if_fxp.c revision 257176
1139823Simp/*-
263670Snsayer * Copyright (c) 1995, David Greenman
363670Snsayer * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
463670Snsayer * All rights reserved.
563670Snsayer *
663670Snsayer * Redistribution and use in source and binary forms, with or without
763670Snsayer * modification, are permitted provided that the following conditions
863670Snsayer * are met:
963670Snsayer * 1. Redistributions of source code must retain the above copyright
1063670Snsayer *    notice unmodified, this list of conditions, and the following
1163670Snsayer *    disclaimer.
1263670Snsayer * 2. Redistributions in binary form must reproduce the above copyright
1363670Snsayer *    notice, this list of conditions and the following disclaimer in the
1463670Snsayer *    documentation and/or other materials provided with the distribution.
1563670Snsayer *
1663670Snsayer * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1763670Snsayer * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1863670Snsayer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1963670Snsayer * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2063670Snsayer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2163670Snsayer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2263670Snsayer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2363670Snsayer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2463670Snsayer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2563670Snsayer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2663670Snsayer * SUCH DAMAGE.
2763670Snsayer *
2863670Snsayer */
2963670Snsayer
3063670Snsayer#include <sys/cdefs.h>
3163670Snsayer__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 257176 2013-10-26 17:58:36Z glebius $");
3263670Snsayer
3363670Snsayer/*
3463670Snsayer * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
3563803Snsayer */
3663670Snsayer
3763670Snsayer#ifdef HAVE_KERNEL_OPTION_HEADERS
38162711Sru#include "opt_device_polling.h"
3963670Snsayer#endif
4063670Snsayer
4163670Snsayer#include <sys/param.h>
4263670Snsayer#include <sys/systm.h>
43139207Sphk#include <sys/bus.h>
4463670Snsayer#include <sys/endian.h>
45236724Strociny#include <sys/kernel.h>
4663670Snsayer#include <sys/mbuf.h>
4763670Snsayer#include <sys/lock.h>
4863670Snsayer#include <sys/module.h>
49129880Sphk#include <sys/mutex.h>
5063670Snsayer#include <sys/rman.h>
51164033Srwatson#include <sys/socket.h>
5263670Snsayer#include <sys/sockio.h>
53139207Sphk#include <sys/sysctl.h>
5463670Snsayer
5563670Snsayer#include <net/bpf.h>
5663670Snsayer#include <net/ethernet.h>
5763670Snsayer#include <net/if.h>
5863670Snsayer#include <net/if_var.h>
5963670Snsayer#include <net/if_arp.h>
6063670Snsayer#include <net/if_dl.h>
6183043Sbrooks#include <net/if_media.h>
6263670Snsayer#include <net/if_types.h>
6363670Snsayer#include <net/if_vlan_var.h>
6463670Snsayer
6563670Snsayer#include <netinet/in.h>
66166497Sbms#include <netinet/in_systm.h>
67152315Sru#include <netinet/ip.h>
68238183Semaste#include <netinet/tcp.h>
69236725Strociny#include <netinet/udp.h>
7063670Snsayer
71236724Strociny#include <machine/bus.h>
7263670Snsayer#include <machine/in_cksum.h>
7363670Snsayer#include <machine/resource.h>
7463670Snsayer
7563670Snsayer#include <dev/pci/pcivar.h>
7663670Snsayer#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
7763670Snsayer
7863670Snsayer#include <dev/mii/mii.h>
7963670Snsayer#include <dev/mii/miivar.h>
8063670Snsayer
8163670Snsayer#include <dev/fxp/if_fxpreg.h>
82241610Sglebius#include <dev/fxp/if_fxpvar.h>
83241610Sglebius#include <dev/fxp/rcvbundl.h>
8483043Sbrooks
85126077SphkMODULE_DEPEND(fxp, pci, 1, 1, 1);
8663670SnsayerMODULE_DEPEND(fxp, ether, 1, 1, 1);
8763670SnsayerMODULE_DEPEND(fxp, miibus, 1, 1, 1);
88111742Sdes#include "miibus_if.h"
8963670Snsayer
9063670Snsayer/*
91148868Srwatson * NOTE!  On !x86 we typically have an alignment constraint.  The
92148868Srwatson * card DMAs the packet immediately following the RFA.  However,
93130585Sphk * the first thing in the packet is a 14-byte Ethernet header.
9463670Snsayer * This means that the packet is misaligned.  To compensate,
9563670Snsayer * we actually offset the RFA 2 bytes into the cluster.  This
9693084Sbde * alignes the packet after the Ethernet header at a 32-bit
9793084Sbde * boundary.  HOWEVER!  This means that the RFA is misaligned!
9893084Sbde */
9963670Snsayer#define	RFA_ALIGNMENT_FUDGE	2
100166497Sbms
101166497Sbms/*
102241610Sglebius * Set initial transmit threshold at 64 (512 bytes). This is
103166497Sbms * increased by 64 (512 bytes) at a time, to maximum of 192
104166497Sbms * (1536 bytes), if an underrun occurs.
105241610Sglebius */
106166497Sbmsstatic int tx_threshold = 64;
10763670Snsayer
10863670Snsayer/*
10963670Snsayer * The configuration byte map has several undefined fields which
11063670Snsayer * must be one or must be zero.  Set up a template for these bits.
11163670Snsayer * The actual configuration is performed in fxp_init_body.
11263670Snsayer *
11363670Snsayer * See struct fxp_cb_config for the bit definitions.
114156783Semax */
11563670Snsayerstatic const u_char fxp_cb_config_template[] = {
116156783Semax	0x0, 0x0,		/* cb_status */
117156783Semax	0x0, 0x0,		/* cb_command */
118156783Semax	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119156783Semax	0x0,	/*  0 */
120156783Semax	0x0,	/*  1 */
121156783Semax	0x0,	/*  2 */
122156783Semax	0x0,	/*  3 */
123156783Semax	0x0,	/*  4 */
124156783Semax	0x0,	/*  5 */
125156783Semax	0x32,	/*  6 */
126156783Semax	0x0,	/*  7 */
127156783Semax	0x0,	/*  8 */
128156783Semax	0x0,	/*  9 */
129156783Semax	0x6,	/* 10 */
130156783Semax	0x0,	/* 11 */
131156783Semax	0x0,	/* 12 */
132156783Semax	0x0,	/* 13 */
133156783Semax	0xf2,	/* 14 */
134156783Semax	0x48,	/* 15 */
13563670Snsayer	0x0,	/* 16 */
136126080Sphk	0x40,	/* 17 */
137226500Sed	0xf0,	/* 18 */
138111815Sphk	0x0,	/* 19 */
139111815Sphk	0x3f,	/* 20 */
140111815Sphk	0x5,	/* 21 */
141111815Sphk	0x0,	/* 22 */
142111815Sphk	0x0,	/* 23 */
143111815Sphk	0x0,	/* 24 */
144111815Sphk	0x0,	/* 25 */
145156783Semax	0x0,	/* 26 */
14663670Snsayer	0x0,	/* 27 */
14763670Snsayer	0x0,	/* 28 */
148127003Srwatson	0x0,	/* 29 */
149127003Srwatson	0x0,	/* 30 */
150127003Srwatson	0x0	/* 31 */
151127003Srwatson};
152127003Srwatson
153127003Srwatson/*
15483043Sbrooks * Claim various Intel PCI device identifiers for this driver.  The
155167713Sbms * sub-vendor and sub-device field are extensively used to identify
156167713Sbms * particular variants, but we don't currently differentiate between
157166497Sbms * them.
15883043Sbrooks */
159126077Sphkstatic const struct fxp_ident fxp_ident_table[] = {
16063670Snsayer    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
16163670Snsayer    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
16263670Snsayer    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
16363670Snsayer    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164144979Smdodd    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165144979Smdodd    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166227309Sed    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167144979Smdodd    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168144979Smdodd    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169144979Smdodd    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
170167713Sbms    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
171167713Sbms    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
172166497Sbms    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173166497Sbms    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
174144979Smdodd    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
175144979Smdodd    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176166497Sbms    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
177166497Sbms    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
17863670Snsayer    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
17963670Snsayer    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
180166497Sbms    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
181166497Sbms    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
182166497Sbms    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
183166497Sbms    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
184166497Sbms    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
185166497Sbms    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
186241610Sglebius    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
187241610Sglebius    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
188166497Sbms    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
189243615Sdavidxu    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
190241610Sglebius    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
191166497Sbms    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
192166497Sbms    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
193166497Sbms    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
194166497Sbms    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
195166497Sbms    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
196166497Sbms    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
197166497Sbms    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
198166497Sbms    { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
199166497Sbms    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
200166497Sbms    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
201241610Sglebius    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
202241610Sglebius    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
203241610Sglebius    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
204241610Sglebius    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
205241610Sglebius    { 0,	-1,	0, NULL },
206241610Sglebius};
207241610Sglebius
208241610Sglebius#ifdef FXP_IP_CSUM_WAR
209241610Sglebius#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
210241610Sglebius#else
211241610Sglebius#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
212241610Sglebius#endif
213166497Sbms
214166497Sbmsstatic int		fxp_probe(device_t dev);
215166497Sbmsstatic int		fxp_attach(device_t dev);
216166497Sbmsstatic int		fxp_detach(device_t dev);
217166497Sbmsstatic int		fxp_shutdown(device_t dev);
218166497Sbmsstatic int		fxp_suspend(device_t dev);
219166497Sbmsstatic int		fxp_resume(device_t dev);
220236724Strociny
221240938Semastestatic const struct fxp_ident *fxp_find_ident(device_t dev);
222225177Sattiliostatic void		fxp_intr(void *xsc);
223166497Sbmsstatic void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
224166497Sbms			    struct mbuf *m, uint16_t status, int pos);
225227459Sbrooksstatic int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
226166497Sbms			    uint8_t statack, int count);
227166497Sbmsstatic void 		fxp_init(void *xsc);
228166497Sbmsstatic void 		fxp_init_body(struct fxp_softc *sc, int);
229236724Strocinystatic void 		fxp_tick(void *xsc);
230166497Sbmsstatic void 		fxp_start(struct ifnet *ifp);
231166497Sbmsstatic void 		fxp_start_body(struct ifnet *ifp);
232166497Sbmsstatic int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
233166497Sbmsstatic void		fxp_txeof(struct fxp_softc *sc);
234166497Sbmsstatic void		fxp_stop(struct fxp_softc *sc);
235166497Sbmsstatic void 		fxp_release(struct fxp_softc *sc);
236166497Sbmsstatic int		fxp_ioctl(struct ifnet *ifp, u_long command,
237166497Sbms			    caddr_t data);
238166497Sbmsstatic void 		fxp_watchdog(struct fxp_softc *sc);
239166497Sbmsstatic void		fxp_add_rfabuf(struct fxp_softc *sc,
240166497Sbms			    struct fxp_rx *rxp);
241166497Sbmsstatic void		fxp_discard_rfabuf(struct fxp_softc *sc,
242166497Sbms			    struct fxp_rx *rxp);
243166497Sbmsstatic int		fxp_new_rfabuf(struct fxp_softc *sc,
244166497Sbms			    struct fxp_rx *rxp);
245166497Sbmsstatic int		fxp_mc_addrs(struct fxp_softc *sc);
246166497Sbmsstatic void		fxp_mc_setup(struct fxp_softc *sc);
247166497Sbmsstatic uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
248166497Sbms			    int autosize);
249166497Sbmsstatic void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
25063670Snsayer			    uint16_t data);
25163670Snsayerstatic void		fxp_autosize_eeprom(struct fxp_softc *sc);
25263670Snsayerstatic void		fxp_load_eeprom(struct fxp_softc *sc);
25363670Snsayerstatic void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
25463670Snsayer			    int offset, int words);
25563670Snsayerstatic void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
256156783Semax			    int offset, int words);
25763670Snsayerstatic int		fxp_ifmedia_upd(struct ifnet *ifp);
25883043Sbrooksstatic void		fxp_ifmedia_sts(struct ifnet *ifp,
25983043Sbrooks			    struct ifmediareq *ifmr);
26083043Sbrooksstatic int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
26163670Snsayerstatic void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
26263670Snsayer			    struct ifmediareq *ifmr);
26363670Snsayerstatic int		fxp_miibus_readreg(device_t dev, int phy, int reg);
26463670Snsayerstatic int		fxp_miibus_writereg(device_t dev, int phy, int reg,
26583043Sbrooks			    int value);
26683043Sbrooksstatic void		fxp_miibus_statchg(device_t dev);
267127003Srwatsonstatic void		fxp_load_ucode(struct fxp_softc *sc);
26883043Sbrooksstatic void		fxp_update_stats(struct fxp_softc *sc);
26983043Sbrooksstatic void		fxp_sysctl_node(struct fxp_softc *sc);
270126845Sphkstatic int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
27171602Sphk			    int low, int high);
272127003Srwatsonstatic int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
273127170Srwatsonstatic int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
274127003Srwatsonstatic void 		fxp_scb_wait(struct fxp_softc *sc);
275126077Sphkstatic void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
276127003Srwatsonstatic void		fxp_dma_wait(struct fxp_softc *sc,
277241610Sglebius			    volatile uint16_t *status, bus_dma_tag_t dmat,
278241610Sglebius			    bus_dmamap_t map);
279241610Sglebius
280241610Sglebiusstatic device_method_t fxp_methods[] = {
28183043Sbrooks	/* Device interface */
28263670Snsayer	DEVMETHOD(device_probe,		fxp_probe),
28383043Sbrooks	DEVMETHOD(device_attach,	fxp_attach),
284127003Srwatson	DEVMETHOD(device_detach,	fxp_detach),
285127003Srwatson	DEVMETHOD(device_shutdown,	fxp_shutdown),
286127003Srwatson	DEVMETHOD(device_suspend,	fxp_suspend),
287127003Srwatson	DEVMETHOD(device_resume,	fxp_resume),
288127003Srwatson
289127003Srwatson	/* MII interface */
290127003Srwatson	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
291127098Srwatson	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
292127003Srwatson	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
293127098Srwatson
294127003Srwatson	DEVMETHOD_END
29583043Sbrooks};
296127003Srwatson
297127098Srwatsonstatic driver_t fxp_driver = {
298127003Srwatson	"fxp",
299127003Srwatson	fxp_methods,
30083043Sbrooks	sizeof(struct fxp_softc),
30171602Sphk};
302241610Sglebius
303241610Sglebiusstatic devclass_t fxp_devclass;
304204464Skib
30563670SnsayerDRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
306127003Srwatson    SI_ORDER_ANY);
30783043SbrooksDRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
30883043Sbrooks
309127003Srwatsonstatic struct resource_spec fxp_res_spec_mem[] = {
31083043Sbrooks	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
311147256Sbrooks	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
31283043Sbrooks	{ -1, 0 }
313121816Sbrooks};
31483043Sbrooks
315166497Sbmsstatic struct resource_spec fxp_res_spec_io[] = {
316127003Srwatson	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
31783043Sbrooks	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
318127003Srwatson	{ -1, 0 }
319126077Sphk};
32063670Snsayer
321135354Srwatson/*
322135354Srwatson * Wait for the previous command to be accepted (but not necessarily
32383043Sbrooks * completed).
