if_fxp.c revision 254263
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 254263 2013-08-12 23:30:01Z scottl $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/module.h>
49#include <sys/mutex.h>
50#include <sys/rman.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54
55#include <net/bpf.h>
56#include <net/ethernet.h>
57#include <net/if.h>
58#include <net/if_arp.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72#include <machine/resource.h>
73
74#include <dev/pci/pcivar.h>
75#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76
77#include <dev/mii/mii.h>
78#include <dev/mii/miivar.h>
79
80#include <dev/fxp/if_fxpreg.h>
81#include <dev/fxp/if_fxpvar.h>
82#include <dev/fxp/rcvbundl.h>
83
84MODULE_DEPEND(fxp, pci, 1, 1, 1);
85MODULE_DEPEND(fxp, ether, 1, 1, 1);
86MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87#include "miibus_if.h"
88
89/*
90 * NOTE!  On !x86 we typically have an alignment constraint.  The
91 * card DMAs the packet immediately following the RFA.  However,
92 * the first thing in the packet is a 14-byte Ethernet header.
93 * This means that the packet is misaligned.  To compensate,
94 * we actually offset the RFA 2 bytes into the cluster.  This
95 * alignes the packet after the Ethernet header at a 32-bit
96 * boundary.  HOWEVER!  This means that the RFA is misaligned!
97 */
98#define	RFA_ALIGNMENT_FUDGE	2
99
100/*
101 * Set initial transmit threshold at 64 (512 bytes). This is
102 * increased by 64 (512 bytes) at a time, to maximum of 192
103 * (1536 bytes), if an underrun occurs.
104 */
105static int tx_threshold = 64;
106
107/*
108 * The configuration byte map has several undefined fields which
109 * must be one or must be zero.  Set up a template for these bits.
110 * The actual configuration is performed in fxp_init_body.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static const u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5,	/* 21 */
140	0x0,	/* 22 */
141	0x0,	/* 23 */
142	0x0,	/* 24 */
143	0x0,	/* 25 */
144	0x0,	/* 26 */
145	0x0,	/* 27 */
146	0x0,	/* 28 */
147	0x0,	/* 29 */
148	0x0,	/* 30 */
149	0x0	/* 31 */
150};
151
152/*
153 * Claim various Intel PCI device identifiers for this driver.  The
154 * sub-vendor and sub-device field are extensively used to identify
155 * particular variants, but we don't currently differentiate between
156 * them.
157 */
158static const struct fxp_ident fxp_ident_table[] = {
159    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
198    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204    { 0,	-1,	0, NULL },
205};
206
207#ifdef FXP_IP_CSUM_WAR
208#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209#else
210#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211#endif
212
213static int		fxp_probe(device_t dev);
214static int		fxp_attach(device_t dev);
215static int		fxp_detach(device_t dev);
216static int		fxp_shutdown(device_t dev);
217static int		fxp_suspend(device_t dev);
218static int		fxp_resume(device_t dev);
219
220static const struct fxp_ident *fxp_find_ident(device_t dev);
221static void		fxp_intr(void *xsc);
222static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223			    struct mbuf *m, uint16_t status, int pos);
224static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225			    uint8_t statack, int count);
226static void 		fxp_init(void *xsc);
227static void 		fxp_init_body(struct fxp_softc *sc, int);
228static void 		fxp_tick(void *xsc);
229static void 		fxp_start(struct ifnet *ifp);
230static void 		fxp_start_body(struct ifnet *ifp);
231static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232static void		fxp_txeof(struct fxp_softc *sc);
233static void		fxp_stop(struct fxp_softc *sc);
234static void 		fxp_release(struct fxp_softc *sc);
235static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236			    caddr_t data);
237static void 		fxp_watchdog(struct fxp_softc *sc);
238static void		fxp_add_rfabuf(struct fxp_softc *sc,
239			    struct fxp_rx *rxp);
240static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241			    struct fxp_rx *rxp);
242static int		fxp_new_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static int		fxp_mc_addrs(struct fxp_softc *sc);
245static void		fxp_mc_setup(struct fxp_softc *sc);
246static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247			    int autosize);
248static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249			    uint16_t data);
250static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251static void		fxp_load_eeprom(struct fxp_softc *sc);
252static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
253			    int offset, int words);
254static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
255			    int offset, int words);
256static int		fxp_ifmedia_upd(struct ifnet *ifp);
257static void		fxp_ifmedia_sts(struct ifnet *ifp,
258			    struct ifmediareq *ifmr);
259static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
260static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
261			    struct ifmediareq *ifmr);
262static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
263static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
264			    int value);
265static void		fxp_miibus_statchg(device_t dev);
266static void		fxp_load_ucode(struct fxp_softc *sc);
267static void		fxp_update_stats(struct fxp_softc *sc);
268static void		fxp_sysctl_node(struct fxp_softc *sc);
269static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
270			    int low, int high);
271static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
272static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
273static void 		fxp_scb_wait(struct fxp_softc *sc);
274static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
275static void		fxp_dma_wait(struct fxp_softc *sc,
276			    volatile uint16_t *status, bus_dma_tag_t dmat,
277			    bus_dmamap_t map);
278
279static device_method_t fxp_methods[] = {
280	/* Device interface */
281	DEVMETHOD(device_probe,		fxp_probe),
282	DEVMETHOD(device_attach,	fxp_attach),
283	DEVMETHOD(device_detach,	fxp_detach),
284	DEVMETHOD(device_shutdown,	fxp_shutdown),
285	DEVMETHOD(device_suspend,	fxp_suspend),
286	DEVMETHOD(device_resume,	fxp_resume),
287
288	/* MII interface */
289	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
290	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
291	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
292
293	DEVMETHOD_END
294};
295
296static driver_t fxp_driver = {
297	"fxp",
298	fxp_methods,
299	sizeof(struct fxp_softc),
300};
301
302static devclass_t fxp_devclass;
303
304DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
305    SI_ORDER_ANY);
306DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
307
308static struct resource_spec fxp_res_spec_mem[] = {
309	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
310	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
311	{ -1, 0 }
312};
313
314static struct resource_spec fxp_res_spec_io[] = {
315	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
316	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317	{ -1, 0 }
318};
319
320/*
321 * Wait for the previous command to be accepted (but not necessarily
322 * completed).
323 */
324static void
325fxp_scb_wait(struct fxp_softc *sc)
326{
327	union {
328		uint16_t w;
329		uint8_t b[2];
330	} flowctl;
331	int i = 10000;
332
333	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
334		DELAY(2);
335	if (i == 0) {
336		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
337		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
338		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
339		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
340		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
341		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
342	}
343}
344
345static void
346fxp_scb_cmd(struct fxp_softc *sc, int cmd)
347{
348
349	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
350		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
351		fxp_scb_wait(sc);
352	}
353	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
354}
355
356static void
357fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
358    bus_dma_tag_t dmat, bus_dmamap_t map)
359{
360	int i;
361
362	for (i = 10000; i > 0; i--) {
363		DELAY(2);
364		bus_dmamap_sync(dmat, map,
365		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
366		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
367			break;
368	}
369	if (i == 0)
370		device_printf(sc->dev, "DMA timeout\n");
371}
372
373static const struct fxp_ident *
374fxp_find_ident(device_t dev)
375{
376	uint16_t devid;
377	uint8_t revid;
378	const struct fxp_ident *ident;
379
380	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
381		devid = pci_get_device(dev);
382		revid = pci_get_revid(dev);
383		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
384			if (ident->devid == devid &&
385			    (ident->revid == revid || ident->revid == -1)) {
386				return (ident);
387			}
388		}
389	}
390	return (NULL);
391}
392
393/*
394 * Return identification string if this device is ours.
395 */
396static int
397fxp_probe(device_t dev)
398{
399	const struct fxp_ident *ident;
400
401	ident = fxp_find_ident(dev);
402	if (ident != NULL) {
403		device_set_desc(dev, ident->name);
404		return (BUS_PROBE_DEFAULT);
405	}
406	return (ENXIO);
407}
408
409static void
410fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
411{
412	uint32_t *addr;
413
414	if (error)
415		return;
416
417	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
418	addr = arg;
419	*addr = segs->ds_addr;
420}
421
422static int
423fxp_attach(device_t dev)
424{
425	struct fxp_softc *sc;
426	struct fxp_cb_tx *tcbp;
427	struct fxp_tx *txp;
428	struct fxp_rx *rxp;
429	struct ifnet *ifp;
430	uint32_t val;
431	uint16_t data;
432	u_char eaddr[ETHER_ADDR_LEN];
433	int error, flags, i, pmc, prefer_iomap;
434
435	error = 0;
436	sc = device_get_softc(dev);
437	sc->dev = dev;
438	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
439	    MTX_DEF);
440	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
441	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
442	    fxp_serial_ifmedia_sts);
443
444	ifp = sc->ifp = if_alloc(IFT_ETHER);
445	if (ifp == NULL) {
446		device_printf(dev, "can not if_alloc()\n");
447		error = ENOSPC;
448		goto fail;
449	}
450
451	/*
452	 * Enable bus mastering.
453	 */
454	pci_enable_busmaster(dev);
455
456	/*
457	 * Figure out which we should try first - memory mapping or i/o mapping?
458	 * We default to memory mapping. Then we accept an override from the
459	 * command line. Then we check to see which one is enabled.
460	 */
461	prefer_iomap = 0;
462	resource_int_value(device_get_name(dev), device_get_unit(dev),
463	    "prefer_iomap", &prefer_iomap);
464	if (prefer_iomap)
465		sc->fxp_spec = fxp_res_spec_io;
466	else
467		sc->fxp_spec = fxp_res_spec_mem;
468
469	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
470	if (error) {
471		if (sc->fxp_spec == fxp_res_spec_mem)
472			sc->fxp_spec = fxp_res_spec_io;
473		else
474			sc->fxp_spec = fxp_res_spec_mem;
475		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476	}
477	if (error) {
478		device_printf(dev, "could not allocate resources\n");
479		error = ENXIO;
480		goto fail;
481	}
482
483	if (bootverbose) {
484		device_printf(dev, "using %s space register mapping\n",
485		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
486	}
487
488	/*
489	 * Put CU/RU idle state and prepare full reset.
490	 */
491	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
492	DELAY(10);
493	/* Full reset and disable interrupts. */
494	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
495	DELAY(10);
496	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
497
498	/*
499	 * Find out how large of an SEEPROM we have.
500	 */
501	fxp_autosize_eeprom(sc);
502	fxp_load_eeprom(sc);
503
504	/*
505	 * Find out the chip revision; lump all 82557 revs together.
506	 */
507	sc->ident = fxp_find_ident(dev);
508	if (sc->ident->ich > 0) {
509		/* Assume ICH controllers are 82559. */
510		sc->revision = FXP_REV_82559_A0;
511	} else {
512		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
513		if ((data >> 8) == 1)
514			sc->revision = FXP_REV_82557;
515		else
516			sc->revision = pci_get_revid(dev);
517	}
518
519	/*
520	 * Check availability of WOL. 82559ER does not support WOL.
