sc)
280	struct fxp_softc *sc;
281{
282	int i = 10000;
283
284	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i);
285}
286
287/*************************************************************
288 * Operating system-specific autoconfiguration glue
289 *************************************************************/
290
291#if defined(__NetBSD__)
292
293#ifdef __BROKEN_INDIRECT_CONFIG
294static int fxp_match __P((struct device *, void *, void *));
295#else
296static int fxp_match __P((struct device *, struct cfdata *, void *));
297#endif
298static void fxp_attach __P((struct device *, struct device *, void *));
299
300static void	fxp_shutdown __P((void *));
301
302/* Compensate for lack of a generic ether_ioctl() */
303static int	fxp_ether_ioctl __P((struct ifnet *,
304				    FXP_IOCTLCMD_TYPE, caddr_t));
305#define	ether_ioctl	fxp_ether_ioctl
306
307struct cfattach fxp_ca = {
308	sizeof(struct fxp_softc), fxp_match, fxp_attach
309};
310
311struct cfdriver fxp_cd = {
312	NULL, "fxp", DV_IFNET
313};
314
315/*
316 * Check if a device is an 82557.
317 */
318static int
319fxp_match(parent, match, aux)
320	struct device *parent;
321#ifdef __BROKEN_INDIRECT_CONFIG
322	void *match;
323#else
324	struct cfdata *match;
325#endif
326	void *aux;
327{
328	struct pci_attach_args *pa = aux;
329
330	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
331		return (0);
332
333	switch (PCI_PRODUCT(pa->pa_id)) {
334	case PCI_PRODUCT_INTEL_82557:
335		return (1);
336	}
337
338	return (0);
339}
340
341static void
342fxp_attach(parent, self, aux)
343	struct device *parent, *self;
344	void *aux;
345{
346	struct fxp_softc *sc = (struct fxp_softc *)self;
347	struct pci_attach_args *pa = aux;
348	pci_chipset_tag_t pc = pa->pa_pc;
349	pci_intr_handle_t ih;
350	const char *intrstr = NULL;
351	u_int8_t enaddr[6];
352	struct ifnet *ifp;
353
354	/*
355	 * Map control/status registers.
356	 */
357	if (pci_mapreg_map(pa, FXP_PCI_MMBA, PCI_MAPREG_TYPE_MEM, 0,
358	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
359		printf(": can't map registers\n");
360		return;
361	}
362	printf(": Intel EtherExpress Pro 10/100B Ethernet\n");
363
364	/*
365	 * Allocate our interrupt.
366	 */
367	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
368	    pa->pa_intrline, &ih)) {
369		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
370		return;
371	}
372	intrstr = pci_intr_string(pc, ih);
373	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc);
374	if (sc->sc_ih == NULL) {
375		printf("%s: couldn't establish interrupt",
376		    sc->sc_dev.dv_xname);
377		if (intrstr != NULL)
378			printf(" at %s", intrstr);
379		printf("\n");
380		return;
381	}
382	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
383
384	/* Do generic parts of attach. */
385	if (fxp_attach_common(sc, enaddr)) {
386		/* Failed! */
387		return;
388	}
389
390	printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname,
391	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : "");
392
393	ifp = &sc->sc_ethercom.ec_if;
394	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
395	ifp->if_softc = sc;
396	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
397	ifp->if_ioctl = fxp_ioctl;
398	ifp->if_start = fxp_start;
399	ifp->if_watchdog = fxp_watchdog;
400
401	/*
402	 * Attach the interface.
403	 */
404	if_attach(ifp);
405	/*
406	 * Let the system queue as many packets as we have available
407	 * TX descriptors.
408	 */
409	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
410	ether_ifattach(ifp, enaddr);
411#if NBPFILTER > 0
412	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
413	    sizeof(struct ether_header));
414#endif
415
416	/*
417	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
418	 * doing do could allow DMA to corrupt kernel memory during the
419	 * reboot before the driver initializes.
420	 */
421	shutdownhook_establish(fxp_shutdown, sc);
422}
423
424/*
425 * Device shutdown routine. Called at system shutdown after sync. The
426 * main purpose of this routine is to shut off receiver DMA so that
427 * kernel memory doesn't get clobbered during warmboot.
428 */
429static void
430fxp_shutdown(sc)
431	void *sc;
432{
433	fxp_stop((struct fxp_softc *) sc);
434}
435
436static int
437fxp_ether_ioctl(ifp, cmd, data)
438	struct ifnet *ifp;
439	FXP_IOCTLCMD_TYPE cmd;
440	caddr_t data;
441{
442	struct ifaddr *ifa = (struct ifaddr *) data;
443	struct fxp_softc *sc = ifp->if_softc;
444
445	switch (cmd) {
446	case SIOCSIFADDR:
447		ifp->if_flags |= IFF_UP;
448
449		switch (ifa->ifa_addr->sa_family) {
450#ifdef INET
451		case AF_INET:
452			fxp_init(sc);
453			arp_ifinit(ifp, ifa);
454			break;
455#endif
456#ifdef NS
457		case AF_NS:
458		    {
459			 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
460
461			 if (ns_nullhost(*ina))
462				ina->x_host = *(union ns_host *)
463				    LLADDR(ifp->if_sadl);
464			 else
465				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
466				    ifp->if_addrlen);
467			 /* Set new address. */
468			 fxp_init(sc);
469			 break;
470		    }
471#endif
472		default:
473			fxp_init(sc);
474			break;
475		}
476		break;
477
478	default:
479		return (EINVAL);
480	}
481
482	return (0);
483}
484
485#else /* __FreeBSD__ */
486
487static u_long fxp_count;
488static char *fxp_probe		__P((pcici_t, pcidi_t));
489static void fxp_attach		__P((pcici_t, int));
490
491static void fxp_shutdown	__P((int, void *));
492
493static struct pci_device fxp_device = {
494	"fxp",
495	fxp_probe,
496	fxp_attach,
497	&fxp_count,
498	NULL
499};
500DATA_SET(pcidevice_set, fxp_device);
501
502/*
503 * Return identification string if this is device is ours.