32463670Snsayer */
32563670Snsayerstatic void
32663670Snsayerfxp_scb_wait(struct fxp_softc *sc)
32763670Snsayer{
32863670Snsayer	union {
32963670Snsayer		uint16_t w;
33063670Snsayer		uint8_t b[2];
33163670Snsayer	} flowctl;
33263670Snsayer	int i = 10000;
33363670Snsayer
33471602Sphk	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
33571602Sphk		DELAY(2);
33671602Sphk	if (i == 0) {
33771602Sphk		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
33871602Sphk		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
339156783Semax		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
34071602Sphk		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
341166497Sbms		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
342166497Sbms		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
343166438Sbms	}
34471602Sphk}
345130640Sphk
34671602Sphkstatic void
34771602Sphkfxp_scb_cmd(struct fxp_softc *sc, int cmd)
348166514Sbms{
349166514Sbms
350166497Sbms	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
351166497Sbms		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
352166497Sbms		fxp_scb_wait(sc);
353166497Sbms	}
354126077Sphk	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
355166497Sbms}
356166497Sbms
357241610Sglebiusstatic void
358126077Sphkfxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
359241610Sglebius    bus_dma_tag_t dmat, bus_dmamap_t map)
360126077Sphk{
361126077Sphk	int i;
362241610Sglebius
363241610Sglebius	for (i = 10000; i > 0; i--) {
364126077Sphk		DELAY(2);
365166497Sbms		bus_dmamap_sync(dmat, map,
366166497Sbms		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
367166497Sbms		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
36883043Sbrooks			break;
36971602Sphk	}
370166497Sbms	if (i == 0)
371166497Sbms		device_printf(sc->dev, "DMA timeout\n");
372166497Sbms}
373236724Strociny
374126077Sphkstatic const struct fxp_ident *
375126077Sphkfxp_find_ident(device_t dev)
376126077Sphk{
377166497Sbms	uint16_t devid;
378166497Sbms	uint8_t revid;
379166497Sbms	const struct fxp_ident *ident;
380166497Sbms
381166497Sbms	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
382166497Sbms		devid = pci_get_device(dev);
383166497Sbms		revid = pci_get_revid(dev);
384166497Sbms		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
385166497Sbms			if (ident->devid == devid &&
386166497Sbms			    (ident->revid == revid || ident->revid == -1)) {
387204464Skib				return (ident);
388204464Skib			}
38971602Sphk		}
390166497Sbms	}
391166497Sbms	return (NULL);
392236724Strociny}
39371602Sphk
39471602Sphk/*
39571602Sphk * Return identification string if this device is ours.
39671602Sphk */
39763670Snsayerstatic int
39863670Snsayerfxp_probe(device_t dev)
39963670Snsayer{
40063670Snsayer	const struct fxp_ident *ident;
40163670Snsayer
402156783Semax	ident = fxp_find_ident(dev);
40363670Snsayer	if (ident != NULL) {
40463670Snsayer		device_set_desc(dev, ident->name);
40563670Snsayer		return (BUS_PROBE_DEFAULT);
40663670Snsayer	}
407178221Semax	return (ENXIO);
408213028Sjhb}
409241610Sglebius
410147256Sbrooksstatic void
41163670Snsayerfxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
412126077Sphk{
413126077Sphk	uint32_t *addr;
41463670Snsayer
415184205Sdes	if (error)
416127098Srwatson		return;
417127003Srwatson
41883043Sbrooks	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
419127003Srwatson	addr = arg;
42063670Snsayer	*addr = segs->ds_addr;
421126796Sphk}
42283043Sbrooks
42363670Snsayerstatic int
424126796Sphkfxp_attach(device_t dev)
425241610Sglebius{
42663803Snsayer	struct fxp_softc *sc;
42783043Sbrooks	struct fxp_cb_tx *tcbp;
428241610Sglebius	struct fxp_tx *txp;
42963670Snsayer	struct fxp_rx *rxp;
430126796Sphk	struct ifnet *ifp;
431126796Sphk	uint32_t val;
432183397Sed	uint16_t data;
43383043Sbrooks	u_char eaddr[ETHER_ADDR_LEN];
43463670Snsayer	int error, flags, i, pmc, prefer_iomap;
43563670Snsayer
436178221Semax	error = 0;
437147256Sbrooks	sc = device_get_softc(dev);
438178221Semax	sc->dev = dev;
439147256Sbrooks	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
44063670Snsayer	    MTX_DEF);
441111742Sdes	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
442147256Sbrooks	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
443147256Sbrooks	    fxp_serial_ifmedia_sts);
444147256Sbrooks
44563670Snsayer	ifp = sc->ifp = if_alloc(IFT_ETHER);
446121816Sbrooks	if (ifp == NULL) {
44763670Snsayer		device_printf(dev, "can not if_alloc()\n");
44863670Snsayer		error = ENOSPC;
44963670Snsayer		goto fail;
45063670Snsayer	}
45163670Snsayer
452213028Sjhb	/*
453205222Sqingli	 * Enable bus mastering.
454205222Sqingli	 */
45563670Snsayer	pci_enable_busmaster(dev);
45683043Sbrooks
457126077Sphk	/*
45883043Sbrooks	 * Figure out which we should try first - memory mapping or i/o mapping?
459147256Sbrooks	 * We default to memory mapping. Then we accept an override from the
46063670Snsayer	 * command line. Then we check to see which one is enabled.
461127098Srwatson	 */
46263803Snsayer	prefer_iomap = 0;
463127098Srwatson	resource_int_value(device_get_name(dev), device_get_unit(dev),
46463803Snsayer	    "prefer_iomap", &prefer_iomap);
465213028Sjhb	if (prefer_iomap)
466158697Semax		sc->fxp_spec = fxp_res_spec_io;
467121816Sbrooks	else
468183397Sed		sc->fxp_spec = fxp_res_spec_mem;
46963670Snsayer
47063670Snsayer	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
47163670Snsayer	if (error) {
47263670Snsayer		if (sc->fxp_spec == fxp_res_spec_mem)
473111742Sdes			sc->fxp_spec = fxp_res_spec_io;
47463670Snsayer		else
47563670Snsayer			sc->fxp_spec = fxp_res_spec_mem;
47663670Snsayer		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
47763670Snsayer	}
478156783Semax	if (error) {
47963670Snsayer		device_printf(dev, "could not allocate resources\n");
48063670Snsayer		error = ENXIO;
481133460Semax		goto fail;
482213028Sjhb	}
48363670Snsayer
484164033Srwatson	if (bootverbose) {
485164033Srwatson		device_printf(dev, "using %s space register mapping\n",
486164033Srwatson		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487164033Srwatson	}
488164033Srwatson
48963670Snsayer	/*
490126796Sphk	 * Put CU/RU idle state and prepare full reset.
491126796Sphk	 */
49283043Sbrooks	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
49363670Snsayer	DELAY(10);
49463670Snsayer	/* Full reset and disable interrupts. */
495127165Srwatson	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496127165Srwatson	DELAY(10);
497127165Srwatson	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498127165Srwatson
499127165Srwatson	/*
50063670Snsayer	 * Find out how large of an SEEPROM we have.
501152315Sru	 */
50283366Sjulian	fxp_autosize_eeprom(sc);
50363670Snsayer	fxp_load_eeprom(sc);
504147256Sbrooks
50563670Snsayer	/*
506148887Srwatson	 * Find out the chip revision; lump all 82557 revs together.
507148887Srwatson	 */
508167713Sbms	sc->ident = fxp_find_ident(dev);
509167713Sbms	if (sc->ident->ich > 0) {
510205024Sqingli		/* Assume ICH controllers are 82559. */
511213028Sjhb		sc->revision = FXP_REV_82559_A0;
51263670Snsayer	} else {
513183397Sed		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514133460Semax		if ((data >> 8) == 1)
51563670Snsayer			sc->revision = FXP_REV_82557;
51663670Snsayer		else
51763670Snsayer			sc->revision = pci_get_revid(dev);
51863670Snsayer	}
51963670Snsayer
52063670Snsayer	/*
52163670Snsayer	 * Check availability of WOL. 82559ER does not support WOL.
52263670Snsayer	 */
52363670Snsayer	if (sc->revision >= FXP_REV_82558_A4 &&
52463670Snsayer	    sc->revision != FXP_REV_82559S_A) {
525156783Semax		data = sc->eeprom[FXP_EEPROM_MAP_ID];
52663670Snsayer		if ((data & 0x20) != 0 &&
527156783Semax		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
52863670Snsayer			sc->flags |= FXP_FLAG_WOLCAP;
529147256Sbrooks	}
53063670Snsayer
53163670Snsayer	if (sc->revision == FXP_REV_82550_C) {
532213028Sjhb		/*
533236724Strociny		 * 82550C with server extension requires microcode to
53483043Sbrooks		 * receive fragmented UDP datagrams.  However if the
53563670Snsayer		 * microcode is used for client-only featured 82550C
53663803Snsayer		 * it locks up controller.
53763803Snsayer		 */
53863803Snsayer		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
53963803Snsayer		if ((data & 0x0400) == 0)
54063803Snsayer			sc->flags |= FXP_FLAG_NO_UCODE;
54163803Snsayer	}
542127098Srwatson
54363670Snsayer	/* Receiver lock-up workaround detection. */
544213028Sjhb	if (sc->revision < FXP_REV_82558_A4) {
545148887Srwatson		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546213028Sjhb		if ((data & 0x03) != 0x03) {
547213028Sjhb			sc->flags |= FXP_FLAG_RXBUG;
54863803Snsayer			device_printf(dev, "Enabling Rx lock-up workaround\n");
549146620Speadar		}
55063670Snsayer	}
551146620Speadar
552213028Sjhb	/*
55363670Snsayer	 * Determine whether we must use the 503 serial interface.
554213028Sjhb	 */
55563670Snsayer	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556205024Sqingli	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557236724Strociny	    && (data & FXP_PHY_SERIAL_ONLY))
558236724Strociny		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
55996122Salfred
560122352Stanimura	fxp_sysctl_node(sc);
561213028Sjhb	/*
56263670Snsayer	 * Enable workarounds for certain chip revision deficiencies.
56363670Snsayer	 *
56463670Snsayer	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565127098Srwatson	 * some systems based a normal 82559 design, have a defect where
56663670Snsayer	 * the chip can cause a PCI protocol violation if it receives
567121816Sbrooks	 * a CU_RESUME command when it is entering the IDLE state.  The
568183397Sed	 * workaround is to disable Dynamic Standby Mode, so the chip never
56963670Snsayer	 * deasserts CLKRUN#, and always remains in an active state.
57063670Snsayer	 *
57163670Snsayer	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
57263670Snsayer	 */
57363670Snsayer	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
57463670Snsayer	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
57563670Snsayer		data = sc->eeprom[FXP_EEPROM_MAP_ID];
57663670Snsayer		if (data & 0x02) {			/* STB enable */
57763670Snsayer			uint16_t cksum;
57863670Snsayer			int i;
57963670Snsayer
580156783Semax			device_printf(dev,
58163670Snsayer			    "Disabling dynamic standby mode in EEPROM\n");
58263670Snsayer			data &= ~0x02;
583147256Sbrooks			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
58463670Snsayer			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585121816Sbrooks			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
58663670Snsayer			cksum = 0;
587213028Sjhb			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588148887Srwatson				cksum += sc->eeprom[i];
589148887Srwatson			i = (1 << sc->eeprom_size) - 1;
590213028Sjhb			cksum = 0xBABA - cksum;
59163670Snsayer			fxp_write_eeprom(sc, &cksum, i, 1);
59263670Snsayer			device_printf(dev,
59363670Snsayer			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
59463670Snsayer			    i, sc->eeprom[i], cksum);
59563670Snsayer			sc->eeprom[i] = cksum;
59663670Snsayer			/*
59763670Snsayer			 * If the user elects to continue, try the software
59863670Snsayer			 * workaround, as it is better than nothing.
59963670Snsayer			 */
60063670Snsayer			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
60163670Snsayer		}
602105228Sphk	}
603156783Semax
60463670Snsayer	/*
605160376Sbrooks	 * If we are not a 82557 chip, we can enable extended features.
606189866Sscf	 */
60763670Snsayer	if (sc->revision != FXP_REV_82557) {
608238183Semaste		/*
609238183Semaste		 * If MWI is enabled in the PCI configuration, and there
61063670Snsayer		 * is a valid cacheline size (8 or 16 dwords), then tell
61163670Snsayer		 * the board to turn on MWI.