521	 */
522	if (sc->revision >= FXP_REV_82558_A4 &&
523	    sc->revision != FXP_REV_82559S_A) {
524		data = sc->eeprom[FXP_EEPROM_MAP_ID];
525		if ((data & 0x20) != 0 &&
526		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
527			sc->flags |= FXP_FLAG_WOLCAP;
528	}
529
530	if (sc->revision == FXP_REV_82550_C) {
531		/*
532		 * 82550C with server extension requires microcode to
533		 * receive fragmented UDP datagrams.  However if the
534		 * microcode is used for client-only featured 82550C
535		 * it locks up controller.
536		 */
537		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
538		if ((data & 0x0400) == 0)
539			sc->flags |= FXP_FLAG_NO_UCODE;
540	}
541
542	/* Receiver lock-up workaround detection. */
543	if (sc->revision < FXP_REV_82558_A4) {
544		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
545		if ((data & 0x03) != 0x03) {
546			sc->flags |= FXP_FLAG_RXBUG;
547			device_printf(dev, "Enabling Rx lock-up workaround\n");
548		}
549	}
550
551	/*
552	 * Determine whether we must use the 503 serial interface.
553	 */
554	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
555	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
556	    && (data & FXP_PHY_SERIAL_ONLY))
557		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
558
559	fxp_sysctl_node(sc);
560	/*
561	 * Enable workarounds for certain chip revision deficiencies.
562	 *
563	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
564	 * some systems based a normal 82559 design, have a defect where
565	 * the chip can cause a PCI protocol violation if it receives
566	 * a CU_RESUME command when it is entering the IDLE state.  The
567	 * workaround is to disable Dynamic Standby Mode, so the chip never
568	 * deasserts CLKRUN#, and always remains in an active state.
569	 *
570	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
571	 */
572	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
573	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
574		data = sc->eeprom[FXP_EEPROM_MAP_ID];
575		if (data & 0x02) {			/* STB enable */
576			uint16_t cksum;
577			int i;
578
579			device_printf(dev,
580			    "Disabling dynamic standby mode in EEPROM\n");
581			data &= ~0x02;
582			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
583			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
584			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
585			cksum = 0;
586			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
587				cksum += sc->eeprom[i];
588			i = (1 << sc->eeprom_size) - 1;
589			cksum = 0xBABA - cksum;
590			fxp_write_eeprom(sc, &cksum, i, 1);
591			device_printf(dev,
592			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
593			    i, sc->eeprom[i], cksum);
594			sc->eeprom[i] = cksum;
595			/*
596			 * If the user elects to continue, try the software
597			 * workaround, as it is better than nothing.
598			 */
599			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
600		}
601	}
602
603	/*
604	 * If we are not a 82557 chip, we can enable extended features.
605	 */
606	if (sc->revision != FXP_REV_82557) {
607		/*
608		 * If MWI is enabled in the PCI configuration, and there
609		 * is a valid cacheline size (8 or 16 dwords), then tell
610		 * the board to turn on MWI.
611		 */
612		val = pci_read_config(dev, PCIR_COMMAND, 2);
613		if (val & PCIM_CMD_MWRICEN &&
614		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
615			sc->flags |= FXP_FLAG_MWI_ENABLE;
616
617		/* turn on the extended TxCB feature */
618		sc->flags |= FXP_FLAG_EXT_TXCB;
619
620		/* enable reception of long frames for VLAN */
621		sc->flags |= FXP_FLAG_LONG_PKT_EN;
622	} else {
623		/* a hack to get long VLAN frames on a 82557 */
624		sc->flags |= FXP_FLAG_SAVE_BAD;
625	}
626
627	/* For 82559 or later chips, Rx checksum offload is supported. */
628	if (sc->revision >= FXP_REV_82559_A0) {
629		/* 82559ER does not support Rx checksum offloading. */
630		if (sc->ident->devid != 0x1209)
631			sc->flags |= FXP_FLAG_82559_RXCSUM;
632	}
633	/*
634	 * Enable use of extended RFDs and TCBs for 82550
635	 * and later chips. Note: we need extended TXCB support
636	 * too, but that's already enabled by the code above.
637	 * Be careful to do this only on the right devices.
638	 */
639	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
640	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
641	    || sc->revision == FXP_REV_82551_10) {
642		sc->rfa_size = sizeof (struct fxp_rfa);
643		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
644		sc->flags |= FXP_FLAG_EXT_RFA;
645		/* Use extended RFA instead of 82559 checksum mode. */
646		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
647	} else {
648		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
649		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
650	}
651
652	/*
653	 * Allocate DMA tags and DMA safe memory.
654	 */
655	sc->maxtxseg = FXP_NTXSEG;
656	sc->maxsegsize = MCLBYTES;
657	if (sc->flags & FXP_FLAG_EXT_RFA) {
658		sc->maxtxseg--;
659		sc->maxsegsize = FXP_TSO_SEGSIZE;
660	}
661	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
662	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
663	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
664	    sc->maxtxseg, sc->maxsegsize, 0,
665	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
666	if (error) {
667		device_printf(dev, "could not create TX DMA tag\n");
668		goto fail;
669	}
670
671	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
672	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
673	    MCLBYTES, 1, MCLBYTES, 0,
674	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
675	if (error) {
676		device_printf(dev, "could not create RX DMA tag\n");
677		goto fail;
678	}
679
680	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
681	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
682	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
683	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
684	if (error) {
685		device_printf(dev, "could not create stats DMA tag\n");
686		goto fail;
687	}
688
689	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
690	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
691	if (error) {
692		device_printf(dev, "could not allocate stats DMA memory\n");
693		goto fail;
694	}
695	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
696	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
697	    BUS_DMA_NOWAIT);
698	if (error) {
699		device_printf(dev, "could not load the stats DMA buffer\n");
700		goto fail;
701	}
702
703	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
704	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
705	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
706	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
707	if (error) {
708		device_printf(dev, "could not create TxCB DMA tag\n");
709		goto fail;
710	}
711
712	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
713	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
714	if (error) {
715		device_printf(dev, "could not allocate TxCB DMA memory\n");
716		goto fail;
717	}
718
719	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
720	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
721	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
722	if (error) {
723		device_printf(dev, "could not load TxCB DMA buffer\n");
724		goto fail;
725	}
726
727	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
728	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
729	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
730	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
731	if (error) {
732		device_printf(dev,
733		    "could not create multicast setup DMA tag\n");
734		goto fail;
735	}
736
737	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
738	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
739	if (error) {
740		device_printf(dev,
741		    "could not allocate multicast setup DMA memory\n");
742		goto fail;
743	}
744	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
745	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
746	    BUS_DMA_NOWAIT);
747	if (error) {
748		device_printf(dev,
749		    "can't load the multicast setup DMA buffer\n");
750		goto fail;
751	}
752
753	/*
754	 * Pre-allocate the TX DMA maps and setup the pointers to
755	 * the TX command blocks.
756	 */
757	txp = sc->fxp_desc.tx_list;
758	tcbp = sc->fxp_desc.cbl_list;
759	for (i = 0; i < FXP_NTXCB; i++) {
760		txp[i].tx_cb = tcbp + i;
761		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
762		if (error) {
763			device_printf(dev, "can't create DMA map for TX\n");
764			goto fail;
765		}
766	}
767	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
768	if (error) {
769		device_printf(dev, "can't create spare DMA map\n");
770		goto fail;
771	}
772
773	/*
774	 * Pre-allocate our receive buffers.
775	 */
776	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
777	for (i = 0; i < FXP_NRFABUFS; i++) {
778		rxp = &sc->fxp_desc.rx_list[i];
779		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
780		if (error) {
781			device_printf(dev, "can't create DMA map for RX\n");
782			goto fail;
783		}
784		if (fxp_new_rfabuf(sc, rxp) != 0) {
785			error = ENOMEM;
786			goto fail;
787		}
788		fxp_add_rfabuf(sc, rxp);
789	}
790
791	/*
792	 * Read MAC address.
793	 */
794	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
795	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
796	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
797	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
798	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
799	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
800	if (bootverbose) {
801		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
802		    pci_get_vendor(dev), pci_get_device(dev),
803		    pci_get_subvendor(dev), pci_get_subdevice(dev),
804		    pci_get_revid(dev));
805		device_printf(dev, "Dynamic Standby mode is %s\n",
806		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
807		    "disabled");
808	}
809
810	/*
811	 * If this is only a 10Mbps device, then there is no MII, and
812	 * the PHY will use a serial interface instead.
813	 *
814	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
815	 * doesn't have a programming interface of any sort.  The
816	 * media is sensed automatically based on how the link partner
817	 * is configured.  This is, in essence, manual configuration.
818	 */
819	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
820		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
821		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
822	} else {
823		/*
824		 * i82557 wedge when isolating all of their PHYs.
825		 */
826		flags = MIIF_NOISOLATE;
827		if (sc->revision >= FXP_REV_82558_A4)
828			flags |= MIIF_DOPAUSE;
829		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
830		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
831		    MII_OFFSET_ANY, flags);
832		if (error != 0) {
833			device_printf(dev, "attaching PHYs failed\n");
834			goto fail;
835		}
836	}
837
838	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
839	ifp->if_init = fxp_init;
840	ifp->if_softc = sc;
841	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
842	ifp->if_ioctl = fxp_ioctl;
843	ifp->if_start = fxp_start;
844
845	ifp->if_capabilities = ifp->if_capenable = 0;
846
847	/* Enable checksum offload/TSO for 82550 or better chips */
848	if (sc->flags & FXP_FLAG_EXT_RFA) {
849		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
850		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
851		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
852	}
853
854	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
855		ifp->if_capabilities |= IFCAP_RXCSUM;
856		ifp->if_capenable |= IFCAP_RXCSUM;
857	}
858
859	if (sc->flags & FXP_FLAG_WOLCAP) {
860		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
861		ifp->if_capenable |= IFCAP_WOL_MAGIC;
862	}
863
864#ifdef DEVICE_POLLING
865	/* Inform the world we support polling. */
866	ifp->if_capabilities |= IFCAP_POLLING;
867#endif
868
869	/*
870	 * Attach the interface.
871	 */
872	ether_ifattach(ifp, eaddr);
873
874	/*
875	 * Tell the upper layer(s) we support long frames.
876	 * Must appear after the call to ether_ifattach() because
877	 * ether_ifattach() sets ifi_hdrlen to the default value.
878	 */
879	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
880	ifp->if_capabilities |= IFCAP_VLAN_MTU;
881	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
882	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
883		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
884		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
885		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
886		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
887	}
888
889	/*
890	 * Let the system queue as many packets as we have available
891	 * TX descriptors.
892	 */
893	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
894	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
895	IFQ_SET_READY(&ifp->if_snd);
896
897	/*
898	 * Hook our interrupt after all initialization is complete.
899	 */
900	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
901			       NULL, fxp_intr, sc, &sc->ih);
902	if (error) {
903		device_printf(dev, "could not setup irq\n");
904		ether_ifdetach(sc->ifp);
905		goto fail;
906	}
907
908	/*
909	 * Configure hardware to reject magic frames otherwise
910	 * system will hang on recipt of magic frames.
911	 */
912	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
913		FXP_LOCK(sc);
914		/* Clear wakeup events. */
915		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
916		fxp_init_body(sc, 0);
917		fxp_stop(sc);
918		FXP_UNLOCK(sc);
919	}
920
921fail:
922	if (error)
923		fxp_release(sc);
924	return (error);
925}
926
927/*
928 * Release all resources.  The softc lock should not be held and the
929 * interrupt should already be torn down.
