if_fxp.c revision 220103
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 220103 2011-03-28 16:58:48Z yongari $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/module.h>
49#include <sys/mutex.h>
50#include <sys/rman.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54
55#include <net/bpf.h>
56#include <net/ethernet.h>
57#include <net/if.h>
58#include <net/if_arp.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72#include <machine/resource.h>
73
74#include <dev/pci/pcivar.h>
75#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76
77#include <dev/mii/mii.h>
78#include <dev/mii/miivar.h>
79
80#include <dev/fxp/if_fxpreg.h>
81#include <dev/fxp/if_fxpvar.h>
82#include <dev/fxp/rcvbundl.h>
83
84MODULE_DEPEND(fxp, pci, 1, 1, 1);
85MODULE_DEPEND(fxp, ether, 1, 1, 1);
86MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87#include "miibus_if.h"
88
89/*
90 * NOTE!  On !x86 we typically have an alignment constraint.  The
91 * card DMAs the packet immediately following the RFA.  However,
92 * the first thing in the packet is a 14-byte Ethernet header.
93 * This means that the packet is misaligned.  To compensate,
94 * we actually offset the RFA 2 bytes into the cluster.  This
95 * alignes the packet after the Ethernet header at a 32-bit
96 * boundary.  HOWEVER!  This means that the RFA is misaligned!
97 */
98#define	RFA_ALIGNMENT_FUDGE	2
99
100/*
101 * Set initial transmit threshold at 64 (512 bytes). This is
102 * increased by 64 (512 bytes) at a time, to maximum of 192
103 * (1536 bytes), if an underrun occurs.
104 */
105static int tx_threshold = 64;
106
107/*
108 * The configuration byte map has several undefined fields which
109 * must be one or must be zero.  Set up a template for these bits.
110 * The actual configuration is performed in fxp_init_body.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static const u_char const fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5,	/* 21 */
140	0x0,	/* 22 */
141	0x0,	/* 23 */
142	0x0,	/* 24 */
143	0x0,	/* 25 */
144	0x0,	/* 26 */
145	0x0,	/* 27 */
146	0x0,	/* 28 */
147	0x0,	/* 29 */
148	0x0,	/* 30 */
149	0x0	/* 31 */
150};
151
152/*
153 * Claim various Intel PCI device identifiers for this driver.  The
154 * sub-vendor and sub-device field are extensively used to identify
155 * particular variants, but we don't currently differentiate between
156 * them.
157 */
158static const struct fxp_ident const fxp_ident_table[] = {
159    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
198    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204    { 0,	-1,	0, NULL },
205};
206
207#ifdef FXP_IP_CSUM_WAR
208#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209#else
210#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211#endif
212
213static int		fxp_probe(device_t dev);
214static int		fxp_attach(device_t dev);
215static int		fxp_detach(device_t dev);
216static int		fxp_shutdown(device_t dev);
217static int		fxp_suspend(device_t dev);
218static int		fxp_resume(device_t dev);
219
220static const struct fxp_ident *fxp_find_ident(device_t dev);
221static void		fxp_intr(void *xsc);
222static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223			    struct mbuf *m, uint16_t status, int pos);
224static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225			    uint8_t statack, int count);
226static void 		fxp_init(void *xsc);
227static void 		fxp_init_body(struct fxp_softc *sc, int);
228static void 		fxp_tick(void *xsc);
229static void 		fxp_start(struct ifnet *ifp);
230static void 		fxp_start_body(struct ifnet *ifp);
231static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232static void		fxp_txeof(struct fxp_softc *sc);
233static void		fxp_stop(struct fxp_softc *sc);
234static void 		fxp_release(struct fxp_softc *sc);
235static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236			    caddr_t data);
237static void 		fxp_watchdog(struct fxp_softc *sc);
238static void		fxp_add_rfabuf(struct fxp_softc *sc,
239    			    struct fxp_rx *rxp);
240static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241    			    struct fxp_rx *rxp);
242static int		fxp_new_rfabuf(struct fxp_softc *sc,
243    			    struct fxp_rx *rxp);
244static int		fxp_mc_addrs(struct fxp_softc *sc);
245static void		fxp_mc_setup(struct fxp_softc *sc);
246static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247			    int autosize);
248static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249			    uint16_t data);
250static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
252			    int offset, int words);
253static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
254			    int offset, int words);
255static int		fxp_ifmedia_upd(struct ifnet *ifp);
256static void		fxp_ifmedia_sts(struct ifnet *ifp,
257			    struct ifmediareq *ifmr);
258static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
259static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
260			    struct ifmediareq *ifmr);
261static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
262static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
263			    int value);
264static void		fxp_miibus_statchg(device_t dev);
265static void		fxp_load_ucode(struct fxp_softc *sc);
266static void		fxp_update_stats(struct fxp_softc *sc);
267static void		fxp_sysctl_node(struct fxp_softc *sc);
268static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
269			    int low, int high);
270static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
271static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
272static void 		fxp_scb_wait(struct fxp_softc *sc);
273static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
274static void		fxp_dma_wait(struct fxp_softc *sc,
275    			    volatile uint16_t *status, bus_dma_tag_t dmat,
276			    bus_dmamap_t map);
277
278static device_method_t fxp_methods[] = {
279	/* Device interface */
280	DEVMETHOD(device_probe,		fxp_probe),
281	DEVMETHOD(device_attach,	fxp_attach),
282	DEVMETHOD(device_detach,	fxp_detach),
283	DEVMETHOD(device_shutdown,	fxp_shutdown),
284	DEVMETHOD(device_suspend,	fxp_suspend),
285	DEVMETHOD(device_resume,	fxp_resume),
286
287	/* MII interface */
288	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
289	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
290	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
291
292	{ 0, 0 }
293};
294
295static driver_t fxp_driver = {
296	"fxp",
297	fxp_methods,
298	sizeof(struct fxp_softc),
299};
300
301static devclass_t fxp_devclass;
302
303DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
304DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
305
306static struct resource_spec fxp_res_spec_mem[] = {
307	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
308	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
309	{ -1, 0 }
310};
311
312static struct resource_spec fxp_res_spec_io[] = {
313	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
314	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
315	{ -1, 0 }
316};
317
318/*
319 * Wait for the previous command to be accepted (but not necessarily
320 * completed).