61263670Snsayer		 */
61363670Snsayer		val = pci_read_config(dev, PCIR_COMMAND, 2);
61463670Snsayer		if (val & PCIM_CMD_MWRICEN &&
61583043Sbrooks		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
61663670Snsayer			sc->flags |= FXP_FLAG_MWI_ENABLE;
617238183Semaste
618238183Semaste		/* turn on the extended TxCB feature */
619238183Semaste		sc->flags |= FXP_FLAG_EXT_TXCB;
620238183Semaste
621238183Semaste		/* enable reception of long frames for VLAN */
622238183Semaste		sc->flags |= FXP_FLAG_LONG_PKT_EN;
623238183Semaste	} else {
624238183Semaste		/* a hack to get long VLAN frames on a 82557 */
625238183Semaste		sc->flags |= FXP_FLAG_SAVE_BAD;
626238183Semaste	}
627238183Semaste
628238183Semaste	/* For 82559 or later chips, Rx checksum offload is supported. */
629238183Semaste	if (sc->revision >= FXP_REV_82559_A0) {
630238183Semaste		/* 82559ER does not support Rx checksum offloading. */
631238183Semaste		if (sc->ident->devid != 0x1209)
632238183Semaste			sc->flags |= FXP_FLAG_82559_RXCSUM;
633189866Sscf	}
634189866Sscf	/*
635189866Sscf	 * Enable use of extended RFDs and TCBs for 82550
636189866Sscf	 * and later chips. Note: we need extended TXCB support
63763670Snsayer	 * too, but that's already enabled by the code above.
63863670Snsayer	 * Be careful to do this only on the right devices.
63963670Snsayer	 */
640127098Srwatson	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
64163670Snsayer	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
64263670Snsayer	    || sc->revision == FXP_REV_82551_10) {
64363670Snsayer		sc->rfa_size = sizeof (struct fxp_rfa);
64463670Snsayer		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
645127098Srwatson		sc->flags |= FXP_FLAG_EXT_RFA;
64683043Sbrooks		/* Use extended RFA instead of 82559 checksum mode. */
64763670Snsayer		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
64863670Snsayer	} else {
649238183Semaste		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
650238183Semaste		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
65163670Snsayer	}
65263670Snsayer
653238183Semaste	/*
65463670Snsayer	 * Allocate DMA tags and DMA safe memory.
65563670Snsayer	 */
65663670Snsayer	sc->maxtxseg = FXP_NTXSEG;
65763670Snsayer	sc->maxsegsize = MCLBYTES;
658111742Sdes	if (sc->flags & FXP_FLAG_EXT_RFA) {
659111742Sdes		sc->maxtxseg--;
66063670Snsayer		sc->maxsegsize = FXP_TSO_SEGSIZE;
66163670Snsayer	}
66263670Snsayer	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
663156783Semax	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
66463670Snsayer	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
66563670Snsayer	    sc->maxtxseg, sc->maxsegsize, 0,
66663670Snsayer	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
667121816Sbrooks	if (error) {
66863670Snsayer		device_printf(dev, "could not create TX DMA tag\n");
66963803Snsayer		goto fail;
67063803Snsayer	}
67163803Snsayer
67263803Snsayer	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
67363803Snsayer	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
674127098Srwatson	    MCLBYTES, 1, MCLBYTES, 0,
675111742Sdes	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
67663803Snsayer	if (error) {
677213028Sjhb		device_printf(dev, "could not create RX DMA tag\n");
67863670Snsayer		goto fail;
679127098Srwatson	}
680121816Sbrooks
681121816Sbrooks	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
68263670Snsayer	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
683213028Sjhb	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
68463670Snsayer	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
685213028Sjhb	if (error) {
68663670Snsayer		device_printf(dev, "could not create stats DMA tag\n");
687213028Sjhb		goto fail;
688213028Sjhb	}
689213028Sjhb
690213028Sjhb	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
691213028Sjhb	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
69263670Snsayer	if (error) {
69363670Snsayer		device_printf(dev, "could not allocate stats DMA memory\n");
69463670Snsayer		goto fail;
69563670Snsayer	}
696148887Srwatson	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
69763670Snsayer	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
698213028Sjhb	    BUS_DMA_NOWAIT);
69963670Snsayer	if (error) {
70063670Snsayer		device_printf(dev, "could not load the stats DMA buffer\n");
701111748Sdes		goto fail;
70263670Snsayer	}
70363670Snsayer
704127098Srwatson	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
705127098Srwatson	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
70695883Salfred	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
707213028Sjhb	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
708213028Sjhb	if (error) {
70963670Snsayer		device_printf(dev, "could not create TxCB DMA tag\n");
710122352Stanimura		goto fail;
711213028Sjhb	}
71263670Snsayer
71363670Snsayer	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
71463670Snsayer	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
715148887Srwatson	if (error) {
716213028Sjhb		device_printf(dev, "could not allocate TxCB DMA memory\n");
71763670Snsayer		goto fail;
71863670Snsayer	}
71963670Snsayer
72063670Snsayer	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
72163670Snsayer	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
72263670Snsayer	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
72363670Snsayer	if (error) {
72463670Snsayer		device_printf(dev, "could not load TxCB DMA buffer\n");
72563670Snsayer		goto fail;
726156783Semax	}
72763670Snsayer
72863670Snsayer	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
729147256Sbrooks	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
730111742Sdes	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
731102052Ssobomax	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
732162711Sru	if (error) {
733162711Sru		device_printf(dev,
734162711Sru		    "could not create multicast setup DMA tag\n");
735162711Sru		goto fail;
73663670Snsayer	}
73763670Snsayer
738111742Sdes	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
739111742Sdes	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
740213028Sjhb	if (error) {
741111742Sdes		device_printf(dev,
742111742Sdes		    "could not allocate multicast setup DMA memory\n");
743111742Sdes		goto fail;
744213028Sjhb	}
745111742Sdes	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
74663670Snsayer	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
747111742Sdes	    BUS_DMA_NOWAIT);
748111742Sdes	if (error) {
749213028Sjhb		device_printf(dev,
750111742Sdes		    "can't load the multicast setup DMA buffer\n");
751111742Sdes		goto fail;
752111742Sdes	}
753213028Sjhb
754111742Sdes	/*
75563670Snsayer	 * Pre-allocate the TX DMA maps and setup the pointers to
75663670Snsayer	 * the TX command blocks.
757159079Smarius	 */
75883043Sbrooks	txp = sc->fxp_desc.tx_list;
75963670Snsayer	tcbp = sc->fxp_desc.cbl_list;
76063670Snsayer	for (i = 0; i < FXP_NTXCB; i++) {
761159079Smarius		txp[i].tx_cb = tcbp + i;
76283043Sbrooks		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
76363670Snsayer		if (error) {
764182880Semax			device_printf(dev, "can't create DMA map for TX\n");
765182880Semax			goto fail;
766182880Semax		}
767182880Semax	}
768182880Semax	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
769182880Semax	if (error) {
77063670Snsayer		device_printf(dev, "can't create spare DMA map\n");
77183043Sbrooks		goto fail;
77263670Snsayer	}
77363670Snsayer
774127098Srwatson	/*
775159079Smarius	 * Pre-allocate our receive buffers.
77663670Snsayer	 */
77763670Snsayer	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
77863670Snsayer	for (i = 0; i < FXP_NRFABUFS; i++) {
779127098Srwatson		rxp = &sc->fxp_desc.rx_list[i];
78083043Sbrooks		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
78163670Snsayer		if (error) {
78263670Snsayer			device_printf(dev, "can't create DMA map for RX\n");
783213028Sjhb			goto fail;
784213028Sjhb		}
78563670Snsayer		if (fxp_new_rfabuf(sc, rxp) != 0) {
786213028Sjhb			error = ENOMEM;
787213028Sjhb			goto fail;
788213028Sjhb		}
789213028Sjhb		fxp_add_rfabuf(sc, rxp);
790159079Smarius	}
791213028Sjhb
79283043Sbrooks	/*
793159079Smarius	 * Read MAC address.
79483043Sbrooks	 */
79563670Snsayer	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
79663670Snsayer	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
797159079Smarius	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
79863670Snsayer	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
79963670Snsayer	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
800159079Smarius	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
80163670Snsayer	if (bootverbose) {
80263670Snsayer		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
80363670Snsayer		    pci_get_vendor(dev), pci_get_device(dev),
80463670Snsayer		    pci_get_subvendor(dev), pci_get_subdevice(dev),
805159079Smarius		    pci_get_revid(dev));
80663670Snsayer		device_printf(dev, "Dynamic Standby mode is %s\n",
80763670Snsayer		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
80863670Snsayer		    "disabled");
809159079Smarius	}
81063670Snsayer
81163670Snsayer	/*
81263670Snsayer	 * If this is only a 10Mbps device, then there is no MII, and
81363670Snsayer	 * the PHY will use a serial interface instead.
814162711Sru	 *
815162711Sru	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
816162711Sru	 * doesn't have a programming interface of any sort.  The
817162711Sru	 * media is sensed automatically based on how the link partner
818162711Sru	 * is configured.  This is, in essence, manual configuration.
819162711Sru	 */
820162711Sru	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
82183043Sbrooks		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
822162711Sru		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
82363670Snsayer	} else {
82463670Snsayer		/*
82563670Snsayer		 * i82557 wedge when isolating all of their PHYs.
82663670Snsayer		 */
827213028Sjhb		flags = MIIF_NOISOLATE;
82863670Snsayer		if (sc->revision >= FXP_REV_82558_A4)
829213028Sjhb			flags |= MIIF_DOPAUSE;
83083043Sbrooks		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
83163670Snsayer		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
83263861Snsayer		    MII_OFFSET_ANY, flags);
83363670Snsayer		if (error != 0) {
834127165Srwatson			device_printf(dev, "attaching PHYs failed\n");
83563861Snsayer			goto fail;
836127165Srwatson		}
83783043Sbrooks	}
83863670Snsayer
83963861Snsayer	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
840127165Srwatson	ifp->if_init = fxp_init;
84163861Snsayer	ifp->if_softc = sc;
842127165Srwatson	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
84383043Sbrooks	ifp->if_ioctl = fxp_ioctl;
84463670Snsayer	ifp->if_start = fxp_start;
84563670Snsayer
84663670Snsayer	ifp->if_capabilities = ifp->if_capenable = 0;
84763670Snsayer
84863670Snsayer	/* Enable checksum offload/TSO for 82550 or better chips */
84963670Snsayer	if (sc->flags & FXP_FLAG_EXT_RFA) {
85063670Snsayer		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
85163670Snsayer		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
85263670Snsayer		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
85363670Snsayer	}
85463670Snsayer
85563670Snsayer	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
85663670Snsayer		ifp->if_capabilities |= IFCAP_RXCSUM;
85763670Snsayer		ifp->if_capenable |= IFCAP_RXCSUM;
85863670Snsayer	}
859156783Semax
86063670Snsayer	if (sc->flags & FXP_FLAG_WOLCAP) {
86163670Snsayer		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
862147256Sbrooks		ifp->if_capenable |= IFCAP_WOL_MAGIC;
86390227Sdillon	}
864213028Sjhb
86563670Snsayer#ifdef DEVICE_POLLING
866183397Sed	/* Inform the world we support polling. */
86763670Snsayer	ifp->if_capabilities |= IFCAP_POLLING;
868127098Srwatson#endif
86963670Snsayer
870127098Srwatson	/*
871127098Srwatson	 * Attach the interface.
872127098Srwatson	 */
873121816Sbrooks	ether_ifattach(ifp, eaddr);
874183397Sed
87563803Snsayer	/*
87663670Snsayer	 * Tell the upper layer(s) we support long frames.
87763670Snsayer	 * Must appear after the call to ether_ifattach() because
87863670Snsayer	 * ether_ifattach() sets ifi_hdrlen to the default value.
87963670Snsayer	 */
88063670Snsayer	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
88163670Snsayer	ifp->if_capabilities |= IFCAP_VLAN_MTU;
88263670Snsayer	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
88390227Sdillon	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
88463670Snsayer		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
88590227Sdillon		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
886213028Sjhb		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
887213028Sjhb		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
88863670Snsayer	}
889213028Sjhb
890111742Sdes	/*
89163670Snsayer	 * Let the system queue as many packets as we have available
892213028Sjhb	 * TX descriptors.
893213028Sjhb	 */
894213028Sjhb	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
895213028Sjhb	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
89663670Snsayer	IFQ_SET_READY(&ifp->if_snd);
897213028Sjhb
89863670Snsayer	/*
89990227Sdillon	 * Hook our interrupt after all initialization is complete.
900213028Sjhb	 */
90163670Snsayer	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
90263670Snsayer			       NULL, fxp_intr, sc, &sc->ih);
903106939Ssam	if (error) {
90463670Snsayer		device_printf(dev, "could not setup irq\n");
90563670Snsayer		ether_ifdetach(sc->ifp);
90690227Sdillon		goto fail;
90790227Sdillon	}
90863670Snsayer
90963670Snsayer	/*
91063670Snsayer	 * Configure hardware to reject magic frames otherwise
911111741Sdes	 * system will hang on recipt of magic frames.
91290227Sdillon	 */
91363670Snsayer	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
91463670Snsayer		FXP_LOCK(sc);
91590227Sdillon		/* Clear wakeup events. */
916121816Sbrooks		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
917183397Sed		fxp_init_body(sc, 0);
91890227Sdillon		fxp_stop(sc);
91963670Snsayer		FXP_UNLOCK(sc);
92063670Snsayer	}
92163670Snsayer
92263670Snsayerfail:
92363670Snsayer	if (error)
92463670Snsayer		fxp_release(sc);
92563670Snsayer	return (error);
92663670Snsayer}
92763670Snsayer
92863670Snsayer/*
92963670Snsayer * Release all resources.  The softc lock should not be held and the
93063670Snsayer * interrupt should already be torn down.