930 */
931static void
932fxp_release(struct fxp_softc *sc)
933{
934	struct fxp_rx *rxp;
935	struct fxp_tx *txp;
936	int i;
937
938	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
939	KASSERT(sc->ih == NULL,
940	    ("fxp_release() called with intr handle still active"));
941	if (sc->miibus)
942		device_delete_child(sc->dev, sc->miibus);
943	bus_generic_detach(sc->dev);
944	ifmedia_removeall(&sc->sc_media);
945	if (sc->fxp_desc.cbl_list) {
946		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
947		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
948		    sc->cbl_map);
949	}
950	if (sc->fxp_stats) {
951		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
952		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
953	}
954	if (sc->mcsp) {
955		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
956		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
957	}
958	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
959	if (sc->fxp_rxmtag) {
960		for (i = 0; i < FXP_NRFABUFS; i++) {
961			rxp = &sc->fxp_desc.rx_list[i];
962			if (rxp->rx_mbuf != NULL) {
963				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
964				    BUS_DMASYNC_POSTREAD);
965				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
966				m_freem(rxp->rx_mbuf);
967			}
968			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
969		}
970		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
971		bus_dma_tag_destroy(sc->fxp_rxmtag);
972	}
973	if (sc->fxp_txmtag) {
974		for (i = 0; i < FXP_NTXCB; i++) {
975			txp = &sc->fxp_desc.tx_list[i];
976			if (txp->tx_mbuf != NULL) {
977				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
978				    BUS_DMASYNC_POSTWRITE);
979				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
980				m_freem(txp->tx_mbuf);
981			}
982			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
983		}
984		bus_dma_tag_destroy(sc->fxp_txmtag);
985	}
986	if (sc->fxp_stag)
987		bus_dma_tag_destroy(sc->fxp_stag);
988	if (sc->cbl_tag)
989		bus_dma_tag_destroy(sc->cbl_tag);
990	if (sc->mcs_tag)
991		bus_dma_tag_destroy(sc->mcs_tag);
992	if (sc->ifp)
993		if_free(sc->ifp);
994
995	mtx_destroy(&sc->sc_mtx);
996}
997
998/*
999 * Detach interface.
1000 */
1001static int
1002fxp_detach(device_t dev)
1003{
1004	struct fxp_softc *sc = device_get_softc(dev);
1005
1006#ifdef DEVICE_POLLING
1007	if (sc->ifp->if_capenable & IFCAP_POLLING)
1008		ether_poll_deregister(sc->ifp);
1009#endif
1010
1011	FXP_LOCK(sc);
1012	/*
1013	 * Stop DMA and drop transmit queue, but disable interrupts first.
1014	 */
1015	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1016	fxp_stop(sc);
1017	FXP_UNLOCK(sc);
1018	callout_drain(&sc->stat_ch);
1019
1020	/*
1021	 * Close down routes etc.
1022	 */
1023	ether_ifdetach(sc->ifp);
1024
1025	/*
1026	 * Unhook interrupt before dropping lock. This is to prevent
1027	 * races with fxp_intr().
1028	 */
1029	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1030	sc->ih = NULL;
1031
1032	/* Release our allocated resources. */
1033	fxp_release(sc);
1034	return (0);
1035}
1036
1037/*
1038 * Device shutdown routine. Called at system shutdown after sync. The
1039 * main purpose of this routine is to shut off receiver DMA so that
1040 * kernel memory doesn't get clobbered during warmboot.
1041 */
1042static int
1043fxp_shutdown(device_t dev)
1044{
1045
1046	/*
1047	 * Make sure that DMA is disabled prior to reboot. Not doing
1048	 * do could allow DMA to corrupt kernel memory during the
1049	 * reboot before the driver initializes.
1050	 */
1051	return (fxp_suspend(dev));
1052}
1053
1054/*
1055 * Device suspend routine.  Stop the interface and save some PCI
1056 * settings in case the BIOS doesn't restore them properly on
1057 * resume.
1058 */
1059static int
1060fxp_suspend(device_t dev)
1061{
1062	struct fxp_softc *sc = device_get_softc(dev);
1063	struct ifnet *ifp;
1064	int pmc;
1065	uint16_t pmstat;
1066
1067	FXP_LOCK(sc);
1068
1069	ifp = sc->ifp;
1070	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1071		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1072		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1073		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1074			/* Request PME. */
1075			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1076			sc->flags |= FXP_FLAG_WOL;
1077			/* Reconfigure hardware to accept magic frames. */
1078			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1079			fxp_init_body(sc, 0);
1080		}
1081		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1082	}
1083	fxp_stop(sc);
1084
1085	sc->suspended = 1;
1086
1087	FXP_UNLOCK(sc);
1088	return (0);
1089}
1090
1091/*
1092 * Device resume routine. re-enable busmastering, and restart the interface if
1093 * appropriate.
1094 */
1095static int
1096fxp_resume(device_t dev)
1097{
1098	struct fxp_softc *sc = device_get_softc(dev);
1099	struct ifnet *ifp = sc->ifp;
1100	int pmc;
1101	uint16_t pmstat;
1102
1103	FXP_LOCK(sc);
1104
1105	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1106		sc->flags &= ~FXP_FLAG_WOL;
1107		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1108		/* Disable PME and clear PME status. */
1109		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1110		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1111		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1112			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1113			    CSR_READ_1(sc, FXP_CSR_PMDR));
1114	}
1115
1116	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1117	DELAY(10);
1118
1119	/* reinitialize interface if necessary */
1120	if (ifp->if_flags & IFF_UP)
1121		fxp_init_body(sc, 1);
1122
1123	sc->suspended = 0;
1124
1125	FXP_UNLOCK(sc);
1126	return (0);
1127}
1128
1129static void
1130fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1131{
1132	uint16_t reg;
1133	int x;
1134
1135	/*
1136	 * Shift in data.
1137	 */
1138	for (x = 1 << (length - 1); x; x >>= 1) {
1139		if (data & x)
1140			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1141		else
1142			reg = FXP_EEPROM_EECS;
1143		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1144		DELAY(1);
1145		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1146		DELAY(1);
1147		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1148		DELAY(1);
1149	}
1150}
1151
1152/*
1153 * Read from the serial EEPROM. Basically, you manually shift in
1154 * the read opcode (one bit at a time) and then shift in the address,
1155 * and then you shift out the data (all of this one bit at a time).
1156 * The word size is 16 bits, so you have to provide the address for
1157 * every 16 bits of data.
1158 */
1159static uint16_t
1160fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1161{
1162	uint16_t reg, data;
1163	int x;
1164
1165	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1166	/*
1167	 * Shift in read opcode.
1168	 */
1169	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1170	/*
1171	 * Shift in address.
1172	 */
1173	data = 0;
1174	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1175		if (offset & x)
1176			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1177		else
1178			reg = FXP_EEPROM_EECS;
1179		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1180		DELAY(1);
1181		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1182		DELAY(1);
1183		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1184		DELAY(1);
1185		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1186		data++;
1187		if (autosize && reg == 0) {
1188			sc->eeprom_size = data;
1189			break;
1190		}
1191	}
1192	/*
1193	 * Shift out data.
1194	 */
1195	data = 0;
1196	reg = FXP_EEPROM_EECS;
1197	for (x = 1 << 15; x; x >>= 1) {
1198		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1199		DELAY(1);
1200		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1201			data |= x;
1202		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1203		DELAY(1);
1204	}
1205	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1206	DELAY(1);
1207
1208	return (data);
1209}
1210
1211static void
1212fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1213{
1214	int i;
1215
1216	/*
1217	 * Erase/write enable.
1218	 */
1219	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1220	fxp_eeprom_shiftin(sc, 0x4, 3);
1221	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1222	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1223	DELAY(1);
1224	/*
1225	 * Shift in write opcode, address, data.
1226	 */
1227	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1229	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1230	fxp_eeprom_shiftin(sc, data, 16);
1231	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232	DELAY(1);
1233	/*
1234	 * Wait for EEPROM to finish up.
1235	 */
1236	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1237	DELAY(1);
1238	for (i = 0; i < 1000; i++) {
1239		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1240			break;
1241		DELAY(50);
1242	}
1243	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1244	DELAY(1);
1245	/*
1246	 * Erase/write disable.
1247	 */
1248	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1249	fxp_eeprom_shiftin(sc, 0x4, 3);
1250	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1251	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252	DELAY(1);
1253}
1254
1255/*
1256 * From NetBSD:
1257 *
1258 * Figure out EEPROM size.
1259 *
1260 * 559's can have either 64-word or 256-word EEPROMs, the 558
1261 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1262 * talks about the existance of 16 to 256 word EEPROMs.
1263 *
1264 * The only known sizes are 64 and 256, where the 256 version is used
1265 * by CardBus cards to store CIS information.
1266 *
1267 * The address is shifted in msb-to-lsb, and after the last
1268 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1269 * after which follows the actual data. We try to detect this zero, by
1270 * probing the data-out bit in the EEPROM control register just after
1271 * having shifted in a bit. If the bit is zero, we assume we've
1272 * shifted enough address bits. The data-out should be tri-state,
1273 * before this, which should translate to a logical one.
1274 */
1275static void
1276fxp_autosize_eeprom(struct fxp_softc *sc)
1277{
1278
1279	/* guess maximum size of 256 words */
1280	sc->eeprom_size = 8;
1281
1282	/* autosize */
1283	(void) fxp_eeprom_getword(sc, 0, 1);
1284}
1285
1286static void
1287fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1288{
1289	int i;
1290
1291	for (i = 0; i < words; i++)
1292		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1293}
1294
1295static void
1296fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1297{
1298	int i;
1299
1300	for (i = 0; i < words; i++)
1301		fxp_eeprom_putword(sc, offset + i, data[i]);
1302}
1303
1304static void
1305fxp_load_eeprom(struct fxp_softc *sc)
1306{
1307	int i;
1308	uint16_t cksum;
1309
1310	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1311	cksum = 0;
1312	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1313		cksum += sc->eeprom[i];
1314	cksum = 0xBABA - cksum;
1315	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1316		device_printf(sc->dev,
1317		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1318		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1319}
1320
1321/*
1322 * Grab the softc lock and call the real fxp_start_body() routine
1323 */
1324static void
1325fxp_start(struct ifnet *ifp)
1326{
1327	struct fxp_softc *sc = ifp->if_softc;
1328
1329	FXP_LOCK(sc);
1330	fxp_start_body(ifp);
1331	FXP_UNLOCK(sc);
1332}
1333
1334/*
1335 * Start packet transmission on the interface.
1336 * This routine must be called with the softc lock held, and is an
1337 * internal entry point only.
1338 */
1339static void
1340fxp_start_body(struct ifnet *ifp)
1341{
1342	struct fxp_softc *sc = ifp->if_softc;
1343	struct mbuf *mb_head;
1344	int txqueued;
1345
1346	FXP_LOCK_ASSERT(sc, MA_OWNED);
1347
1348	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1349	    IFF_DRV_RUNNING)
1350		return;
1351
1352	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1353		fxp_txeof(sc);
1354	/*
1355	 * We're finished if there is nothing more to add to the list or if
1356	 * we're all filled up with buffers to transmit.
1357	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1358	 *       a NOP command when needed.