321 */
322static void
323fxp_scb_wait(struct fxp_softc *sc)
324{
325	union {
326		uint16_t w;
327		uint8_t b[2];
328	} flowctl;
329	int i = 10000;
330
331	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
332		DELAY(2);
333	if (i == 0) {
334		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
335		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
336		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
337		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
338		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
339		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
340	}
341}
342
343static void
344fxp_scb_cmd(struct fxp_softc *sc, int cmd)
345{
346
347	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
348		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
349		fxp_scb_wait(sc);
350	}
351	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
352}
353
354static void
355fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
356    bus_dma_tag_t dmat, bus_dmamap_t map)
357{
358	int i;
359
360	for (i = 10000; i > 0; i--) {
361		DELAY(2);
362		bus_dmamap_sync(dmat, map,
363		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
364		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
365			break;
366	}
367	if (i == 0)
368		device_printf(sc->dev, "DMA timeout\n");
369}
370
371static const struct fxp_ident *
372fxp_find_ident(device_t dev)
373{
374	uint16_t devid;
375	uint8_t revid;
376	const struct fxp_ident *ident;
377
378	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
379		devid = pci_get_device(dev);
380		revid = pci_get_revid(dev);
381		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
382			if (ident->devid == devid &&
383			    (ident->revid == revid || ident->revid == -1)) {
384				return (ident);
385			}
386		}
387	}
388	return (NULL);
389}
390
391/*
392 * Return identification string if this device is ours.
393 */
394static int
395fxp_probe(device_t dev)
396{
397	const struct fxp_ident *ident;
398
399	ident = fxp_find_ident(dev);
400	if (ident != NULL) {
401		device_set_desc(dev, ident->name);
402		return (BUS_PROBE_DEFAULT);
403	}
404	return (ENXIO);
405}
406
407static void
408fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
409{
410	uint32_t *addr;
411
412	if (error)
413		return;
414
415	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
416	addr = arg;
417	*addr = segs->ds_addr;
418}
419
420static int
421fxp_attach(device_t dev)
422{
423	struct fxp_softc *sc;
424	struct fxp_cb_tx *tcbp;
425	struct fxp_tx *txp;
426	struct fxp_rx *rxp;
427	struct ifnet *ifp;
428	uint32_t val;
429	uint16_t data, myea[ETHER_ADDR_LEN / 2];
430	u_char eaddr[ETHER_ADDR_LEN];
431	int error, flags, i, pmc, prefer_iomap;
432
433	error = 0;
434	sc = device_get_softc(dev);
435	sc->dev = dev;
436	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437	    MTX_DEF);
438	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
439	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
440	    fxp_serial_ifmedia_sts);
441
442	ifp = sc->ifp = if_alloc(IFT_ETHER);
443	if (ifp == NULL) {
444		device_printf(dev, "can not if_alloc()\n");
445		error = ENOSPC;
446		goto fail;
447	}
448
449	/*
450	 * Enable bus mastering.
451	 */
452	pci_enable_busmaster(dev);
453	val = pci_read_config(dev, PCIR_COMMAND, 2);
454
455	/*
456	 * Figure out which we should try first - memory mapping or i/o mapping?
457	 * We default to memory mapping. Then we accept an override from the
458	 * command line. Then we check to see which one is enabled.
459	 */
460	prefer_iomap = 0;
461	resource_int_value(device_get_name(dev), device_get_unit(dev),
462	    "prefer_iomap", &prefer_iomap);
463	if (prefer_iomap)
464		sc->fxp_spec = fxp_res_spec_io;
465	else
466		sc->fxp_spec = fxp_res_spec_mem;
467
468	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
469	if (error) {
470		if (sc->fxp_spec == fxp_res_spec_mem)
471			sc->fxp_spec = fxp_res_spec_io;
472		else
473			sc->fxp_spec = fxp_res_spec_mem;
474		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
475	}
476	if (error) {
477		device_printf(dev, "could not allocate resources\n");
478		error = ENXIO;
479		goto fail;
480	}
481
482	if (bootverbose) {
483		device_printf(dev, "using %s space register mapping\n",
484		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
485	}
486
487	/*
488	 * Put CU/RU idle state and prepare full reset.