931156783Semax */
93263670Snsayerstatic void
933166443Sbmsfxp_release(struct fxp_softc *sc)
93463670Snsayer{
935147256Sbrooks	struct fxp_rx *rxp;
936137101Sglebius	struct fxp_tx *txp;
93763670Snsayer	int i;
938240945Semaste
939183397Sed	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
94063670Snsayer	KASSERT(sc->ih == NULL,
94163670Snsayer	    ("fxp_release() called with intr handle still active"));
94263670Snsayer	if (sc->miibus)
94363670Snsayer		device_delete_child(sc->dev, sc->miibus);
94463670Snsayer	bus_generic_detach(sc->dev);
945194990Skib	ifmedia_removeall(&sc->sc_media);
946183397Sed	if (sc->fxp_desc.cbl_list) {
94763803Snsayer		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
94863670Snsayer		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
94963670Snsayer		    sc->cbl_map);
95063670Snsayer	}
951163915Sandre	if (sc->fxp_stats) {
952163915Sandre		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
95363670Snsayer		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
954163986Scsjp	}
95563670Snsayer	if (sc->mcsp) {
95663670Snsayer		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
957137101Sglebius		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
958111742Sdes	}
959166443Sbms	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
960166443Sbms	if (sc->fxp_rxmtag) {
961166443Sbms		for (i = 0; i < FXP_NRFABUFS; i++) {
962166443Sbms			rxp = &sc->fxp_desc.rx_list[i];
963166443Sbms			if (rxp->rx_mbuf != NULL) {
964166443Sbms				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
965166443Sbms				    BUS_DMASYNC_POSTREAD);
966166443Sbms				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
967166443Sbms				m_freem(rxp->rx_mbuf);
968166443Sbms			}
969166443Sbms			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
970166443Sbms		}
971166443Sbms		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
972166443Sbms		bus_dma_tag_destroy(sc->fxp_rxmtag);
973166443Sbms	}
974166443Sbms	if (sc->fxp_txmtag) {
975166443Sbms		for (i = 0; i < FXP_NTXCB; i++) {
976106939Ssam			txp = &sc->fxp_desc.tx_list[i];
977236724Strociny			if (txp->tx_mbuf != NULL) {
978137101Sglebius				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
979236724Strociny				    BUS_DMASYNC_POSTWRITE);
980106939Ssam				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
98163670Snsayer				m_freem(txp->tx_mbuf);
98263670Snsayer			}
98363670Snsayer			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
98463670Snsayer		}
98563670Snsayer		bus_dma_tag_destroy(sc->fxp_txmtag);
98663670Snsayer	}
98763670Snsayer	if (sc->fxp_stag)
98863670Snsayer		bus_dma_tag_destroy(sc->fxp_stag);
98963670Snsayer	if (sc->cbl_tag)
99063670Snsayer		bus_dma_tag_destroy(sc->cbl_tag);
99163670Snsayer	if (sc->mcs_tag)
99263670Snsayer		bus_dma_tag_destroy(sc->mcs_tag);
99363670Snsayer	if (sc->ifp)
994156783Semax		if_free(sc->ifp);
99563670Snsayer
99663670Snsayer	mtx_destroy(&sc->sc_mtx);
997147256Sbrooks}
998213028Sjhb
99963670Snsayer/*
1000121816Sbrooks * Detach interface.
1001183397Sed */
100263670Snsayerstatic int
100363670Snsayerfxp_detach(device_t dev)
1004213028Sjhb{
1005213028Sjhb	struct fxp_softc *sc = device_get_softc(dev);
1006121816Sbrooks
1007121816Sbrooks#ifdef DEVICE_POLLING
1008183397Sed	if (sc->ifp->if_capenable & IFCAP_POLLING)
100963803Snsayer		ether_poll_deregister(sc->ifp);
101063670Snsayer#endif
101183043Sbrooks
1012121816Sbrooks	FXP_LOCK(sc);
1013183397Sed	/*
101463803Snsayer	 * Stop DMA and drop transmit queue, but disable interrupts first.
101583805Sjhb	 */
101663670Snsayer	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1017213028Sjhb	fxp_stop(sc);
101863670Snsayer	FXP_UNLOCK(sc);
101963670Snsayer	callout_drain(&sc->stat_ch);
102063670Snsayer
102163670Snsayer	/*
102263670Snsayer	 * Close down routes etc.
102363670Snsayer	 */
102463670Snsayer	ether_ifdetach(sc->ifp);
1025156783Semax
1026156783Semax	/*
1027156783Semax	 * Unhook interrupt before dropping lock. This is to prevent
1028156783Semax	 * races with fxp_intr().
1029156783Semax	 */
1030156783Semax	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1031156783Semax	sc->ih = NULL;
1032156783Semax
1033156783Semax	/* Release our allocated resources. */
1034156783Semax	fxp_release(sc);
1035156783Semax	return (0);
1036156783Semax}
1037156783Semax
1038156783Semax/*
1039156783Semax * Device shutdown routine. Called at system shutdown after sync. The
1040156783Semax * main purpose of this routine is to shut off receiver DMA so that
1041183397Sed * kernel memory doesn't get clobbered during warmboot.
1042156783Semax */
1043156783Semaxstatic int
1044156783Semaxfxp_shutdown(device_t dev)
1045156783Semax{
1046156783Semax
1047183397Sed	/*
1048156783Semax	 * Make sure that DMA is disabled prior to reboot. Not doing
1049156783Semax	 * do could allow DMA to corrupt kernel memory during the
1050156783Semax	 * reboot before the driver initializes.
1051156783Semax	 */
1052156783Semax	return (fxp_suspend(dev));
1053183397Sed}
1054156783Semax
1055156783Semax/*
1056156783Semax * Device suspend routine.  Stop the interface and save some PCI
1057156783Semax * settings in case the BIOS doesn't restore them properly on
1058213028Sjhb * resume.
1059156783Semax */
1060156783Semaxstatic int
1061156783Semaxfxp_suspend(device_t dev)
1062156783Semax{
1063156783Semax	struct fxp_softc *sc = device_get_softc(dev);
1064156783Semax	struct ifnet *ifp;
1065156783Semax	int pmc;
1066156783Semax	uint16_t pmstat;
1067156783Semax
1068156783Semax	FXP_LOCK(sc);
1069156783Semax
1070156783Semax	ifp = sc->ifp;
1071156783Semax	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1072156783Semax		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1073213028Sjhb		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1074213028Sjhb		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1075213028Sjhb			/* Request PME. */
1076156783Semax			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1077156783Semax			sc->flags |= FXP_FLAG_WOL;
1078156783Semax			/* Reconfigure hardware to accept magic frames. */
1079156783Semax			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1080183397Sed			fxp_init_body(sc, 0);
1081156783Semax		}
1082156783Semax		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1083156783Semax	}
1084183397Sed	fxp_stop(sc);
1085156783Semax
1086156783Semax	sc->suspended = 1;
1087156783Semax
1088156783Semax	FXP_UNLOCK(sc);
1089156783Semax	return (0);
1090156783Semax}
1091156783Semax
1092156783Semax/*
1093156783Semax * Device resume routine. re-enable busmastering, and restart the interface if
1094156783Semax * appropriate.
1095156783Semax */
1096156783Semaxstatic int
1097156783Semaxfxp_resume(device_t dev)
1098156783Semax{
1099156783Semax	struct fxp_softc *sc = device_get_softc(dev);
1100213028Sjhb	struct ifnet *ifp = sc->ifp;
1101156783Semax	int pmc;
1102156783Semax	uint16_t pmstat;
1103156783Semax
1104156783Semax	FXP_LOCK(sc);
1105156783Semax
1106156783Semax	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1107156783Semax		sc->flags &= ~FXP_FLAG_WOL;
1108156783Semax		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1109156783Semax		/* Disable PME and clear PME status. */
1110156783Semax		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1111156783Semax		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1112213028Sjhb		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1113156783Semax			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1114156783Semax			    CSR_READ_1(sc, FXP_CSR_PMDR));
1115156783Semax	}
1116156783Semax
1117	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1118	DELAY(10);
1119
1120	/* reinitialize interface if necessary */
1121	if (ifp->if_flags & IFF_UP)
1122		fxp_init_body(sc, 1);
1123
1124	sc->suspended = 0;
1125
1126	FXP_UNLOCK(sc);
1127	return (0);
1128}
1129
1130static void
1131fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1132{
1133	uint16_t reg;
1134	int x;
1135
1136	/*
1137	 * Shift in data.
1138	 */
1139	for (x = 1 << (length - 1); x; x >>= 1) {
1140		if (data & x)
1141			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1142		else
1143			reg = FXP_EEPROM_EECS;
1144		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1145		DELAY(1);
1146		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1147		DELAY(1);
1148		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1149		DELAY(1);
1150	}
1151}
1152
1153/*
1154 * Read from the serial EEPROM. Basically, you manually shift in
1155 * the read opcode (one bit at a time) and then shift in the address,
1156 * and then you shift out the data (all of this one bit at a time).
1157 * The word size is 16 bits, so you have to provide the address for
1158 * every 16 bits of data.
1159 */
1160static uint16_t
1161fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1162{
1163	uint16_t reg, data;
1164	int x;
1165
1166	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1167	/*
1168	 * Shift in read opcode.
1169	 */
1170	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1171	/*
1172	 * Shift in address.
1173	 */
1174	data = 0;
1175	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1176		if (offset & x)
1177			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1178		else
1179			reg = FXP_EEPROM_EECS;
1180		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1181		DELAY(1);
1182		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1183		DELAY(1);
1184		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1185		DELAY(1);
1186		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1187		data++;
1188		if (autosize && reg == 0) {
1189			sc->eeprom_size = data;
1190			break;
1191		}
1192	}
1193	/*
1194	 * Shift out data.
1195	 */
1196	data = 0;
1197	reg = FXP_EEPROM_EECS;
1198	for (x = 1 << 15; x; x >>= 1) {
1199		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1200		DELAY(1);
1201		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1202			data |= x;
1203		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1204		DELAY(1);
1205	}
1206	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1207	DELAY(1);
1208
1209	return (data);
1210}
1211
1212static void
1213fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1214{
1215	int i;
1216
1217	/*
1218	 * Erase/write enable.
1219	 */
1220	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1221	fxp_eeprom_shiftin(sc, 0x4, 3);
1222	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1223	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1224	DELAY(1);
1225	/*
1226	 * Shift in write opcode, address, data.
1227	 */
1228	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1229	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1230	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1231	fxp_eeprom_shiftin(sc, data, 16);
1232	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1233	DELAY(1);
1234	/*
1235	 * Wait for EEPROM to finish up.
1236	 */
1237	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1238	DELAY(1);
1239	for (i = 0; i < 1000; i++) {
1240		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1241			break;
1242		DELAY(50);
1243	}
1244	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1245	DELAY(1);
1246	/*
1247	 * Erase/write disable.
1248	 */
1249	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1250	fxp_eeprom_shiftin(sc, 0x4, 3);
1251	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1252	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1253	DELAY(1);
1254}
1255
1256/*
1257 * From NetBSD:
1258 *
1259 * Figure out EEPROM size.
1260 *
1261 * 559's can have either 64-word or 256-word EEPROMs, the 558
1262 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1263 * talks about the existance of 16 to 256 word EEPROMs.
1264 *
1265 * The only known sizes are 64 and 256, where the 256 version is used
1266 * by CardBus cards to store CIS information.
1267 *
1268 * The address is shifted in msb-to-lsb, and after the last
1269 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1270 * after which follows the actual data. We try to detect this zero, by
1271 * probing the data-out bit in the EEPROM control register just after
1272 * having shifted in a bit. If the bit is zero, we assume we've
1273 * shifted enough address bits. The data-out should be tri-state,
1274 * before this, which should translate to a logical one.
1275 */
1276static void
1277fxp_autosize_eeprom(struct fxp_softc *sc)
1278{
1279
1280	/* guess maximum size of 256 words */
1281	sc->eeprom_size = 8;
1282
1283	/* autosize */
1284	(void) fxp_eeprom_getword(sc, 0, 1);
1285}
1286
1287static void
1288fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1289{
1290	int i;
1291
1292	for (i = 0; i < words; i++)
1293		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1294}
1295
1296static void
1297fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1298{
1299	int i;
1300
1301	for (i = 0; i < words; i++)
1302		fxp_eeprom_putword(sc, offset + i, data[i]);
1303}
1304
1305static void
1306fxp_load_eeprom(struct fxp_softc *sc)
1307{
1308	int i;
1309	uint16_t cksum;
1310
1311	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1312	cksum = 0;
1313	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1314		cksum += sc->eeprom[i];
1315	cksum = 0xBABA - cksum;
1316	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1317		device_printf(sc->dev,
1318		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1319		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1320}
1321
1322/*
1323 * Grab the softc lock and call the real fxp_start_body() routine
1324 */
1325static void
1326fxp_start(struct ifnet *ifp)
1327{
1328	struct fxp_softc *sc = ifp->if_softc;
1329
1330	FXP_LOCK(sc);
1331	fxp_start_body(ifp);
1332	FXP_UNLOCK(sc);
1333}
1334
1335/*
1336 * Start packet transmission on the interface.
1337 * This routine must be called with the softc lock held, and is an
1338 * internal entry point only.
1339 */
1340static void
1341fxp_start_body(struct ifnet *ifp)
1342{
1343	struct fxp_softc *sc = ifp->if_softc;
1344	struct mbuf *mb_head;
1345	int txqueued;
1346
1347	FXP_LOCK_ASSERT(sc, MA_OWNED);
1348
1349	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1350	    IFF_DRV_RUNNING)
1351		return;
1352
1353	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1354		fxp_txeof(sc);
1355	/*
1356	 * We're finished if there is nothing more to add to the list or if
1357	 * we're all filled up with buffers to transmit.
1358	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1359	 *       a NOP command when needed.
1360	 */
1361	txqueued = 0;
1362	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1363	    sc->tx_queued < FXP_NTXCB - 1) {
1364
1365		/*
1366		 * Grab a packet to transmit.
1367		 */
1368		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1369		if (mb_head == NULL)
1370			break;
1371
1372		if (fxp_encap(sc, &mb_head)) {
1373			if (mb_head == NULL)
1374				break;
1375			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1376			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1377		}
1378		txqueued++;
1379		/*
1380		 * Pass packet to bpf if there is a listener.