1359	 */
1360	txqueued = 0;
1361	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1362	    sc->tx_queued < FXP_NTXCB - 1) {
1363
1364		/*
1365		 * Grab a packet to transmit.
1366		 */
1367		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1368		if (mb_head == NULL)
1369			break;
1370
1371		if (fxp_encap(sc, &mb_head)) {
1372			if (mb_head == NULL)
1373				break;
1374			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1375			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1376		}
1377		txqueued++;
1378		/*
1379		 * Pass packet to bpf if there is a listener.
1380		 */
1381		BPF_MTAP(ifp, mb_head);
1382	}
1383
1384	/*
1385	 * We're finished. If we added to the list, issue a RESUME to get DMA
1386	 * going again if suspended.
1387	 */
1388	if (txqueued > 0) {
1389		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1390		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1391		fxp_scb_wait(sc);
1392		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1393		/*
1394		 * Set a 5 second timer just in case we don't hear
1395		 * from the card again.
1396		 */
1397		sc->watchdog_timer = 5;
1398	}
1399}
1400
1401static int
1402fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1403{
1404	struct ifnet *ifp;
1405	struct mbuf *m;
1406	struct fxp_tx *txp;
1407	struct fxp_cb_tx *cbp;
1408	struct tcphdr *tcp;
1409	bus_dma_segment_t segs[FXP_NTXSEG];
1410	int error, i, nseg, tcp_payload;
1411
1412	FXP_LOCK_ASSERT(sc, MA_OWNED);
1413	ifp = sc->ifp;
1414
1415	tcp_payload = 0;
1416	tcp = NULL;
1417	/*
1418	 * Get pointer to next available tx desc.
1419	 */
1420	txp = sc->fxp_desc.tx_last->tx_next;
1421
1422	/*
1423	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1424	 * Ethernet Controller Family Open Source Software
1425	 * Developer Manual says:
1426	 *   Using software parsing is only allowed with legal
1427	 *   TCP/IP or UDP/IP packets.
1428	 *   ...
1429	 *   For all other datagrams, hardware parsing must
1430	 *   be used.
1431	 * Software parsing appears to truncate ICMP and
1432	 * fragmented UDP packets that contain one to three
1433	 * bytes in the second (and final) mbuf of the packet.
1434	 */
1435	if (sc->flags & FXP_FLAG_EXT_RFA)
1436		txp->tx_cb->ipcb_ip_activation_high =
1437		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1438
1439	m = *m_head;
1440	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1441		/*
1442		 * 82550/82551 requires ethernet/IP/TCP headers must be
1443		 * contained in the first active transmit buffer.
1444		 */
1445		struct ether_header *eh;
1446		struct ip *ip;
1447		uint32_t ip_off, poff;
1448
1449		if (M_WRITABLE(*m_head) == 0) {
1450			/* Get a writable copy. */
1451			m = m_dup(*m_head, M_NOWAIT);
1452			m_freem(*m_head);
1453			if (m == NULL) {
1454				*m_head = NULL;
1455				return (ENOBUFS);
1456			}
1457			*m_head = m;
1458		}
1459		ip_off = sizeof(struct ether_header);
1460		m = m_pullup(*m_head, ip_off);
1461		if (m == NULL) {
1462			*m_head = NULL;
1463			return (ENOBUFS);
1464		}
1465		eh = mtod(m, struct ether_header *);
1466		/* Check the existence of VLAN tag. */
1467		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1468			ip_off = sizeof(struct ether_vlan_header);
1469			m = m_pullup(m, ip_off);
1470			if (m == NULL) {
1471				*m_head = NULL;
1472				return (ENOBUFS);
1473			}
1474		}
1475		m = m_pullup(m, ip_off + sizeof(struct ip));
1476		if (m == NULL) {
1477			*m_head = NULL;
1478			return (ENOBUFS);
1479		}
1480		ip = (struct ip *)(mtod(m, char *) + ip_off);
1481		poff = ip_off + (ip->ip_hl << 2);
1482		m = m_pullup(m, poff + sizeof(struct tcphdr));
1483		if (m == NULL) {
1484			*m_head = NULL;
1485			return (ENOBUFS);
1486		}
1487		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1488		m = m_pullup(m, poff + (tcp->th_off << 2));
1489		if (m == NULL) {
1490			*m_head = NULL;
1491			return (ENOBUFS);
1492		}
1493
1494		/*
1495		 * Since 82550/82551 doesn't modify IP length and pseudo
1496		 * checksum in the first frame driver should compute it.
1497		 */
1498		ip = (struct ip *)(mtod(m, char *) + ip_off);
1499		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1500		ip->ip_sum = 0;
1501		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1502		    (tcp->th_off << 2));
1503		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1504		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1505		    m->m_pkthdr.tso_segsz));
1506		/* Compute total TCP payload. */
1507		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1508		tcp_payload -= tcp->th_off << 2;
1509		*m_head = m;
1510	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1511		/*
1512		 * Deal with TCP/IP checksum offload. Note that
1513		 * in order for TCP checksum offload to work,
1514		 * the pseudo header checksum must have already
1515		 * been computed and stored in the checksum field
1516		 * in the TCP header. The stack should have
1517		 * already done this for us.
1518		 */
1519		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1520		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1521			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1522
1523#ifdef FXP_IP_CSUM_WAR
1524		/*
1525		 * XXX The 82550 chip appears to have trouble
1526		 * dealing with IP header checksums in very small
1527		 * datagrams, namely fragments from 1 to 3 bytes
1528		 * in size. For example, say you want to transmit
1529		 * a UDP packet of 1473 bytes. The packet will be
1530		 * fragmented over two IP datagrams, the latter
1531		 * containing only one byte of data. The 82550 will
1532		 * botch the header checksum on the 1-byte fragment.
1533		 * As long as the datagram contains 4 or more bytes
1534		 * of data, you're ok.
1535		 *
1536                 * The following code attempts to work around this
1537		 * problem: if the datagram is less than 38 bytes
1538		 * in size (14 bytes ether header, 20 bytes IP header,
1539		 * plus 4 bytes of data), we punt and compute the IP
1540		 * header checksum by hand. This workaround doesn't
1541		 * work very well, however, since it can be fooled
1542		 * by things like VLAN tags and IP options that make
1543		 * the header sizes/offsets vary.
1544		 */
1545
1546		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1547			if (m->m_pkthdr.len < 38) {
1548				struct ip *ip;
1549				m->m_data += ETHER_HDR_LEN;
1550				ip = mtod(m, struct ip *);
1551				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1552				m->m_data -= ETHER_HDR_LEN;
1553				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1554			} else {
1555				txp->tx_cb->ipcb_ip_activation_high =
1556				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1557				txp->tx_cb->ipcb_ip_schedule |=
1558				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1559			}
1560		}
1561#endif
1562	}
1563
1564	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1565	    segs, &nseg, 0);
1566	if (error == EFBIG) {
1567		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1568		if (m == NULL) {
1569			m_freem(*m_head);
1570			*m_head = NULL;
1571			return (ENOMEM);
1572		}
1573		*m_head = m;
1574		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1575		    *m_head, segs, &nseg, 0);
1576		if (error != 0) {
1577			m_freem(*m_head);
1578			*m_head = NULL;
1579			return (ENOMEM);
1580		}
1581	} else if (error != 0)
1582		return (error);
1583	if (nseg == 0) {
1584		m_freem(*m_head);
1585		*m_head = NULL;
1586		return (EIO);
1587	}
1588
1589	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1590	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1591
1592	cbp = txp->tx_cb;
1593	for (i = 0; i < nseg; i++) {
1594		/*
1595		 * If this is an 82550/82551, then we're using extended
1596		 * TxCBs _and_ we're using checksum offload. This means
1597		 * that the TxCB is really an IPCB. One major difference
1598		 * between the two is that with plain extended TxCBs,
1599		 * the bottom half of the TxCB contains two entries from
1600		 * the TBD array, whereas IPCBs contain just one entry:
1601		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1602		 * checksum offload control bits. So to make things work
1603		 * right, we have to start filling in the TBD array
1604		 * starting from a different place depending on whether
1605		 * the chip is an 82550/82551 or not.
1606		 */
1607		if (sc->flags & FXP_FLAG_EXT_RFA) {
1608			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1609			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1610		} else {
1611			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1612			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1613		}
1614	}
1615	if (sc->flags & FXP_FLAG_EXT_RFA) {
1616		/* Configure dynamic TBD for 82550/82551. */
1617		cbp->tbd_number = 0xFF;
1618		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1619	} else
1620		cbp->tbd_number = nseg;
1621	/* Configure TSO. */
1622	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1623		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1624		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1625		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1626		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1627		    FXP_IPCB_TCP_PACKET |
1628		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1629	}
1630	/* Configure VLAN hardware tag insertion. */
1631	if ((m->m_flags & M_VLANTAG) != 0) {
1632		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1633		txp->tx_cb->ipcb_ip_activation_high |=
1634		    FXP_IPCB_INSERTVLAN_ENABLE;
1635	}
1636
1637	txp->tx_mbuf = m;
1638	txp->tx_cb->cb_status = 0;
1639	txp->tx_cb->byte_count = 0;
1640	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1641		txp->tx_cb->cb_command =
1642		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1643		    FXP_CB_COMMAND_S);
1644	else
1645		txp->tx_cb->cb_command =
1646		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1647		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1648	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1649		txp->tx_cb->tx_threshold = tx_threshold;
1650
1651	/*
1652	 * Advance the end of list forward.
1653	 */
1654	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1655	sc->fxp_desc.tx_last = txp;
1656
1657	/*
1658	 * Advance the beginning of the list forward if there are
1659	 * no other packets queued (when nothing is queued, tx_first
1660	 * sits on the last TxCB that was sent out).
1661	 */
1662	if (sc->tx_queued == 0)
1663		sc->fxp_desc.tx_first = txp;
1664
1665	sc->tx_queued++;
1666
1667	return (0);
1668}
1669
1670#ifdef DEVICE_POLLING
1671static poll_handler_t fxp_poll;
1672
1673static int
1674fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1675{
1676	struct fxp_softc *sc = ifp->if_softc;
1677	uint8_t statack;
1678	int rx_npkts = 0;
1679
1680	FXP_LOCK(sc);
1681	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1682		FXP_UNLOCK(sc);
1683		return (rx_npkts);
1684	}
1685
1686	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1687	    FXP_SCB_STATACK_FR;
1688	if (cmd == POLL_AND_CHECK_STATUS) {
1689		uint8_t tmp;
1690
1691		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1692		if (tmp == 0xff || tmp == 0) {
1693			FXP_UNLOCK(sc);
1694			return (rx_npkts); /* nothing to do */
1695		}
1696		tmp &= ~statack;
1697		/* ack what we can */
1698		if (tmp != 0)
1699			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1700		statack |= tmp;
1701	}
1702	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1703	FXP_UNLOCK(sc);
1704	return (rx_npkts);
1705}
1706#endif /* DEVICE_POLLING */
1707
1708/*
1709 * Process interface interrupts.
