if_fxp.c revision 271782
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 271782 2014-09-18 15:56:14Z glebius $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/module.h>
49#include <sys/mutex.h>
50#include <sys/rman.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54
55#include <net/bpf.h>
56#include <net/ethernet.h>
57#include <net/if.h>
58#include <net/if_var.h>
59#include <net/if_arp.h>
60#include <net/if_dl.h>
61#include <net/if_media.h>
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#include <netinet/tcp.h>
69#include <netinet/udp.h>
70
71#include <machine/bus.h>
72#include <machine/in_cksum.h>
73#include <machine/resource.h>
74
75#include <dev/pci/pcivar.h>
76#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
77
78#include <dev/mii/mii.h>
79#include <dev/mii/miivar.h>
80
81#include <dev/fxp/if_fxpreg.h>
82#include <dev/fxp/if_fxpvar.h>
83#include <dev/fxp/rcvbundl.h>
84
85MODULE_DEPEND(fxp, pci, 1, 1, 1);
86MODULE_DEPEND(fxp, ether, 1, 1, 1);
87MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88#include "miibus_if.h"
89
90/*
91 * NOTE!  On !x86 we typically have an alignment constraint.  The
92 * card DMAs the packet immediately following the RFA.  However,
93 * the first thing in the packet is a 14-byte Ethernet header.
94 * This means that the packet is misaligned.  To compensate,
95 * we actually offset the RFA 2 bytes into the cluster.  This
96 * alignes the packet after the Ethernet header at a 32-bit
97 * boundary.  HOWEVER!  This means that the RFA is misaligned!
98 */
99#define	RFA_ALIGNMENT_FUDGE	2
100
101/*
102 * Set initial transmit threshold at 64 (512 bytes). This is
103 * increased by 64 (512 bytes) at a time, to maximum of 192
104 * (1536 bytes), if an underrun occurs.
105 */
106static int tx_threshold = 64;
107
108/*
109 * The configuration byte map has several undefined fields which
110 * must be one or must be zero.  Set up a template for these bits.
111 * The actual configuration is performed in fxp_init_body.
112 *
113 * See struct fxp_cb_config for the bit definitions.
114 */
115static const u_char fxp_cb_config_template[] = {
116	0x0, 0x0,		/* cb_status */
117	0x0, 0x0,		/* cb_command */
118	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119	0x0,	/*  0 */
120	0x0,	/*  1 */
121	0x0,	/*  2 */
122	0x0,	/*  3 */
123	0x0,	/*  4 */
124	0x0,	/*  5 */
125	0x32,	/*  6 */
126	0x0,	/*  7 */
127	0x0,	/*  8 */
128	0x0,	/*  9 */
129	0x6,	/* 10 */
130	0x0,	/* 11 */
131	0x0,	/* 12 */
132	0x0,	/* 13 */
133	0xf2,	/* 14 */
134	0x48,	/* 15 */
135	0x0,	/* 16 */
136	0x40,	/* 17 */
137	0xf0,	/* 18 */
138	0x0,	/* 19 */
139	0x3f,	/* 20 */
140	0x5,	/* 21 */
141	0x0,	/* 22 */
142	0x0,	/* 23 */
143	0x0,	/* 24 */
144	0x0,	/* 25 */
145	0x0,	/* 26 */
146	0x0,	/* 27 */
147	0x0,	/* 28 */
148	0x0,	/* 29 */
149	0x0,	/* 30 */
150	0x0	/* 31 */
151};
152
153/*
154 * Claim various Intel PCI device identifiers for this driver.  The
155 * sub-vendor and sub-device field are extensively used to identify
156 * particular variants, but we don't currently differentiate between
157 * them.
158 */
159static const struct fxp_ident fxp_ident_table[] = {
160    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
161    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
162    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
170    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
171    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
172    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
174    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
175    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
177    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
178    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
179    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
180    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
181    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
182    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
183    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
184    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
185    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
186    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
187    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
188    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
191    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
192    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
193    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
196    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
197    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
198    { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
199    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
200    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
201    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
202    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
203    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
204    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
205    { 0,	-1,	0, NULL },
206};
207
208#ifdef FXP_IP_CSUM_WAR
209#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
210#else
211#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
212#endif
213
214static int		fxp_probe(device_t dev);
215static int		fxp_attach(device_t dev);
216static int		fxp_detach(device_t dev);
217static int		fxp_shutdown(device_t dev);
218static int		fxp_suspend(device_t dev);
219static int		fxp_resume(device_t dev);
220
221static const struct fxp_ident *fxp_find_ident(device_t dev);
222static void		fxp_intr(void *xsc);
223static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
224			    struct mbuf *m, uint16_t status, int pos);
225static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
226			    uint8_t statack, int count);
227static void 		fxp_init(void *xsc);
228static void 		fxp_init_body(struct fxp_softc *sc, int);
229static void 		fxp_tick(void *xsc);
230static void 		fxp_start(if_t ifp);
231static void 		fxp_start_body(if_t ifp);
232static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
233static void		fxp_txeof(struct fxp_softc *sc);
234static void		fxp_stop(struct fxp_softc *sc);
235static void 		fxp_release(struct fxp_softc *sc);
236static int		fxp_ioctl(if_t ifp, u_long command,
237			    caddr_t data);
238static void 		fxp_watchdog(struct fxp_softc *sc);
239static void		fxp_add_rfabuf(struct fxp_softc *sc,
240			    struct fxp_rx *rxp);
241static void		fxp_discard_rfabuf(struct fxp_softc *sc,
242			    struct fxp_rx *rxp);
243static int		fxp_new_rfabuf(struct fxp_softc *sc,
244			    struct fxp_rx *rxp);
245static int		fxp_mc_addrs(struct fxp_softc *sc);
246static void		fxp_mc_setup(struct fxp_softc *sc);
247static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
248			    int autosize);
249static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
250			    uint16_t data);
251static void		fxp_autosize_eeprom(struct fxp_softc *sc);
252static void		fxp_load_eeprom(struct fxp_softc *sc);
253static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
254			    int offset, int words);
255static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
256			    int offset, int words);
257static int		fxp_ifmedia_upd(if_t ifp);
258static void		fxp_ifmedia_sts(if_t ifp,
259			    struct ifmediareq *ifmr);
260static int		fxp_serial_ifmedia_upd(if_t ifp);
261static void		fxp_serial_ifmedia_sts(if_t ifp,
262			    struct ifmediareq *ifmr);
263static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
264static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
265			    int value);
266static void		fxp_miibus_statchg(device_t dev);
267static void		fxp_load_ucode(struct fxp_softc *sc);
268static void		fxp_update_stats(struct fxp_softc *sc);
269static void		fxp_sysctl_node(struct fxp_softc *sc);
270static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
271			    int low, int high);
272static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
273static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
274static void 		fxp_scb_wait(struct fxp_softc *sc);
275static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
276static void		fxp_dma_wait(struct fxp_softc *sc,
277			    volatile uint16_t *status, bus_dma_tag_t dmat,
278			    bus_dmamap_t map);
279
280static device_method_t fxp_methods[] = {
281	/* Device interface */
282	DEVMETHOD(device_probe,		fxp_probe),
283	DEVMETHOD(device_attach,	fxp_attach),
284	DEVMETHOD(device_detach,	fxp_detach),
285	DEVMETHOD(device_shutdown,	fxp_shutdown),
286	DEVMETHOD(device_suspend,	fxp_suspend),
287	DEVMETHOD(device_resume,	fxp_resume),
288
289	/* MII interface */
290	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
291	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
292	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
293
294	DEVMETHOD_END
295};
296
297static driver_t fxp_driver = {
298	"fxp",
299	fxp_methods,
300	sizeof(struct fxp_softc),
301};
302
303static devclass_t fxp_devclass;
304
305DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
306    SI_ORDER_ANY);
307DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
308
309static struct resource_spec fxp_res_spec_mem[] = {
310	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
311	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
312	{ -1, 0 }
313};
314
315static struct resource_spec fxp_res_spec_io[] = {
316	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
317	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
318	{ -1, 0 }
319};
320
321/*
322 * Wait for the previous command to be accepted (but not necessarily
323 * completed).
324 */
325static void
326fxp_scb_wait(struct fxp_softc *sc)
327{
328	union {
329		uint16_t w;
330		uint8_t b[2];
331	} flowctl;
332	int i = 10000;
333
334	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
335		DELAY(2);
336	if (i == 0) {
337		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
338		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
339		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
340		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
341		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
342		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
343	}
344}
345
346static void
347fxp_scb_cmd(struct fxp_softc *sc, int cmd)
348{
349
350	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
351		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
352		fxp_scb_wait(sc);
353	}
354	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
355}
356
357static void
358fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
359    bus_dma_tag_t dmat, bus_dmamap_t map)
360{
361	int i;
362
363	for (i = 10000; i > 0; i--) {
364		DELAY(2);
365		bus_dmamap_sync(dmat, map,
366		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
367		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
368			break;
369	}
370	if (i == 0)
371		device_printf(sc->dev, "DMA timeout\n");
372}
373
374static const struct fxp_ident *
375fxp_find_ident(device_t dev)
376{
377	uint16_t devid;
378	uint8_t revid;
379	const struct fxp_ident *ident;
380
381	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
382		devid = pci_get_device(dev);
383		revid = pci_get_revid(dev);
384		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
385			if (ident->devid == devid &&
386			    (ident->revid == revid || ident->revid == -1)) {
387				return (ident);
388			}
389		}
390	}
391	return (NULL);
392}
393
394/*
395 * Return identification string if this device is ours.
396 */
397static int
398fxp_probe(device_t dev)
399{
400	const struct fxp_ident *ident;
401
402	ident = fxp_find_ident(dev);
403	if (ident != NULL) {
404		device_set_desc(dev, ident->name);
405		return (BUS_PROBE_DEFAULT);
406	}
407	return (ENXIO);
408}
409
410static void
411fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
412{
413	uint32_t *addr;
414
415	if (error)
416		return;
417
418	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
419	addr = arg;
420	*addr = segs->ds_addr;
421}
422
423static int
424fxp_attach(device_t dev)
425{
426	struct fxp_softc *sc;
427	struct fxp_cb_tx *tcbp;
428	struct fxp_tx *txp;
429	struct fxp_rx *rxp;
430	if_t ifp;
431	uint32_t val;
432	uint16_t data;
433	u_char eaddr[ETHER_ADDR_LEN];
434	int error, flags, i, pmc, prefer_iomap;
435
436	error = 0;
437	sc = device_get_softc(dev);
438	sc->dev = dev;
439	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
440	    MTX_DEF);
441	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
442	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
443	    fxp_serial_ifmedia_sts);
444
445	ifp = sc->ifp = if_gethandle(IFT_ETHER);
446	if (ifp == (void *)NULL) {
447		device_printf(dev, "can not if_alloc()\n");
448		error = ENOSPC;
449		goto fail;
450	}
451
452	/*
453	 * Enable bus mastering.
454	 */
455	pci_enable_busmaster(dev);
456
457	/*
458	 * Figure out which we should try first - memory mapping or i/o mapping?
459	 * We default to memory mapping. Then we accept an override from the
460	 * command line. Then we check to see which one is enabled.