1381		 */
1382		BPF_MTAP(ifp, mb_head);
1383	}
1384
1385	/*
1386	 * We're finished. If we added to the list, issue a RESUME to get DMA
1387	 * going again if suspended.
1388	 */
1389	if (txqueued > 0) {
1390		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1391		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1392		fxp_scb_wait(sc);
1393		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1394		/*
1395		 * Set a 5 second timer just in case we don't hear
1396		 * from the card again.
1397		 */
1398		sc->watchdog_timer = 5;
1399	}
1400}
1401
1402static int
1403fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1404{
1405	struct ifnet *ifp;
1406	struct mbuf *m;
1407	struct fxp_tx *txp;
1408	struct fxp_cb_tx *cbp;
1409	struct tcphdr *tcp;
1410	bus_dma_segment_t segs[FXP_NTXSEG];
1411	int error, i, nseg, tcp_payload;
1412
1413	FXP_LOCK_ASSERT(sc, MA_OWNED);
1414	ifp = sc->ifp;
1415
1416	tcp_payload = 0;
1417	tcp = NULL;
1418	/*
1419	 * Get pointer to next available tx desc.
1420	 */
1421	txp = sc->fxp_desc.tx_last->tx_next;
1422
1423	/*
1424	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1425	 * Ethernet Controller Family Open Source Software
1426	 * Developer Manual says:
1427	 *   Using software parsing is only allowed with legal
1428	 *   TCP/IP or UDP/IP packets.
1429	 *   ...
1430	 *   For all other datagrams, hardware parsing must
1431	 *   be used.
1432	 * Software parsing appears to truncate ICMP and
1433	 * fragmented UDP packets that contain one to three
1434	 * bytes in the second (and final) mbuf of the packet.
1435	 */
1436	if (sc->flags & FXP_FLAG_EXT_RFA)
1437		txp->tx_cb->ipcb_ip_activation_high =
1438		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1439
1440	m = *m_head;
1441	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1442		/*
1443		 * 82550/82551 requires ethernet/IP/TCP headers must be
1444		 * contained in the first active transmit buffer.
1445		 */
1446		struct ether_header *eh;
1447		struct ip *ip;
1448		uint32_t ip_off, poff;
1449
1450		if (M_WRITABLE(*m_head) == 0) {
1451			/* Get a writable copy. */
1452			m = m_dup(*m_head, M_NOWAIT);
1453			m_freem(*m_head);
1454			if (m == NULL) {
1455				*m_head = NULL;
1456				return (ENOBUFS);
1457			}
1458			*m_head = m;
1459		}
1460		ip_off = sizeof(struct ether_header);
1461		m = m_pullup(*m_head, ip_off);
1462		if (m == NULL) {
1463			*m_head = NULL;
1464			return (ENOBUFS);
1465		}
1466		eh = mtod(m, struct ether_header *);
1467		/* Check the existence of VLAN tag. */
1468		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1469			ip_off = sizeof(struct ether_vlan_header);
1470			m = m_pullup(m, ip_off);
1471			if (m == NULL) {
1472				*m_head = NULL;
1473				return (ENOBUFS);
1474			}
1475		}
1476		m = m_pullup(m, ip_off + sizeof(struct ip));
1477		if (m == NULL) {
1478			*m_head = NULL;
1479			return (ENOBUFS);
1480		}
1481		ip = (struct ip *)(mtod(m, char *) + ip_off);
1482		poff = ip_off + (ip->ip_hl << 2);
1483		m = m_pullup(m, poff + sizeof(struct tcphdr));
1484		if (m == NULL) {
1485			*m_head = NULL;
1486			return (ENOBUFS);
1487		}
1488		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1489		m = m_pullup(m, poff + (tcp->th_off << 2));
1490		if (m == NULL) {
1491			*m_head = NULL;
1492			return (ENOBUFS);
1493		}
1494
1495		/*
1496		 * Since 82550/82551 doesn't modify IP length and pseudo
1497		 * checksum in the first frame driver should compute it.
1498		 */
1499		ip = (struct ip *)(mtod(m, char *) + ip_off);
1500		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1501		ip->ip_sum = 0;
1502		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1503		    (tcp->th_off << 2));
1504		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1505		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1506		    m->m_pkthdr.tso_segsz));
1507		/* Compute total TCP payload. */
1508		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1509		tcp_payload -= tcp->th_off << 2;
1510		*m_head = m;
1511	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1512		/*
1513		 * Deal with TCP/IP checksum offload. Note that
1514		 * in order for TCP checksum offload to work,
1515		 * the pseudo header checksum must have already
1516		 * been computed and stored in the checksum field
1517		 * in the TCP header. The stack should have
1518		 * already done this for us.
1519		 */
1520		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1521		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1522			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1523
1524#ifdef FXP_IP_CSUM_WAR
1525		/*
1526		 * XXX The 82550 chip appears to have trouble
1527		 * dealing with IP header checksums in very small
1528		 * datagrams, namely fragments from 1 to 3 bytes
1529		 * in size. For example, say you want to transmit
1530		 * a UDP packet of 1473 bytes. The packet will be
1531		 * fragmented over two IP datagrams, the latter
1532		 * containing only one byte of data. The 82550 will
1533		 * botch the header checksum on the 1-byte fragment.
1534		 * As long as the datagram contains 4 or more bytes
1535		 * of data, you're ok.
1536		 *
1537                 * The following code attempts to work around this
1538		 * problem: if the datagram is less than 38 bytes
1539		 * in size (14 bytes ether header, 20 bytes IP header,
1540		 * plus 4 bytes of data), we punt and compute the IP
1541		 * header checksum by hand. This workaround doesn't
1542		 * work very well, however, since it can be fooled
1543		 * by things like VLAN tags and IP options that make
1544		 * the header sizes/offsets vary.
1545		 */
1546
1547		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1548			if (m->m_pkthdr.len < 38) {
1549				struct ip *ip;
1550				m->m_data += ETHER_HDR_LEN;
1551				ip = mtod(m, struct ip *);
1552				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1553				m->m_data -= ETHER_HDR_LEN;
1554				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1555			} else {
1556				txp->tx_cb->ipcb_ip_activation_high =
1557				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1558				txp->tx_cb->ipcb_ip_schedule |=
1559				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1560			}
1561		}
1562#endif
1563	}
1564
1565	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1566	    segs, &nseg, 0);
1567	if (error == EFBIG) {
1568		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1569		if (m == NULL) {
1570			m_freem(*m_head);
1571			*m_head = NULL;
1572			return (ENOMEM);
1573		}
1574		*m_head = m;
1575		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1576		    *m_head, segs, &nseg, 0);
1577		if (error != 0) {
1578			m_freem(*m_head);
1579			*m_head = NULL;
1580			return (ENOMEM);
1581		}
1582	} else if (error != 0)
1583		return (error);
1584	if (nseg == 0) {
1585		m_freem(*m_head);
1586		*m_head = NULL;
1587		return (EIO);
1588	}
1589
1590	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1591	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1592
1593	cbp = txp->tx_cb;
1594	for (i = 0; i < nseg; i++) {
1595		/*
1596		 * If this is an 82550/82551, then we're using extended
1597		 * TxCBs _and_ we're using checksum offload. This means
1598		 * that the TxCB is really an IPCB. One major difference
1599		 * between the two is that with plain extended TxCBs,
1600		 * the bottom half of the TxCB contains two entries from
1601		 * the TBD array, whereas IPCBs contain just one entry:
1602		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1603		 * checksum offload control bits. So to make things work
1604		 * right, we have to start filling in the TBD array
1605		 * starting from a different place depending on whether
1606		 * the chip is an 82550/82551 or not.
1607		 */
1608		if (sc->flags & FXP_FLAG_EXT_RFA) {
1609			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1610			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1611		} else {
1612			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1613			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1614		}
1615	}
1616	if (sc->flags & FXP_FLAG_EXT_RFA) {
1617		/* Configure dynamic TBD for 82550/82551. */
1618		cbp->tbd_number = 0xFF;
1619		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1620	} else
1621		cbp->tbd_number = nseg;
1622	/* Configure TSO. */
1623	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1624		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1625		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1626		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1627		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1628		    FXP_IPCB_TCP_PACKET |
1629		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1630	}
1631	/* Configure VLAN hardware tag insertion. */
1632	if ((m->m_flags & M_VLANTAG) != 0) {
1633		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1634		txp->tx_cb->ipcb_ip_activation_high |=
1635		    FXP_IPCB_INSERTVLAN_ENABLE;
1636	}
1637
1638	txp->tx_mbuf = m;
1639	txp->tx_cb->cb_status = 0;
1640	txp->tx_cb->byte_count = 0;
1641	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1642		txp->tx_cb->cb_command =
1643		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1644		    FXP_CB_COMMAND_S);
1645	else
1646		txp->tx_cb->cb_command =
1647		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1648		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1649	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1650		txp->tx_cb->tx_threshold = tx_threshold;
1651
1652	/*
1653	 * Advance the end of list forward.
1654	 */
1655	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1656	sc->fxp_desc.tx_last = txp;
1657
1658	/*
1659	 * Advance the beginning of the list forward if there are
1660	 * no other packets queued (when nothing is queued, tx_first
1661	 * sits on the last TxCB that was sent out).
1662	 */
1663	if (sc->tx_queued == 0)
1664		sc->fxp_desc.tx_first = txp;
1665
1666	sc->tx_queued++;
1667
1668	return (0);
1669}
1670
1671#ifdef DEVICE_POLLING
1672static poll_handler_t fxp_poll;
1673
1674static int
1675fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1676{
1677	struct fxp_softc *sc = ifp->if_softc;
1678	uint8_t statack;
1679	int rx_npkts = 0;
1680
1681	FXP_LOCK(sc);
1682	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1683		FXP_UNLOCK(sc);
1684		return (rx_npkts);
1685	}
1686
1687	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1688	    FXP_SCB_STATACK_FR;
1689	if (cmd == POLL_AND_CHECK_STATUS) {
1690		uint8_t tmp;
1691
1692		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1693		if (tmp == 0xff || tmp == 0) {
1694			FXP_UNLOCK(sc);
1695			return (rx_npkts); /* nothing to do */
1696		}
1697		tmp &= ~statack;
1698		/* ack what we can */
1699		if (tmp != 0)
1700			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1701		statack |= tmp;
1702	}
1703	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1704	FXP_UNLOCK(sc);
1705	return (rx_npkts);
1706}
1707#endif /* DEVICE_POLLING */
1708
1709/*
1710 * Process interface interrupts.
1711 */
1712static void
1713fxp_intr(void *xsc)
1714{
1715	struct fxp_softc *sc = xsc;
1716	struct ifnet *ifp = sc->ifp;
1717	uint8_t statack;
1718
1719	FXP_LOCK(sc);
1720	if (sc->suspended) {
1721		FXP_UNLOCK(sc);
1722		return;
1723	}
1724
1725#ifdef DEVICE_POLLING
1726	if (ifp->if_capenable & IFCAP_POLLING) {
1727		FXP_UNLOCK(sc);
1728		return;
1729	}
1730#endif
1731	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1732		/*
1733		 * It should not be possible to have all bits set; the
1734		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1735		 * all bits are set, this may indicate that the card has
1736		 * been physically ejected, so ignore it.
1737		 */
1738		if (statack == 0xff) {
1739			FXP_UNLOCK(sc);
1740			return;
1741		}
1742
1743		/*
1744		 * First ACK all the interrupts in this pass.
1745		 */
1746		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1747		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1748			fxp_intr_body(sc, ifp, statack, -1);
1749	}
1750	FXP_UNLOCK(sc);
1751}
1752
1753static void
1754fxp_txeof(struct fxp_softc *sc)
1755{
1756	struct ifnet *ifp;
1757	struct fxp_tx *txp;
1758
1759	ifp = sc->ifp;
1760	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1761	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1762	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1763	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1764	    txp = txp->tx_next) {
1765		if (txp->tx_mbuf != NULL) {
1766			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1767			    BUS_DMASYNC_POSTWRITE);
1768			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1769			m_freem(txp->tx_mbuf);
1770			txp->tx_mbuf = NULL;
1771			/* clear this to reset csum offload bits */
1772			txp->tx_cb->tbd[0].tb_addr = 0;
1773		}
1774		sc->tx_queued--;
1775		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1776	}
1777	sc->fxp_desc.tx_first = txp;
1778	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1779	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1780	if (sc->tx_queued == 0)
1781		sc->watchdog_timer = 0;
1782}
1783
1784static void
1785fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1786    uint16_t status, int pos)
1787{
1788	struct ether_header *eh;
1789	struct ip *ip;
1790	struct udphdr *uh;
1791	int32_t hlen, len, pktlen, temp32;
1792	uint16_t csum, *opts;
1793
1794	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1795		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1796			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1797				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1798			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1799				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1800			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1801			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1802				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1803				    CSUM_PSEUDO_HDR;
1804				m->m_pkthdr.csum_data = 0xffff;
1805			}
1806		}
1807		return;
1808	}
1809
1810	pktlen = m->m_pkthdr.len;
1811	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1812		return;
1813	eh = mtod(m, struct ether_header *);
1814	if (eh->ether_type != htons(ETHERTYPE_IP))
1815		return;
1816	ip = (struct ip *)(eh + 1);
1817	if (ip->ip_v != IPVERSION)
1818		return;
1819
1820	hlen = ip->ip_hl << 2;
1821	pktlen -= sizeof(struct ether_header);
1822	if (hlen < sizeof(struct ip))
1823		return;
1824	if (ntohs(ip->ip_len) < hlen)
1825		return;
1826	if (ntohs(ip->ip_len) != pktlen)
1827		return;
1828	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1829		return;	/* can't handle fragmented packet */
1830
1831	switch (ip->ip_p) {
1832	case IPPROTO_TCP:
1833		if (pktlen < (hlen + sizeof(struct tcphdr)))
1834			return;
1835		break;
1836	case IPPROTO_UDP:
1837		if (pktlen < (hlen + sizeof(struct udphdr)))
1838			return;
1839		uh = (struct udphdr *)((caddr_t)ip + hlen);
1840		if (uh->uh_sum == 0)
1841			return; /* no checksum */
1842		break;
1843	default:
1844		return;
1845	}
1846	/* Extract computed checksum. */
1847	csum = be16dec(mtod(m, char *) + pos);
1848	/* checksum fixup for IP options */
1849	len = hlen - sizeof(struct ip);
1850	if (len > 0) {
1851		opts = (uint16_t *)(ip + 1);
1852		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1853			temp32 = csum - *opts;
1854			temp32 = (temp32 >> 16) + (temp32 & 65535);
1855			csum = temp32 & 65535;
1856		}
1857	}
1858	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1859	m->m_pkthdr.csum_data = csum;
1860}
1861
1862static int
1863fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1864    int count)
1865{
1866	struct mbuf *m;
1867	struct fxp_rx *rxp;
1868	struct fxp_rfa *rfa;
1869	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1870	int rx_npkts;
1871	uint16_t status;
1872
1873	rx_npkts = 0;
1874	FXP_LOCK_ASSERT(sc, MA_OWNED);
1875
1876	if (rnr)
1877		sc->rnr++;
1878#ifdef DEVICE_POLLING
1879	/* Pick up a deferred RNR condition if `count' ran out last time. */
1880	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1881		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1882		rnr = 1;
1883	}
1884#endif
1885
1886	/*
1887	 * Free any finished transmit mbuf chains.