1710 */
1711static void
1712fxp_intr(void *xsc)
1713{
1714	struct fxp_softc *sc = xsc;
1715	struct ifnet *ifp = sc->ifp;
1716	uint8_t statack;
1717
1718	FXP_LOCK(sc);
1719	if (sc->suspended) {
1720		FXP_UNLOCK(sc);
1721		return;
1722	}
1723
1724#ifdef DEVICE_POLLING
1725	if (ifp->if_capenable & IFCAP_POLLING) {
1726		FXP_UNLOCK(sc);
1727		return;
1728	}
1729#endif
1730	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1731		/*
1732		 * It should not be possible to have all bits set; the
1733		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1734		 * all bits are set, this may indicate that the card has
1735		 * been physically ejected, so ignore it.
1736		 */
1737		if (statack == 0xff) {
1738			FXP_UNLOCK(sc);
1739			return;
1740		}
1741
1742		/*
1743		 * First ACK all the interrupts in this pass.
1744		 */
1745		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1746		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1747			fxp_intr_body(sc, ifp, statack, -1);
1748	}
1749	FXP_UNLOCK(sc);
1750}
1751
1752static void
1753fxp_txeof(struct fxp_softc *sc)
1754{
1755	struct ifnet *ifp;
1756	struct fxp_tx *txp;
1757
1758	ifp = sc->ifp;
1759	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1760	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1761	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1762	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1763	    txp = txp->tx_next) {
1764		if (txp->tx_mbuf != NULL) {
1765			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1766			    BUS_DMASYNC_POSTWRITE);
1767			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1768			m_freem(txp->tx_mbuf);
1769			txp->tx_mbuf = NULL;
1770			/* clear this to reset csum offload bits */
1771			txp->tx_cb->tbd[0].tb_addr = 0;
1772		}
1773		sc->tx_queued--;
1774		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1775	}
1776	sc->fxp_desc.tx_first = txp;
1777	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1778	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1779	if (sc->tx_queued == 0)
1780		sc->watchdog_timer = 0;
1781}
1782
1783static void
1784fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1785    uint16_t status, int pos)
1786{
1787	struct ether_header *eh;
1788	struct ip *ip;
1789	struct udphdr *uh;
1790	int32_t hlen, len, pktlen, temp32;
1791	uint16_t csum, *opts;
1792
1793	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1794		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1795			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1796				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1797			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1798				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1799			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1800			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1801				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1802				    CSUM_PSEUDO_HDR;
1803				m->m_pkthdr.csum_data = 0xffff;
1804			}
1805		}
1806		return;
1807	}
1808
1809	pktlen = m->m_pkthdr.len;
1810	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1811		return;
1812	eh = mtod(m, struct ether_header *);
1813	if (eh->ether_type != htons(ETHERTYPE_IP))
1814		return;
1815	ip = (struct ip *)(eh + 1);
1816	if (ip->ip_v != IPVERSION)
1817		return;
1818
1819	hlen = ip->ip_hl << 2;
1820	pktlen -= sizeof(struct ether_header);
1821	if (hlen < sizeof(struct ip))
1822		return;
1823	if (ntohs(ip->ip_len) < hlen)
1824		return;
1825	if (ntohs(ip->ip_len) != pktlen)
1826		return;
1827	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1828		return;	/* can't handle fragmented packet */
1829
1830	switch (ip->ip_p) {
1831	case IPPROTO_TCP:
1832		if (pktlen < (hlen + sizeof(struct tcphdr)))
1833			return;
1834		break;
1835	case IPPROTO_UDP:
1836		if (pktlen < (hlen + sizeof(struct udphdr)))
1837			return;
1838		uh = (struct udphdr *)((caddr_t)ip + hlen);
1839		if (uh->uh_sum == 0)
1840			return; /* no checksum */
1841		break;
1842	default:
1843		return;
1844	}
1845	/* Extract computed checksum. */
1846	csum = be16dec(mtod(m, char *) + pos);
1847	/* checksum fixup for IP options */
1848	len = hlen - sizeof(struct ip);
1849	if (len > 0) {
1850		opts = (uint16_t *)(ip + 1);
1851		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1852			temp32 = csum - *opts;
1853			temp32 = (temp32 >> 16) + (temp32 & 65535);
1854			csum = temp32 & 65535;
1855		}
1856	}
1857	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1858	m->m_pkthdr.csum_data = csum;
1859}
1860
1861static int
1862fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1863    int count)
1864{
1865	struct mbuf *m;
1866	struct fxp_rx *rxp;
1867	struct fxp_rfa *rfa;
1868	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1869	int rx_npkts;
1870	uint16_t status;
1871
1872	rx_npkts = 0;
1873	FXP_LOCK_ASSERT(sc, MA_OWNED);
1874
1875	if (rnr)
1876		sc->rnr++;
1877#ifdef DEVICE_POLLING
1878	/* Pick up a deferred RNR condition if `count' ran out last time. */
1879	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1880		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1881		rnr = 1;
1882	}
1883#endif
1884
1885	/*
1886	 * Free any finished transmit mbuf chains.
1887	 *
1888	 * Handle the CNA event likt a CXTNO event. It used to
1889	 * be that this event (control unit not ready) was not
1890	 * encountered, but it is now with the SMPng modifications.
1891	 * The exact sequence of events that occur when the interface
1892	 * is brought up are different now, and if this event
1893	 * goes unhandled, the configuration/rxfilter setup sequence
1894	 * can stall for several seconds. The result is that no
1895	 * packets go out onto the wire for about 5 to 10 seconds
1896	 * after the interface is ifconfig'ed for the first time.
1897	 */
1898	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1899		fxp_txeof(sc);
1900
1901	/*
1902	 * Try to start more packets transmitting.
1903	 */
1904	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1905		fxp_start_body(ifp);
1906
1907	/*
1908	 * Just return if nothing happened on the receive side.
1909	 */
1910	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1911		return (rx_npkts);
1912
1913	/*
1914	 * Process receiver interrupts. If a no-resource (RNR)
1915	 * condition exists, get whatever packets we can and
1916	 * re-start the receiver.
1917	 *
1918	 * When using polling, we do not process the list to completion,
1919	 * so when we get an RNR interrupt we must defer the restart
1920	 * until we hit the last buffer with the C bit set.
1921	 * If we run out of cycles and rfa_headm has the C bit set,
1922	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1923	 * that the info will be used in the subsequent polling cycle.
1924	 */
1925	for (;;) {
1926		rxp = sc->fxp_desc.rx_head;
1927		m = rxp->rx_mbuf;
1928		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1929		    RFA_ALIGNMENT_FUDGE);
1930		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1931		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1932
1933#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1934		if (count >= 0 && count-- == 0) {
1935			if (rnr) {
1936				/* Defer RNR processing until the next time. */
1937				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1938				rnr = 0;
1939			}
1940			break;
1941		}
1942#endif /* DEVICE_POLLING */
1943
1944		status = le16toh(rfa->rfa_status);
1945		if ((status & FXP_RFA_STATUS_C) == 0)
1946			break;
1947
1948		if ((status & FXP_RFA_STATUS_RNR) != 0)
1949			rnr++;
1950		/*
1951		 * Advance head forward.
1952		 */
1953		sc->fxp_desc.rx_head = rxp->rx_next;
1954
1955		/*
1956		 * Add a new buffer to the receive chain.
1957		 * If this fails, the old buffer is recycled
1958		 * instead.
1959		 */
1960		if (fxp_new_rfabuf(sc, rxp) == 0) {
1961			int total_len;
1962
1963			/*
1964			 * Fetch packet length (the top 2 bits of
1965			 * actual_size are flags set by the controller
1966			 * upon completion), and drop the packet in case
1967			 * of bogus length or CRC errors.
1968			 */
1969			total_len = le16toh(rfa->actual_size) & 0x3fff;
1970			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1971			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1972				/* Adjust for appended checksum bytes. */
1973				total_len -= 2;
1974			}
1975			if (total_len < (int)sizeof(struct ether_header) ||
1976			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1977			    sc->rfa_size) ||
1978			    status & (FXP_RFA_STATUS_CRC |
1979			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1980				m_freem(m);
1981				fxp_add_rfabuf(sc, rxp);
1982				continue;
1983			}
1984
1985			m->m_pkthdr.len = m->m_len = total_len;
1986			m->m_pkthdr.rcvif = ifp;
1987
1988                        /* Do IP checksum checking. */
1989			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1990				fxp_rxcsum(sc, ifp, m, status, total_len);
1991			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1992			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1993				m->m_pkthdr.ether_vtag =
1994				    ntohs(rfa->rfax_vlan_id);
1995				m->m_flags |= M_VLANTAG;
1996			}
1997			/*
1998			 * Drop locks before calling if_input() since it
1999			 * may re-enter fxp_start() in the netisr case.
2000			 * This would result in a lock reversal.  Better
2001			 * performance might be obtained by chaining all
2002			 * packets received, dropping the lock, and then
2003			 * calling if_input() on each one.
2004			 */
2005			FXP_UNLOCK(sc);
2006			(*ifp->if_input)(ifp, m);
2007			FXP_LOCK(sc);
2008			rx_npkts++;
2009			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2010				return (rx_npkts);
2011		} else {
2012			/* Reuse RFA and loaded DMA map. */
2013			ifp->if_iqdrops++;
2014			fxp_discard_rfabuf(sc, rxp);
2015		}
2016		fxp_add_rfabuf(sc, rxp);
2017	}
2018	if (rnr) {
2019		fxp_scb_wait(sc);
2020		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2021		    sc->fxp_desc.rx_head->rx_addr);
2022		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2023	}
2024	return (rx_npkts);
2025}
2026
2027static void
2028fxp_update_stats(struct fxp_softc *sc)
2029{
2030	struct ifnet *ifp = sc->ifp;
2031	struct fxp_stats *sp = sc->fxp_stats;
2032	struct fxp_hwstats *hsp;
2033	uint32_t *status;
2034
2035	FXP_LOCK_ASSERT(sc, MA_OWNED);
2036
2037	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2038	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2039	/* Update statistical counters. */
2040	if (sc->revision >= FXP_REV_82559_A0)
2041		status = &sp->completion_status;
2042	else if (sc->revision >= FXP_REV_82558_A4)
2043		status = (uint32_t *)&sp->tx_tco;
2044	else
2045		status = &sp->tx_pause;
2046	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2047		hsp = &sc->fxp_hwstats;
2048		hsp->tx_good += le32toh(sp->tx_good);
2049		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2050		hsp->tx_latecols += le32toh(sp->tx_latecols);
2051		hsp->tx_underruns += le32toh(sp->tx_underruns);
2052		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2053		hsp->tx_deffered += le32toh(sp->tx_deffered);
2054		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2055		hsp->tx_multiple_collisions +=
2056		    le32toh(sp->tx_multiple_collisions);
2057		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2058		hsp->rx_good += le32toh(sp->rx_good);
2059		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2060		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2061		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2062		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2063		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2064		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2065		hsp->tx_pause += le32toh(sp->tx_pause);
2066		hsp->rx_pause += le32toh(sp->rx_pause);
2067		hsp->rx_controls += le32toh(sp->rx_controls);
2068		hsp->tx_tco += le16toh(sp->tx_tco);
2069		hsp->rx_tco += le16toh(sp->rx_tco);
2070
2071		ifp->if_opackets += le32toh(sp->tx_good);
2072		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2073		if (sp->rx_good) {
2074			ifp->if_ipackets += le32toh(sp->rx_good);
2075			sc->rx_idle_secs = 0;
2076		} else if (sc->flags & FXP_FLAG_RXBUG) {
2077			/*
2078			 * Receiver's been idle for another second.