489	 */
490	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
491	DELAY(10);
492	/* Full reset and disable interrupts. */
493	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
494	DELAY(10);
495	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
496
497	/*
498	 * Find out how large of an SEEPROM we have.
499	 */
500	fxp_autosize_eeprom(sc);
501
502	/*
503	 * Find out the chip revision; lump all 82557 revs together.
504	 */
505	sc->ident = fxp_find_ident(dev);
506	if (sc->ident->ich > 0) {
507		/* Assume ICH controllers are 82559. */
508		sc->revision = FXP_REV_82559_A0;
509	} else {
510		fxp_read_eeprom(sc, &data, 5, 1);
511		if ((data >> 8) == 1)
512			sc->revision = FXP_REV_82557;
513		else
514			sc->revision = pci_get_revid(dev);
515	}
516
517	/*
518	 * Check availability of WOL. 82559ER does not support WOL.
519	 */
520	if (sc->revision >= FXP_REV_82558_A4 &&
521	    sc->revision != FXP_REV_82559S_A) {
522		fxp_read_eeprom(sc, &data, 10, 1);
523		if ((data & 0x20) != 0 &&
524		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
525			sc->flags |= FXP_FLAG_WOLCAP;
526	}
527
528	/* Receiver lock-up workaround detection. */
529	if (sc->revision < FXP_REV_82558_A4) {
530		fxp_read_eeprom(sc, &data, 3, 1);
531		if ((data & 0x03) != 0x03) {
532			sc->flags |= FXP_FLAG_RXBUG;
533			device_printf(dev, "Enabling Rx lock-up workaround\n");
534		}
535	}
536
537	/*
538	 * Determine whether we must use the 503 serial interface.
539	 */
540	fxp_read_eeprom(sc, &data, 6, 1);
541	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
542	    && (data & FXP_PHY_SERIAL_ONLY))
543		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
544
545	fxp_sysctl_node(sc);
546	/*
547	 * Enable workarounds for certain chip revision deficiencies.
548	 *
549	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
550	 * some systems based a normal 82559 design, have a defect where
551	 * the chip can cause a PCI protocol violation if it receives
552	 * a CU_RESUME command when it is entering the IDLE state.  The
553	 * workaround is to disable Dynamic Standby Mode, so the chip never
554	 * deasserts CLKRUN#, and always remains in an active state.
555	 *
556	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
557	 */
558	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
559	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
560		fxp_read_eeprom(sc, &data, 10, 1);
561		if (data & 0x02) {			/* STB enable */
562			uint16_t cksum;
563			int i;
564
565			device_printf(dev,
566			    "Disabling dynamic standby mode in EEPROM\n");
567			data &= ~0x02;
568			fxp_write_eeprom(sc, &data, 10, 1);
569			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570			cksum = 0;
571			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572				fxp_read_eeprom(sc, &data, i, 1);
573				cksum += data;
574			}
575			i = (1 << sc->eeprom_size) - 1;
576			cksum = 0xBABA - cksum;
577			fxp_read_eeprom(sc, &data, i, 1);
578			fxp_write_eeprom(sc, &cksum, i, 1);
579			device_printf(dev,
580			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581			    i, data, cksum);
582#if 1
583			/*
584			 * If the user elects to continue, try the software
585			 * workaround, as it is better than nothing.
586			 */
587			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588#endif
589		}
590	}
591
592	/*
593	 * If we are not a 82557 chip, we can enable extended features.
594	 */
595	if (sc->revision != FXP_REV_82557) {
596		/*
597		 * If MWI is enabled in the PCI configuration, and there
598		 * is a valid cacheline size (8 or 16 dwords), then tell
599		 * the board to turn on MWI.
600		 */
601		if (val & PCIM_CMD_MWRICEN &&
602		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603			sc->flags |= FXP_FLAG_MWI_ENABLE;
604
605		/* turn on the extended TxCB feature */
606		sc->flags |= FXP_FLAG_EXT_TXCB;
607
608		/* enable reception of long frames for VLAN */
609		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610	} else {
611		/* a hack to get long VLAN frames on a 82557 */
612		sc->flags |= FXP_FLAG_SAVE_BAD;
613	}
614
615	/* For 82559 or later chips, Rx checksum offload is supported. */
616	if (sc->revision >= FXP_REV_82559_A0) {
617		/* 82559ER does not support Rx checksum offloading. */
618		if (sc->ident->devid != 0x1209)
619			sc->flags |= FXP_FLAG_82559_RXCSUM;
620	}
621	/*
622	 * Enable use of extended RFDs and TCBs for 82550
623	 * and later chips. Note: we need extended TXCB support
624	 * too, but that's already enabled by the code above.
625	 * Be careful to do this only on the right devices.
626	 */
627	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
628	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
629	    || sc->revision == FXP_REV_82551_10) {
630		sc->rfa_size = sizeof (struct fxp_rfa);
631		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
632		sc->flags |= FXP_FLAG_EXT_RFA;
633		/* Use extended RFA instead of 82559 checksum mode. */
634		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
635	} else {
636		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
637		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
638	}
639
640	/*
641	 * Allocate DMA tags and DMA safe memory.