1888	 *
1889	 * Handle the CNA event likt a CXTNO event. It used to
1890	 * be that this event (control unit not ready) was not
1891	 * encountered, but it is now with the SMPng modifications.
1892	 * The exact sequence of events that occur when the interface
1893	 * is brought up are different now, and if this event
1894	 * goes unhandled, the configuration/rxfilter setup sequence
1895	 * can stall for several seconds. The result is that no
1896	 * packets go out onto the wire for about 5 to 10 seconds
1897	 * after the interface is ifconfig'ed for the first time.
1898	 */
1899	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1900		fxp_txeof(sc);
1901
1902	/*
1903	 * Try to start more packets transmitting.
1904	 */
1905	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1906		fxp_start_body(ifp);
1907
1908	/*
1909	 * Just return if nothing happened on the receive side.
1910	 */
1911	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1912		return (rx_npkts);
1913
1914	/*
1915	 * Process receiver interrupts. If a no-resource (RNR)
1916	 * condition exists, get whatever packets we can and
1917	 * re-start the receiver.
1918	 *
1919	 * When using polling, we do not process the list to completion,
1920	 * so when we get an RNR interrupt we must defer the restart
1921	 * until we hit the last buffer with the C bit set.
1922	 * If we run out of cycles and rfa_headm has the C bit set,
1923	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1924	 * that the info will be used in the subsequent polling cycle.
1925	 */
1926	for (;;) {
1927		rxp = sc->fxp_desc.rx_head;
1928		m = rxp->rx_mbuf;
1929		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1930		    RFA_ALIGNMENT_FUDGE);
1931		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1932		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1933
1934#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1935		if (count >= 0 && count-- == 0) {
1936			if (rnr) {
1937				/* Defer RNR processing until the next time. */
1938				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1939				rnr = 0;
1940			}
1941			break;
1942		}
1943#endif /* DEVICE_POLLING */
1944
1945		status = le16toh(rfa->rfa_status);
1946		if ((status & FXP_RFA_STATUS_C) == 0)
1947			break;
1948
1949		if ((status & FXP_RFA_STATUS_RNR) != 0)
1950			rnr++;
1951		/*
1952		 * Advance head forward.
1953		 */
1954		sc->fxp_desc.rx_head = rxp->rx_next;
1955
1956		/*
1957		 * Add a new buffer to the receive chain.
1958		 * If this fails, the old buffer is recycled
1959		 * instead.
1960		 */
1961		if (fxp_new_rfabuf(sc, rxp) == 0) {
1962			int total_len;
1963
1964			/*
1965			 * Fetch packet length (the top 2 bits of
1966			 * actual_size are flags set by the controller
1967			 * upon completion), and drop the packet in case
1968			 * of bogus length or CRC errors.
1969			 */
1970			total_len = le16toh(rfa->actual_size) & 0x3fff;
1971			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1972			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1973				/* Adjust for appended checksum bytes. */
1974				total_len -= 2;
1975			}
1976			if (total_len < (int)sizeof(struct ether_header) ||
1977			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1978			    sc->rfa_size) ||
1979			    status & (FXP_RFA_STATUS_CRC |
1980			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1981				m_freem(m);
1982				fxp_add_rfabuf(sc, rxp);
1983				continue;
1984			}
1985
1986			m->m_pkthdr.len = m->m_len = total_len;
1987			m->m_pkthdr.rcvif = ifp;
1988
1989                        /* Do IP checksum checking. */
1990			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1991				fxp_rxcsum(sc, ifp, m, status, total_len);
1992			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1993			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1994				m->m_pkthdr.ether_vtag =
1995				    ntohs(rfa->rfax_vlan_id);
1996				m->m_flags |= M_VLANTAG;
1997			}
1998			/*
1999			 * Drop locks before calling if_input() since it
2000			 * may re-enter fxp_start() in the netisr case.
2001			 * This would result in a lock reversal.  Better
2002			 * performance might be obtained by chaining all
2003			 * packets received, dropping the lock, and then
2004			 * calling if_input() on each one.
2005			 */
2006			FXP_UNLOCK(sc);
2007			(*ifp->if_input)(ifp, m);
2008			FXP_LOCK(sc);
2009			rx_npkts++;
2010			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2011				return (rx_npkts);
2012		} else {
2013			/* Reuse RFA and loaded DMA map. */
2014			ifp->if_iqdrops++;
2015			fxp_discard_rfabuf(sc, rxp);
2016		}
2017		fxp_add_rfabuf(sc, rxp);
2018	}
2019	if (rnr) {
2020		fxp_scb_wait(sc);
2021		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2022		    sc->fxp_desc.rx_head->rx_addr);
2023		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2024	}
2025	return (rx_npkts);
2026}
2027
2028static void
2029fxp_update_stats(struct fxp_softc *sc)
2030{
2031	struct ifnet *ifp = sc->ifp;
2032	struct fxp_stats *sp = sc->fxp_stats;
2033	struct fxp_hwstats *hsp;
2034	uint32_t *status;
2035
2036	FXP_LOCK_ASSERT(sc, MA_OWNED);
2037
2038	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2039	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2040	/* Update statistical counters. */
2041	if (sc->revision >= FXP_REV_82559_A0)
2042		status = &sp->completion_status;
2043	else if (sc->revision >= FXP_REV_82558_A4)
2044		status = (uint32_t *)&sp->tx_tco;
2045	else
2046		status = &sp->tx_pause;
2047	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2048		hsp = &sc->fxp_hwstats;
2049		hsp->tx_good += le32toh(sp->tx_good);
2050		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2051		hsp->tx_latecols += le32toh(sp->tx_latecols);
2052		hsp->tx_underruns += le32toh(sp->tx_underruns);
2053		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2054		hsp->tx_deffered += le32toh(sp->tx_deffered);
2055		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2056		hsp->tx_multiple_collisions +=
2057		    le32toh(sp->tx_multiple_collisions);
2058		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2059		hsp->rx_good += le32toh(sp->rx_good);
2060		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2061		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2062		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2063		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2064		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2065		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2066		hsp->tx_pause += le32toh(sp->tx_pause);
2067		hsp->rx_pause += le32toh(sp->rx_pause);
2068		hsp->rx_controls += le32toh(sp->rx_controls);
2069		hsp->tx_tco += le16toh(sp->tx_tco);
2070		hsp->rx_tco += le16toh(sp->rx_tco);
2071
2072		ifp->if_opackets += le32toh(sp->tx_good);
2073		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2074		if (sp->rx_good) {
2075			ifp->if_ipackets += le32toh(sp->rx_good);
2076			sc->rx_idle_secs = 0;
2077		} else if (sc->flags & FXP_FLAG_RXBUG) {
2078			/*
2079			 * Receiver's been idle for another second.
2080			 */
2081			sc->rx_idle_secs++;
2082		}
2083		ifp->if_ierrors +=
2084		    le32toh(sp->rx_crc_errors) +
2085		    le32toh(sp->rx_alignment_errors) +
2086		    le32toh(sp->rx_rnr_errors) +
2087		    le32toh(sp->rx_overrun_errors);
2088		/*
2089		 * If any transmit underruns occured, bump up the transmit
2090		 * threshold by another 512 bytes (64 * 8).
2091		 */
2092		if (sp->tx_underruns) {
2093			ifp->if_oerrors += le32toh(sp->tx_underruns);
2094			if (tx_threshold < 192)
2095				tx_threshold += 64;
2096		}
2097		*status = 0;
2098		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2099		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2100	}
2101}
2102
2103/*
2104 * Update packet in/out/collision statistics. The i82557 doesn't
2105 * allow you to access these counters without doing a fairly
2106 * expensive DMA to get _all_ of the statistics it maintains, so
2107 * we do this operation here only once per second. The statistics
2108 * counters in the kernel are updated from the previous dump-stats
2109 * DMA and then a new dump-stats DMA is started. The on-chip
2110 * counters are zeroed when the DMA completes. If we can't start
2111 * the DMA immediately, we don't wait - we just prepare to read
2112 * them again next time.
2113 */
2114static void
2115fxp_tick(void *xsc)
2116{
2117	struct fxp_softc *sc = xsc;
2118	struct ifnet *ifp = sc->ifp;
2119
2120	FXP_LOCK_ASSERT(sc, MA_OWNED);
2121
2122	/* Update statistical counters. */
2123	fxp_update_stats(sc);
2124
2125	/*
2126	 * Release any xmit buffers that have completed DMA. This isn't
2127	 * strictly necessary to do here, but it's advantagous for mbufs
2128	 * with external storage to be released in a timely manner rather
2129	 * than being defered for a potentially long time. This limits
2130	 * the delay to a maximum of one second.
2131	 */
2132	fxp_txeof(sc);
2133
2134	/*
2135	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2136	 * then assume the receiver has locked up and attempt to clear
2137	 * the condition by reprogramming the multicast filter. This is
2138	 * a work-around for a bug in the 82557 where the receiver locks
2139	 * up if it gets certain types of garbage in the syncronization
2140	 * bits prior to the packet header. This bug is supposed to only
2141	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2142	 * mode as well (perhaps due to a 10/100 speed transition).
2143	 */
2144	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2145		sc->rx_idle_secs = 0;
2146		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2147			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2148			fxp_init_body(sc, 1);
2149		}
2150		return;
2151	}
2152	/*
2153	 * If there is no pending command, start another stats
2154	 * dump. Otherwise punt for now.
2155	 */
2156	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2157		/*
2158		 * Start another stats dump.
2159		 */
2160		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2161	}
2162	if (sc->miibus != NULL)
2163		mii_tick(device_get_softc(sc->miibus));
2164
2165	/*
2166	 * Check that chip hasn't hung.
2167	 */
2168	fxp_watchdog(sc);
2169
2170	/*
2171	 * Schedule another timeout one second from now.
2172	 */
2173	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2174}
2175
2176/*
2177 * Stop the interface. Cancels the statistics updater and resets
2178 * the interface.
2179 */
2180static void
2181fxp_stop(struct fxp_softc *sc)
2182{
2183	struct ifnet *ifp = sc->ifp;
2184	struct fxp_tx *txp;
2185	int i;
2186
2187	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2188	sc->watchdog_timer = 0;
2189
2190	/*
2191	 * Cancel stats updater.
2192	 */
2193	callout_stop(&sc->stat_ch);
2194
2195	/*
2196	 * Preserve PCI configuration, configure, IA/multicast
2197	 * setup and put RU and CU into idle state.
2198	 */
2199	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2200	DELAY(50);
2201	/* Disable interrupts. */
2202	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2203
2204	fxp_update_stats(sc);
2205
2206	/*
2207	 * Release any xmit buffers.
2208	 */
2209	txp = sc->fxp_desc.tx_list;
2210	if (txp != NULL) {
2211		for (i = 0; i < FXP_NTXCB; i++) {
2212			if (txp[i].tx_mbuf != NULL) {
2213				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2214				    BUS_DMASYNC_POSTWRITE);
2215				bus_dmamap_unload(sc->fxp_txmtag,
2216				    txp[i].tx_map);
2217				m_freem(txp[i].tx_mbuf);
2218				txp[i].tx_mbuf = NULL;
2219				/* clear this to reset csum offload bits */
2220				txp[i].tx_cb->tbd[0].tb_addr = 0;
2221			}
2222		}
2223	}
2224	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2225	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2226	sc->tx_queued = 0;
2227}
2228
2229/*
2230 * Watchdog/transmission transmit timeout handler. Called when a
2231 * transmission is started on the interface, but no interrupt is
2232 * received before the timeout. This usually indicates that the
2233 * card has wedged for some reason.
2234 */
2235static void
2236fxp_watchdog(struct fxp_softc *sc)
2237{
2238
2239	FXP_LOCK_ASSERT(sc, MA_OWNED);
2240
2241	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2242		return;
2243
2244	device_printf(sc->dev, "device timeout\n");
2245	sc->ifp->if_oerrors++;
2246
2247	sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2248	fxp_init_body(sc, 1);
2249}
2250
2251/*
2252 * Acquire locks and then call the real initialization function.  This
2253 * is necessary because ether_ioctl() calls if_init() and this would
2254 * result in mutex recursion if the mutex was held.
2255 */
2256static void
2257fxp_init(void *xsc)
2258{
2259	struct fxp_softc *sc = xsc;
2260
2261	FXP_LOCK(sc);
2262	fxp_init_body(sc, 1);
2263	FXP_UNLOCK(sc);
2264}
2265
2266/*
2267 * Perform device initialization. This routine must be called with the
2268 * softc lock held.