504 */
505static char *
506fxp_probe(config_id, device_id)
507	pcici_t config_id;
508	pcidi_t device_id;
509{
510	if (((device_id & 0xffff) == FXP_VENDORID_INTEL) &&
511	    ((device_id >> 16) & 0xffff) == FXP_DEVICEID_i82557)
512		return ("Intel EtherExpress Pro 10/100B Ethernet");
513
514	return NULL;
515}
516
517static void
518fxp_attach(config_id, unit)
519	pcici_t config_id;
520	int unit;
521{
522	struct fxp_softc *sc;
523	vm_offset_t pbase;
524	struct ifnet *ifp;
525	int s;
526
527	sc = malloc(sizeof(struct fxp_softc), M_DEVBUF, M_NOWAIT);
528	if (sc == NULL)
529		return;
530	bzero(sc, sizeof(struct fxp_softc));
531	callout_handle_init(&sc->stat_ch);
532
533	s = splimp();
534
535	/*
536	 * Map control/status registers.
537	 */
538	if (!pci_map_mem(config_id, FXP_PCI_MMBA,
539	    (vm_offset_t *)&sc->csr, &pbase)) {
540		printf("fxp%d: couldn't map memory\n", unit);
541		goto fail;
542	}
543
544	/*
545	 * Allocate our interrupt.
546	 */
547	if (!pci_map_int(config_id, fxp_intr, sc, &net_imask)) {
548		printf("fxp%d: couldn't map interrupt\n", unit);
549		goto fail;
550	}
551
552	/* Do generic parts of attach. */
553	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
554		/* Failed! */
555		(void) pci_unmap_int(config_id);
556		goto fail;
557	}
558
559	printf("fxp%d: Ethernet address %6D%s\n", unit,
560	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
561
562	ifp = &sc->arpcom.ac_if;
563	ifp->if_unit = unit;
564	ifp->if_name = "fxp";
565	ifp->if_output = ether_output;
566	ifp->if_baudrate = 100000000;
567	ifp->if_init = fxp_init;
568	ifp->if_softc = sc;
569	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
570	ifp->if_ioctl = fxp_ioctl;
571	ifp->if_start = fxp_start;
572	ifp->if_watchdog = fxp_watchdog;
573
574	/*
575	 * Attach the interface.
576	 */
577	if_attach(ifp);
578	/*
579	 * Let the system queue as many packets as we have available
580	 * TX descriptors.
581	 */
582	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
583	ether_ifattach(ifp);
584#if NBPFILTER > 0
585	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
586#endif
587
588	/*
589	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
590	 * doing do could allow DMA to corrupt kernel memory during the
591	 * reboot before the driver initializes.
592	 */
593	at_shutdown(fxp_shutdown, sc, SHUTDOWN_POST_SYNC);
594
595	splx(s);
596	return;
597
598 fail:
599	free(sc, M_DEVBUF);
600	splx(s);
601}
602
603/*
604 * Device shutdown routine. Called at system shutdown after sync. The
605 * main purpose of this routine is to shut off receiver DMA so that
606 * kernel memory doesn't get clobbered during warmboot.
607 */
608static void
609fxp_shutdown(howto, sc)
610	int howto;
611	void *sc;
612{
613	fxp_stop((struct fxp_softc *) sc);
614}
615
616#endif /* __NetBSD__ */
617
618/*************************************************************
619 * End of operating system-specific autoconfiguration glue
620 *************************************************************/
621
622/*
623 * Do generic parts of attach.
624 */
625static int
626fxp_attach_common(sc, enaddr)
627	struct fxp_softc *sc;
628	u_int8_t *enaddr;
629{
630	u_int16_t data;
631	int i, nmedia, defmedia;
632	const int *media;
633
634	/*
635	 * Reset to a stable state.
636	 */
637	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
638	DELAY(10);
639
640	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
641	    M_DEVBUF, M_NOWAIT);
642	if (sc->cbl_base == NULL)
643		goto fail;
644	bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
645
646	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
647	if (sc->fxp_stats == NULL)
648		goto fail;
649	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
650
651	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
652	if (sc->mcsp == NULL)
653		goto fail;
654
655	/*
656	 * Pre-allocate our receive buffers.
657	 */
658	for (i = 0; i < FXP_NRFABUFS; i++) {
659		if (fxp_add_rfabuf(sc, NULL) != 0) {
660			goto fail;
661		}
662	}
663
664	/*
665	 * Get info about the primary PHY
666	 */
667	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
668	sc->phy_primary_addr = data & 0xff;
669	sc->phy_primary_device = (data >> 8) & 0x3f;
670	sc->phy_10Mbps_only = data >> 15;
671
672	/*
673	 * Read MAC address.
674	 */
675	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
676
677	/*
678	 * Initialize the media structures.
679	 */
680
681	media = fxp_media_default;
682	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
683	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
684
685	for (i = 0; i < NFXPMEDIA; i++) {
686		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
687			media = fxp_media[i].fsm_media;
688			nmedia = fxp_media[i].fsm_nmedia;
689			defmedia = fxp_media[i].fsm_defmedia;
690		}
691	}
692
693	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
694	for (i = 0; i < nmedia; i++) {
695		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
696			continue;
697		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
698	}
699	ifmedia_set(&sc->sc_media, defmedia);
700
701	return (0);
702
703 fail:
704	printf(FXP_FORMAT ": Failed to malloc memory\n", FXP_ARGS(sc));
705	if (sc->cbl_base)
706		free(sc->cbl_base, M_DEVBUF);
707	if (sc->fxp_stats)
708		free(sc->fxp_stats, M_DEVBUF);
709	if (sc->mcsp)
710		free(sc->mcsp, M_DEVBUF);
711	/* frees entire chain */
712	if (sc->rfa_headm)
713		m_freem(sc->rfa_headm);
714
715	return (ENOMEM);
716}
717
718/*
719 * Read from the serial EEPROM. Basically, you manually shift in
720 * the read opcode (one bit at a time) and then shift in the address,
721 * and then you shift out the data (all of this one bit at a time).