461	 */
462	prefer_iomap = 0;
463	resource_int_value(device_get_name(dev), device_get_unit(dev),
464	    "prefer_iomap", &prefer_iomap);
465	if (prefer_iomap)
466		sc->fxp_spec = fxp_res_spec_io;
467	else
468		sc->fxp_spec = fxp_res_spec_mem;
469
470	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
471	if (error) {
472		if (sc->fxp_spec == fxp_res_spec_mem)
473			sc->fxp_spec = fxp_res_spec_io;
474		else
475			sc->fxp_spec = fxp_res_spec_mem;
476		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
477	}
478	if (error) {
479		device_printf(dev, "could not allocate resources\n");
480		error = ENXIO;
481		goto fail;
482	}
483
484	if (bootverbose) {
485		device_printf(dev, "using %s space register mapping\n",
486		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487	}
488
489	/*
490	 * Put CU/RU idle state and prepare full reset.
491	 */
492	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
493	DELAY(10);
494	/* Full reset and disable interrupts. */
495	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496	DELAY(10);
497	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498
499	/*
500	 * Find out how large of an SEEPROM we have.
501	 */
502	fxp_autosize_eeprom(sc);
503	fxp_load_eeprom(sc);
504
505	/*
506	 * Find out the chip revision; lump all 82557 revs together.
507	 */
508	sc->ident = fxp_find_ident(dev);
509	if (sc->ident->ich > 0) {
510		/* Assume ICH controllers are 82559. */
511		sc->revision = FXP_REV_82559_A0;
512	} else {
513		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514		if ((data >> 8) == 1)
515			sc->revision = FXP_REV_82557;
516		else
517			sc->revision = pci_get_revid(dev);
518	}
519
520	/*
521	 * Check availability of WOL. 82559ER does not support WOL.
522	 */
523	if (sc->revision >= FXP_REV_82558_A4 &&
524	    sc->revision != FXP_REV_82559S_A) {
525		data = sc->eeprom[FXP_EEPROM_MAP_ID];
526		if ((data & 0x20) != 0 &&
527		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
528			sc->flags |= FXP_FLAG_WOLCAP;
529	}
530
531	if (sc->revision == FXP_REV_82550_C) {
532		/*
533		 * 82550C with server extension requires microcode to
534		 * receive fragmented UDP datagrams.  However if the
535		 * microcode is used for client-only featured 82550C
536		 * it locks up controller.
537		 */
538		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
539		if ((data & 0x0400) == 0)
540			sc->flags |= FXP_FLAG_NO_UCODE;
541	}
542
543	/* Receiver lock-up workaround detection. */
544	if (sc->revision < FXP_REV_82558_A4) {
545		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546		if ((data & 0x03) != 0x03) {
547			sc->flags |= FXP_FLAG_RXBUG;
548			device_printf(dev, "Enabling Rx lock-up workaround\n");
549		}
550	}
551
552	/*
553	 * Determine whether we must use the 503 serial interface.
554	 */
555	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557	    && (data & FXP_PHY_SERIAL_ONLY))
558		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
559
560	fxp_sysctl_node(sc);
561	/*
562	 * Enable workarounds for certain chip revision deficiencies.
563	 *
564	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565	 * some systems based a normal 82559 design, have a defect where
566	 * the chip can cause a PCI protocol violation if it receives
567	 * a CU_RESUME command when it is entering the IDLE state.  The
568	 * workaround is to disable Dynamic Standby Mode, so the chip never
569	 * deasserts CLKRUN#, and always remains in an active state.
570	 *
571	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572	 */
573	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
574	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
575		data = sc->eeprom[FXP_EEPROM_MAP_ID];
576		if (data & 0x02) {			/* STB enable */
577			uint16_t cksum;
578			int i;
579
580			device_printf(dev,
581			    "Disabling dynamic standby mode in EEPROM\n");
582			data &= ~0x02;
583			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
584			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
586			cksum = 0;
587			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588				cksum += sc->eeprom[i];
589			i = (1 << sc->eeprom_size) - 1;
590			cksum = 0xBABA - cksum;
591			fxp_write_eeprom(sc, &cksum, i, 1);
592			device_printf(dev,
593			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
594			    i, sc->eeprom[i], cksum);
595			sc->eeprom[i] = cksum;
596			/*
597			 * If the user elects to continue, try the software
598			 * workaround, as it is better than nothing.
599			 */
600			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
601		}
602	}
603
604	/*
605	 * If we are not a 82557 chip, we can enable extended features.
606	 */
607	if (sc->revision != FXP_REV_82557) {
608		/*
609		 * If MWI is enabled in the PCI configuration, and there
610		 * is a valid cacheline size (8 or 16 dwords), then tell
611		 * the board to turn on MWI.
612		 */
613		val = pci_read_config(dev, PCIR_COMMAND, 2);
614		if (val & PCIM_CMD_MWRICEN &&
615		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
616			sc->flags |= FXP_FLAG_MWI_ENABLE;
617
618		/* turn on the extended TxCB feature */
619		sc->flags |= FXP_FLAG_EXT_TXCB;
620
621		/* enable reception of long frames for VLAN */
622		sc->flags |= FXP_FLAG_LONG_PKT_EN;
623	} else {
624		/* a hack to get long VLAN frames on a 82557 */
625		sc->flags |= FXP_FLAG_SAVE_BAD;
626	}
627
628	/* For 82559 or later chips, Rx checksum offload is supported. */
629	if (sc->revision >= FXP_REV_82559_A0) {
630		/* 82559ER does not support Rx checksum offloading. */
631		if (sc->ident->devid != 0x1209)
632			sc->flags |= FXP_FLAG_82559_RXCSUM;
633	}
634	/*
635	 * Enable use of extended RFDs and TCBs for 82550
636	 * and later chips. Note: we need extended TXCB support
637	 * too, but that's already enabled by the code above.
638	 * Be careful to do this only on the right devices.
639	 */
640	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
641	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
642	    || sc->revision == FXP_REV_82551_10) {
643		sc->rfa_size = sizeof (struct fxp_rfa);
644		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
645		sc->flags |= FXP_FLAG_EXT_RFA;
646		/* Use extended RFA instead of 82559 checksum mode. */
647		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
648	} else {
649		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
650		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
651	}
652
653	/*
654	 * Allocate DMA tags and DMA safe memory.
655	 */
656	sc->maxtxseg = FXP_NTXSEG;
657	sc->maxsegsize = MCLBYTES;
658	if (sc->flags & FXP_FLAG_EXT_RFA) {
659		sc->maxtxseg--;
660		sc->maxsegsize = FXP_TSO_SEGSIZE;
661	}
662	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
663	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
664	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
665	    sc->maxtxseg, sc->maxsegsize, 0,
666	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
667	if (error) {
668		device_printf(dev, "could not create TX DMA tag\n");
669		goto fail;
670	}
671
672	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
673	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
674	    MCLBYTES, 1, MCLBYTES, 0,
675	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
676	if (error) {
677		device_printf(dev, "could not create RX DMA tag\n");
678		goto fail;
679	}
680
681	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
682	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
683	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
684	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
685	if (error) {
686		device_printf(dev, "could not create stats DMA tag\n");
687		goto fail;
688	}
689
690	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
691	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
692	if (error) {
693		device_printf(dev, "could not allocate stats DMA memory\n");
694		goto fail;
695	}
696	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
697	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
698	    BUS_DMA_NOWAIT);
699	if (error) {
700		device_printf(dev, "could not load the stats DMA buffer\n");
701		goto fail;
702	}
703
704	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
705	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
706	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
707	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
708	if (error) {
709		device_printf(dev, "could not create TxCB DMA tag\n");
710		goto fail;
711	}
712
713	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
714	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
715	if (error) {
716		device_printf(dev, "could not allocate TxCB DMA memory\n");
717		goto fail;
718	}
719
720	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
721	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
722	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
723	if (error) {
724		device_printf(dev, "could not load TxCB DMA buffer\n");
725		goto fail;
726	}
727
728	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
729	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
730	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
731	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
732	if (error) {
733		device_printf(dev,
734		    "could not create multicast setup DMA tag\n");
735		goto fail;
736	}
737
738	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
739	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
740	if (error) {
741		device_printf(dev,
742		    "could not allocate multicast setup DMA memory\n");
743		goto fail;
744	}
745	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
746	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
747	    BUS_DMA_NOWAIT);
748	if (error) {
749		device_printf(dev,
750		    "can't load the multicast setup DMA buffer\n");
751		goto fail;
752	}
753
754	/*
755	 * Pre-allocate the TX DMA maps and setup the pointers to
756	 * the TX command blocks.
757	 */
758	txp = sc->fxp_desc.tx_list;
759	tcbp = sc->fxp_desc.cbl_list;
760	for (i = 0; i < FXP_NTXCB; i++) {
761		txp[i].tx_cb = tcbp + i;
762		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
763		if (error) {
764			device_printf(dev, "can't create DMA map for TX\n");
765			goto fail;
766		}
767	}
768	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
769	if (error) {
770		device_printf(dev, "can't create spare DMA map\n");
771		goto fail;
772	}
773
774	/*
775	 * Pre-allocate our receive buffers.
776	 */
777	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
778	for (i = 0; i < FXP_NRFABUFS; i++) {
779		rxp = &sc->fxp_desc.rx_list[i];
780		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
781		if (error) {
782			device_printf(dev, "can't create DMA map for RX\n");
783			goto fail;
784		}
785		if (fxp_new_rfabuf(sc, rxp) != 0) {
786			error = ENOMEM;
787			goto fail;
788		}
789		fxp_add_rfabuf(sc, rxp);
790	}
791
792	/*
793	 * Read MAC address.
794	 */
795	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
796	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
797	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
798	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
799	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
800	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
801	if (bootverbose) {
802		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
803		    pci_get_vendor(dev), pci_get_device(dev),
804		    pci_get_subvendor(dev), pci_get_subdevice(dev),
805		    pci_get_revid(dev));
806		device_printf(dev, "Dynamic Standby mode is %s\n",
807		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
808		    "disabled");
809	}
810
811	/*
812	 * If this is only a 10Mbps device, then there is no MII, and
813	 * the PHY will use a serial interface instead.
814	 *
815	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
816	 * doesn't have a programming interface of any sort.  The
817	 * media is sensed automatically based on how the link partner
818	 * is configured.  This is, in essence, manual configuration.
819	 */
820	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
821		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
822		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
823	} else {
824		/*
825		 * i82557 wedge when isolating all of their PHYs.
826		 */
827		flags = MIIF_NOISOLATE;
828		if (sc->revision >= FXP_REV_82558_A4)
829			flags |= MIIF_DOPAUSE;
830		error = mii_attach(dev, &sc->miibus, ifp,
831		    (ifm_change_cb_t)fxp_ifmedia_upd,
832		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
833		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
834		if (error != 0) {
835			device_printf(dev, "attaching PHYs failed\n");
836			goto fail;
837		}
838	}
839
840	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
841	if_setdev(ifp, dev);
842	if_setinitfn(ifp, fxp_init);
843	if_setsoftc(ifp, sc);
844	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
845	if_setioctlfn(ifp, fxp_ioctl);
846	if_setstartfn(ifp, fxp_start);
847
848	if_setcapabilities(ifp, 0);
849	if_setcapenable(ifp, 0);
850
851	/* Enable checksum offload/TSO for 82550 or better chips */
852	if (sc->flags & FXP_FLAG_EXT_RFA) {
853		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
854		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
855		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
856	}
857
858	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
859		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
860		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
861	}
862
863	if (sc->flags & FXP_FLAG_WOLCAP) {
864		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
865		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
866	}
867
868#ifdef DEVICE_POLLING
869	/* Inform the world we support polling. */
870	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
871#endif
872
873	/*
874	 * Attach the interface.