2269 */
2270static void
2271fxp_init_body(struct fxp_softc *sc, int setmedia)
2272{
2273	struct ifnet *ifp = sc->ifp;
2274	struct mii_data *mii;
2275	struct fxp_cb_config *cbp;
2276	struct fxp_cb_ias *cb_ias;
2277	struct fxp_cb_tx *tcbp;
2278	struct fxp_tx *txp;
2279	int i, prm;
2280
2281	FXP_LOCK_ASSERT(sc, MA_OWNED);
2282
2283	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2284		return;
2285
2286	/*
2287	 * Cancel any pending I/O
2288	 */
2289	fxp_stop(sc);
2290
2291	/*
2292	 * Issue software reset, which also unloads the microcode.
2293	 */
2294	sc->flags &= ~FXP_FLAG_UCODE;
2295	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2296	DELAY(50);
2297
2298	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2299
2300	/*
2301	 * Initialize base of CBL and RFA memory. Loading with zero
2302	 * sets it up for regular linear addressing.
2303	 */
2304	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2305	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2306
2307	fxp_scb_wait(sc);
2308	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2309
2310	/*
2311	 * Initialize base of dump-stats buffer.
2312	 */
2313	fxp_scb_wait(sc);
2314	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2315	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2316	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2317	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2318	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2319
2320	/*
2321	 * Attempt to load microcode if requested.
2322	 * For ICH based controllers do not load microcode.
2323	 */
2324	if (sc->ident->ich == 0) {
2325		if (ifp->if_flags & IFF_LINK0 &&
2326		    (sc->flags & FXP_FLAG_UCODE) == 0)
2327			fxp_load_ucode(sc);
2328	}
2329
2330	/*
2331	 * Set IFF_ALLMULTI status. It's needed in configure action
2332	 * command.
2333	 */
2334	fxp_mc_addrs(sc);
2335
2336	/*
2337	 * We temporarily use memory that contains the TxCB list to
2338	 * construct the config CB. The TxCB list memory is rebuilt
2339	 * later.
2340	 */
2341	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2342
2343	/*
2344	 * This bcopy is kind of disgusting, but there are a bunch of must be
2345	 * zero and must be one bits in this structure and this is the easiest
2346	 * way to initialize them all to proper values.
2347	 */
2348	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2349
2350	cbp->cb_status =	0;
2351	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2352	    FXP_CB_COMMAND_EL);
2353	cbp->link_addr =	0xffffffff;	/* (no) next command */
2354	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2355	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2356	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2357	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2358	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2359	cbp->type_enable =	0;	/* actually reserved */
2360	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2361	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2362	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2363	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2364	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2365	cbp->late_scb =		0;	/* (don't) defer SCB update */
2366	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2367	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2368	cbp->ci_int =		1;	/* interrupt on CU idle */
2369	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2370	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2371	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2372	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2373	cbp->disc_short_rx =	!prm;	/* discard short packets */
2374	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2375	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2376	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2377	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2378	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2379	cbp->csma_dis =		0;	/* (don't) disable link */
2380	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2381	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2382	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2383	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2384	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2385	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2386	cbp->nsai =		1;	/* (don't) disable source addr insert */
2387	cbp->preamble_length =	2;	/* (7 byte) preamble */
2388	cbp->loopback =		0;	/* (don't) loopback */
2389	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2390	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2391	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2392	cbp->promiscuous =	prm;	/* promiscuous mode */
2393	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2394	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2395	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2396	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2397	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2398
2399	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2400	cbp->padding =		1;	/* (do) pad short tx packets */
2401	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2402	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2403	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2404	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2405	cbp->force_fdx =	0;	/* (don't) force full duplex */
2406	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2407	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2408	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2409	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2410	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2411	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2412
2413	if (sc->revision == FXP_REV_82557) {
2414		/*
2415		 * The 82557 has no hardware flow control, the values
2416		 * below are the defaults for the chip.
2417		 */
2418		cbp->fc_delay_lsb =	0;
2419		cbp->fc_delay_msb =	0x40;
2420		cbp->pri_fc_thresh =	3;
2421		cbp->tx_fc_dis =	0;
2422		cbp->rx_fc_restop =	0;
2423		cbp->rx_fc_restart =	0;
2424		cbp->fc_filter =	0;
2425		cbp->pri_fc_loc =	1;
2426	} else {
2427		/* Set pause RX FIFO threshold to 1KB. */
2428		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2429		/* Set pause time. */
2430		cbp->fc_delay_lsb =	0xff;
2431		cbp->fc_delay_msb =	0xff;
2432		cbp->pri_fc_thresh =	3;
2433		mii = device_get_softc(sc->miibus);
2434		if ((IFM_OPTIONS(mii->mii_media_active) &
2435		    IFM_ETH_TXPAUSE) != 0)
2436			/* enable transmit FC */
2437			cbp->tx_fc_dis = 0;
2438		else
2439			/* disable transmit FC */
2440			cbp->tx_fc_dis = 1;
2441		if ((IFM_OPTIONS(mii->mii_media_active) &
2442		    IFM_ETH_RXPAUSE) != 0) {
2443			/* enable FC restart/restop frames */
2444			cbp->rx_fc_restart = 1;
2445			cbp->rx_fc_restop = 1;
2446		} else {
2447			/* disable FC restart/restop frames */
2448			cbp->rx_fc_restart = 0;
2449			cbp->rx_fc_restop = 0;
2450		}
2451		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2452		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2453	}
2454
2455	/* Enable 82558 and 82559 extended statistics functionality. */
2456	if (sc->revision >= FXP_REV_82558_A4) {
2457		if (sc->revision >= FXP_REV_82559_A0) {
2458			/*
2459			 * Extend configuration table size to 32
2460			 * to include TCO configuration.
2461			 */
2462			cbp->byte_count = 32;
2463			cbp->ext_stats_dis = 1;
2464			/* Enable TCO stats. */
2465			cbp->tno_int_or_tco_en = 1;
2466			cbp->gamla_rx = 1;
2467		} else
2468			cbp->ext_stats_dis = 0;
2469	}
2470
2471	/*
2472	 * Start the config command/DMA.
2473	 */
2474	fxp_scb_wait(sc);
2475	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2476	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2477	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2478	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2479	/* ...and wait for it to complete. */
2480	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2481
2482	/*
2483	 * Now initialize the station address. Temporarily use the TxCB
2484	 * memory area like we did above for the config CB.
2485	 */
2486	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2487	cb_ias->cb_status = 0;
2488	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2489	cb_ias->link_addr = 0xffffffff;
2490	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2491
2492	/*
2493	 * Start the IAS (Individual Address Setup) command/DMA.
2494	 */
2495	fxp_scb_wait(sc);
2496	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2497	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2498	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2499	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2500	/* ...and wait for it to complete. */
2501	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2502
2503	/*
2504	 * Initialize the multicast address list.
2505	 */
2506	fxp_mc_setup(sc);
2507
2508	/*
2509	 * Initialize transmit control block (TxCB) list.
2510	 */
2511	txp = sc->fxp_desc.tx_list;
2512	tcbp = sc->fxp_desc.cbl_list;
2513	bzero(tcbp, FXP_TXCB_SZ);
2514	for (i = 0; i < FXP_NTXCB; i++) {
2515		txp[i].tx_mbuf = NULL;
2516		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2517		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2518		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2519		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2520		if (sc->flags & FXP_FLAG_EXT_TXCB)
2521			tcbp[i].tbd_array_addr =
2522			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2523		else
2524			tcbp[i].tbd_array_addr =
2525			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2526		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2527	}
2528	/*
2529	 * Set the suspend flag on the first TxCB and start the control
2530	 * unit. It will execute the NOP and then suspend.
2531	 */
2532	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2533	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2534	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2535	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2536	sc->tx_queued = 1;
2537
2538	fxp_scb_wait(sc);
2539	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2540	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2541
2542	/*
2543	 * Initialize receiver buffer area - RFA.
2544	 */
2545	fxp_scb_wait(sc);
2546	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2547	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2548
2549	if (sc->miibus != NULL && setmedia != 0)
2550		mii_mediachg(device_get_softc(sc->miibus));
2551
2552	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2553	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2554
2555	/*
2556	 * Enable interrupts.
2557	 */
2558#ifdef DEVICE_POLLING
2559	/*
2560	 * ... but only do that if we are not polling. And because (presumably)
2561	 * the default is interrupts on, we need to disable them explicitly!
2562	 */
2563	if (ifp->if_capenable & IFCAP_POLLING )
2564		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2565	else
2566#endif /* DEVICE_POLLING */
2567	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2568
2569	/*
2570	 * Start stats updater.
2571	 */
2572	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2573}
2574
2575static int
2576fxp_serial_ifmedia_upd(struct ifnet *ifp)
2577{
2578
2579	return (0);
2580}
2581
2582static void
2583fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2584{
2585
2586	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2587}
2588
2589/*
2590 * Change media according to request.
2591 */
2592static int
2593fxp_ifmedia_upd(struct ifnet *ifp)
2594{
2595	struct fxp_softc *sc = ifp->if_softc;
2596	struct mii_data *mii;
2597	struct mii_softc	*miisc;
2598
2599	mii = device_get_softc(sc->miibus);
2600	FXP_LOCK(sc);
2601	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2602		PHY_RESET(miisc);
2603	mii_mediachg(mii);
2604	FXP_UNLOCK(sc);
2605	return (0);
2606}
2607
2608/*
2609 * Notify the world which media we're using.
2610 */
2611static void
2612fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2613{
2614	struct fxp_softc *sc = ifp->if_softc;
2615	struct mii_data *mii;
2616
2617	mii = device_get_softc(sc->miibus);
2618	FXP_LOCK(sc);
2619	mii_pollstat(mii);
2620	ifmr->ifm_active = mii->mii_media_active;
2621	ifmr->ifm_status = mii->mii_media_status;
2622	FXP_UNLOCK(sc);
2623}
2624
2625/*
2626 * Add a buffer to the end of the RFA buffer list.
2627 * Return 0 if successful, 1 for failure. A failure results in
2628 * reusing the RFA buffer.
2629 * The RFA struct is stuck at the beginning of mbuf cluster and the
2630 * data pointer is fixed up to point just past it.
2631 */
2632static int
2633fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2634{
2635	struct mbuf *m;
2636	struct fxp_rfa *rfa;
2637	bus_dmamap_t tmp_map;
2638	int error;
2639
2640	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2641	if (m == NULL)
2642		return (ENOBUFS);
2643
2644	/*
2645	 * Move the data pointer up so that the incoming data packet
2646	 * will be 32-bit aligned.
2647	 */
2648	m->m_data += RFA_ALIGNMENT_FUDGE;
2649
2650	/*
2651	 * Get a pointer to the base of the mbuf cluster and move
2652	 * data start past it.
2653	 */
2654	rfa = mtod(m, struct fxp_rfa *);
2655	m->m_data += sc->rfa_size;
2656	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2657
2658	rfa->rfa_status = 0;
2659	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2660	rfa->actual_size = 0;
2661	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2662	    sc->rfa_size;
2663
2664	/*
2665	 * Initialize the rest of the RFA.  Note that since the RFA
2666	 * is misaligned, we cannot store values directly.  We're thus
2667	 * using the le32enc() function which handles endianness and
2668	 * is also alignment-safe.
2669	 */
2670	le32enc(&rfa->link_addr, 0xffffffff);
2671	le32enc(&rfa->rbd_addr, 0xffffffff);
2672
2673	/* Map the RFA into DMA memory. */
2674	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2675	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2676	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2677	if (error) {
2678		m_freem(m);
2679		return (error);
2680	}
2681
2682	if (rxp->rx_mbuf != NULL)
2683		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2684	tmp_map = sc->spare_map;
2685	sc->spare_map = rxp->rx_map;
2686	rxp->rx_map = tmp_map;
2687	rxp->rx_mbuf = m;
2688
2689	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2690	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2691	return (0);
2692}
2693
2694static void
2695fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2696{
2697	struct fxp_rfa *p_rfa;
2698	struct fxp_rx *p_rx;
2699
2700	/*
2701	 * If there are other buffers already on the list, attach this
2702	 * one to the end by fixing up the tail to point to this one.
2703	 */
2704	if (sc->fxp_desc.rx_head != NULL) {
2705		p_rx = sc->fxp_desc.rx_tail;
2706		p_rfa = (struct fxp_rfa *)
2707		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2708		p_rx->rx_next = rxp;
2709		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2710		p_rfa->rfa_control = 0;
2711		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2712		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2713	} else {
2714		rxp->rx_next = NULL;
2715		sc->fxp_desc.rx_head = rxp;
2716	}
2717	sc->fxp_desc.rx_tail = rxp;
2718}
2719
2720static void
2721fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2722{
2723	struct mbuf *m;
2724	struct fxp_rfa *rfa;
2725
2726	m = rxp->rx_mbuf;
2727	m->m_data = m->m_ext.ext_buf;
2728	/*
2729	 * Move the data pointer up so that the incoming data packet
2730	 * will be 32-bit aligned.
2731	 */
2732	m->m_data += RFA_ALIGNMENT_FUDGE;
2733
2734	/*
2735	 * Get a pointer to the base of the mbuf cluster and move
2736	 * data start past it.
2737	 */
2738	rfa = mtod(m, struct fxp_rfa *);
2739	m->m_data += sc->rfa_size;
2740	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2741
2742	rfa->rfa_status = 0;
2743	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2744	rfa->actual_size = 0;
2745
2746	/*
2747	 * Initialize the rest of the RFA.  Note that since the RFA
2748	 * is misaligned, we cannot store values directly.  We're thus
2749	 * using the le32enc() function which handles endianness and
2750	 * is also alignment-safe.