2079			 */
2080			sc->rx_idle_secs++;
2081		}
2082		ifp->if_ierrors +=
2083		    le32toh(sp->rx_crc_errors) +
2084		    le32toh(sp->rx_alignment_errors) +
2085		    le32toh(sp->rx_rnr_errors) +
2086		    le32toh(sp->rx_overrun_errors);
2087		/*
2088		 * If any transmit underruns occured, bump up the transmit
2089		 * threshold by another 512 bytes (64 * 8).
2090		 */
2091		if (sp->tx_underruns) {
2092			ifp->if_oerrors += le32toh(sp->tx_underruns);
2093			if (tx_threshold < 192)
2094				tx_threshold += 64;
2095		}
2096		*status = 0;
2097		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2098		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099	}
2100}
2101
2102/*
2103 * Update packet in/out/collision statistics. The i82557 doesn't
2104 * allow you to access these counters without doing a fairly
2105 * expensive DMA to get _all_ of the statistics it maintains, so
2106 * we do this operation here only once per second. The statistics
2107 * counters in the kernel are updated from the previous dump-stats
2108 * DMA and then a new dump-stats DMA is started. The on-chip
2109 * counters are zeroed when the DMA completes. If we can't start
2110 * the DMA immediately, we don't wait - we just prepare to read
2111 * them again next time.
2112 */
2113static void
2114fxp_tick(void *xsc)
2115{
2116	struct fxp_softc *sc = xsc;
2117	struct ifnet *ifp = sc->ifp;
2118
2119	FXP_LOCK_ASSERT(sc, MA_OWNED);
2120
2121	/* Update statistical counters. */
2122	fxp_update_stats(sc);
2123
2124	/*
2125	 * Release any xmit buffers that have completed DMA. This isn't
2126	 * strictly necessary to do here, but it's advantagous for mbufs
2127	 * with external storage to be released in a timely manner rather
2128	 * than being defered for a potentially long time. This limits
2129	 * the delay to a maximum of one second.
2130	 */
2131	fxp_txeof(sc);
2132
2133	/*
2134	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2135	 * then assume the receiver has locked up and attempt to clear
2136	 * the condition by reprogramming the multicast filter. This is
2137	 * a work-around for a bug in the 82557 where the receiver locks
2138	 * up if it gets certain types of garbage in the syncronization
2139	 * bits prior to the packet header. This bug is supposed to only
2140	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2141	 * mode as well (perhaps due to a 10/100 speed transition).
2142	 */
2143	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2144		sc->rx_idle_secs = 0;
2145		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2146			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2147			fxp_init_body(sc, 1);
2148		}
2149		return;
2150	}
2151	/*
2152	 * If there is no pending command, start another stats
2153	 * dump. Otherwise punt for now.
2154	 */
2155	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2156		/*
2157		 * Start another stats dump.
2158		 */
2159		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2160	}
2161	if (sc->miibus != NULL)
2162		mii_tick(device_get_softc(sc->miibus));
2163
2164	/*
2165	 * Check that chip hasn't hung.
2166	 */
2167	fxp_watchdog(sc);
2168
2169	/*
2170	 * Schedule another timeout one second from now.
2171	 */
2172	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2173}
2174
2175/*
2176 * Stop the interface. Cancels the statistics updater and resets
2177 * the interface.
2178 */
2179static void
2180fxp_stop(struct fxp_softc *sc)
2181{
2182	struct ifnet *ifp = sc->ifp;
2183	struct fxp_tx *txp;
2184	int i;
2185
2186	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2187	sc->watchdog_timer = 0;
2188
2189	/*
2190	 * Cancel stats updater.
2191	 */
2192	callout_stop(&sc->stat_ch);
2193
2194	/*
2195	 * Preserve PCI configuration, configure, IA/multicast
2196	 * setup and put RU and CU into idle state.
2197	 */
2198	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2199	DELAY(50);
2200	/* Disable interrupts. */
2201	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2202
2203	fxp_update_stats(sc);
2204
2205	/*
2206	 * Release any xmit buffers.
2207	 */
2208	txp = sc->fxp_desc.tx_list;
2209	if (txp != NULL) {
2210		for (i = 0; i < FXP_NTXCB; i++) {
2211			if (txp[i].tx_mbuf != NULL) {
2212				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2213				    BUS_DMASYNC_POSTWRITE);
2214				bus_dmamap_unload(sc->fxp_txmtag,
2215				    txp[i].tx_map);
2216				m_freem(txp[i].tx_mbuf);
2217				txp[i].tx_mbuf = NULL;
2218				/* clear this to reset csum offload bits */
2219				txp[i].tx_cb->tbd[0].tb_addr = 0;
2220			}
2221		}
2222	}
2223	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2224	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2225	sc->tx_queued = 0;
2226}
2227
2228/*
2229 * Watchdog/transmission transmit timeout handler. Called when a
2230 * transmission is started on the interface, but no interrupt is
2231 * received before the timeout. This usually indicates that the
2232 * card has wedged for some reason.
2233 */
2234static void
2235fxp_watchdog(struct fxp_softc *sc)
2236{
2237
2238	FXP_LOCK_ASSERT(sc, MA_OWNED);
2239
2240	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2241		return;
2242
2243	device_printf(sc->dev, "device timeout\n");
2244	sc->ifp->if_oerrors++;
2245
2246	sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2247	fxp_init_body(sc, 1);
2248}
2249
2250/*
2251 * Acquire locks and then call the real initialization function.  This
2252 * is necessary because ether_ioctl() calls if_init() and this would
2253 * result in mutex recursion if the mutex was held.
2254 */
2255static void
2256fxp_init(void *xsc)
2257{
2258	struct fxp_softc *sc = xsc;
2259
2260	FXP_LOCK(sc);
2261	fxp_init_body(sc, 1);
2262	FXP_UNLOCK(sc);
2263}
2264
2265/*
2266 * Perform device initialization. This routine must be called with the
2267 * softc lock held.
2268 */
2269static void
2270fxp_init_body(struct fxp_softc *sc, int setmedia)
2271{
2272	struct ifnet *ifp = sc->ifp;
2273	struct mii_data *mii;
2274	struct fxp_cb_config *cbp;
2275	struct fxp_cb_ias *cb_ias;
2276	struct fxp_cb_tx *tcbp;
2277	struct fxp_tx *txp;
2278	int i, prm;
2279
2280	FXP_LOCK_ASSERT(sc, MA_OWNED);
2281
2282	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2283		return;
2284
2285	/*
2286	 * Cancel any pending I/O
2287	 */
2288	fxp_stop(sc);
2289
2290	/*
2291	 * Issue software reset, which also unloads the microcode.
2292	 */
2293	sc->flags &= ~FXP_FLAG_UCODE;
2294	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2295	DELAY(50);
2296
2297	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2298
2299	/*
2300	 * Initialize base of CBL and RFA memory. Loading with zero
2301	 * sets it up for regular linear addressing.
2302	 */
2303	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2304	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2305
2306	fxp_scb_wait(sc);
2307	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2308
2309	/*
2310	 * Initialize base of dump-stats buffer.
2311	 */
2312	fxp_scb_wait(sc);
2313	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2314	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2315	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2316	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2317	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2318
2319	/*
2320	 * Attempt to load microcode if requested.
2321	 * For ICH based controllers do not load microcode.
2322	 */
2323	if (sc->ident->ich == 0) {
2324		if (ifp->if_flags & IFF_LINK0 &&
2325		    (sc->flags & FXP_FLAG_UCODE) == 0)
2326			fxp_load_ucode(sc);
2327	}
2328
2329	/*
2330	 * Set IFF_ALLMULTI status. It's needed in configure action
2331	 * command.
2332	 */
2333	fxp_mc_addrs(sc);
2334
2335	/*
2336	 * We temporarily use memory that contains the TxCB list to
2337	 * construct the config CB. The TxCB list memory is rebuilt
2338	 * later.
2339	 */
2340	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2341
2342	/*
2343	 * This bcopy is kind of disgusting, but there are a bunch of must be
2344	 * zero and must be one bits in this structure and this is the easiest
2345	 * way to initialize them all to proper values.
2346	 */
2347	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2348
2349	cbp->cb_status =	0;
2350	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2351	    FXP_CB_COMMAND_EL);
2352	cbp->link_addr =	0xffffffff;	/* (no) next command */
2353	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2354	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2355	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2356	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2357	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2358	cbp->type_enable =	0;	/* actually reserved */
2359	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2360	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2361	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2362	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2363	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2364	cbp->late_scb =		0;	/* (don't) defer SCB update */
2365	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2366	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2367	cbp->ci_int =		1;	/* interrupt on CU idle */
2368	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2369	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2370	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2371	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2372	cbp->disc_short_rx =	!prm;	/* discard short packets */
2373	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2374	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2375	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2376	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2377	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2378	cbp->csma_dis =		0;	/* (don't) disable link */
2379	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2380	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2381	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2382	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2383	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2384	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2385	cbp->nsai =		1;	/* (don't) disable source addr insert */
2386	cbp->preamble_length =	2;	/* (7 byte) preamble */
2387	cbp->loopback =		0;	/* (don't) loopback */
2388	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2389	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2390	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2391	cbp->promiscuous =	prm;	/* promiscuous mode */
2392	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2393	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2394	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2395	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2396	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2397
2398	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2399	cbp->padding =		1;	/* (do) pad short tx packets */
2400	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2401	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2402	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2403	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2404	cbp->force_fdx =	0;	/* (don't) force full duplex */
2405	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2406	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2407	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2408	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2409	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2410	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2411
2412	if (sc->revision == FXP_REV_82557) {
2413		/*
2414		 * The 82557 has no hardware flow control, the values
2415		 * below are the defaults for the chip.
2416		 */
2417		cbp->fc_delay_lsb =	0;
2418		cbp->fc_delay_msb =	0x40;
2419		cbp->pri_fc_thresh =	3;
2420		cbp->tx_fc_dis =	0;
2421		cbp->rx_fc_restop =	0;
2422		cbp->rx_fc_restart =	0;
2423		cbp->fc_filter =	0;
2424		cbp->pri_fc_loc =	1;
2425	} else {
2426		/* Set pause RX FIFO threshold to 1KB. */
2427		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2428		/* Set pause time. */
2429		cbp->fc_delay_lsb =	0xff;
2430		cbp->fc_delay_msb =	0xff;
2431		cbp->pri_fc_thresh =	3;
2432		mii = device_get_softc(sc->miibus);
2433		if ((IFM_OPTIONS(mii->mii_media_active) &
2434		    IFM_ETH_TXPAUSE) != 0)
2435			/* enable transmit FC */
2436			cbp->tx_fc_dis = 0;
2437		else
2438			/* disable transmit FC */
2439			cbp->tx_fc_dis = 1;
2440		if ((IFM_OPTIONS(mii->mii_media_active) &
2441		    IFM_ETH_RXPAUSE) != 0) {
2442			/* enable FC restart/restop frames */
2443			cbp->rx_fc_restart = 1;
2444			cbp->rx_fc_restop = 1;
2445		} else {
2446			/* disable FC restart/restop frames */
2447			cbp->rx_fc_restart = 0;
2448			cbp->rx_fc_restop = 0;
2449		}
2450		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2451		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2452	}
2453
2454	/* Enable 82558 and 82559 extended statistics functionality. */
2455	if (sc->revision >= FXP_REV_82558_A4) {
2456		if (sc->revision >= FXP_REV_82559_A0) {
2457			/*
2458			 * Extend configuration table size to 32
2459			 * to include TCO configuration.