875	 */
876	ether_ifattach(ifp, eaddr);
877
878	/*
879	 * Tell the upper layer(s) we support long frames.
880	 * Must appear after the call to ether_ifattach() because
881	 * ether_ifattach() sets ifi_hdrlen to the default value.
882	 */
883	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
884	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
885	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
886	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
887		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
888		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
889		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
890		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
891	}
892
893	/*
894	 * Let the system queue as many packets as we have available
895	 * TX descriptors.
896	 */
897	if_setsendqlen(ifp, FXP_NTXCB - 1);
898	if_setsendqready(ifp);
899
900	/*
901	 * Hook our interrupt after all initialization is complete.
902	 */
903	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
904			       NULL, fxp_intr, sc, &sc->ih);
905	if (error) {
906		device_printf(dev, "could not setup irq\n");
907		ether_ifdetach(sc->ifp);
908		goto fail;
909	}
910
911	/*
912	 * Configure hardware to reject magic frames otherwise
913	 * system will hang on recipt of magic frames.
914	 */
915	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
916		FXP_LOCK(sc);
917		/* Clear wakeup events. */
918		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
919		fxp_init_body(sc, 0);
920		fxp_stop(sc);
921		FXP_UNLOCK(sc);
922	}
923
924fail:
925	if (error)
926		fxp_release(sc);
927	return (error);
928}
929
930/*
931 * Release all resources.  The softc lock should not be held and the
932 * interrupt should already be torn down.
933 */
934static void
935fxp_release(struct fxp_softc *sc)
936{
937	struct fxp_rx *rxp;
938	struct fxp_tx *txp;
939	int i;
940
941	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
942	KASSERT(sc->ih == NULL,
943	    ("fxp_release() called with intr handle still active"));
944	if (sc->miibus)
945		device_delete_child(sc->dev, sc->miibus);
946	bus_generic_detach(sc->dev);
947	ifmedia_removeall(&sc->sc_media);
948	if (sc->fxp_desc.cbl_list) {
949		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
950		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
951		    sc->cbl_map);
952	}
953	if (sc->fxp_stats) {
954		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
955		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
956	}
957	if (sc->mcsp) {
958		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
959		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
960	}
961	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
962	if (sc->fxp_rxmtag) {
963		for (i = 0; i < FXP_NRFABUFS; i++) {
964			rxp = &sc->fxp_desc.rx_list[i];
965			if (rxp->rx_mbuf != NULL) {
966				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
967				    BUS_DMASYNC_POSTREAD);
968				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
969				m_freem(rxp->rx_mbuf);
970			}
971			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
972		}
973		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
974		bus_dma_tag_destroy(sc->fxp_rxmtag);
975	}
976	if (sc->fxp_txmtag) {
977		for (i = 0; i < FXP_NTXCB; i++) {
978			txp = &sc->fxp_desc.tx_list[i];
979			if (txp->tx_mbuf != NULL) {
980				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
981				    BUS_DMASYNC_POSTWRITE);
982				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
983				m_freem(txp->tx_mbuf);
984			}
985			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
986		}
987		bus_dma_tag_destroy(sc->fxp_txmtag);
988	}
989	if (sc->fxp_stag)
990		bus_dma_tag_destroy(sc->fxp_stag);
991	if (sc->cbl_tag)
992		bus_dma_tag_destroy(sc->cbl_tag);
993	if (sc->mcs_tag)
994		bus_dma_tag_destroy(sc->mcs_tag);
995	if (sc->ifp)
996		if_free(sc->ifp);
997
998	mtx_destroy(&sc->sc_mtx);
999}
1000
1001/*
1002 * Detach interface.
1003 */
1004static int
1005fxp_detach(device_t dev)
1006{
1007	struct fxp_softc *sc = device_get_softc(dev);
1008
1009#ifdef DEVICE_POLLING
1010	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1011		ether_poll_deregister_drv(sc->ifp);
1012#endif
1013
1014	FXP_LOCK(sc);
1015	/*
1016	 * Stop DMA and drop transmit queue, but disable interrupts first.
1017	 */
1018	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1019	fxp_stop(sc);
1020	FXP_UNLOCK(sc);
1021	callout_drain(&sc->stat_ch);
1022
1023	/*
1024	 * Close down routes etc.
1025	 */
1026	ether_ifdetach(sc->ifp);
1027
1028	/*
1029	 * Unhook interrupt before dropping lock. This is to prevent
1030	 * races with fxp_intr().
1031	 */
1032	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1033	sc->ih = NULL;
1034
1035	/* Release our allocated resources. */
1036	fxp_release(sc);
1037	return (0);
1038}
1039
1040/*
1041 * Device shutdown routine. Called at system shutdown after sync. The
1042 * main purpose of this routine is to shut off receiver DMA so that
1043 * kernel memory doesn't get clobbered during warmboot.
1044 */
1045static int
1046fxp_shutdown(device_t dev)
1047{
1048
1049	/*
1050	 * Make sure that DMA is disabled prior to reboot. Not doing
1051	 * do could allow DMA to corrupt kernel memory during the
1052	 * reboot before the driver initializes.
1053	 */
1054	return (fxp_suspend(dev));
1055}
1056
1057/*
1058 * Device suspend routine.  Stop the interface and save some PCI
1059 * settings in case the BIOS doesn't restore them properly on
1060 * resume.
1061 */
1062static int
1063fxp_suspend(device_t dev)
1064{
1065	struct fxp_softc *sc = device_get_softc(dev);
1066	if_t ifp;
1067	int pmc;
1068	uint16_t pmstat;
1069
1070	FXP_LOCK(sc);
1071
1072	ifp = sc->ifp;
1073	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1074		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1075		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1076		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1077			/* Request PME. */
1078			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1079			sc->flags |= FXP_FLAG_WOL;
1080			/* Reconfigure hardware to accept magic frames. */
1081			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1082			fxp_init_body(sc, 0);
1083		}
1084		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1085	}
1086	fxp_stop(sc);
1087
1088	sc->suspended = 1;
1089
1090	FXP_UNLOCK(sc);
1091	return (0);
1092}
1093
1094/*
1095 * Device resume routine. re-enable busmastering, and restart the interface if
1096 * appropriate.
1097 */
1098static int
1099fxp_resume(device_t dev)
1100{
1101	struct fxp_softc *sc = device_get_softc(dev);
1102	if_t ifp = sc->ifp;
1103	int pmc;
1104	uint16_t pmstat;
1105
1106	FXP_LOCK(sc);
1107
1108	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1109		sc->flags &= ~FXP_FLAG_WOL;
1110		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1111		/* Disable PME and clear PME status. */
1112		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1113		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1114		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1115			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1116			    CSR_READ_1(sc, FXP_CSR_PMDR));
1117	}
1118
1119	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1120	DELAY(10);
1121
1122	/* reinitialize interface if necessary */
1123	if (if_getflags(ifp) & IFF_UP)
1124		fxp_init_body(sc, 1);
1125
1126	sc->suspended = 0;
1127
1128	FXP_UNLOCK(sc);
1129	return (0);
1130}
1131
1132static void
1133fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1134{
1135	uint16_t reg;
1136	int x;
1137
1138	/*
1139	 * Shift in data.
1140	 */
1141	for (x = 1 << (length - 1); x; x >>= 1) {
1142		if (data & x)
1143			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1144		else
1145			reg = FXP_EEPROM_EECS;
1146		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1147		DELAY(1);
1148		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1149		DELAY(1);
1150		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1151		DELAY(1);
1152	}
1153}
1154
1155/*
1156 * Read from the serial EEPROM. Basically, you manually shift in
1157 * the read opcode (one bit at a time) and then shift in the address,
1158 * and then you shift out the data (all of this one bit at a time).
1159 * The word size is 16 bits, so you have to provide the address for
1160 * every 16 bits of data.
1161 */
1162static uint16_t
1163fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1164{
1165	uint16_t reg, data;
1166	int x;
1167
1168	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1169	/*
1170	 * Shift in read opcode.
1171	 */
1172	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1173	/*
1174	 * Shift in address.
1175	 */
1176	data = 0;
1177	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1178		if (offset & x)
1179			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1180		else
1181			reg = FXP_EEPROM_EECS;
1182		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1183		DELAY(1);
1184		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1185		DELAY(1);
1186		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1187		DELAY(1);
1188		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1189		data++;
1190		if (autosize && reg == 0) {
1191			sc->eeprom_size = data;
1192			break;
1193		}
1194	}
1195	/*
1196	 * Shift out data.
1197	 */
1198	data = 0;
1199	reg = FXP_EEPROM_EECS;
1200	for (x = 1 << 15; x; x >>= 1) {
1201		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1202		DELAY(1);
1203		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1204			data |= x;
1205		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1206		DELAY(1);
1207	}
1208	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1209	DELAY(1);
1210
1211	return (data);
1212}
1213
1214static void
1215fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1216{
1217	int i;
1218
1219	/*
1220	 * Erase/write enable.
1221	 */
1222	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1223	fxp_eeprom_shiftin(sc, 0x4, 3);
1224	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1225	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1226	DELAY(1);
1227	/*
1228	 * Shift in write opcode, address, data.
1229	 */
1230	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1231	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1232	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1233	fxp_eeprom_shiftin(sc, data, 16);
1234	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1235	DELAY(1);
1236	/*
1237	 * Wait for EEPROM to finish up.
1238	 */
1239	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1240	DELAY(1);
1241	for (i = 0; i < 1000; i++) {
1242		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1243			break;
1244		DELAY(50);
1245	}
1246	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1247	DELAY(1);
1248	/*
1249	 * Erase/write disable.
1250	 */
1251	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1252	fxp_eeprom_shiftin(sc, 0x4, 3);
1253	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1254	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1255	DELAY(1);
1256}
1257
1258/*
1259 * From NetBSD:
1260 *
1261 * Figure out EEPROM size.
1262 *
1263 * 559's can have either 64-word or 256-word EEPROMs, the 558
1264 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1265 * talks about the existance of 16 to 256 word EEPROMs.
1266 *
1267 * The only known sizes are 64 and 256, where the 256 version is used
1268 * by CardBus cards to store CIS information.
1269 *
1270 * The address is shifted in msb-to-lsb, and after the last
1271 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1272 * after which follows the actual data. We try to detect this zero, by
1273 * probing the data-out bit in the EEPROM control register just after
1274 * having shifted in a bit. If the bit is zero, we assume we've
1275 * shifted enough address bits. The data-out should be tri-state,
1276 * before this, which should translate to a logical one.
1277 */
1278static void
1279fxp_autosize_eeprom(struct fxp_softc *sc)
1280{
1281
1282	/* guess maximum size of 256 words */
1283	sc->eeprom_size = 8;
1284
1285	/* autosize */
1286	(void) fxp_eeprom_getword(sc, 0, 1);
1287}
1288
1289static void
1290fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1291{
1292	int i;
1293
1294	for (i = 0; i < words; i++)
1295		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1296}
1297
1298static void
1299fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1300{
1301	int i;
1302
1303	for (i = 0; i < words; i++)
1304		fxp_eeprom_putword(sc, offset + i, data[i]);
1305}
1306
1307static void
1308fxp_load_eeprom(struct fxp_softc *sc)
1309{
1310	int i;
1311	uint16_t cksum;
1312
1313	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1314	cksum = 0;
1315	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1316		cksum += sc->eeprom[i];
1317	cksum = 0xBABA - cksum;
1318	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1319		device_printf(sc->dev,
1320		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1321		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1322}
1323
1324/*
1325 * Grab the softc lock and call the real fxp_start_body() routine
1326 */
1327static void
1328fxp_start(if_t ifp)
1329{
1330	struct fxp_softc *sc = if_getsoftc(ifp);
1331
1332	FXP_LOCK(sc);
1333	fxp_start_body(ifp);
1334	FXP_UNLOCK(sc);
1335}
1336
1337/*
1338 * Start packet transmission on the interface.