642	 */
643	sc->maxtxseg = FXP_NTXSEG;
644	sc->maxsegsize = MCLBYTES;
645	if (sc->flags & FXP_FLAG_EXT_RFA) {
646		sc->maxtxseg--;
647		sc->maxsegsize = FXP_TSO_SEGSIZE;
648	}
649	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
650	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
651	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
652	    sc->maxtxseg, sc->maxsegsize, 0,
653	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
654	if (error) {
655		device_printf(dev, "could not create TX DMA tag\n");
656		goto fail;
657	}
658
659	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
660	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
661	    MCLBYTES, 1, MCLBYTES, 0,
662	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
663	if (error) {
664		device_printf(dev, "could not create RX DMA tag\n");
665		goto fail;
666	}
667
668	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
669	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
670	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
671	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
672	if (error) {
673		device_printf(dev, "could not create stats DMA tag\n");
674		goto fail;
675	}
676
677	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
678	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
679	if (error) {
680		device_printf(dev, "could not allocate stats DMA memory\n");
681		goto fail;
682	}
683	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
684	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
685	if (error) {
686		device_printf(dev, "could not load the stats DMA buffer\n");
687		goto fail;
688	}
689
690	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
691	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
692	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
693	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
694	if (error) {
695		device_printf(dev, "could not create TxCB DMA tag\n");
696		goto fail;
697	}
698
699	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
700	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
701	if (error) {
702		device_printf(dev, "could not allocate TxCB DMA memory\n");
703		goto fail;
704	}
705
706	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
707	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
708	    &sc->fxp_desc.cbl_addr, 0);
709	if (error) {
710		device_printf(dev, "could not load TxCB DMA buffer\n");
711		goto fail;
712	}
713
714	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
715	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
716	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
717	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
718	if (error) {
719		device_printf(dev,
720		    "could not create multicast setup DMA tag\n");
721		goto fail;
722	}
723
724	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
725	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
726	if (error) {
727		device_printf(dev,
728		    "could not allocate multicast setup DMA memory\n");
729		goto fail;
730	}
731	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
732	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
733	if (error) {
734		device_printf(dev,
735		    "can't load the multicast setup DMA buffer\n");
736		goto fail;
737	}
738
739	/*
740	 * Pre-allocate the TX DMA maps and setup the pointers to
741	 * the TX command blocks.
742	 */
743	txp = sc->fxp_desc.tx_list;
744	tcbp = sc->fxp_desc.cbl_list;
745	for (i = 0; i < FXP_NTXCB; i++) {
746		txp[i].tx_cb = tcbp + i;
747		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
748		if (error) {
749			device_printf(dev, "can't create DMA map for TX\n");
750			goto fail;
751		}
752	}
753	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
754	if (error) {
755		device_printf(dev, "can't create spare DMA map\n");
756		goto fail;
757	}
758
759	/*
760	 * Pre-allocate our receive buffers.
761	 */
762	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
763	for (i = 0; i < FXP_NRFABUFS; i++) {
764		rxp = &sc->fxp_desc.rx_list[i];
765		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
766		if (error) {
767			device_printf(dev, "can't create DMA map for RX\n");
768			goto fail;
769		}
770		if (fxp_new_rfabuf(sc, rxp) != 0) {
771			error = ENOMEM;
772			goto fail;
773		}
774		fxp_add_rfabuf(sc, rxp);
775	}
776
777	/*
778	 * Read MAC address.
779	 */
780	fxp_read_eeprom(sc, myea, 0, 3);
781	eaddr[0] = myea[0] & 0xff;
782	eaddr[1] = myea[0] >> 8;
783	eaddr[2] = myea[1] & 0xff;
784	eaddr[3] = myea[1] >> 8;
785	eaddr[4] = myea[2] & 0xff;
786	eaddr[5] = myea[2] >> 8;
787	if (bootverbose) {
788		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
789		    pci_get_vendor(dev), pci_get_device(dev),
790		    pci_get_subvendor(dev), pci_get_subdevice(dev),
791		    pci_get_revid(dev));
792		fxp_read_eeprom(sc, &data, 10, 1);
793		device_printf(dev, "Dynamic Standby mode is %s\n",
794		    data & 0x02 ? "enabled" : "disabled");
795	}
796
797	/*
798	 * If this is only a 10Mbps device, then there is no MII, and
799	 * the PHY will use a serial interface instead.
800	 *
801	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
802	 * doesn't have a programming interface of any sort.  The
803	 * media is sensed automatically based on how the link partner
804	 * is configured.  This is, in essence, manual configuration.
805	 */
806	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
807		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
808		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
809	} else {
810		/*
811		 * i82557 wedge when isolating all of their PHYs.
812		 */
813		flags = MIIF_NOISOLATE;
814		if (sc->revision >= FXP_REV_82558_A4)
815			flags |= MIIF_DOPAUSE;
816		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
817		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
818		    MII_OFFSET_ANY, flags);
819		if (error != 0) {
820			device_printf(dev, "attaching PHYs failed\n");
821			goto fail;
822		}
823	}
824
825	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
826	ifp->if_init = fxp_init;
827	ifp->if_softc = sc;
828	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
829	ifp->if_ioctl = fxp_ioctl;
830	ifp->if_start = fxp_start;
831
832	ifp->if_capabilities = ifp->if_capenable = 0;
833
834	/* Enable checksum offload/TSO for 82550 or better chips */
835	if (sc->flags & FXP_FLAG_EXT_RFA) {
836		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
837		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
838		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
839	}
840
841	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
842		ifp->if_capabilities |= IFCAP_RXCSUM;
843		ifp->if_capenable |= IFCAP_RXCSUM;
844	}
845
846	if (sc->flags & FXP_FLAG_WOLCAP) {
847		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
848		ifp->if_capenable |= IFCAP_WOL_MAGIC;
849	}
850
851#ifdef DEVICE_POLLING
852	/* Inform the world we support polling. */
853	ifp->if_capabilities |= IFCAP_POLLING;
854#endif
855
856	/*
857	 * Attach the interface.