2460			 */
2461			cbp->byte_count = 32;
2462			cbp->ext_stats_dis = 1;
2463			/* Enable TCO stats. */
2464			cbp->tno_int_or_tco_en = 1;
2465			cbp->gamla_rx = 1;
2466		} else
2467			cbp->ext_stats_dis = 0;
2468	}
2469
2470	/*
2471	 * Start the config command/DMA.
2472	 */
2473	fxp_scb_wait(sc);
2474	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2475	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2476	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2477	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2478	/* ...and wait for it to complete. */
2479	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2480
2481	/*
2482	 * Now initialize the station address. Temporarily use the TxCB
2483	 * memory area like we did above for the config CB.
2484	 */
2485	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2486	cb_ias->cb_status = 0;
2487	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2488	cb_ias->link_addr = 0xffffffff;
2489	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2490
2491	/*
2492	 * Start the IAS (Individual Address Setup) command/DMA.
2493	 */
2494	fxp_scb_wait(sc);
2495	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2496	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2497	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2498	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2499	/* ...and wait for it to complete. */
2500	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2501
2502	/*
2503	 * Initialize the multicast address list.
2504	 */
2505	fxp_mc_setup(sc);
2506
2507	/*
2508	 * Initialize transmit control block (TxCB) list.
2509	 */
2510	txp = sc->fxp_desc.tx_list;
2511	tcbp = sc->fxp_desc.cbl_list;
2512	bzero(tcbp, FXP_TXCB_SZ);
2513	for (i = 0; i < FXP_NTXCB; i++) {
2514		txp[i].tx_mbuf = NULL;
2515		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2516		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2517		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2518		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2519		if (sc->flags & FXP_FLAG_EXT_TXCB)
2520			tcbp[i].tbd_array_addr =
2521			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2522		else
2523			tcbp[i].tbd_array_addr =
2524			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2525		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2526	}
2527	/*
2528	 * Set the suspend flag on the first TxCB and start the control
2529	 * unit. It will execute the NOP and then suspend.
2530	 */
2531	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2532	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2533	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2534	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2535	sc->tx_queued = 1;
2536
2537	fxp_scb_wait(sc);
2538	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2539	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2540
2541	/*
2542	 * Initialize receiver buffer area - RFA.
2543	 */
2544	fxp_scb_wait(sc);
2545	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2546	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2547
2548	if (sc->miibus != NULL && setmedia != 0)
2549		mii_mediachg(device_get_softc(sc->miibus));
2550
2551	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2552	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2553
2554	/*
2555	 * Enable interrupts.
2556	 */
2557#ifdef DEVICE_POLLING
2558	/*
2559	 * ... but only do that if we are not polling. And because (presumably)
2560	 * the default is interrupts on, we need to disable them explicitly!
2561	 */
2562	if (ifp->if_capenable & IFCAP_POLLING )
2563		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2564	else
2565#endif /* DEVICE_POLLING */
2566	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2567
2568	/*
2569	 * Start stats updater.
2570	 */
2571	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2572}
2573
2574static int
2575fxp_serial_ifmedia_upd(struct ifnet *ifp)
2576{
2577
2578	return (0);
2579}
2580
2581static void
2582fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2583{
2584
2585	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2586}
2587
2588/*
2589 * Change media according to request.
2590 */
2591static int
2592fxp_ifmedia_upd(struct ifnet *ifp)
2593{
2594	struct fxp_softc *sc = ifp->if_softc;
2595	struct mii_data *mii;
2596	struct mii_softc	*miisc;
2597
2598	mii = device_get_softc(sc->miibus);
2599	FXP_LOCK(sc);
2600	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2601		PHY_RESET(miisc);
2602	mii_mediachg(mii);
2603	FXP_UNLOCK(sc);
2604	return (0);
2605}
2606
2607/*
2608 * Notify the world which media we're using.
2609 */
2610static void
2611fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2612{
2613	struct fxp_softc *sc = ifp->if_softc;
2614	struct mii_data *mii;
2615
2616	mii = device_get_softc(sc->miibus);
2617	FXP_LOCK(sc);
2618	mii_pollstat(mii);
2619	ifmr->ifm_active = mii->mii_media_active;
2620	ifmr->ifm_status = mii->mii_media_status;
2621	FXP_UNLOCK(sc);
2622}
2623
2624/*
2625 * Add a buffer to the end of the RFA buffer list.
2626 * Return 0 if successful, 1 for failure. A failure results in
2627 * reusing the RFA buffer.
2628 * The RFA struct is stuck at the beginning of mbuf cluster and the
2629 * data pointer is fixed up to point just past it.
2630 */
2631static int
2632fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2633{
2634	struct mbuf *m;
2635	struct fxp_rfa *rfa;
2636	bus_dmamap_t tmp_map;
2637	int error;
2638
2639	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2640	if (m == NULL)
2641		return (ENOBUFS);
2642
2643	/*
2644	 * Move the data pointer up so that the incoming data packet
2645	 * will be 32-bit aligned.
2646	 */
2647	m->m_data += RFA_ALIGNMENT_FUDGE;
2648
2649	/*
2650	 * Get a pointer to the base of the mbuf cluster and move
2651	 * data start past it.
2652	 */
2653	rfa = mtod(m, struct fxp_rfa *);
2654	m->m_data += sc->rfa_size;
2655	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2656
2657	rfa->rfa_status = 0;
2658	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2659	rfa->actual_size = 0;
2660	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2661	    sc->rfa_size;
2662
2663	/*
2664	 * Initialize the rest of the RFA.  Note that since the RFA
2665	 * is misaligned, we cannot store values directly.  We're thus
2666	 * using the le32enc() function which handles endianness and
2667	 * is also alignment-safe.
2668	 */
2669	le32enc(&rfa->link_addr, 0xffffffff);
2670	le32enc(&rfa->rbd_addr, 0xffffffff);
2671
2672	/* Map the RFA into DMA memory. */
2673	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2674	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2675	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2676	if (error) {
2677		m_freem(m);
2678		return (error);
2679	}
2680
2681	if (rxp->rx_mbuf != NULL)
2682		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2683	tmp_map = sc->spare_map;
2684	sc->spare_map = rxp->rx_map;
2685	rxp->rx_map = tmp_map;
2686	rxp->rx_mbuf = m;
2687
2688	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2689	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2690	return (0);
2691}
2692
2693static void
2694fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2695{
2696	struct fxp_rfa *p_rfa;
2697	struct fxp_rx *p_rx;
2698
2699	/*
2700	 * If there are other buffers already on the list, attach this
2701	 * one to the end by fixing up the tail to point to this one.
2702	 */
2703	if (sc->fxp_desc.rx_head != NULL) {
2704		p_rx = sc->fxp_desc.rx_tail;
2705		p_rfa = (struct fxp_rfa *)
2706		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2707		p_rx->rx_next = rxp;
2708		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2709		p_rfa->rfa_control = 0;
2710		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2711		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2712	} else {
2713		rxp->rx_next = NULL;
2714		sc->fxp_desc.rx_head = rxp;
2715	}
2716	sc->fxp_desc.rx_tail = rxp;
2717}
2718
2719static void
2720fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2721{
2722	struct mbuf *m;
2723	struct fxp_rfa *rfa;
2724
2725	m = rxp->rx_mbuf;
2726	m->m_data = m->m_ext.ext_buf;
2727	/*
2728	 * Move the data pointer up so that the incoming data packet
2729	 * will be 32-bit aligned.
2730	 */
2731	m->m_data += RFA_ALIGNMENT_FUDGE;
2732
2733	/*
2734	 * Get a pointer to the base of the mbuf cluster and move
2735	 * data start past it.
2736	 */
2737	rfa = mtod(m, struct fxp_rfa *);
2738	m->m_data += sc->rfa_size;
2739	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2740
2741	rfa->rfa_status = 0;
2742	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2743	rfa->actual_size = 0;
2744
2745	/*
2746	 * Initialize the rest of the RFA.  Note that since the RFA
2747	 * is misaligned, we cannot store values directly.  We're thus
2748	 * using the le32enc() function which handles endianness and
2749	 * is also alignment-safe.
2750	 */
2751	le32enc(&rfa->link_addr, 0xffffffff);
2752	le32enc(&rfa->rbd_addr, 0xffffffff);
2753
2754	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2755	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2756}
2757
2758static int
2759fxp_miibus_readreg(device_t dev, int phy, int reg)
2760{
2761	struct fxp_softc *sc = device_get_softc(dev);
2762	int count = 10000;
2763	int value;
2764
2765	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2766	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2767
2768	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2769	    && count--)
2770		DELAY(10);
2771
2772	if (count <= 0)
2773		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2774
2775	return (value & 0xffff);
2776}
2777
2778static int
2779fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2780{
2781	struct fxp_softc *sc = device_get_softc(dev);
2782	int count = 10000;
2783
2784	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2785	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2786	    (value & 0xffff));
2787
2788	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2789	    count--)
2790		DELAY(10);
2791
2792	if (count <= 0)
2793		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2794	return (0);
2795}
2796
2797static void
2798fxp_miibus_statchg(device_t dev)
2799{
2800	struct fxp_softc *sc;
2801	struct mii_data *mii;
2802	struct ifnet *ifp;
2803
2804	sc = device_get_softc(dev);
2805	mii = device_get_softc(sc->miibus);
2806	ifp = sc->ifp;
2807	if (mii == NULL || ifp == NULL ||
2808	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2809	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2810	    (IFM_AVALID | IFM_ACTIVE))
2811		return;
2812
2813	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2814	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2815		sc->cu_resume_bug = 1;
2816	else
2817		sc->cu_resume_bug = 0;
2818	/*
2819	 * Call fxp_init_body in order to adjust the flow control settings.
2820	 * Note that the 82557 doesn't support hardware flow control.
2821	 */
2822	if (sc->revision == FXP_REV_82557)
2823		return;
2824	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2825	fxp_init_body(sc, 0);
2826}
2827
2828static int
2829fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2830{
2831	struct fxp_softc *sc = ifp->if_softc;
2832	struct ifreq *ifr = (struct ifreq *)data;
2833	struct mii_data *mii;
2834	int flag, mask, error = 0, reinit;
2835
2836	switch (command) {
2837	case SIOCSIFFLAGS:
2838		FXP_LOCK(sc);
2839		/*
2840		 * If interface is marked up and not running, then start it.
2841		 * If it is marked down and running, stop it.
2842		 * XXX If it's up then re-initialize it. This is so flags
2843		 * such as IFF_PROMISC are handled.