1339 * This routine must be called with the softc lock held, and is an
1340 * internal entry point only.
1341 */
1342static void
1343fxp_start_body(if_t ifp)
1344{
1345	struct fxp_softc *sc = if_getsoftc(ifp);
1346	struct mbuf *mb_head;
1347	int txqueued;
1348
1349	FXP_LOCK_ASSERT(sc, MA_OWNED);
1350
1351	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1352	    IFF_DRV_RUNNING)
1353		return;
1354
1355	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1356		fxp_txeof(sc);
1357	/*
1358	 * We're finished if there is nothing more to add to the list or if
1359	 * we're all filled up with buffers to transmit.
1360	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1361	 *       a NOP command when needed.
1362	 */
1363	txqueued = 0;
1364	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1365
1366		/*
1367		 * Grab a packet to transmit.
1368		 */
1369		mb_head = if_dequeue(ifp);
1370		if (mb_head == NULL)
1371			break;
1372
1373		if (fxp_encap(sc, &mb_head)) {
1374			if (mb_head == NULL)
1375				break;
1376			if_sendq_prepend(ifp, mb_head);
1377			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1378		}
1379		txqueued++;
1380		/*
1381		 * Pass packet to bpf if there is a listener.
1382		 */
1383		if_bpfmtap(ifp, mb_head);
1384	}
1385
1386	/*
1387	 * We're finished. If we added to the list, issue a RESUME to get DMA
1388	 * going again if suspended.
1389	 */
1390	if (txqueued > 0) {
1391		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1392		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1393		fxp_scb_wait(sc);
1394		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1395		/*
1396		 * Set a 5 second timer just in case we don't hear
1397		 * from the card again.
1398		 */
1399		sc->watchdog_timer = 5;
1400	}
1401}
1402
1403static int
1404fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1405{
1406	if_t ifp;
1407	struct mbuf *m;
1408	struct fxp_tx *txp;
1409	struct fxp_cb_tx *cbp;
1410	struct tcphdr *tcp;
1411	bus_dma_segment_t segs[FXP_NTXSEG];
1412	int error, i, nseg, tcp_payload;
1413
1414	FXP_LOCK_ASSERT(sc, MA_OWNED);
1415	ifp = sc->ifp;
1416
1417	tcp_payload = 0;
1418	tcp = NULL;
1419	/*
1420	 * Get pointer to next available tx desc.
1421	 */
1422	txp = sc->fxp_desc.tx_last->tx_next;
1423
1424	/*
1425	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1426	 * Ethernet Controller Family Open Source Software
1427	 * Developer Manual says:
1428	 *   Using software parsing is only allowed with legal
1429	 *   TCP/IP or UDP/IP packets.
1430	 *   ...
1431	 *   For all other datagrams, hardware parsing must
1432	 *   be used.
1433	 * Software parsing appears to truncate ICMP and
1434	 * fragmented UDP packets that contain one to three
1435	 * bytes in the second (and final) mbuf of the packet.
1436	 */
1437	if (sc->flags & FXP_FLAG_EXT_RFA)
1438		txp->tx_cb->ipcb_ip_activation_high =
1439		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1440
1441	m = *m_head;
1442	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1443		/*
1444		 * 82550/82551 requires ethernet/IP/TCP headers must be
1445		 * contained in the first active transmit buffer.
1446		 */
1447		struct ether_header *eh;
1448		struct ip *ip;
1449		uint32_t ip_off, poff;
1450
1451		if (M_WRITABLE(*m_head) == 0) {
1452			/* Get a writable copy. */
1453			m = m_dup(*m_head, M_NOWAIT);
1454			m_freem(*m_head);
1455			if (m == NULL) {
1456				*m_head = NULL;
1457				return (ENOBUFS);
1458			}
1459			*m_head = m;
1460		}
1461		ip_off = sizeof(struct ether_header);
1462		m = m_pullup(*m_head, ip_off);
1463		if (m == NULL) {
1464			*m_head = NULL;
1465			return (ENOBUFS);
1466		}
1467		eh = mtod(m, struct ether_header *);
1468		/* Check the existence of VLAN tag. */
1469		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1470			ip_off = sizeof(struct ether_vlan_header);
1471			m = m_pullup(m, ip_off);
1472			if (m == NULL) {
1473				*m_head = NULL;
1474				return (ENOBUFS);
1475			}
1476		}
1477		m = m_pullup(m, ip_off + sizeof(struct ip));
1478		if (m == NULL) {
1479			*m_head = NULL;
1480			return (ENOBUFS);
1481		}
1482		ip = (struct ip *)(mtod(m, char *) + ip_off);
1483		poff = ip_off + (ip->ip_hl << 2);
1484		m = m_pullup(m, poff + sizeof(struct tcphdr));
1485		if (m == NULL) {
1486			*m_head = NULL;
1487			return (ENOBUFS);
1488		}
1489		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1490		m = m_pullup(m, poff + (tcp->th_off << 2));
1491		if (m == NULL) {
1492			*m_head = NULL;
1493			return (ENOBUFS);
1494		}
1495
1496		/*
1497		 * Since 82550/82551 doesn't modify IP length and pseudo
1498		 * checksum in the first frame driver should compute it.
1499		 */
1500		ip = (struct ip *)(mtod(m, char *) + ip_off);
1501		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1502		ip->ip_sum = 0;
1503		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1504		    (tcp->th_off << 2));
1505		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1506		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1507		    m->m_pkthdr.tso_segsz));
1508		/* Compute total TCP payload. */
1509		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1510		tcp_payload -= tcp->th_off << 2;
1511		*m_head = m;
1512	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1513		/*
1514		 * Deal with TCP/IP checksum offload. Note that
1515		 * in order for TCP checksum offload to work,
1516		 * the pseudo header checksum must have already
1517		 * been computed and stored in the checksum field
1518		 * in the TCP header. The stack should have
1519		 * already done this for us.
1520		 */
1521		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1522		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1523			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1524
1525#ifdef FXP_IP_CSUM_WAR
1526		/*
1527		 * XXX The 82550 chip appears to have trouble
1528		 * dealing with IP header checksums in very small
1529		 * datagrams, namely fragments from 1 to 3 bytes
1530		 * in size. For example, say you want to transmit
1531		 * a UDP packet of 1473 bytes. The packet will be
1532		 * fragmented over two IP datagrams, the latter
1533		 * containing only one byte of data. The 82550 will
1534		 * botch the header checksum on the 1-byte fragment.
1535		 * As long as the datagram contains 4 or more bytes
1536		 * of data, you're ok.
1537		 *
1538                 * The following code attempts to work around this
1539		 * problem: if the datagram is less than 38 bytes
1540		 * in size (14 bytes ether header, 20 bytes IP header,
1541		 * plus 4 bytes of data), we punt and compute the IP
1542		 * header checksum by hand. This workaround doesn't
1543		 * work very well, however, since it can be fooled
1544		 * by things like VLAN tags and IP options that make
1545		 * the header sizes/offsets vary.
1546		 */
1547
1548		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1549			if (m->m_pkthdr.len < 38) {
1550				struct ip *ip;
1551				m->m_data += ETHER_HDR_LEN;
1552				ip = mtod(m, struct ip *);
1553				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1554				m->m_data -= ETHER_HDR_LEN;
1555				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1556			} else {
1557				txp->tx_cb->ipcb_ip_activation_high =
1558				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1559				txp->tx_cb->ipcb_ip_schedule |=
1560				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1561			}
1562		}
1563#endif
1564	}
1565
1566	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1567	    segs, &nseg, 0);
1568	if (error == EFBIG) {
1569		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1570		if (m == NULL) {
1571			m_freem(*m_head);
1572			*m_head = NULL;
1573			return (ENOMEM);
1574		}
1575		*m_head = m;
1576		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1577		    *m_head, segs, &nseg, 0);
1578		if (error != 0) {
1579			m_freem(*m_head);
1580			*m_head = NULL;
1581			return (ENOMEM);
1582		}
1583	} else if (error != 0)
1584		return (error);
1585	if (nseg == 0) {
1586		m_freem(*m_head);
1587		*m_head = NULL;
1588		return (EIO);
1589	}
1590
1591	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1592	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1593
1594	cbp = txp->tx_cb;
1595	for (i = 0; i < nseg; i++) {
1596		/*
1597		 * If this is an 82550/82551, then we're using extended
1598		 * TxCBs _and_ we're using checksum offload. This means
1599		 * that the TxCB is really an IPCB. One major difference
1600		 * between the two is that with plain extended TxCBs,
1601		 * the bottom half of the TxCB contains two entries from
1602		 * the TBD array, whereas IPCBs contain just one entry:
1603		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1604		 * checksum offload control bits. So to make things work
1605		 * right, we have to start filling in the TBD array
1606		 * starting from a different place depending on whether
1607		 * the chip is an 82550/82551 or not.
1608		 */
1609		if (sc->flags & FXP_FLAG_EXT_RFA) {
1610			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1611			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1612		} else {
1613			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1614			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1615		}
1616	}
1617	if (sc->flags & FXP_FLAG_EXT_RFA) {
1618		/* Configure dynamic TBD for 82550/82551. */
1619		cbp->tbd_number = 0xFF;
1620		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1621	} else
1622		cbp->tbd_number = nseg;
1623	/* Configure TSO. */
1624	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1625		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1626		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1627		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1628		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1629		    FXP_IPCB_TCP_PACKET |
1630		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1631	}
1632	/* Configure VLAN hardware tag insertion. */
1633	if ((m->m_flags & M_VLANTAG) != 0) {
1634		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1635		txp->tx_cb->ipcb_ip_activation_high |=
1636		    FXP_IPCB_INSERTVLAN_ENABLE;
1637	}
1638
1639	txp->tx_mbuf = m;
1640	txp->tx_cb->cb_status = 0;
1641	txp->tx_cb->byte_count = 0;
1642	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1643		txp->tx_cb->cb_command =
1644		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1645		    FXP_CB_COMMAND_S);
1646	else
1647		txp->tx_cb->cb_command =
1648		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1649		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1650	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1651		txp->tx_cb->tx_threshold = tx_threshold;
1652
1653	/*
1654	 * Advance the end of list forward.
1655	 */
1656	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1657	sc->fxp_desc.tx_last = txp;
1658
1659	/*
1660	 * Advance the beginning of the list forward if there are
1661	 * no other packets queued (when nothing is queued, tx_first
1662	 * sits on the last TxCB that was sent out).