858	 */
859	ether_ifattach(ifp, eaddr);
860
861	/*
862	 * Tell the upper layer(s) we support long frames.
863	 * Must appear after the call to ether_ifattach() because
864	 * ether_ifattach() sets ifi_hdrlen to the default value.
865	 */
866	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
867	ifp->if_capabilities |= IFCAP_VLAN_MTU;
868	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
869	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
870		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
871		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
872		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
873		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
874	}
875
876	/*
877	 * Let the system queue as many packets as we have available
878	 * TX descriptors.
879	 */
880	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
881	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
882	IFQ_SET_READY(&ifp->if_snd);
883
884	/*
885	 * Hook our interrupt after all initialization is complete.
886	 */
887	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
888			       NULL, fxp_intr, sc, &sc->ih);
889	if (error) {
890		device_printf(dev, "could not setup irq\n");
891		ether_ifdetach(sc->ifp);
892		goto fail;
893	}
894
895	/*
896	 * Configure hardware to reject magic frames otherwise
897	 * system will hang on recipt of magic frames.
898	 */
899	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
900		FXP_LOCK(sc);
901		/* Clear wakeup events. */
902		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
903		fxp_init_body(sc, 1);
904		fxp_stop(sc);
905		FXP_UNLOCK(sc);
906	}
907
908fail:
909	if (error)
910		fxp_release(sc);
911	return (error);
912}
913
914/*
915 * Release all resources.  The softc lock should not be held and the
916 * interrupt should already be torn down.
917 */
918static void
919fxp_release(struct fxp_softc *sc)
920{
921	struct fxp_rx *rxp;
922	struct fxp_tx *txp;
923	int i;
924
925	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
926	KASSERT(sc->ih == NULL,
927	    ("fxp_release() called with intr handle still active"));
928	if (sc->miibus)
929		device_delete_child(sc->dev, sc->miibus);
930	bus_generic_detach(sc->dev);
931	ifmedia_removeall(&sc->sc_media);
932	if (sc->fxp_desc.cbl_list) {
933		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
934		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
935		    sc->cbl_map);
936	}
937	if (sc->fxp_stats) {
938		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
939		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
940	}
941	if (sc->mcsp) {
942		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
943		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
944	}
945	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
946	if (sc->fxp_rxmtag) {
947		for (i = 0; i < FXP_NRFABUFS; i++) {
948			rxp = &sc->fxp_desc.rx_list[i];
949			if (rxp->rx_mbuf != NULL) {
950				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
951				    BUS_DMASYNC_POSTREAD);
952				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
953				m_freem(rxp->rx_mbuf);
954			}
955			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
956		}
957		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
958		bus_dma_tag_destroy(sc->fxp_rxmtag);
959	}
960	if (sc->fxp_txmtag) {
961		for (i = 0; i < FXP_NTXCB; i++) {
962			txp = &sc->fxp_desc.tx_list[i];
963			if (txp->tx_mbuf != NULL) {
964				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
965				    BUS_DMASYNC_POSTWRITE);
966				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
967				m_freem(txp->tx_mbuf);
968			}
969			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
970		}
971		bus_dma_tag_destroy(sc->fxp_txmtag);
972	}
973	if (sc->fxp_stag)
974		bus_dma_tag_destroy(sc->fxp_stag);
975	if (sc->cbl_tag)
976		bus_dma_tag_destroy(sc->cbl_tag);
977	if (sc->mcs_tag)
978		bus_dma_tag_destroy(sc->mcs_tag);
979	if (sc->ifp)
980		if_free(sc->ifp);
981
982	mtx_destroy(&sc->sc_mtx);
983}
984
985/*
986 * Detach interface.
987 */
988static int
989fxp_detach(device_t dev)
990{
991	struct fxp_softc *sc = device_get_softc(dev);
992
993#ifdef DEVICE_POLLING
994	if (sc->ifp->if_capenable & IFCAP_POLLING)
995		ether_poll_deregister(sc->ifp);
996#endif
997
998	FXP_LOCK(sc);
999	/*
1000	 * Stop DMA and drop transmit queue, but disable interrupts first.
1001	 */
1002	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1003	fxp_stop(sc);
1004	FXP_UNLOCK(sc);
1005	callout_drain(&sc->stat_ch);
1006
1007	/*
1008	 * Close down routes etc.
1009	 */
1010	ether_ifdetach(sc->ifp);
1011
1012	/*
1013	 * Unhook interrupt before dropping lock. This is to prevent
1014	 * races with fxp_intr().
1015	 */
1016	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1017	sc->ih = NULL;
1018
1019	/* Release our allocated resources. */
1020	fxp_release(sc);
1021	return (0);
1022}
1023
1024/*
1025 * Device shutdown routine. Called at system shutdown after sync. The
1026 * main purpose of this routine is to shut off receiver DMA so that
1027 * kernel memory doesn't get clobbered during warmboot.