722 * The word size is 16 bits, so you have to provide the address for
723 * every 16 bits of data.
724 */
725static void
726fxp_read_eeprom(sc, data, offset, words)
727	struct fxp_softc *sc;
728	u_short *data;
729	int offset;
730	int words;
731{
732	u_int16_t reg;
733	int i, x;
734
735	for (i = 0; i < words; i++) {
736		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
737		/*
738		 * Shift in read opcode.
739		 */
740		for (x = 3; x > 0; x--) {
741			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
742				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
743			} else {
744				reg = FXP_EEPROM_EECS;
745			}
746			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
747			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
748			    reg | FXP_EEPROM_EESK);
749			DELAY(1);
750			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
751			DELAY(1);
752		}
753		/*
754		 * Shift in address.
755		 */
756		for (x = 6; x > 0; x--) {
757			if ((i + offset) & (1 << (x - 1))) {
758				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
759			} else {
760				reg = FXP_EEPROM_EECS;
761			}
762			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
763			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
764			    reg | FXP_EEPROM_EESK);
765			DELAY(1);
766			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
767			DELAY(1);
768		}
769		reg = FXP_EEPROM_EECS;
770		data[i] = 0;
771		/*
772		 * Shift out data.
773		 */
774		for (x = 16; x > 0; x--) {
775			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
776			    reg | FXP_EEPROM_EESK);
777			DELAY(1);
778			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
779			    FXP_EEPROM_EEDO)
780				data[i] |= (1 << (x - 1));
781			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
782			DELAY(1);
783		}
784		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
785		DELAY(1);
786	}
787}
788
789/*
790 * Start packet transmission on the interface.
791 */
792static void
793fxp_start(ifp)
794	struct ifnet *ifp;
795{
796	struct fxp_softc *sc = ifp->if_softc;
797	struct fxp_cb_tx *txp;
798
799	/*
800	 * See if we need to suspend xmit until the multicast filter
801	 * has been reprogrammed (which can only be done at the head
802	 * of the command chain).
803	 */
804	if (sc->need_mcsetup)
805		return;
806
807	txp = NULL;
808
809	/*
810	 * We're finished if there is nothing more to add to the list or if
811	 * we're all filled up with buffers to transmit.
812	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
813	 *       a NOP command when needed.
814	 */
815	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
816		struct mbuf *m, *mb_head;
817		int segment;
818
819		/*
820		 * Grab a packet to transmit.
821		 */
822		IF_DEQUEUE(&ifp->if_snd, mb_head);
823
824		/*
825		 * Get pointer to next available tx desc.
826		 */
827		txp = sc->cbl_last->next;
828
829		/*
830		 * Go through each of the mbufs in the chain and initialize
831		 * the transmit buffer descriptors with the physical address
832		 * and size of the mbuf.
833		 */
834tbdinit:
835		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
836			if (m->m_len != 0) {
837				if (segment == FXP_NTXSEG)
838					break;
839				txp->tbd[segment].tb_addr =
840				    vtophys(mtod(m, vm_offset_t));
841				txp->tbd[segment].tb_size = m->m_len;
842				segment++;
843			}
844		}
845		if (m != NULL) {
846			struct mbuf *mn;
847
848			/*
849			 * We ran out of segments. We have to recopy this mbuf
850			 * chain first. Bail out if we can't get the new buffers.
851			 */
852			MGETHDR(mn, M_DONTWAIT, MT_DATA);
853			if (mn == NULL) {
854				m_freem(mb_head);
855				break;
856			}
857			if (mb_head->m_pkthdr.len > MHLEN) {
858				MCLGET(mn, M_DONTWAIT);
859				if ((mn->m_flags & M_EXT) == 0) {
860					m_freem(mn);
861					m_freem(mb_head);
862					break;
863				}
864			}
865			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
866			    mtod(mn, caddr_t));
867			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
868			m_freem(mb_head);
869			mb_head = mn;
870			goto tbdinit;
871		}
872
873		txp->tbd_number = segment;
874		txp->mb_head = mb_head;
875		txp->cb_status = 0;
876		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
877			txp->cb_command =
878			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
879		} else {
880			txp->cb_command =
881			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
882			/*
883			 * Set a 5 second timer just in case we don't hear from the
884			 * card again.
885			 */
886			ifp->if_timer = 5;
887		}
888		txp->tx_threshold = tx_threshold;
889
890		/*
891		 * Advance the end of list forward.
892		 */
893		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
894		sc->cbl_last = txp;
895
896		/*
897		 * Advance the beginning of the list forward if there are
898		 * no other packets queued (when nothing is queued, cbl_first
899		 * sits on the last TxCB that was sent out).
900		 */
901		if (sc->tx_queued == 0)
902			sc->cbl_first = txp;
903
904		sc->tx_queued++;
905
906#if NBPFILTER > 0
907		/*
908		 * Pass packet to bpf if there is a listener.
909		 */
910		if (ifp->if_bpf)
911			bpf_mtap(FXP_BPFTAP_ARG(ifp), mb_head);
912#endif
913	}
914
915	/*
916	 * We're finished. If we added to the list, issue a RESUME to get DMA
917	 * going again if suspended.