1663	 */
1664	if (sc->tx_queued == 0)
1665		sc->fxp_desc.tx_first = txp;
1666
1667	sc->tx_queued++;
1668
1669	return (0);
1670}
1671
1672#ifdef DEVICE_POLLING
1673static poll_handler_drv_t fxp_poll;
1674
1675static int
1676fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1677{
1678	struct fxp_softc *sc = if_getsoftc(ifp);
1679	uint8_t statack;
1680	int rx_npkts = 0;
1681
1682	FXP_LOCK(sc);
1683	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1684		FXP_UNLOCK(sc);
1685		return (rx_npkts);
1686	}
1687
1688	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1689	    FXP_SCB_STATACK_FR;
1690	if (cmd == POLL_AND_CHECK_STATUS) {
1691		uint8_t tmp;
1692
1693		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1694		if (tmp == 0xff || tmp == 0) {
1695			FXP_UNLOCK(sc);
1696			return (rx_npkts); /* nothing to do */
1697		}
1698		tmp &= ~statack;
1699		/* ack what we can */
1700		if (tmp != 0)
1701			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1702		statack |= tmp;
1703	}
1704	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1705	FXP_UNLOCK(sc);
1706	return (rx_npkts);
1707}
1708#endif /* DEVICE_POLLING */
1709
1710/*
1711 * Process interface interrupts.
1712 */
1713static void
1714fxp_intr(void *xsc)
1715{
1716	struct fxp_softc *sc = xsc;
1717	if_t ifp = sc->ifp;
1718	uint8_t statack;
1719
1720	FXP_LOCK(sc);
1721	if (sc->suspended) {
1722		FXP_UNLOCK(sc);
1723		return;
1724	}
1725
1726#ifdef DEVICE_POLLING
1727	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1728		FXP_UNLOCK(sc);
1729		return;
1730	}
1731#endif
1732	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1733		/*
1734		 * It should not be possible to have all bits set; the
1735		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1736		 * all bits are set, this may indicate that the card has
1737		 * been physically ejected, so ignore it.
1738		 */
1739		if (statack == 0xff) {
1740			FXP_UNLOCK(sc);
1741			return;
1742		}
1743
1744		/*
1745		 * First ACK all the interrupts in this pass.
1746		 */
1747		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1748		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1749			fxp_intr_body(sc, ifp, statack, -1);
1750	}
1751	FXP_UNLOCK(sc);
1752}
1753
1754static void
1755fxp_txeof(struct fxp_softc *sc)
1756{
1757	if_t ifp;
1758	struct fxp_tx *txp;
1759
1760	ifp = sc->ifp;
1761	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1762	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1763	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1764	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1765	    txp = txp->tx_next) {
1766		if (txp->tx_mbuf != NULL) {
1767			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1768			    BUS_DMASYNC_POSTWRITE);
1769			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1770			m_freem(txp->tx_mbuf);
1771			txp->tx_mbuf = NULL;
1772			/* clear this to reset csum offload bits */
1773			txp->tx_cb->tbd[0].tb_addr = 0;
1774		}
1775		sc->tx_queued--;
1776		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1777	}
1778	sc->fxp_desc.tx_first = txp;
1779	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1780	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1781	if (sc->tx_queued == 0)
1782		sc->watchdog_timer = 0;
1783}
1784
1785static void
1786fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1787    uint16_t status, int pos)
1788{
1789	struct ether_header *eh;
1790	struct ip *ip;
1791	struct udphdr *uh;
1792	int32_t hlen, len, pktlen, temp32;
1793	uint16_t csum, *opts;
1794
1795	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1796		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1797			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1798				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1799			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1800				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1801			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1802			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1803				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1804				    CSUM_PSEUDO_HDR;
1805				m->m_pkthdr.csum_data = 0xffff;
1806			}
1807		}
1808		return;
1809	}
1810
1811	pktlen = m->m_pkthdr.len;
1812	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1813		return;
1814	eh = mtod(m, struct ether_header *);
1815	if (eh->ether_type != htons(ETHERTYPE_IP))
1816		return;
1817	ip = (struct ip *)(eh + 1);
1818	if (ip->ip_v != IPVERSION)
1819		return;
1820
1821	hlen = ip->ip_hl << 2;
1822	pktlen -= sizeof(struct ether_header);
1823	if (hlen < sizeof(struct ip))
1824		return;
1825	if (ntohs(ip->ip_len) < hlen)
1826		return;
1827	if (ntohs(ip->ip_len) != pktlen)
1828		return;
1829	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1830		return;	/* can't handle fragmented packet */
1831
1832	switch (ip->ip_p) {
1833	case IPPROTO_TCP:
1834		if (pktlen < (hlen + sizeof(struct tcphdr)))
1835			return;
1836		break;
1837	case IPPROTO_UDP:
1838		if (pktlen < (hlen + sizeof(struct udphdr)))
1839			return;
1840		uh = (struct udphdr *)((caddr_t)ip + hlen);
1841		if (uh->uh_sum == 0)
1842			return; /* no checksum */
1843		break;
1844	default:
1845		return;
1846	}
1847	/* Extract computed checksum. */
1848	csum = be16dec(mtod(m, char *) + pos);
1849	/* checksum fixup for IP options */
1850	len = hlen - sizeof(struct ip);
1851	if (len > 0) {
1852		opts = (uint16_t *)(ip + 1);
1853		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1854			temp32 = csum - *opts;
1855			temp32 = (temp32 >> 16) + (temp32 & 65535);
1856			csum = temp32 & 65535;
1857		}
1858	}
1859	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1860	m->m_pkthdr.csum_data = csum;
1861}
1862
1863static int
1864fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1865    int count)
1866{
1867	struct mbuf *m;
1868	struct fxp_rx *rxp;
1869	struct fxp_rfa *rfa;
1870	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1871	int rx_npkts;
1872	uint16_t status;
1873
1874	rx_npkts = 0;
1875	FXP_LOCK_ASSERT(sc, MA_OWNED);
1876
1877	if (rnr)
1878		sc->rnr++;
1879#ifdef DEVICE_POLLING
1880	/* Pick up a deferred RNR condition if `count' ran out last time. */
1881	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1882		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1883		rnr = 1;
1884	}
1885#endif
1886
1887	/*
1888	 * Free any finished transmit mbuf chains.
1889	 *
1890	 * Handle the CNA event likt a CXTNO event. It used to
1891	 * be that this event (control unit not ready) was not
1892	 * encountered, but it is now with the SMPng modifications.
1893	 * The exact sequence of events that occur when the interface
1894	 * is brought up are different now, and if this event
1895	 * goes unhandled, the configuration/rxfilter setup sequence
1896	 * can stall for several seconds. The result is that no
1897	 * packets go out onto the wire for about 5 to 10 seconds
1898	 * after the interface is ifconfig'ed for the first time.
1899	 */
1900	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1901		fxp_txeof(sc);
1902
1903	/*
1904	 * Try to start more packets transmitting.
1905	 */
1906	if (!if_sendq_empty(ifp))
1907		fxp_start_body(ifp);
1908
1909	/*
1910	 * Just return if nothing happened on the receive side.
1911	 */
1912	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1913		return (rx_npkts);
1914
1915	/*
1916	 * Process receiver interrupts. If a no-resource (RNR)
1917	 * condition exists, get whatever packets we can and
1918	 * re-start the receiver.
1919	 *
1920	 * When using polling, we do not process the list to completion,
1921	 * so when we get an RNR interrupt we must defer the restart
1922	 * until we hit the last buffer with the C bit set.
1923	 * If we run out of cycles and rfa_headm has the C bit set,
1924	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1925	 * that the info will be used in the subsequent polling cycle.
1926	 */
1927	for (;;) {
1928		rxp = sc->fxp_desc.rx_head;
1929		m = rxp->rx_mbuf;
1930		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1931		    RFA_ALIGNMENT_FUDGE);
1932		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1933		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1934
1935#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1936		if (count >= 0 && count-- == 0) {
1937			if (rnr) {
1938				/* Defer RNR processing until the next time. */
1939				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1940				rnr = 0;
1941			}
1942			break;
1943		}
1944#endif /* DEVICE_POLLING */
1945
1946		status = le16toh(rfa->rfa_status);
1947		if ((status & FXP_RFA_STATUS_C) == 0)
1948			break;
1949
1950		if ((status & FXP_RFA_STATUS_RNR) != 0)
1951			rnr++;
1952		/*
1953		 * Advance head forward.
1954		 */
1955		sc->fxp_desc.rx_head = rxp->rx_next;
1956
1957		/*
1958		 * Add a new buffer to the receive chain.
1959		 * If this fails, the old buffer is recycled
1960		 * instead.
1961		 */
1962		if (fxp_new_rfabuf(sc, rxp) == 0) {
1963			int total_len;
1964
1965			/*
1966			 * Fetch packet length (the top 2 bits of
1967			 * actual_size are flags set by the controller
1968			 * upon completion), and drop the packet in case
1969			 * of bogus length or CRC errors.
1970			 */
1971			total_len = le16toh(rfa->actual_size) & 0x3fff;
1972			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1973			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1974				/* Adjust for appended checksum bytes. */
1975				total_len -= 2;
1976			}
1977			if (total_len < (int)sizeof(struct ether_header) ||
1978			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1979			    sc->rfa_size) ||
1980			    status & (FXP_RFA_STATUS_CRC |
1981			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1982				m_freem(m);
1983				fxp_add_rfabuf(sc, rxp);
1984				continue;
1985			}
1986
1987			m->m_pkthdr.len = m->m_len = total_len;
1988			if_setrcvif(m, ifp);
1989
1990                        /* Do IP checksum checking. */
1991			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1992				fxp_rxcsum(sc, ifp, m, status, total_len);
1993			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1994			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1995				m->m_pkthdr.ether_vtag =
1996				    ntohs(rfa->rfax_vlan_id);
1997				m->m_flags |= M_VLANTAG;
1998			}
1999			/*
2000			 * Drop locks before calling if_input() since it
2001			 * may re-enter fxp_start() in the netisr case.
2002			 * This would result in a lock reversal.  Better
2003			 * performance might be obtained by chaining all
2004			 * packets received, dropping the lock, and then
2005			 * calling if_input() on each one.
2006			 */
2007			FXP_UNLOCK(sc);
2008			if_input(ifp, m);
2009			FXP_LOCK(sc);
2010			rx_npkts++;
2011			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2012				return (rx_npkts);
2013		} else {
2014			/* Reuse RFA and loaded DMA map. */
2015			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2016			fxp_discard_rfabuf(sc, rxp);
2017		}
2018		fxp_add_rfabuf(sc, rxp);
2019	}
2020	if (rnr) {
2021		fxp_scb_wait(sc);
2022		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2023		    sc->fxp_desc.rx_head->rx_addr);
2024		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2025	}
2026	return (rx_npkts);
2027}
2028
2029static void
2030fxp_update_stats(struct fxp_softc *sc)
2031{
2032	if_t ifp = sc->ifp;
2033	struct fxp_stats *sp = sc->fxp_stats;
2034	struct fxp_hwstats *hsp;
2035	uint32_t *status;
2036
2037	FXP_LOCK_ASSERT(sc, MA_OWNED);
2038
2039	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2040	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2041	/* Update statistical counters. */
2042	if (sc->revision >= FXP_REV_82559_A0)
2043		status = &sp->completion_status;
2044	else if (sc->revision >= FXP_REV_82558_A4)
2045		status = (uint32_t *)&sp->tx_tco;
2046	else
2047		status = &sp->tx_pause;
2048	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2049		hsp = &sc->fxp_hwstats;
2050		hsp->tx_good += le32toh(sp->tx_good);
2051		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2052		hsp->tx_latecols += le32toh(sp->tx_latecols);
2053		hsp->tx_underruns += le32toh(sp->tx_underruns);
2054		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2055		hsp->tx_deffered += le32toh(sp->tx_deffered);
2056		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2057		hsp->tx_multiple_collisions +=
2058		    le32toh(sp->tx_multiple_collisions);
2059		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2060		hsp->rx_good += le32toh(sp->rx_good);
2061		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2062		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2063		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2064		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2065		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2066		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2067		hsp->tx_pause += le32toh(sp->tx_pause);
2068		hsp->rx_pause += le32toh(sp->rx_pause);
2069		hsp->rx_controls += le32toh(sp->rx_controls);
2070		hsp->tx_tco += le16toh(sp->tx_tco);
2071		hsp->rx_tco += le16toh(sp->rx_tco);
2072
2073		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2074		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2075		    le32toh(sp->tx_total_collisions));
2076		if (sp->rx_good) {
2077			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2078			    le32toh(sp->rx_good));
2079			sc->rx_idle_secs = 0;
2080		} else if (sc->flags & FXP_FLAG_RXBUG) {
2081			/*
2082			 * Receiver's been idle for another second.