1028 */
1029static int
1030fxp_shutdown(device_t dev)
1031{
1032
1033	/*
1034	 * Make sure that DMA is disabled prior to reboot. Not doing
1035	 * do could allow DMA to corrupt kernel memory during the
1036	 * reboot before the driver initializes.
1037	 */
1038	return (fxp_suspend(dev));
1039}
1040
1041/*
1042 * Device suspend routine.  Stop the interface and save some PCI
1043 * settings in case the BIOS doesn't restore them properly on
1044 * resume.
1045 */
1046static int
1047fxp_suspend(device_t dev)
1048{
1049	struct fxp_softc *sc = device_get_softc(dev);
1050	struct ifnet *ifp;
1051	int pmc;
1052	uint16_t pmstat;
1053
1054	FXP_LOCK(sc);
1055
1056	ifp = sc->ifp;
1057	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1058		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1059		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1060		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1061			/* Request PME. */
1062			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1063			sc->flags |= FXP_FLAG_WOL;
1064			/* Reconfigure hardware to accept magic frames. */
1065			fxp_init_body(sc, 1);
1066		}
1067		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1068	}
1069	fxp_stop(sc);
1070
1071	sc->suspended = 1;
1072
1073	FXP_UNLOCK(sc);
1074	return (0);
1075}
1076
1077/*
1078 * Device resume routine. re-enable busmastering, and restart the interface if
1079 * appropriate.
1080 */
1081static int
1082fxp_resume(device_t dev)
1083{
1084	struct fxp_softc *sc = device_get_softc(dev);
1085	struct ifnet *ifp = sc->ifp;
1086	int pmc;
1087	uint16_t pmstat;
1088
1089	FXP_LOCK(sc);
1090
1091	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1092		sc->flags &= ~FXP_FLAG_WOL;
1093		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1094		/* Disable PME and clear PME status. */
1095		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1096		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1097		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1098			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1099			    CSR_READ_1(sc, FXP_CSR_PMDR));
1100	}
1101
1102	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1103	DELAY(10);
1104
1105	/* reinitialize interface if necessary */
1106	if (ifp->if_flags & IFF_UP)
1107		fxp_init_body(sc, 1);
1108
1109	sc->suspended = 0;
1110
1111	FXP_UNLOCK(sc);
1112	return (0);
1113}
1114
1115static void
1116fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1117{
1118	uint16_t reg;
1119	int x;
1120
1121	/*
1122	 * Shift in data.
1123	 */
1124	for (x = 1 << (length - 1); x; x >>= 1) {
1125		if (data & x)
1126			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1127		else
1128			reg = FXP_EEPROM_EECS;
1129		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1130		DELAY(1);
1131		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1132		DELAY(1);
1133		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1134		DELAY(1);
1135	}
1136}
1137
1138/*
1139 * Read from the serial EEPROM. Basically, you manually shift in
1140 * the read opcode (one bit at a time) and then shift in the address,
1141 * and then you shift out the data (all of this one bit at a time).
1142 * The word size is 16 bits, so you have to provide the address for
1143 * every 16 bits of data.
1144 */
1145static uint16_t
1146fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1147{
1148	uint16_t reg, data;
1149	int x;
1150
1151	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1152	/*
1153	 * Shift in read opcode.
1154	 */
1155	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1156	/*
1157	 * Shift in address.
1158	 */
1159	data = 0;
1160	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1161		if (offset & x)
1162			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1163		else
1164			reg = FXP_EEPROM_EECS;
1165		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1166		DELAY(1);
1167		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1168		DELAY(1);
1169		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1170		DELAY(1);
1171		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1172		data++;
1173		if (autosize && reg == 0) {
1174			sc->eeprom_size = data;
1175			break;
1176		}
1177	}
1178	/*
1179	 * Shift out data.
1180	 */
1181	data = 0;
1182	reg = FXP_EEPROM_EECS;
1183	for (x = 1 << 15; x; x >>= 1) {
1184		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1185		DELAY(1);
1186		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1187			data |= x;
1188		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1189		DELAY(1);
1190	}
1191	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1192	DELAY(1);
1193
1194	return (data);
1195}
1196
1197static void
1198fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1199{
1200	int i;
1201
1202	/*
1203	 * Erase/write enable.
1204	 */
1205	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1206	fxp_eeprom_shiftin(sc, 0x4, 3);
1207	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1208	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1209	DELAY(1);
1210	/*
1211	 * Shift in write opcode, address, data.
1212	 */
1213	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1214	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1215	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1216	fxp_eeprom_shiftin(sc, data, 16);
1217	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1218	DELAY(1);
1219	/*
1220	 * Wait for EEPROM to finish up.
1221	 */
1222	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1223	DELAY(1);
1224	for (i = 0; i < 1000; i++) {
1225		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1226			break;
1227		DELAY(50);
1228	}
1229	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1230	DELAY(1);
1231	/*
1232	 * Erase/write disable.
1233	 */
1234	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1235	fxp_eeprom_shiftin(sc, 0x4, 3);
1236	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1237	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1238	DELAY(1);
1239}
1240
1241/*
1242 * From NetBSD:
1243 *
1244 * Figure out EEPROM size.