2844		 */
2845		if (ifp->if_flags & IFF_UP) {
2846			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2847			    ((ifp->if_flags ^ sc->if_flags) &
2848			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2849				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2850				fxp_init_body(sc, 0);
2851			} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2852				fxp_init_body(sc, 1);
2853		} else {
2854			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2855				fxp_stop(sc);
2856		}
2857		sc->if_flags = ifp->if_flags;
2858		FXP_UNLOCK(sc);
2859		break;
2860
2861	case SIOCADDMULTI:
2862	case SIOCDELMULTI:
2863		FXP_LOCK(sc);
2864		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2865			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2866			fxp_init_body(sc, 0);
2867		}
2868		FXP_UNLOCK(sc);
2869		break;
2870
2871	case SIOCSIFMEDIA:
2872	case SIOCGIFMEDIA:
2873		if (sc->miibus != NULL) {
2874			mii = device_get_softc(sc->miibus);
2875                        error = ifmedia_ioctl(ifp, ifr,
2876                            &mii->mii_media, command);
2877		} else {
2878                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2879		}
2880		break;
2881
2882	case SIOCSIFCAP:
2883		reinit = 0;
2884		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2885#ifdef DEVICE_POLLING
2886		if (mask & IFCAP_POLLING) {
2887			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2888				error = ether_poll_register(fxp_poll, ifp);
2889				if (error)
2890					return(error);
2891				FXP_LOCK(sc);
2892				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2893				    FXP_SCB_INTR_DISABLE);
2894				ifp->if_capenable |= IFCAP_POLLING;
2895				FXP_UNLOCK(sc);
2896			} else {
2897				error = ether_poll_deregister(ifp);
2898				/* Enable interrupts in any case */
2899				FXP_LOCK(sc);
2900				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2901				ifp->if_capenable &= ~IFCAP_POLLING;
2902				FXP_UNLOCK(sc);
2903			}
2904		}
2905#endif
2906		FXP_LOCK(sc);
2907		if ((mask & IFCAP_TXCSUM) != 0 &&
2908		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2909			ifp->if_capenable ^= IFCAP_TXCSUM;
2910			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2911				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2912			else
2913				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2914		}
2915		if ((mask & IFCAP_RXCSUM) != 0 &&
2916		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2917			ifp->if_capenable ^= IFCAP_RXCSUM;
2918			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2919				reinit++;
2920		}
2921		if ((mask & IFCAP_TSO4) != 0 &&
2922		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2923			ifp->if_capenable ^= IFCAP_TSO4;
2924			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2925				ifp->if_hwassist |= CSUM_TSO;
2926			else
2927				ifp->if_hwassist &= ~CSUM_TSO;
2928		}
2929		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2930		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2931			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2932		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2933		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2934			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2935			if (sc->revision != FXP_REV_82557)
2936				flag = FXP_FLAG_LONG_PKT_EN;
2937			else /* a hack to get long frames on the old chip */
2938				flag = FXP_FLAG_SAVE_BAD;
2939			sc->flags ^= flag;
2940			if (ifp->if_flags & IFF_UP)
2941				reinit++;
2942		}
2943		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2944		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2945			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2946		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2947		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2948			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2949		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2950		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2951			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2952			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2953				ifp->if_capenable &=
2954				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2955			reinit++;
2956		}
2957		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2958			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2959			fxp_init_body(sc, 0);
2960		}
2961		FXP_UNLOCK(sc);
2962		VLAN_CAPABILITIES(ifp);
2963		break;
2964
2965	default:
2966		error = ether_ioctl(ifp, command, data);
2967	}
2968	return (error);
2969}
2970
2971/*
2972 * Fill in the multicast address list and return number of entries.
2973 */
2974static int
2975fxp_mc_addrs(struct fxp_softc *sc)
2976{
2977	struct fxp_cb_mcs *mcsp = sc->mcsp;
2978	struct ifnet *ifp = sc->ifp;
2979	struct ifmultiaddr *ifma;
2980	int nmcasts;
2981
2982	nmcasts = 0;
2983	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2984		if_maddr_rlock(ifp);
2985		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2986			if (ifma->ifma_addr->sa_family != AF_LINK)
2987				continue;
2988			if (nmcasts >= MAXMCADDR) {
2989				ifp->if_flags |= IFF_ALLMULTI;
2990				nmcasts = 0;
2991				break;
2992			}
2993			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2994			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2995			nmcasts++;
2996		}
2997		if_maddr_runlock(ifp);
2998	}
2999	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
3000	return (nmcasts);
3001}
3002
3003/*
3004 * Program the multicast filter.
3005 *
3006 * We have an artificial restriction that the multicast setup command
3007 * must be the first command in the chain, so we take steps to ensure
3008 * this. By requiring this, it allows us to keep up the performance of
3009 * the pre-initialized command ring (esp. link pointers) by not actually
3010 * inserting the mcsetup command in the ring - i.e. its link pointer
3011 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3012 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3013 * lead into the regular TxCB ring when it completes.
3014 */
3015static void
3016fxp_mc_setup(struct fxp_softc *sc)
3017{
3018	struct fxp_cb_mcs *mcsp;
3019	int count;
3020
3021	FXP_LOCK_ASSERT(sc, MA_OWNED);
3022
3023	mcsp = sc->mcsp;
3024	mcsp->cb_status = 0;
3025	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3026	mcsp->link_addr = 0xffffffff;
3027	fxp_mc_addrs(sc);
3028
3029	/*
3030	 * Wait until command unit is idle. This should never be the
3031	 * case when nothing is queued, but make sure anyway.
3032	 */
3033	count = 100;
3034	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3035	    FXP_SCB_CUS_IDLE && --count)
3036		DELAY(10);
3037	if (count == 0) {
3038		device_printf(sc->dev, "command queue timeout\n");
3039		return;
3040	}
3041
3042	/*
3043	 * Start the multicast setup command.
3044	 */
3045	fxp_scb_wait(sc);
3046	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3047	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3048	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3049	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3050	/* ...and wait for it to complete. */
3051	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3052}
3053
3054static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3055static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3056static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3057static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3058static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3059static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3060static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3061
3062#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3063
3064static const struct ucode {
3065	uint32_t	revision;
3066	uint32_t	*ucode;
3067	int		length;
3068	u_short		int_delay_offset;
3069	u_short		bundle_max_offset;
3070} ucode_table[] = {
3071	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3072	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3073	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3074	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3075	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3076	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3077	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3078	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3079	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3080	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3081	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3082	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3083	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3084	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3085	{ 0, NULL, 0, 0, 0 }
3086};
3087
3088static void
3089fxp_load_ucode(struct fxp_softc *sc)
3090{
3091	const struct ucode *uc;
3092	struct fxp_cb_ucode *cbp;
3093	int i;
3094
3095	if (sc->flags & FXP_FLAG_NO_UCODE)
3096		return;
3097
3098	for (uc = ucode_table; uc->ucode != NULL; uc++)
3099		if (sc->revision == uc->revision)
3100			break;
3101	if (uc->ucode == NULL)
3102		return;
3103	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3104	cbp->cb_status = 0;
3105	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3106	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3107	for (i = 0; i < uc->length; i++)
3108		cbp->ucode[i] = htole32(uc->ucode[i]);
3109	if (uc->int_delay_offset)
3110		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3111		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3112	if (uc->bundle_max_offset)
3113		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3114		    htole16(sc->tunable_bundle_max);
3115	/*
3116	 * Download the ucode to the chip.
3117	 */
3118	fxp_scb_wait(sc);
3119	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3120	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3121	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3122	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3123	/* ...and wait for it to complete. */
3124	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3125	device_printf(sc->dev,
3126	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3127	    sc->tunable_int_delay,
3128	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3129	sc->flags |= FXP_FLAG_UCODE;
3130	bzero(cbp, FXP_TXCB_SZ);
3131}
3132
3133#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3134	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3135
3136static void
3137fxp_sysctl_node(struct fxp_softc *sc)
3138{
3139	struct sysctl_ctx_list *ctx;
3140	struct sysctl_oid_list *child, *parent;
3141	struct sysctl_oid *tree;
3142	struct fxp_hwstats *hsp;
3143
3144	ctx = device_get_sysctl_ctx(sc->dev);
3145	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3146
3147	SYSCTL_ADD_PROC(ctx, child,
3148	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3149	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3150	    "FXP driver receive interrupt microcode bundling delay");
3151	SYSCTL_ADD_PROC(ctx, child,
3152	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3153	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3154	    "FXP driver receive interrupt microcode bundle size limit");
3155	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3156	    "FXP RNR events");
3157
3158	/*
3159	 * Pull in device tunables.
3160	 */
3161	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3162	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3163	(void) resource_int_value(device_get_name(sc->dev),
3164	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3165	(void) resource_int_value(device_get_name(sc->dev),
3166	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3167	sc->rnr = 0;
3168
3169	hsp = &sc->fxp_hwstats;
3170	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3171	    NULL, "FXP statistics");
3172	parent = SYSCTL_CHILDREN(tree);
3173
3174	/* Rx MAC statistics. */
3175	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3176	    NULL, "Rx MAC statistics");
3177	child = SYSCTL_CHILDREN(tree);
3178	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3179	    &hsp->rx_good, "Good frames");
3180	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3181	    &hsp->rx_crc_errors, "CRC errors");
3182	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3183	    &hsp->rx_alignment_errors, "Alignment errors");
3184	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3185	    &hsp->rx_rnr_errors, "RNR errors");
3186	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3187	    &hsp->rx_overrun_errors, "Overrun errors");
3188	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3189	    &hsp->rx_cdt_errors, "Collision detect errors");
3190	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3191	    &hsp->rx_shortframes, "Short frame errors");
3192	if (sc->revision >= FXP_REV_82558_A4) {
3193		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3194		    &hsp->rx_pause, "Pause frames");
3195		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3196		    &hsp->rx_controls, "Unsupported control frames");
3197	}
3198	if (sc->revision >= FXP_REV_82559_A0)
3199		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3200		    &hsp->rx_tco, "TCO frames");
3201
3202	/* Tx MAC statistics. */
3203	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3204	    NULL, "Tx MAC statistics");
3205	child = SYSCTL_CHILDREN(tree);
3206	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3207	    &hsp->tx_good, "Good frames");
3208	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3209	    &hsp->tx_maxcols, "Maximum collisions errors");
3210	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3211	    &hsp->tx_latecols, "Late collisions errors");
3212	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3213	    &hsp->tx_underruns, "Underrun errors");
3214	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3215	    &hsp->tx_lostcrs, "Lost carrier sense");
3216	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3217	    &hsp->tx_deffered, "Deferred");
3218	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3219	    &hsp->tx_single_collisions, "Single collisions");
3220	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3221	    &hsp->tx_multiple_collisions, "Multiple collisions");
3222	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3223	    &hsp->tx_total_collisions, "Total collisions");
3224	if (sc->revision >= FXP_REV_82558_A4)
3225		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3226		    &hsp->tx_pause, "Pause frames");
3227	if (sc->revision >= FXP_REV_82559_A0)
3228		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3229		    &hsp->tx_tco, "TCO frames");
3230}
3231
3232#undef FXP_SYSCTL_STAT_ADD
3233
3234static int
3235sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3236{
3237	int error, value;
3238
3239	value = *(int *)arg1;
3240	error = sysctl_handle_int(oidp, &value, 0, req);
3241	if (error || !req->newptr)
3242		return (error);
3243	if (value < low || value > high)
3244		return (EINVAL);
3245	*(int *)arg1 = value;
3246	return (0);
3247}
3248
3249/*
3250 * Interrupt delay is expressed in microseconds, a multiplier is used
3251 * to convert this to the appropriate clock ticks before using.
3252 */
3253static int
3254sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3255{
3256
3257	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3258}
3259
3260static int
3261sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3262{
3263
3264	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3265}
3266