2751	 */
2752	le32enc(&rfa->link_addr, 0xffffffff);
2753	le32enc(&rfa->rbd_addr, 0xffffffff);
2754
2755	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2756	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2757}
2758
2759static int
2760fxp_miibus_readreg(device_t dev, int phy, int reg)
2761{
2762	struct fxp_softc *sc = device_get_softc(dev);
2763	int count = 10000;
2764	int value;
2765
2766	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2767	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2768
2769	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2770	    && count--)
2771		DELAY(10);
2772
2773	if (count <= 0)
2774		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2775
2776	return (value & 0xffff);
2777}
2778
2779static int
2780fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2781{
2782	struct fxp_softc *sc = device_get_softc(dev);
2783	int count = 10000;
2784
2785	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2786	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2787	    (value & 0xffff));
2788
2789	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2790	    count--)
2791		DELAY(10);
2792
2793	if (count <= 0)
2794		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2795	return (0);
2796}
2797
2798static void
2799fxp_miibus_statchg(device_t dev)
2800{
2801	struct fxp_softc *sc;
2802	struct mii_data *mii;
2803	struct ifnet *ifp;
2804
2805	sc = device_get_softc(dev);
2806	mii = device_get_softc(sc->miibus);
2807	ifp = sc->ifp;
2808	if (mii == NULL || ifp == NULL ||
2809	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2810	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2811	    (IFM_AVALID | IFM_ACTIVE))
2812		return;
2813
2814	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2815	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2816		sc->cu_resume_bug = 1;
2817	else
2818		sc->cu_resume_bug = 0;
2819	/*
2820	 * Call fxp_init_body in order to adjust the flow control settings.
2821	 * Note that the 82557 doesn't support hardware flow control.
2822	 */
2823	if (sc->revision == FXP_REV_82557)
2824		return;
2825	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2826	fxp_init_body(sc, 0);
2827}
2828
2829static int
2830fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2831{
2832	struct fxp_softc *sc = ifp->if_softc;
2833	struct ifreq *ifr = (struct ifreq *)data;
2834	struct mii_data *mii;
2835	int flag, mask, error = 0, reinit;
2836
2837	switch (command) {
2838	case SIOCSIFFLAGS:
2839		FXP_LOCK(sc);
2840		/*
2841		 * If interface is marked up and not running, then start it.
2842		 * If it is marked down and running, stop it.
2843		 * XXX If it's up then re-initialize it. This is so flags
2844		 * such as IFF_PROMISC are handled.
2845		 */
2846		if (ifp->if_flags & IFF_UP) {
2847			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2848			    ((ifp->if_flags ^ sc->if_flags) &
2849			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2850				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2851				fxp_init_body(sc, 0);
2852			} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2853				fxp_init_body(sc, 1);
2854		} else {
2855			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2856				fxp_stop(sc);
2857		}
2858		sc->if_flags = ifp->if_flags;
2859		FXP_UNLOCK(sc);
2860		break;
2861
2862	case SIOCADDMULTI:
2863	case SIOCDELMULTI:
2864		FXP_LOCK(sc);
2865		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2866			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2867			fxp_init_body(sc, 0);
2868		}
2869		FXP_UNLOCK(sc);
2870		break;
2871
2872	case SIOCSIFMEDIA:
2873	case SIOCGIFMEDIA:
2874		if (sc->miibus != NULL) {
2875			mii = device_get_softc(sc->miibus);
2876                        error = ifmedia_ioctl(ifp, ifr,
2877                            &mii->mii_media, command);
2878		} else {
2879                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2880		}
2881		break;
2882
2883	case SIOCSIFCAP:
2884		reinit = 0;
2885		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2886#ifdef DEVICE_POLLING
2887		if (mask & IFCAP_POLLING) {
2888			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2889				error = ether_poll_register(fxp_poll, ifp);
2890				if (error)
2891					return(error);
2892				FXP_LOCK(sc);
2893				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2894				    FXP_SCB_INTR_DISABLE);
2895				ifp->if_capenable |= IFCAP_POLLING;
2896				FXP_UNLOCK(sc);
2897			} else {
2898				error = ether_poll_deregister(ifp);
2899				/* Enable interrupts in any case */
2900				FXP_LOCK(sc);
2901				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2902				ifp->if_capenable &= ~IFCAP_POLLING;
2903				FXP_UNLOCK(sc);
2904			}
2905		}
2906#endif
2907		FXP_LOCK(sc);
2908		if ((mask & IFCAP_TXCSUM) != 0 &&
2909		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2910			ifp->if_capenable ^= IFCAP_TXCSUM;
2911			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2912				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2913			else
2914				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2915		}
2916		if ((mask & IFCAP_RXCSUM) != 0 &&
2917		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2918			ifp->if_capenable ^= IFCAP_RXCSUM;
2919			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2920				reinit++;
2921		}
2922		if ((mask & IFCAP_TSO4) != 0 &&
2923		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2924			ifp->if_capenable ^= IFCAP_TSO4;
2925			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2926				ifp->if_hwassist |= CSUM_TSO;
2927			else
2928				ifp->if_hwassist &= ~CSUM_TSO;
2929		}
2930		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2931		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2932			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2933		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2934		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2935			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2936			if (sc->revision != FXP_REV_82557)
2937				flag = FXP_FLAG_LONG_PKT_EN;
2938			else /* a hack to get long frames on the old chip */
2939				flag = FXP_FLAG_SAVE_BAD;
2940			sc->flags ^= flag;
2941			if (ifp->if_flags & IFF_UP)
2942				reinit++;
2943		}
2944		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2945		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2946			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2947		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2948		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2949			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2950		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2951		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2952			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2953			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2954				ifp->if_capenable &=
2955				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2956			reinit++;
2957		}
2958		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2959			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2960			fxp_init_body(sc, 0);
2961		}
2962		FXP_UNLOCK(sc);
2963		VLAN_CAPABILITIES(ifp);
2964		break;
2965
2966	default:
2967		error = ether_ioctl(ifp, command, data);
2968	}
2969	return (error);
2970}
2971
2972/*
2973 * Fill in the multicast address list and return number of entries.
2974 */
2975static int
2976fxp_mc_addrs(struct fxp_softc *sc)
2977{
2978	struct fxp_cb_mcs *mcsp = sc->mcsp;
2979	struct ifnet *ifp = sc->ifp;
2980	struct ifmultiaddr *ifma;
2981	int nmcasts;
2982
2983	nmcasts = 0;
2984	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2985		if_maddr_rlock(ifp);
2986		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2987			if (ifma->ifma_addr->sa_family != AF_LINK)
2988				continue;
2989			if (nmcasts >= MAXMCADDR) {
2990				ifp->if_flags |= IFF_ALLMULTI;
2991				nmcasts = 0;
2992				break;
2993			}
2994			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2995			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2996			nmcasts++;
2997		}
2998		if_maddr_runlock(ifp);
2999	}
3000	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
3001	return (nmcasts);
3002}
3003
3004/*
3005 * Program the multicast filter.
3006 *
3007 * We have an artificial restriction that the multicast setup command
3008 * must be the first command in the chain, so we take steps to ensure
3009 * this. By requiring this, it allows us to keep up the performance of
3010 * the pre-initialized command ring (esp. link pointers) by not actually
3011 * inserting the mcsetup command in the ring - i.e. its link pointer
3012 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3013 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3014 * lead into the regular TxCB ring when it completes.
3015 */
3016static void
3017fxp_mc_setup(struct fxp_softc *sc)
3018{
3019	struct fxp_cb_mcs *mcsp;
3020	int count;
3021
3022	FXP_LOCK_ASSERT(sc, MA_OWNED);
3023
3024	mcsp = sc->mcsp;
3025	mcsp->cb_status = 0;
3026	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3027	mcsp->link_addr = 0xffffffff;
3028	fxp_mc_addrs(sc);
3029
3030	/*
3031	 * Wait until command unit is idle. This should never be the
3032	 * case when nothing is queued, but make sure anyway.
3033	 */
3034	count = 100;
3035	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3036	    FXP_SCB_CUS_IDLE && --count)
3037		DELAY(10);
3038	if (count == 0) {
3039		device_printf(sc->dev, "command queue timeout\n");
3040		return;
3041	}
3042
3043	/*
3044	 * Start the multicast setup command.
3045	 */
3046	fxp_scb_wait(sc);
3047	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3048	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3049	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3050	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3051	/* ...and wait for it to complete. */
3052	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3053}
3054
3055static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3056static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3057static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3058static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3059static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3060static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3061static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3062
3063#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3064
3065static const struct ucode {
3066	uint32_t	revision;
3067	uint32_t	*ucode;
3068	int		length;
3069	u_short		int_delay_offset;
3070	u_short		bundle_max_offset;
3071} ucode_table[] = {
3072	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3073	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3074	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3075	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3076	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3077	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3078	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3079	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3080	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3081	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3082	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3083	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3084	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3085	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3086	{ 0, NULL, 0, 0, 0 }
3087};
3088
3089static void
3090fxp_load_ucode(struct fxp_softc *sc)
3091{
3092	const struct ucode *uc;
3093	struct fxp_cb_ucode *cbp;
3094	int i;
3095
3096	if (sc->flags & FXP_FLAG_NO_UCODE)
3097		return;
3098
3099	for (uc = ucode_table; uc->ucode != NULL; uc++)
3100		if (sc->revision == uc->revision)
3101			break;
3102	if (uc->ucode == NULL)
3103		return;
3104	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3105	cbp->cb_status = 0;
3106	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3107	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3108	for (i = 0; i < uc->length; i++)
3109		cbp->ucode[i] = htole32(uc->ucode[i]);
3110	if (uc->int_delay_offset)
3111		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3112		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3113	if (uc->bundle_max_offset)
3114		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3115		    htole16(sc->tunable_bundle_max);
3116	/*
3117	 * Download the ucode to the chip.
3118	 */
3119	fxp_scb_wait(sc);
3120	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3121	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3122	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3123	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3124	/* ...and wait for it to complete. */
3125	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3126	device_printf(sc->dev,
3127	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3128	    sc->tunable_int_delay,
3129	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3130	sc->flags |= FXP_FLAG_UCODE;
3131	bzero(cbp, FXP_TXCB_SZ);
3132}
3133
3134#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3135	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3136
3137static void
3138fxp_sysctl_node(struct fxp_softc *sc)
3139{
3140	struct sysctl_ctx_list *ctx;
3141	struct sysctl_oid_list *child, *parent;
3142	struct sysctl_oid *tree;
3143	struct fxp_hwstats *hsp;
3144
3145	ctx = device_get_sysctl_ctx(sc->dev);
3146	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3147
3148	SYSCTL_ADD_PROC(ctx, child,
3149	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3150	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3151	    "FXP driver receive interrupt microcode bundling delay");
3152	SYSCTL_ADD_PROC(ctx, child,
3153	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3154	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3155	    "FXP driver receive interrupt microcode bundle size limit");
3156	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3157	    "FXP RNR events");
3158
3159	/*
3160	 * Pull in device tunables.
3161	 */
3162	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3163	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3164	(void) resource_int_value(device_get_name(sc->dev),
3165	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3166	(void) resource_int_value(device_get_name(sc->dev),
3167	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3168	sc->rnr = 0;
3169
3170	hsp = &sc->fxp_hwstats;
3171	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3172	    NULL, "FXP statistics");
3173	parent = SYSCTL_CHILDREN(tree);
3174
3175	/* Rx MAC statistics. */
3176	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3177	    NULL, "Rx MAC statistics");
3178	child = SYSCTL_CHILDREN(tree);
3179	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3180	    &hsp->rx_good, "Good frames");
3181	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3182	    &hsp->rx_crc_errors, "CRC errors");
3183	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3184	    &hsp->rx_alignment_errors, "Alignment errors");
3185	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3186	    &hsp->rx_rnr_errors, "RNR errors");
3187	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3188	    &hsp->rx_overrun_errors, "Overrun errors");
3189	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3190	    &hsp->rx_cdt_errors, "Collision detect errors");
3191	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3192	    &hsp->rx_shortframes, "Short frame errors");
3193	if (sc->revision >= FXP_REV_82558_A4) {
3194		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3195		    &hsp->rx_pause, "Pause frames");
3196		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3197		    &hsp->rx_controls, "Unsupported control frames");
3198	}
3199	if (sc->revision >= FXP_REV_82559_A0)
3200		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3201		    &hsp->rx_tco, "TCO frames");
3202
3203	/* Tx MAC statistics. */
3204	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3205	    NULL, "Tx MAC statistics");
3206	child = SYSCTL_CHILDREN(tree);
3207	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3208	    &hsp->tx_good, "Good frames");
3209	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3210	    &hsp->tx_maxcols, "Maximum collisions errors");
3211	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3212	    &hsp->tx_latecols, "Late collisions errors");
3213	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3214	    &hsp->tx_underruns, "Underrun errors");
3215	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3216	    &hsp->tx_lostcrs, "Lost carrier sense");
3217	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3218	    &hsp->tx_deffered, "Deferred");
3219	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3220	    &hsp->tx_single_collisions, "Single collisions");
3221	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3222	    &hsp->tx_multiple_collisions, "Multiple collisions");
3223	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3224	    &hsp->tx_total_collisions, "Total collisions");
3225	if (sc->revision >= FXP_REV_82558_A4)
3226		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3227		    &hsp->tx_pause, "Pause frames");
3228	if (sc->revision >= FXP_REV_82559_A0)
3229		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3230		    &hsp->tx_tco, "TCO frames");
3231}
3232
3233#undef FXP_SYSCTL_STAT_ADD
3234
3235static int
3236sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3237{
3238	int error, value;
3239
3240	value = *(int *)arg1;
3241	error = sysctl_handle_int(oidp, &value, 0, req);
3242	if (error || !req->newptr)
3243		return (error);
3244	if (value < low || value > high)
3245		return (EINVAL);
3246	*(int *)arg1 = value;
3247	return (0);
3248}
3249
3250/*
3251 * Interrupt delay is expressed in microseconds, a multiplier is used
3252 * to convert this to the appropriate clock ticks before using.
3253 */
3254static int
3255sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3256{
3257
3258	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3259}
3260
3261static int
3262sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3263{
3264
3265	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3266}
3267