1245 *
1246 * 559's can have either 64-word or 256-word EEPROMs, the 558
1247 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1248 * talks about the existance of 16 to 256 word EEPROMs.
1249 *
1250 * The only known sizes are 64 and 256, where the 256 version is used
1251 * by CardBus cards to store CIS information.
1252 *
1253 * The address is shifted in msb-to-lsb, and after the last
1254 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1255 * after which follows the actual data. We try to detect this zero, by
1256 * probing the data-out bit in the EEPROM control register just after
1257 * having shifted in a bit. If the bit is zero, we assume we've
1258 * shifted enough address bits. The data-out should be tri-state,
1259 * before this, which should translate to a logical one.
1260 */
1261static void
1262fxp_autosize_eeprom(struct fxp_softc *sc)
1263{
1264
1265	/* guess maximum size of 256 words */
1266	sc->eeprom_size = 8;
1267
1268	/* autosize */
1269	(void) fxp_eeprom_getword(sc, 0, 1);
1270}
1271
1272static void
1273fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1274{
1275	int i;
1276
1277	for (i = 0; i < words; i++)
1278		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1279}
1280
1281static void
1282fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1283{
1284	int i;
1285
1286	for (i = 0; i < words; i++)
1287		fxp_eeprom_putword(sc, offset + i, data[i]);
1288}
1289
1290/*
1291 * Grab the softc lock and call the real fxp_start_body() routine
1292 */
1293static void
1294fxp_start(struct ifnet *ifp)
1295{
1296	struct fxp_softc *sc = ifp->if_softc;
1297
1298	FXP_LOCK(sc);
1299	fxp_start_body(ifp);
1300	FXP_UNLOCK(sc);
1301}
1302
1303/*
1304 * Start packet transmission on the interface.
1305 * This routine must be called with the softc lock held, and is an
1306 * internal entry point only.
1307 */
1308static void
1309fxp_start_body(struct ifnet *ifp)
1310{
1311	struct fxp_softc *sc = ifp->if_softc;
1312	struct mbuf *mb_head;
1313	int txqueued;
1314
1315	FXP_LOCK_ASSERT(sc, MA_OWNED);
1316
1317	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1318	    IFF_DRV_RUNNING)
1319		return;
1320
1321	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1322		fxp_txeof(sc);
1323	/*
1324	 * We're finished if there is nothing more to add to the list or if
1325	 * we're all filled up with buffers to transmit.
1326	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1327	 *       a NOP command when needed.
1328	 */
1329	txqueued = 0;
1330	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1331	    sc->tx_queued < FXP_NTXCB - 1) {
1332
1333		/*
1334		 * Grab a packet to transmit.
1335		 */
1336		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1337		if (mb_head == NULL)
1338			break;
1339
1340		if (fxp_encap(sc, &mb_head)) {
1341			if (mb_head == NULL)
1342				break;
1343			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1344			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1345		}
1346		txqueued++;
1347		/*
1348		 * Pass packet to bpf if there is a listener.
1349		 */
1350		BPF_MTAP(ifp, mb_head);
1351	}
1352
1353	/*
1354	 * We're finished. If we added to the list, issue a RESUME to get DMA
1355	 * going again if suspended.
1356	 */
1357	if (txqueued > 0) {
1358		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1359		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1360		fxp_scb_wait(sc);
1361		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1362		/*
1363		 * Set a 5 second timer just in case we don't hear
1364		 * from the card again.
1365		 */
1366		sc->watchdog_timer = 5;
1367	}
1368}
1369
1370static int
1371fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1372{
1373	struct ifnet *ifp;
1374	struct mbuf *m;
1375	struct fxp_tx *txp;
1376	struct fxp_cb_tx *cbp;
1377	struct tcphdr *tcp;
1378	bus_dma_segment_t segs[FXP_NTXSEG];
1379	int error, i, nseg, tcp_payload;
1380
1381	FXP_LOCK_ASSERT(sc, MA_OWNED);
1382	ifp = sc->ifp;
1383
1384	tcp_payload = 0;
1385	tcp = NULL;
1386	/*
1387	 * Get pointer to next available tx desc.
1388	 */
1389	txp = sc->fxp_desc.tx_last->tx_next;
1390
1391	/*
1392	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1393	 * Ethernet Controller Family Open Source Software
1394	 * Developer Manual says:
1395	 *   Using software parsing is only allowed with legal
1396	 *   TCP/IP or UDP/IP packets.
1397	 *   ...
1398	 *   For all other datagrams, hardware parsing must
1399	 *   be used.
1400	 * Software parsing appears to truncate ICMP and
1401	 * fragmented UDP packets that contain one to three
1402	 * bytes in the second (and final) mbuf of the packet.
1403	 */
1404	if (sc->flags & FXP_FLAG_EXT_RFA)
1405		txp->tx_cb->ipcb_ip_activation_high =
1406		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1407
1408	m = *m_head;
1409	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1410		/*
1411		 * 82550/82551 requires ethernet/IP/TCP headers must be
1412		 * contained in the first active transmit buffer.