918	 */
919	if (txp != NULL) {
920		fxp_scb_wait(sc);
921		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
922	}
923}
924
925/*
926 * Process interface interrupts.
927 */
928static FXP_INTR_TYPE
929fxp_intr(arg)
930	void *arg;
931{
932	struct fxp_softc *sc = arg;
933	struct ifnet *ifp = &sc->sc_if;
934	u_int8_t statack;
935#if defined(__NetBSD__)
936	int claimed = 0;
937#endif
938
939	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
940#if defined(__NetBSD__)
941		claimed = 1;
942#endif
943		/*
944		 * First ACK all the interrupts in this pass.
945		 */
946		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
947
948		/*
949		 * Free any finished transmit mbuf chains.
950		 */
951		if (statack & FXP_SCB_STATACK_CXTNO) {
952			struct fxp_cb_tx *txp;
953
954			for (txp = sc->cbl_first; sc->tx_queued &&
955			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
956			    txp = txp->next) {
957				if (txp->mb_head != NULL) {
958					m_freem(txp->mb_head);
959					txp->mb_head = NULL;
960				}
961				sc->tx_queued--;
962			}
963			sc->cbl_first = txp;
964			ifp->if_timer = 0;
965			if (sc->tx_queued == 0) {
966				if (sc->need_mcsetup)
967					fxp_mc_setup(sc);
968			}
969			/*
970			 * Try to start more packets transmitting.
971			 */
972			if (ifp->if_snd.ifq_head != NULL)
973				fxp_start(ifp);
974		}
975		/*
976		 * Process receiver interrupts. If a no-resource (RNR)
977		 * condition exists, get whatever packets we can and
978		 * re-start the receiver.
979		 */
980		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
981			struct mbuf *m;
982			struct fxp_rfa *rfa;
983rcvloop:
984			m = sc->rfa_headm;
985			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
986			    RFA_ALIGNMENT_FUDGE);
987
988			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
989				/*
990				 * Remove first packet from the chain.
991				 */
992				sc->rfa_headm = m->m_next;
993				m->m_next = NULL;
994
995				/*
996				 * Add a new buffer to the receive chain.
997				 * If this fails, the old buffer is recycled
998				 * instead.
999				 */
1000				if (fxp_add_rfabuf(sc, m) == 0) {
1001					struct ether_header *eh;
1002					u_int16_t total_len;
1003
1004					total_len = rfa->actual_size &
1005					    (MCLBYTES - 1);
1006					if (total_len <
1007					    sizeof(struct ether_header)) {
1008						m_freem(m);
1009						goto rcvloop;
1010					}
1011					m->m_pkthdr.rcvif = ifp;
1012					m->m_pkthdr.len = m->m_len =
1013					    total_len -
1014					    sizeof(struct ether_header);
1015					eh = mtod(m, struct ether_header *);
1016#if NBPFILTER > 0
1017					if (ifp->if_bpf) {
1018						bpf_tap(FXP_BPFTAP_ARG(ifp),
1019						    mtod(m, caddr_t),
1020						    total_len);
1021						/*
1022						 * Only pass this packet up
1023						 * if it is for us.
1024						 */
1025						if ((ifp->if_flags &
1026						    IFF_PROMISC) &&
1027						    (rfa->rfa_status &
1028						    FXP_RFA_STATUS_IAMATCH) &&
1029						    (eh->ether_dhost[0] & 1)
1030						    == 0) {
1031							m_freem(m);
1032							goto rcvloop;
1033						}
1034					}
1035#endif /* NBPFILTER > 0 */
1036					m->m_data +=
1037					    sizeof(struct ether_header);
1038					ether_input(ifp, eh, m);
1039				}
1040				goto rcvloop;
1041			}
1042			if (statack & FXP_SCB_STATACK_RNR) {
1043				fxp_scb_wait(sc);
1044				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1045				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1046					RFA_ALIGNMENT_FUDGE);
1047				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1048				    FXP_SCB_COMMAND_RU_START);
1049			}
1050		}
1051	}
1052#if defined(__NetBSD__)
1053	return (claimed);
1054#endif
1055}
1056
1057/*
1058 * Update packet in/out/collision statistics. The i82557 doesn't
1059 * allow you to access these counters without doing a fairly
1060 * expensive DMA to get _all_ of the statistics it maintains, so
1061 * we do this operation here only once per second. The statistics
1062 * counters in the kernel are updated from the previous dump-stats
1063 * DMA and then a new dump-stats DMA is started. The on-chip
1064 * counters are zeroed when the DMA completes. If we can't start
1065 * the DMA immediately, we don't wait - we just prepare to read
1066 * them again next time.
1067 */
1068static void
1069fxp_stats_update(arg)
1070	void *arg;
1071{
1072	struct fxp_softc *sc = arg;
1073	struct ifnet *ifp = &sc->sc_if;
1074	struct fxp_stats *sp = sc->fxp_stats;
1075	struct fxp_cb_tx *txp;
1076	int s;
1077
1078	ifp->if_opackets += sp->tx_good;
1079	ifp->if_collisions += sp->tx_total_collisions;
1080	if (sp->rx_good) {
1081		ifp->if_ipackets += sp->rx_good;
1082		sc->rx_idle_secs = 0;
1083	} else {
1084		/*
1085		 * Receiver's been idle for another second.
1086		 */
1087		sc->rx_idle_secs++;
1088	}
1089	ifp->if_ierrors +=
1090	    sp->rx_crc_errors +
1091	    sp->rx_alignment_errors +
1092	    sp->rx_rnr_errors +
1093	    sp->rx_overrun_errors;
1094	/*
1095	 * If any transmit underruns occured, bump up the transmit
1096	 * threshold by another 512 bytes (64 * 8).