2083			 */
2084			sc->rx_idle_secs++;
2085		}
2086		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2087		    le32toh(sp->rx_crc_errors) +
2088		    le32toh(sp->rx_alignment_errors) +
2089		    le32toh(sp->rx_rnr_errors) +
2090		    le32toh(sp->rx_overrun_errors));
2091		/*
2092		 * If any transmit underruns occured, bump up the transmit
2093		 * threshold by another 512 bytes (64 * 8).
2094		 */
2095		if (sp->tx_underruns) {
2096			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2097			    le32toh(sp->tx_underruns));
2098			if (tx_threshold < 192)
2099				tx_threshold += 64;
2100		}
2101		*status = 0;
2102		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2103		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2104	}
2105}
2106
2107/*
2108 * Update packet in/out/collision statistics. The i82557 doesn't
2109 * allow you to access these counters without doing a fairly
2110 * expensive DMA to get _all_ of the statistics it maintains, so
2111 * we do this operation here only once per second. The statistics
2112 * counters in the kernel are updated from the previous dump-stats
2113 * DMA and then a new dump-stats DMA is started. The on-chip
2114 * counters are zeroed when the DMA completes. If we can't start
2115 * the DMA immediately, we don't wait - we just prepare to read
2116 * them again next time.
2117 */
2118static void
2119fxp_tick(void *xsc)
2120{
2121	struct fxp_softc *sc = xsc;
2122	if_t ifp = sc->ifp;
2123
2124	FXP_LOCK_ASSERT(sc, MA_OWNED);
2125
2126	/* Update statistical counters. */
2127	fxp_update_stats(sc);
2128
2129	/*
2130	 * Release any xmit buffers that have completed DMA. This isn't
2131	 * strictly necessary to do here, but it's advantagous for mbufs
2132	 * with external storage to be released in a timely manner rather
2133	 * than being defered for a potentially long time. This limits
2134	 * the delay to a maximum of one second.
2135	 */
2136	fxp_txeof(sc);
2137
2138	/*
2139	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2140	 * then assume the receiver has locked up and attempt to clear
2141	 * the condition by reprogramming the multicast filter. This is
2142	 * a work-around for a bug in the 82557 where the receiver locks
2143	 * up if it gets certain types of garbage in the syncronization
2144	 * bits prior to the packet header. This bug is supposed to only
2145	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2146	 * mode as well (perhaps due to a 10/100 speed transition).
2147	 */
2148	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2149		sc->rx_idle_secs = 0;
2150		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2151			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2152			fxp_init_body(sc, 1);
2153		}
2154		return;
2155	}
2156	/*
2157	 * If there is no pending command, start another stats
2158	 * dump. Otherwise punt for now.
2159	 */
2160	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2161		/*
2162		 * Start another stats dump.
2163		 */
2164		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2165	}
2166	if (sc->miibus != NULL)
2167		mii_tick(device_get_softc(sc->miibus));
2168
2169	/*
2170	 * Check that chip hasn't hung.
2171	 */
2172	fxp_watchdog(sc);
2173
2174	/*
2175	 * Schedule another timeout one second from now.
2176	 */
2177	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2178}
2179
2180/*
2181 * Stop the interface. Cancels the statistics updater and resets
2182 * the interface.
2183 */
2184static void
2185fxp_stop(struct fxp_softc *sc)
2186{
2187	if_t ifp = sc->ifp;
2188	struct fxp_tx *txp;
2189	int i;
2190
2191	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2192	sc->watchdog_timer = 0;
2193
2194	/*
2195	 * Cancel stats updater.
2196	 */
2197	callout_stop(&sc->stat_ch);
2198
2199	/*
2200	 * Preserve PCI configuration, configure, IA/multicast
2201	 * setup and put RU and CU into idle state.
2202	 */
2203	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2204	DELAY(50);
2205	/* Disable interrupts. */
2206	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2207
2208	fxp_update_stats(sc);
2209
2210	/*
2211	 * Release any xmit buffers.
2212	 */
2213	txp = sc->fxp_desc.tx_list;
2214	if (txp != NULL) {
2215		for (i = 0; i < FXP_NTXCB; i++) {
2216			if (txp[i].tx_mbuf != NULL) {
2217				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2218				    BUS_DMASYNC_POSTWRITE);
2219				bus_dmamap_unload(sc->fxp_txmtag,
2220				    txp[i].tx_map);
2221				m_freem(txp[i].tx_mbuf);
2222				txp[i].tx_mbuf = NULL;
2223				/* clear this to reset csum offload bits */
2224				txp[i].tx_cb->tbd[0].tb_addr = 0;
2225			}
2226		}
2227	}
2228	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2229	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2230	sc->tx_queued = 0;
2231}
2232
2233/*
2234 * Watchdog/transmission transmit timeout handler. Called when a
2235 * transmission is started on the interface, but no interrupt is
2236 * received before the timeout. This usually indicates that the
2237 * card has wedged for some reason.
2238 */
2239static void
2240fxp_watchdog(struct fxp_softc *sc)
2241{
2242	if_t ifp = sc->ifp;
2243
2244	FXP_LOCK_ASSERT(sc, MA_OWNED);
2245
2246	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2247		return;
2248
2249	device_printf(sc->dev, "device timeout\n");
2250	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2251
2252	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2253	fxp_init_body(sc, 1);
2254}
2255
2256/*
2257 * Acquire locks and then call the real initialization function.  This
2258 * is necessary because ether_ioctl() calls if_init() and this would
2259 * result in mutex recursion if the mutex was held.
2260 */
2261static void
2262fxp_init(void *xsc)
2263{
2264	struct fxp_softc *sc = xsc;
2265
2266	FXP_LOCK(sc);
2267	fxp_init_body(sc, 1);
2268	FXP_UNLOCK(sc);
2269}
2270
2271/*
2272 * Perform device initialization. This routine must be called with the
2273 * softc lock held.
2274 */
2275static void
2276fxp_init_body(struct fxp_softc *sc, int setmedia)
2277{
2278	if_t ifp = sc->ifp;
2279	struct mii_data *mii;
2280	struct fxp_cb_config *cbp;
2281	struct fxp_cb_ias *cb_ias;
2282	struct fxp_cb_tx *tcbp;
2283	struct fxp_tx *txp;
2284	int i, prm;
2285
2286	FXP_LOCK_ASSERT(sc, MA_OWNED);
2287
2288	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2289		return;
2290
2291	/*
2292	 * Cancel any pending I/O
2293	 */
2294	fxp_stop(sc);
2295
2296	/*
2297	 * Issue software reset, which also unloads the microcode.
2298	 */
2299	sc->flags &= ~FXP_FLAG_UCODE;
2300	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2301	DELAY(50);
2302
2303	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2304
2305	/*
2306	 * Initialize base of CBL and RFA memory. Loading with zero
2307	 * sets it up for regular linear addressing.
2308	 */
2309	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2310	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2311
2312	fxp_scb_wait(sc);
2313	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2314
2315	/*
2316	 * Initialize base of dump-stats buffer.
2317	 */
2318	fxp_scb_wait(sc);
2319	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2320	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2321	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2322	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2323	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2324
2325	/*
2326	 * Attempt to load microcode if requested.
2327	 * For ICH based controllers do not load microcode.
2328	 */
2329	if (sc->ident->ich == 0) {
2330		if (if_getflags(ifp) & IFF_LINK0 &&
2331		    (sc->flags & FXP_FLAG_UCODE) == 0)
2332			fxp_load_ucode(sc);
2333	}
2334
2335	/*
2336	 * Set IFF_ALLMULTI status. It's needed in configure action
2337	 * command.
2338	 */
2339	fxp_mc_addrs(sc);
2340
2341	/*
2342	 * We temporarily use memory that contains the TxCB list to
2343	 * construct the config CB. The TxCB list memory is rebuilt
2344	 * later.
2345	 */
2346	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2347
2348	/*
2349	 * This bcopy is kind of disgusting, but there are a bunch of must be
2350	 * zero and must be one bits in this structure and this is the easiest
2351	 * way to initialize them all to proper values.
2352	 */
2353	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2354
2355	cbp->cb_status =	0;
2356	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2357	    FXP_CB_COMMAND_EL);
2358	cbp->link_addr =	0xffffffff;	/* (no) next command */
2359	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2360	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2361	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2362	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2363	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2364	cbp->type_enable =	0;	/* actually reserved */
2365	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2366	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2367	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2368	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2369	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2370	cbp->late_scb =		0;	/* (don't) defer SCB update */
2371	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2372	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2373	cbp->ci_int =		1;	/* interrupt on CU idle */
2374	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2375	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2376	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2377	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2378	cbp->disc_short_rx =	!prm;	/* discard short packets */
2379	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2380	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2381	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2382	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2383	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2384	cbp->csma_dis =		0;	/* (don't) disable link */
2385	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2386	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2387	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2388	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2389	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2390	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2391	cbp->nsai =		1;	/* (don't) disable source addr insert */
2392	cbp->preamble_length =	2;	/* (7 byte) preamble */
2393	cbp->loopback =		0;	/* (don't) loopback */
2394	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2395	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2396	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2397	cbp->promiscuous =	prm;	/* promiscuous mode */
2398	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2399	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2400	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2401	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2402	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2403
2404	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2405	cbp->padding =		1;	/* (do) pad short tx packets */
2406	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2407	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2408	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2409	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2410	cbp->force_fdx =	0;	/* (don't) force full duplex */
2411	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2412	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2413	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2414	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2415	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2416	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2417
2418	if (sc->revision == FXP_REV_82557) {
2419		/*
2420		 * The 82557 has no hardware flow control, the values
2421		 * below are the defaults for the chip.
2422		 */
2423		cbp->fc_delay_lsb =	0;
2424		cbp->fc_delay_msb =	0x40;
2425		cbp->pri_fc_thresh =	3;
2426		cbp->tx_fc_dis =	0;
2427		cbp->rx_fc_restop =	0;
2428		cbp->rx_fc_restart =	0;
2429		cbp->fc_filter =	0;
2430		cbp->pri_fc_loc =	1;
2431	} else {
2432		/* Set pause RX FIFO threshold to 1KB. */
2433		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2434		/* Set pause time. */
2435		cbp->fc_delay_lsb =	0xff;
2436		cbp->fc_delay_msb =	0xff;
2437		cbp->pri_fc_thresh =	3;
2438		mii = device_get_softc(sc->miibus);
2439		if ((IFM_OPTIONS(mii->mii_media_active) &
2440		    IFM_ETH_TXPAUSE) != 0)
2441			/* enable transmit FC */
2442			cbp->tx_fc_dis = 0;
2443		else
2444			/* disable transmit FC */
2445			cbp->tx_fc_dis = 1;
2446		if ((IFM_OPTIONS(mii->mii_media_active) &
2447		    IFM_ETH_RXPAUSE) != 0) {
2448			/* enable FC restart/restop frames */
2449			cbp->rx_fc_restart = 1;
2450			cbp->rx_fc_restop = 1;
2451		} else {
2452			/* disable FC restart/restop frames */
2453			cbp->rx_fc_restart = 0;
2454			cbp->rx_fc_restop = 0;
2455		}
2456		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2457		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2458	}
2459
2460	/* Enable 82558 and 82559 extended statistics functionality. */
2461	if (sc->revision >= FXP_REV_82558_A4) {
2462		if (sc->revision >= FXP_REV_82559_A0) {
2463			/*
2464			 * Extend configuration table size to 32
2465			 * to include TCO configuration.