1097	 */
1098	if (sp->tx_underruns) {
1099		ifp->if_oerrors += sp->tx_underruns;
1100		if (tx_threshold < 192)
1101			tx_threshold += 64;
1102	}
1103	s = splimp();
1104	/*
1105	 * Release any xmit buffers that have completed DMA. This isn't
1106	 * strictly necessary to do here, but it's advantagous for mbufs
1107	 * with external storage to be released in a timely manner rather
1108	 * than being defered for a potentially long time. This limits
1109	 * the delay to a maximum of one second.
1110	 */
1111	for (txp = sc->cbl_first; sc->tx_queued &&
1112	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1113	    txp = txp->next) {
1114		if (txp->mb_head != NULL) {
1115			m_freem(txp->mb_head);
1116			txp->mb_head = NULL;
1117		}
1118		sc->tx_queued--;
1119	}
1120	sc->cbl_first = txp;
1121	/*
1122	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1123	 * then assume the receiver has locked up and attempt to clear
1124	 * the condition by reprogramming the multicast filter. This is
1125	 * a work-around for a bug in the 82557 where the receiver locks
1126	 * up if it gets certain types of garbage in the syncronization
1127	 * bits prior to the packet header. This bug is supposed to only
1128	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1129	 * mode as well (perhaps due to a 10/100 speed transition).
1130	 */
1131	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1132		sc->rx_idle_secs = 0;
1133		fxp_mc_setup(sc);
1134	}
1135	/*
1136	 * If there is no pending command, start another stats
1137	 * dump. Otherwise punt for now.
1138	 */
1139	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1140		/*
1141		 * Start another stats dump.
1142		 */
1143		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1144		    FXP_SCB_COMMAND_CU_DUMPRESET);
1145	} else {
1146		/*
1147		 * A previous command is still waiting to be accepted.
1148		 * Just zero our copy of the stats and wait for the
1149		 * next timer event to update them.
1150		 */
1151		sp->tx_good = 0;
1152		sp->tx_underruns = 0;
1153		sp->tx_total_collisions = 0;
1154
1155		sp->rx_good = 0;
1156		sp->rx_crc_errors = 0;
1157		sp->rx_alignment_errors = 0;
1158		sp->rx_rnr_errors = 0;
1159		sp->rx_overrun_errors = 0;
1160	}
1161	splx(s);
1162	/*
1163	 * Schedule another timeout one second from now.
1164	 */
1165	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1166}
1167
1168/*
1169 * Stop the interface. Cancels the statistics updater and resets
1170 * the interface.
1171 */
1172static void
1173fxp_stop(sc)
1174	struct fxp_softc *sc;
1175{
1176	struct ifnet *ifp = &sc->sc_if;
1177	struct fxp_cb_tx *txp;
1178	int i;
1179
1180	/*
1181	 * Cancel stats updater.
1182	 */
1183	untimeout(fxp_stats_update, sc, sc->stat_ch);
1184
1185	/*
1186	 * Issue software reset
1187	 */
1188	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1189	DELAY(10);
1190
1191	/*
1192	 * Release any xmit buffers.
1193	 */
1194	txp = sc->cbl_base;
1195	if (txp != NULL) {
1196		for (i = 0; i < FXP_NTXCB; i++) {
1197			if (txp[i].mb_head != NULL) {
1198				m_freem(txp[i].mb_head);
1199				txp[i].mb_head = NULL;
1200			}
1201		}
1202	}
1203	sc->tx_queued = 0;
1204
1205	/*
1206	 * Free all the receive buffers then reallocate/reinitialize
1207	 */
1208	if (sc->rfa_headm != NULL)
1209		m_freem(sc->rfa_headm);
1210	sc->rfa_headm = NULL;
1211	sc->rfa_tailm = NULL;
1212	for (i = 0; i < FXP_NRFABUFS; i++) {
1213		if (fxp_add_rfabuf(sc, NULL) != 0) {
1214			/*
1215			 * This "can't happen" - we're at splimp()
1216			 * and we just freed all the buffers we need
1217			 * above.
1218			 */
1219			panic("fxp_stop: no buffers!");
1220		}
1221	}
1222
1223	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1224	ifp->if_timer = 0;
1225}
1226
1227/*
1228 * Watchdog/transmission transmit timeout handler. Called when a
1229 * transmission is started on the interface, but no interrupt is
1230 * received before the timeout. This usually indicates that the
1231 * card has wedged for some reason.
1232 */
1233static void
1234fxp_watchdog(ifp)
1235	struct ifnet *ifp;
1236{
1237	struct fxp_softc *sc = ifp->if_softc;
1238
1239	printf(FXP_FORMAT ": device timeout\n", FXP_ARGS(sc));
1240	ifp->if_oerrors++;
1241
1242	fxp_init(sc);
1243}
1244
1245static void
1246fxp_init(xsc)
1247	void *xsc;
1248{
1249	struct fxp_softc *sc = xsc;
1250	struct ifnet *ifp = &sc->sc_if;
1251	struct fxp_cb_config *cbp;
1252	struct fxp_cb_ias *cb_ias;
1253	struct fxp_cb_tx *txp;
1254	int i, s, prm;
1255
1256	s = splimp();
1257	/*
1258	 * Cancel any pending I/O
1259	 */
1260	fxp_stop(sc);
1261
1262	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1263
1264	/*
1265	 * Initialize base of CBL and RFA memory. Loading with zero
1266	 * sets it up for regular linear addressing.
1267	 */
1268	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1269	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1270
1271	fxp_scb_wait(sc);
1272	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1273
1274	/*
1275	 * Initialize base of dump-stats buffer.
1276	 */
1277	fxp_scb_wait(sc);
1278	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1279	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1280
1281	/*
1282	 * We temporarily use memory that contains the TxCB list to
1283	 * construct the config CB. The TxCB list memory is rebuilt
1284	 * later.