2466			 */
2467			cbp->byte_count = 32;
2468			cbp->ext_stats_dis = 1;
2469			/* Enable TCO stats. */
2470			cbp->tno_int_or_tco_en = 1;
2471			cbp->gamla_rx = 1;
2472		} else
2473			cbp->ext_stats_dis = 0;
2474	}
2475
2476	/*
2477	 * Start the config command/DMA.
2478	 */
2479	fxp_scb_wait(sc);
2480	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2481	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2482	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2483	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2484	/* ...and wait for it to complete. */
2485	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2486
2487	/*
2488	 * Now initialize the station address. Temporarily use the TxCB
2489	 * memory area like we did above for the config CB.
2490	 */
2491	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2492	cb_ias->cb_status = 0;
2493	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2494	cb_ias->link_addr = 0xffffffff;
2495	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2496
2497	/*
2498	 * Start the IAS (Individual Address Setup) command/DMA.
2499	 */
2500	fxp_scb_wait(sc);
2501	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2502	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2503	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2504	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2505	/* ...and wait for it to complete. */
2506	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2507
2508	/*
2509	 * Initialize the multicast address list.
2510	 */
2511	fxp_mc_setup(sc);
2512
2513	/*
2514	 * Initialize transmit control block (TxCB) list.
2515	 */
2516	txp = sc->fxp_desc.tx_list;
2517	tcbp = sc->fxp_desc.cbl_list;
2518	bzero(tcbp, FXP_TXCB_SZ);
2519	for (i = 0; i < FXP_NTXCB; i++) {
2520		txp[i].tx_mbuf = NULL;
2521		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2522		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2523		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2524		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2525		if (sc->flags & FXP_FLAG_EXT_TXCB)
2526			tcbp[i].tbd_array_addr =
2527			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2528		else
2529			tcbp[i].tbd_array_addr =
2530			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2531		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2532	}
2533	/*
2534	 * Set the suspend flag on the first TxCB and start the control
2535	 * unit. It will execute the NOP and then suspend.
2536	 */
2537	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2538	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2539	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2540	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2541	sc->tx_queued = 1;
2542
2543	fxp_scb_wait(sc);
2544	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2545	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2546
2547	/*
2548	 * Initialize receiver buffer area - RFA.
2549	 */
2550	fxp_scb_wait(sc);
2551	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2552	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2553
2554	if (sc->miibus != NULL && setmedia != 0)
2555		mii_mediachg(device_get_softc(sc->miibus));
2556
2557	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2558
2559	/*
2560	 * Enable interrupts.
2561	 */
2562#ifdef DEVICE_POLLING
2563	/*
2564	 * ... but only do that if we are not polling. And because (presumably)
2565	 * the default is interrupts on, we need to disable them explicitly!
2566	 */
2567	if (if_getcapenable(ifp) & IFCAP_POLLING )
2568		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2569	else
2570#endif /* DEVICE_POLLING */
2571	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2572
2573	/*
2574	 * Start stats updater.
2575	 */
2576	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2577}
2578
2579static int
2580fxp_serial_ifmedia_upd(if_t ifp)
2581{
2582
2583	return (0);
2584}
2585
2586static void
2587fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2588{
2589
2590	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2591}
2592
2593/*
2594 * Change media according to request.
2595 */
2596static int
2597fxp_ifmedia_upd(if_t ifp)
2598{
2599	struct fxp_softc *sc = if_getsoftc(ifp);
2600	struct mii_data *mii;
2601	struct mii_softc	*miisc;
2602
2603	mii = device_get_softc(sc->miibus);
2604	FXP_LOCK(sc);
2605	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2606		PHY_RESET(miisc);
2607	mii_mediachg(mii);
2608	FXP_UNLOCK(sc);
2609	return (0);
2610}
2611
2612/*
2613 * Notify the world which media we're using.
2614 */
2615static void
2616fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2617{
2618	struct fxp_softc *sc = if_getsoftc(ifp);
2619	struct mii_data *mii;
2620
2621	mii = device_get_softc(sc->miibus);
2622	FXP_LOCK(sc);
2623	mii_pollstat(mii);
2624	ifmr->ifm_active = mii->mii_media_active;
2625	ifmr->ifm_status = mii->mii_media_status;
2626	FXP_UNLOCK(sc);
2627}
2628
2629/*
2630 * Add a buffer to the end of the RFA buffer list.
2631 * Return 0 if successful, 1 for failure. A failure results in
2632 * reusing the RFA buffer.
2633 * The RFA struct is stuck at the beginning of mbuf cluster and the
2634 * data pointer is fixed up to point just past it.
2635 */
2636static int
2637fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2638{
2639	struct mbuf *m;
2640	struct fxp_rfa *rfa;
2641	bus_dmamap_t tmp_map;
2642	int error;
2643
2644	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2645	if (m == NULL)
2646		return (ENOBUFS);
2647
2648	/*
2649	 * Move the data pointer up so that the incoming data packet
2650	 * will be 32-bit aligned.
2651	 */
2652	m->m_data += RFA_ALIGNMENT_FUDGE;
2653
2654	/*
2655	 * Get a pointer to the base of the mbuf cluster and move
2656	 * data start past it.
2657	 */
2658	rfa = mtod(m, struct fxp_rfa *);
2659	m->m_data += sc->rfa_size;
2660	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2661
2662	rfa->rfa_status = 0;
2663	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2664	rfa->actual_size = 0;
2665	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2666	    sc->rfa_size;
2667
2668	/*
2669	 * Initialize the rest of the RFA.  Note that since the RFA
2670	 * is misaligned, we cannot store values directly.  We're thus
2671	 * using the le32enc() function which handles endianness and
2672	 * is also alignment-safe.
2673	 */
2674	le32enc(&rfa->link_addr, 0xffffffff);
2675	le32enc(&rfa->rbd_addr, 0xffffffff);
2676
2677	/* Map the RFA into DMA memory. */
2678	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2679	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2680	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2681	if (error) {
2682		m_freem(m);
2683		return (error);
2684	}
2685
2686	if (rxp->rx_mbuf != NULL)
2687		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2688	tmp_map = sc->spare_map;
2689	sc->spare_map = rxp->rx_map;
2690	rxp->rx_map = tmp_map;
2691	rxp->rx_mbuf = m;
2692
2693	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2694	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2695	return (0);
2696}
2697
2698static void
2699fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2700{
2701	struct fxp_rfa *p_rfa;
2702	struct fxp_rx *p_rx;
2703
2704	/*
2705	 * If there are other buffers already on the list, attach this
2706	 * one to the end by fixing up the tail to point to this one.
2707	 */
2708	if (sc->fxp_desc.rx_head != NULL) {
2709		p_rx = sc->fxp_desc.rx_tail;
2710		p_rfa = (struct fxp_rfa *)
2711		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2712		p_rx->rx_next = rxp;
2713		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2714		p_rfa->rfa_control = 0;
2715		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2716		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2717	} else {
2718		rxp->rx_next = NULL;
2719		sc->fxp_desc.rx_head = rxp;
2720	}
2721	sc->fxp_desc.rx_tail = rxp;
2722}
2723
2724static void
2725fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2726{
2727	struct mbuf *m;
2728	struct fxp_rfa *rfa;
2729
2730	m = rxp->rx_mbuf;
2731	m->m_data = m->m_ext.ext_buf;
2732	/*
2733	 * Move the data pointer up so that the incoming data packet
2734	 * will be 32-bit aligned.
2735	 */
2736	m->m_data += RFA_ALIGNMENT_FUDGE;
2737
2738	/*
2739	 * Get a pointer to the base of the mbuf cluster and move
2740	 * data start past it.
2741	 */
2742	rfa = mtod(m, struct fxp_rfa *);
2743	m->m_data += sc->rfa_size;
2744	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2745
2746	rfa->rfa_status = 0;
2747	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2748	rfa->actual_size = 0;
2749
2750	/*
2751	 * Initialize the rest of the RFA.  Note that since the RFA
2752	 * is misaligned, we cannot store values directly.  We're thus
2753	 * using the le32enc() function which handles endianness and
2754	 * is also alignment-safe.
2755	 */
2756	le32enc(&rfa->link_addr, 0xffffffff);
2757	le32enc(&rfa->rbd_addr, 0xffffffff);
2758
2759	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2760	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2761}
2762
2763static int
2764fxp_miibus_readreg(device_t dev, int phy, int reg)
2765{
2766	struct fxp_softc *sc = device_get_softc(dev);
2767	int count = 10000;
2768	int value;
2769
2770	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2771	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2772
2773	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2774	    && count--)
2775		DELAY(10);
2776
2777	if (count <= 0)
2778		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2779
2780	return (value & 0xffff);
2781}
2782
2783static int
2784fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2785{
2786	struct fxp_softc *sc = device_get_softc(dev);
2787	int count = 10000;
2788
2789	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2790	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2791	    (value & 0xffff));
2792
2793	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2794	    count--)
2795		DELAY(10);
2796
2797	if (count <= 0)
2798		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2799	return (0);
2800}
2801
2802static void
2803fxp_miibus_statchg(device_t dev)
2804{
2805	struct fxp_softc *sc;
2806	struct mii_data *mii;
2807	if_t ifp;
2808
2809	sc = device_get_softc(dev);
2810	mii = device_get_softc(sc->miibus);
2811	ifp = sc->ifp;
2812	if (mii == NULL || ifp == (void *)NULL ||
2813	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2814	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2815	    (IFM_AVALID | IFM_ACTIVE))
2816		return;
2817
2818	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2819	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2820		sc->cu_resume_bug = 1;
2821	else
2822		sc->cu_resume_bug = 0;
2823	/*
2824	 * Call fxp_init_body in order to adjust the flow control settings.
2825	 * Note that the 82557 doesn't support hardware flow control.
2826	 */
2827	if (sc->revision == FXP_REV_82557)
2828		return;
2829	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2830	fxp_init_body(sc, 0);
2831}
2832
2833static int
2834fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2835{
2836	struct fxp_softc *sc = if_getsoftc(ifp);
2837	struct ifreq *ifr = (struct ifreq *)data;
2838	struct mii_data *mii;
2839	int flag, mask, error = 0, reinit;
2840
2841	switch (command) {
2842	case SIOCSIFFLAGS:
2843		FXP_LOCK(sc);
2844		/*
2845		 * If interface is marked up and not running, then start it.
2846		 * If it is marked down and running, stop it.
2847		 * XXX If it's up then re-initialize it. This is so flags
2848		 * such as IFF_PROMISC are handled.