1285	 */
1286	cbp = (struct fxp_cb_config *) sc->cbl_base;
1287
1288	/*
1289	 * This bcopy is kind of disgusting, but there are a bunch of must be
1290	 * zero and must be one bits in this structure and this is the easiest
1291	 * way to initialize them all to proper values.
1292	 */
1293	bcopy(fxp_cb_config_template, (void *)&cbp->cb_status,
1294		sizeof(fxp_cb_config_template));
1295
1296	cbp->cb_status =	0;
1297	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1298	cbp->link_addr =	-1;	/* (no) next command */
1299	cbp->byte_count =	22;	/* (22) bytes to config */
1300	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1301	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1302	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1303	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1304	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1305	cbp->dma_bce =		0;	/* (disable) dma max counters */
1306	cbp->late_scb =		0;	/* (don't) defer SCB update */
1307	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1308	cbp->ci_int =		1;	/* interrupt on CU idle */
1309	cbp->save_bf =		prm;	/* save bad frames */
1310	cbp->disc_short_rx =	!prm;	/* discard short packets */
1311	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1312	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1313	cbp->nsai =		1;	/* (don't) disable source addr insert */
1314	cbp->preamble_length =	2;	/* (7 byte) preamble */
1315	cbp->loopback =		0;	/* (don't) loopback */
1316	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1317	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1318	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1319	cbp->promiscuous =	prm;	/* promiscuous mode */
1320	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1321	cbp->crscdt =		0;	/* (CRS only) */
1322	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1323	cbp->padding =		1;	/* (do) pad short tx packets */
1324	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1325	cbp->force_fdx =	0;	/* (don't) force full duplex */
1326	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1327	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1328	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1329
1330	/*
1331	 * Start the config command/DMA.
1332	 */
1333	fxp_scb_wait(sc);
1334	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1335	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1336	/* ...and wait for it to complete. */
1337	while (!(cbp->cb_status & FXP_CB_STATUS_C));
1338
1339	/*
1340	 * Now initialize the station address. Temporarily use the TxCB
1341	 * memory area like we did above for the config CB.
1342	 */
1343	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1344	cb_ias->cb_status = 0;
1345	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1346	cb_ias->link_addr = -1;
1347#if defined(__NetBSD__)
1348	bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6);
1349#else
1350	bcopy(sc->arpcom.ac_enaddr, (void *)cb_ias->macaddr,
1351	    sizeof(sc->arpcom.ac_enaddr));
1352#endif /* __NetBSD__ */
1353
1354	/*
1355	 * Start the IAS (Individual Address Setup) command/DMA.
1356	 */
1357	fxp_scb_wait(sc);
1358	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1359	/* ...and wait for it to complete. */
1360	while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
1361
1362	/*
1363	 * Initialize transmit control block (TxCB) list.
1364	 */
1365
1366	txp = sc->cbl_base;
1367	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1368	for (i = 0; i < FXP_NTXCB; i++) {
1369		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1370		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1371		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1372		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1373		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1374	}
1375	/*
1376	 * Set the suspend flag on the first TxCB and start the control
1377	 * unit. It will execute the NOP and then suspend.
1378	 */
1379	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1380	sc->cbl_first = sc->cbl_last = txp;
1381	sc->tx_queued = 1;
1382
1383	fxp_scb_wait(sc);
1384	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1385
1386	/*
1387	 * Initialize receiver buffer area - RFA.
1388	 */
1389	fxp_scb_wait(sc);
1390	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1391	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1392	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1393
1394	/*
1395	 * Set current media.
1396	 */
1397	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1398
1399	ifp->if_flags |= IFF_RUNNING;
1400	ifp->if_flags &= ~IFF_OACTIVE;
1401	splx(s);
1402
1403	/*
1404	 * Start stats updater.
1405	 */
1406	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1407}
1408
1409static void
1410fxp_set_media(sc, media)
1411	struct fxp_softc *sc;
1412	int media;
1413{
1414
1415	switch (sc->phy_primary_device) {
1416	case FXP_PHY_DP83840:
1417	case FXP_PHY_DP83840A:
1418		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1419		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1420		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1421		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1422		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1423		/* fall through */
1424	case FXP_PHY_82553A:
1425	case FXP_PHY_82553C: /* untested */
1426	case FXP_PHY_82555:
1427	case FXP_PHY_82555B:
1428		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1429			int flags;
1430
1431			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1432			    FXP_PHY_BMCR_SPEED_100M : 0;
1433			flags |= (media & IFM_FDX) ?
1434			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1435			fxp_mdi_write(sc, sc->phy_primary_addr,
1436			    FXP_PHY_BMCR,
1437			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1438			    FXP_PHY_BMCR) &
1439			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1440			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1441		} else {
1442			fxp_mdi_write(sc, sc->phy_primary_addr,
1443			    FXP_PHY_BMCR,
1444			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1445			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1446		}
1447		break;
1448	/*
1449	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1450	 * nothing.
1451	 */
1452	case FXP_PHY_80C24:
1453		break;
1454	default:
1455		printf(FXP_FORMAT
1456		    ": warning: unsupported PHY, type = %d, addr = %d\n",
1457		     FXP_ARGS(sc), sc->phy_primary_device,
1458		     sc->phy_primary_addr);
1459	}
1460}
1461
1462/*
1463 * Change media according to request.
1464 */
1465int
1466fxp_mediachange(ifp)
1467	struct ifnet *ifp;
1468{
1469	struct fxp_softc *sc = ifp->if_softc;
1470	struct ifmedia *ifm = &sc->sc_media;
1471
1472	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1473		return (EINVAL);
1474
1475	fxp_set_media(sc, ifm->ifm_media);
1476	return (0);
1477}
1478
1479/*
1480 * Notify the world which media we're using.
1481 */
1482void
1483fxp_mediastatus(ifp, ifmr)
1484	struct ifnet *ifp;
1485	struct ifmediareq *ifmr;
1486{
1487	struct fxp_softc *sc = ifp->if_softc;
1488	int flags;
1489
1490	switch (sc->phy_primary_device) {
1491	case FXP_PHY_DP83840:
1492	case FXP_PHY_DP83840A:
1493	case FXP_PHY_82555:
1494	case FXP_PHY_82555B:
1495		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1496		ifmr->ifm_active = IFM_ETHER;
1497		if (flags & FXP_PHY_BMCR_AUTOEN)
1498			ifmr->ifm_active |= IFM_AUTO;
1499		else {
1500			if (flags & FXP_PHY_BMCR_SPEED_100M)
1501				ifmr->ifm_active |= IFM_100_TX;
1502			else
1503				ifmr->ifm_active |= IFM_10_T;
1504
1505			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1506				ifmr->ifm_active |= IFM_FDX;
1507		}
1508		break;
1509
1510	case FXP_PHY_80C24:
1511	default:
1512		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1513	}
1514}
1515
1516/*
1517 * Add a buffer to the end of the RFA buffer list.
1518 * Return 0 if successful, 1 for failure. A failure results in
1519 * adding the 'oldm' (if non-NULL) on to the end of the list -
1520 * tossing out its old contents and recycling it.
1521 * The RFA struct is stuck at the beginning of mbuf cluster and the
1522 * data pointer is fixed up to point just past it.
1523 */
1524static int
1525fxp_add_rfabuf(sc, oldm)
1526	struct fxp_softc *sc;
1527	struct mbuf *oldm;
1528{
1529	u_int32_t v;
1530	struct mbuf *m;
1531	struct fxp_rfa *rfa, *p_rfa;
1532
1533	MGETHDR(m, M_DONTWAIT, MT_DATA);
1534	if (m != NULL) {
1535		MCLGET(m, M_DONTWAIT);
1536		if ((m->m_flags & M_EXT) == 0) {
1537			m_freem(m);
1538			if (oldm == NULL)
1539				return 1;
1540			m = oldm;
1541			m->m_data = m->m_ext.ext_buf;
1542		}
1543	} else {
1544		if (oldm == NULL)
1545			return 1;
1546		m = oldm;
1547		m->m_data = m->m_ext.ext_buf;
1548	}
1549
1550	/*
1551	 * Move the data pointer up so that the incoming data packet
1552	 * will be 32-bit aligned.
1553	 */
1554	m->m_data += RFA_ALIGNMENT_FUDGE;
1555
1556	/*
1557	 * Get a pointer to the base of the mbuf cluster and move
1558	 * data start past it.
1559	 */
1560	rfa = mtod(m, struct fxp_rfa *);
1561	m->m_data += sizeof(struct fxp_rfa);
1562	rfa->size = MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE;
1563
1564	/*
1565	 * Initialize the rest of the RFA.  Note that since the RFA
1566	 * is misaligned, we cannot store values directly.  Instead,
1567	 * we use an optimized, inline copy.
1568	 */
1569	rfa->rfa_status = 0;
1570	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1571	rfa->actual_size = 0;
1572
1573	v = -1;
1574	fxp_lwcopy(&v, &rfa->link_addr);
1575	fxp_lwcopy(&v, &rfa->rbd_addr);
1576
1577	/*
1578	 * If there are other buffers already on the list, attach this
1579	 * one to the end by fixing up the tail to point to this one.
1580	 */
1581	if (sc->rfa_headm != NULL) {
1582		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1583		    RFA_ALIGNMENT_FUDGE);
1584		sc->rfa_tailm->m_next = m;
1585		v = vtophys(rfa);
1586		fxp_lwcopy(&v, &p_rfa->link_addr);
1587		p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL;
1588	} else {
1589		sc->rfa_headm = m;
1590	}
1591	sc->rfa_tailm = m;
1592
1593	return (m == oldm);
1594}
1595
1596static volatile int
1597fxp_mdi_read(sc, phy, reg)
1598	struct fxp_softc *sc;
1599	int phy;
1600	int reg;
1601{
1602	int count = 10000;
1603	int value;
1604
1605	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1606	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1607
1608	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1609	    && count--)
1610		DELAY(10);
1611
1612	if (count <= 0)
1613		printf(FXP_FORMAT ": fxp_mdi_read: timed out\n",
1614		    FXP_ARGS(sc));
1615
1616	return (value & 0xffff);
1617}
1618
1619static void
1620fxp_mdi_write(sc, phy, reg, value)
1621	struct fxp_softc *sc;
1622	int phy;
1623	int reg;
1624	int value;
1625{
1626	int count = 10000;
1627
1628	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1629	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1630	    (value & 0xffff));
1631
1632	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1633	    count--)
1634		DELAY(10);
1635
1636	if (count <= 0)
1637		printf(FXP_FORMAT ": fxp_mdi_write: timed out\n",
1638		    FXP_ARGS(sc));
1639}
1640
1641static int
1642fxp_ioctl(ifp, command, data)
1643	struct ifnet *ifp;
1644	FXP_IOCTLCMD_TYPE command;
1645	caddr_t data;
1646{
1647	struct fxp_softc *sc = ifp->if_softc;
1648	struct ifreq *ifr = (struct ifreq *)data;
1649	int s, error = 0;
1650
1651	s = splimp();
1652
1653	switch (command) {
1654
1655	case SIOCSIFADDR:
1656#if !defined(__NetBSD__)
1657	case SIOCGIFADDR:
1658	case SIOCSIFMTU:
1659#endif
1660		error = ether_ioctl(ifp, command, data);
1661		break;
1662
1663	case SIOCSIFFLAGS:
1664		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1665
1666		/*
1667		 * If interface is marked up and not running, then start it.