2849		 */
2850		if (if_getflags(ifp) & IFF_UP) {
2851			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2852			    ((if_getflags(ifp) ^ sc->if_flags) &
2853			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2854				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2855				fxp_init_body(sc, 0);
2856			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2857				fxp_init_body(sc, 1);
2858		} else {
2859			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2860				fxp_stop(sc);
2861		}
2862		sc->if_flags = if_getflags(ifp);
2863		FXP_UNLOCK(sc);
2864		break;
2865
2866	case SIOCADDMULTI:
2867	case SIOCDELMULTI:
2868		FXP_LOCK(sc);
2869		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2870			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2871			fxp_init_body(sc, 0);
2872		}
2873		FXP_UNLOCK(sc);
2874		break;
2875
2876	case SIOCSIFMEDIA:
2877	case SIOCGIFMEDIA:
2878		if (sc->miibus != NULL) {
2879			mii = device_get_softc(sc->miibus);
2880                        error = ifmedia_ioctl(ifp, ifr,
2881                            &mii->mii_media, command);
2882		} else {
2883                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2884		}
2885		break;
2886
2887	case SIOCSIFCAP:
2888		reinit = 0;
2889		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2890#ifdef DEVICE_POLLING
2891		if (mask & IFCAP_POLLING) {
2892			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2893				error = ether_poll_register_drv(fxp_poll, ifp);
2894				if (error)
2895					return(error);
2896				FXP_LOCK(sc);
2897				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2898				    FXP_SCB_INTR_DISABLE);
2899				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2900				FXP_UNLOCK(sc);
2901			} else {
2902				error = ether_poll_deregister_drv(ifp);
2903				/* Enable interrupts in any case */
2904				FXP_LOCK(sc);
2905				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2906				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2907				FXP_UNLOCK(sc);
2908			}
2909		}
2910#endif
2911		FXP_LOCK(sc);
2912		if ((mask & IFCAP_TXCSUM) != 0 &&
2913		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2914			if_togglecapenable(ifp, IFCAP_TXCSUM);
2915			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2916				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2917			else
2918				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2919		}
2920		if ((mask & IFCAP_RXCSUM) != 0 &&
2921		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2922			if_togglecapenable(ifp, IFCAP_RXCSUM);
2923			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2924				reinit++;
2925		}
2926		if ((mask & IFCAP_TSO4) != 0 &&
2927		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2928			if_togglecapenable(ifp, IFCAP_TSO4);
2929			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2930				if_sethwassistbits(ifp, CSUM_TSO, 0);
2931			else
2932				if_sethwassistbits(ifp, 0, CSUM_TSO);
2933		}
2934		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2935		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2936			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2937		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2938		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2939			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2940			if (sc->revision != FXP_REV_82557)
2941				flag = FXP_FLAG_LONG_PKT_EN;
2942			else /* a hack to get long frames on the old chip */
2943				flag = FXP_FLAG_SAVE_BAD;
2944			sc->flags ^= flag;
2945			if (if_getflags(ifp) & IFF_UP)
2946				reinit++;
2947		}
2948		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2949		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2950			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2951		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2952		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2953			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2954		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2955		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2956			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2957			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2958				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2959				    IFCAP_VLAN_HWCSUM);
2960			reinit++;
2961		}
2962		if (reinit > 0 &&
2963		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2964			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2965			fxp_init_body(sc, 0);
2966		}
2967		FXP_UNLOCK(sc);
2968		if_vlancap(ifp);
2969		break;
2970
2971	default:
2972		error = ether_ioctl(ifp, command, data);
2973	}
2974	return (error);
2975}
2976
2977/*
2978 * Fill in the multicast address list and return number of entries.
2979 */
2980static int
2981fxp_mc_addrs(struct fxp_softc *sc)
2982{
2983	struct fxp_cb_mcs *mcsp = sc->mcsp;
2984	if_t ifp = sc->ifp;
2985	int nmcasts = 0;
2986
2987	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2988		if_maddr_rlock(ifp);
2989		if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
2990		if (nmcasts >= MAXMCADDR) {
2991			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2992			nmcasts = 0;
2993		}
2994		if_maddr_runlock(ifp);
2995	}
2996	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2997	return (nmcasts);
2998}
2999
3000/*
3001 * Program the multicast filter.
3002 *
3003 * We have an artificial restriction that the multicast setup command
3004 * must be the first command in the chain, so we take steps to ensure
3005 * this. By requiring this, it allows us to keep up the performance of
3006 * the pre-initialized command ring (esp. link pointers) by not actually
3007 * inserting the mcsetup command in the ring - i.e. its link pointer
3008 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3009 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3010 * lead into the regular TxCB ring when it completes.
3011 */
3012static void
3013fxp_mc_setup(struct fxp_softc *sc)
3014{
3015	struct fxp_cb_mcs *mcsp;
3016	int count;
3017
3018	FXP_LOCK_ASSERT(sc, MA_OWNED);
3019
3020	mcsp = sc->mcsp;
3021	mcsp->cb_status = 0;
3022	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3023	mcsp->link_addr = 0xffffffff;
3024	fxp_mc_addrs(sc);
3025
3026	/*
3027	 * Wait until command unit is idle. This should never be the
3028	 * case when nothing is queued, but make sure anyway.
3029	 */
3030	count = 100;
3031	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3032	    FXP_SCB_CUS_IDLE && --count)
3033		DELAY(10);
3034	if (count == 0) {
3035		device_printf(sc->dev, "command queue timeout\n");
3036		return;
3037	}
3038
3039	/*
3040	 * Start the multicast setup command.
3041	 */
3042	fxp_scb_wait(sc);
3043	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3044	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3045	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3046	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3047	/* ...and wait for it to complete. */
3048	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3049}
3050
3051static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3052static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3053static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3054static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3055static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3056static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3057static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3058
3059#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3060
3061static const struct ucode {
3062	uint32_t	revision;
3063	uint32_t	*ucode;
3064	int		length;
3065	u_short		int_delay_offset;
3066	u_short		bundle_max_offset;
3067} ucode_table[] = {
3068	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3069	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3070	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3071	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3072	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3073	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3074	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3075	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3076	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3077	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3078	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3079	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3080	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3081	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3082	{ 0, NULL, 0, 0, 0 }
3083};
3084
3085static void
3086fxp_load_ucode(struct fxp_softc *sc)
3087{
3088	const struct ucode *uc;
3089	struct fxp_cb_ucode *cbp;
3090	int i;
3091
3092	if (sc->flags & FXP_FLAG_NO_UCODE)
3093		return;
3094
3095	for (uc = ucode_table; uc->ucode != NULL; uc++)
3096		if (sc->revision == uc->revision)
3097			break;
3098	if (uc->ucode == NULL)
3099		return;
3100	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3101	cbp->cb_status = 0;
3102	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3103	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3104	for (i = 0; i < uc->length; i++)
3105		cbp->ucode[i] = htole32(uc->ucode[i]);
3106	if (uc->int_delay_offset)
3107		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3108		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3109	if (uc->bundle_max_offset)
3110		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3111		    htole16(sc->tunable_bundle_max);
3112	/*
3113	 * Download the ucode to the chip.
3114	 */
3115	fxp_scb_wait(sc);
3116	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3117	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3118	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3119	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3120	/* ...and wait for it to complete. */
3121	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3122	device_printf(sc->dev,
3123	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3124	    sc->tunable_int_delay,
3125	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3126	sc->flags |= FXP_FLAG_UCODE;
3127	bzero(cbp, FXP_TXCB_SZ);
3128}
3129
3130#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3131	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3132
3133static void
3134fxp_sysctl_node(struct fxp_softc *sc)
3135{
3136	struct sysctl_ctx_list *ctx;
3137	struct sysctl_oid_list *child, *parent;
3138	struct sysctl_oid *tree;
3139	struct fxp_hwstats *hsp;
3140
3141	ctx = device_get_sysctl_ctx(sc->dev);
3142	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3143
3144	SYSCTL_ADD_PROC(ctx, child,
3145	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3146	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3147	    "FXP driver receive interrupt microcode bundling delay");
3148	SYSCTL_ADD_PROC(ctx, child,
3149	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3150	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3151	    "FXP driver receive interrupt microcode bundle size limit");
3152	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3153	    "FXP RNR events");
3154
3155	/*
3156	 * Pull in device tunables.
3157	 */
3158	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3159	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3160	(void) resource_int_value(device_get_name(sc->dev),
3161	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3162	(void) resource_int_value(device_get_name(sc->dev),
3163	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3164	sc->rnr = 0;
3165
3166	hsp = &sc->fxp_hwstats;
3167	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3168	    NULL, "FXP statistics");
3169	parent = SYSCTL_CHILDREN(tree);
3170
3171	/* Rx MAC statistics. */
3172	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3173	    NULL, "Rx MAC statistics");
3174	child = SYSCTL_CHILDREN(tree);
3175	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3176	    &hsp->rx_good, "Good frames");
3177	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3178	    &hsp->rx_crc_errors, "CRC errors");
3179	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3180	    &hsp->rx_alignment_errors, "Alignment errors");
3181	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3182	    &hsp->rx_rnr_errors, "RNR errors");
3183	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3184	    &hsp->rx_overrun_errors, "Overrun errors");
3185	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3186	    &hsp->rx_cdt_errors, "Collision detect errors");
3187	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3188	    &hsp->rx_shortframes, "Short frame errors");
3189	if (sc->revision >= FXP_REV_82558_A4) {
3190		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3191		    &hsp->rx_pause, "Pause frames");
3192		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3193		    &hsp->rx_controls, "Unsupported control frames");
3194	}
3195	if (sc->revision >= FXP_REV_82559_A0)
3196		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3197		    &hsp->rx_tco, "TCO frames");
3198
3199	/* Tx MAC statistics. */
3200	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3201	    NULL, "Tx MAC statistics");
3202	child = SYSCTL_CHILDREN(tree);
3203	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3204	    &hsp->tx_good, "Good frames");
3205	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3206	    &hsp->tx_maxcols, "Maximum collisions errors");
3207	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3208	    &hsp->tx_latecols, "Late collisions errors");
3209	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3210	    &hsp->tx_underruns, "Underrun errors");
3211	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3212	    &hsp->tx_lostcrs, "Lost carrier sense");
3213	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3214	    &hsp->tx_deffered, "Deferred");
3215	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3216	    &hsp->tx_single_collisions, "Single collisions");
3217	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3218	    &hsp->tx_multiple_collisions, "Multiple collisions");
3219	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3220	    &hsp->tx_total_collisions, "Total collisions");
3221	if (sc->revision >= FXP_REV_82558_A4)
3222		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3223		    &hsp->tx_pause, "Pause frames");
3224	if (sc->revision >= FXP_REV_82559_A0)
3225		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3226		    &hsp->tx_tco, "TCO frames");
3227}
3228
3229#undef FXP_SYSCTL_STAT_ADD
3230
3231static int
3232sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3233{
3234	int error, value;
3235
3236	value = *(int *)arg1;
3237	error = sysctl_handle_int(oidp, &value, 0, req);
3238	if (error || !req->newptr)
3239		return (error);
3240	if (value < low || value > high)
3241		return (EINVAL);
3242	*(int *)arg1 = value;
3243	return (0);
3244}
3245
3246/*
3247 * Interrupt delay is expressed in microseconds, a multiplier is used
3248 * to convert this to the appropriate clock ticks before using.
3249 */
3250static int
3251sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3252{
3253
3254	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3255}
3256
3257static int
3258sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3259{
3260
3261	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3262}
3263