1668		 * If it is marked down and running, stop it.
1669		 * XXX If it's up then re-initialize it. This is so flags
1670		 * such as IFF_PROMISC are handled.
1671		 */
1672		if (ifp->if_flags & IFF_UP) {
1673			fxp_init(sc);
1674		} else {
1675			if (ifp->if_flags & IFF_RUNNING)
1676				fxp_stop(sc);
1677		}
1678		break;
1679
1680	case SIOCADDMULTI:
1681	case SIOCDELMULTI:
1682		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1683#if defined(__NetBSD__)
1684		error = (command == SIOCADDMULTI) ?
1685		    ether_addmulti(ifr, &sc->sc_ethercom) :
1686		    ether_delmulti(ifr, &sc->sc_ethercom);
1687
1688		if (error == ENETRESET) {
1689			/*
1690			 * Multicast list has changed; set the hardware
1691			 * filter accordingly.
1692			 */
1693			if (!sc->all_mcasts)
1694				fxp_mc_setup(sc);
1695			/*
1696			 * fxp_mc_setup() can turn on all_mcasts if we run
1697			 * out of space, so check it again rather than else {}.
1698			 */
1699			if (sc->all_mcasts)
1700				fxp_init(sc);
1701			error = 0;
1702		}
1703#else /* __FreeBSD__ */
1704		/*
1705		 * Multicast list has changed; set the hardware filter
1706		 * accordingly.
1707		 */
1708		if (!sc->all_mcasts)
1709			fxp_mc_setup(sc);
1710		/*
1711		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1712		 * again rather than else {}.
1713		 */
1714		if (sc->all_mcasts)
1715			fxp_init(sc);
1716		error = 0;
1717#endif /* __NetBSD__ */
1718		break;
1719
1720	case SIOCSIFMEDIA:
1721	case SIOCGIFMEDIA:
1722		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1723		break;
1724
1725	default:
1726		error = EINVAL;
1727	}
1728	(void) splx(s);
1729	return (error);
1730}
1731
1732/*
1733 * Program the multicast filter.
1734 *
1735 * We have an artificial restriction that the multicast setup command
1736 * must be the first command in the chain, so we take steps to ensure
1737 * this. By requiring this, it allows us to keep up the performance of
1738 * the pre-initialized command ring (esp. link pointers) by not actually
1739 * inserting the mcsetup command in the ring - i.e. its link pointer
1740 * points to the TxCB ring, but the mcsetup descriptor itself is not part
1741 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1742 * lead into the regular TxCB ring when it completes.
1743 *
1744 * This function must be called at splimp.
1745 */
1746static void
1747fxp_mc_setup(sc)
1748	struct fxp_softc *sc;
1749{
1750	struct fxp_cb_mcs *mcsp = sc->mcsp;
1751	struct ifnet *ifp = &sc->sc_if;
1752	struct ifmultiaddr *ifma;
1753	int nmcasts;
1754
1755	/*
1756	 * If there are queued commands, we must wait until they are all
1757	 * completed. If we are already waiting, then add a NOP command
1758	 * with interrupt option so that we're notified when all commands
1759	 * have been completed - fxp_start() ensures that no additional
1760	 * TX commands will be added when need_mcsetup is true.
1761	 */
1762	if (sc->tx_queued) {
1763		struct fxp_cb_tx *txp;
1764
1765		/*
1766		 * need_mcsetup will be true if we are already waiting for the
1767		 * NOP command to be completed (see below). In this case, bail.
1768		 */
1769		if (sc->need_mcsetup)
1770			return;
1771		sc->need_mcsetup = 1;
1772
1773		/*
1774		 * Add a NOP command with interrupt so that we are notified when all
1775		 * TX commands have been processed.
1776		 */
1777		txp = sc->cbl_last->next;
1778		txp->mb_head = NULL;
1779		txp->cb_status = 0;
1780		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1781		/*
1782		 * Advance the end of list forward.
1783		 */
1784		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1785		sc->cbl_last = txp;
1786		sc->tx_queued++;
1787		/*
1788		 * Issue a resume in case the CU has just suspended.
1789		 */
1790		fxp_scb_wait(sc);
1791		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1792		/*
1793		 * Set a 5 second timer just in case we don't hear from the
1794		 * card again.
1795		 */
1796		ifp->if_timer = 5;
1797
1798		return;
1799	}
1800	sc->need_mcsetup = 0;
1801
1802	/*
1803	 * Initialize multicast setup descriptor.
1804	 */
1805	mcsp->next = sc->cbl_base;
1806	mcsp->mb_head = NULL;
1807	mcsp->cb_status = 0;
1808	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1809	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1810
1811	nmcasts = 0;
1812	if (!sc->all_mcasts) {
1813		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1814		    ifma = ifma->ifma_link.le_next) {
1815			if (ifma->ifma_addr->sa_family != AF_LINK)
1816				continue;
1817			if (nmcasts >= MAXMCADDR) {
1818				sc->all_mcasts = 1;
1819				nmcasts = 0;
1820				break;
1821			}
1822			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1823			    (void *) &sc->mcsp->mc_addr[nmcasts][0], 6);
1824			nmcasts++;
1825		}
1826	}
1827	mcsp->mc_cnt = nmcasts * 6;
1828	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
1829	sc->tx_queued = 1;
1830
1831	/*
1832	 * Wait until command unit is not active. This should never
1833	 * be the case when nothing is queued, but make sure anyway.
1834	 */
1835	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1836	    FXP_SCB_CUS_ACTIVE) ;
1837
1838	/*
1839	 * Start the multicast setup command.
1840	 */
1841	fxp_scb_wait(sc);
1842	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1843	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1844
1845	ifp->if_timer = 2;
1846	return;
1847}
1848