1413		 */
1414		struct ether_header *eh;
1415		struct ip *ip;
1416		uint32_t ip_off, poff;
1417
1418		if (M_WRITABLE(*m_head) == 0) {
1419			/* Get a writable copy. */
1420			m = m_dup(*m_head, M_DONTWAIT);
1421			m_freem(*m_head);
1422			if (m == NULL) {
1423				*m_head = NULL;
1424				return (ENOBUFS);
1425			}
1426			*m_head = m;
1427		}
1428		ip_off = sizeof(struct ether_header);
1429		m = m_pullup(*m_head, ip_off);
1430		if (m == NULL) {
1431			*m_head = NULL;
1432			return (ENOBUFS);
1433		}
1434		eh = mtod(m, struct ether_header *);
1435		/* Check the existence of VLAN tag. */
1436		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1437			ip_off = sizeof(struct ether_vlan_header);
1438			m = m_pullup(m, ip_off);
1439			if (m == NULL) {
1440				*m_head = NULL;
1441				return (ENOBUFS);
1442			}
1443		}
1444		m = m_pullup(m, ip_off + sizeof(struct ip));
1445		if (m == NULL) {
1446			*m_head = NULL;
1447			return (ENOBUFS);
1448		}
1449		ip = (struct ip *)(mtod(m, char *) + ip_off);
1450		poff = ip_off + (ip->ip_hl << 2);
1451		m = m_pullup(m, poff + sizeof(struct tcphdr));
1452		if (m == NULL) {
1453			*m_head = NULL;
1454			return (ENOBUFS);
1455		}
1456		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1457		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1458		if (m == NULL) {
1459			*m_head = NULL;
1460			return (ENOBUFS);
1461		}
1462
1463		/*
1464		 * Since 82550/82551 doesn't modify IP length and pseudo
1465		 * checksum in the first frame driver should compute it.
1466		 */
1467		ip = (struct ip *)(mtod(m, char *) + ip_off);
1468		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1469		ip->ip_sum = 0;
1470		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1471		    (tcp->th_off << 2));
1472		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1473		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1474		    m->m_pkthdr.tso_segsz));
1475		/* Compute total TCP payload. */
1476		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1477		tcp_payload -= tcp->th_off << 2;
1478		*m_head = m;
1479	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1480		/*
1481		 * Deal with TCP/IP checksum offload. Note that
1482		 * in order for TCP checksum offload to work,
1483		 * the pseudo header checksum must have already
1484		 * been computed and stored in the checksum field
1485		 * in the TCP header. The stack should have
1486		 * already done this for us.
1487		 */
1488		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1489		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1490			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1491
1492#ifdef FXP_IP_CSUM_WAR
1493		/*
1494		 * XXX The 82550 chip appears to have trouble
1495		 * dealing with IP header checksums in very small
1496		 * datagrams, namely fragments from 1 to 3 bytes
1497		 * in size. For example, say you want to transmit
1498		 * a UDP packet of 1473 bytes. The packet will be
1499		 * fragmented over two IP datagrams, the latter
1500		 * containing only one byte of data. The 82550 will
1501		 * botch the header checksum on the 1-byte fragment.
1502		 * As long as the datagram contains 4 or more bytes
1503		 * of data, you're ok.
1504		 *
1505                 * The following code attempts to work around this
1506		 * problem: if the datagram is less than 38 bytes
1507		 * in size (14 bytes ether header, 20 bytes IP header,
1508		 * plus 4 bytes of data), we punt and compute the IP
1509		 * header checksum by hand. This workaround doesn't
1510		 * work very well, however, since it can be fooled
1511		 * by things like VLAN tags and IP options that make
1512		 * the header sizes/offsets vary.
1513		 */
1514
1515		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1516			if (m->m_pkthdr.len < 38) {
1517				struct ip *ip;
1518				m->m_data += ETHER_HDR_LEN;
1519				ip = mtod(m, struct ip *);
1520				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1521				m->m_data -= ETHER_HDR_LEN;
1522				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1523			} else {
1524				txp->tx_cb->ipcb_ip_activation_high =
1525				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1526				txp->tx_cb->ipcb_ip_schedule |=
1527				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1528			}
1529		}
1530#endif
1531	}
1532
1533	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1534	    segs, &nseg, 0);
1535	if (error == EFBIG) {
1536		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1537		if (m == NULL) {
1538			m_freem(*m_head);
1539			*m_head = NULL;
1540			return (ENOMEM);
1541		}
1542		*m_head = m;
1543		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1544	    	    *m_head, segs, &nseg, 0);
1545		if (error != 0) {
1546			m_freem(*m_head);
1547			*m_head = NULL;
1548			return (ENOMEM);
1549		}
1550	} else if (error != 0)
1551		return (error);
1552	if (nseg == 0) {
1553		m_freem(*m_head);
1554		*m_head = NULL;
1555		return (EIO);
1556	}
1557
1558	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1559	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1560
1561	cbp = txp->tx_cb;
1562	for (i = 0; i < nseg; i++) {
1563		/*
1564		 * If this is an 82550/82551, then we're using extended
1565		 * TxCBs _and_ we're using checksum offload. This means
1566		 * that the TxCB is really an IPCB. One major difference
1567		 * between the two is that with plain extended TxCBs,
1568		 * the bottom half of the TxCB contains two entries from
1569		 * the TBD array, whereas IPCBs contain just one entry:
1570		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1571		 * checksum offload control bits. So to make things work
1572		 * right, we have to start filling in the TBD array
1573		 * starting from a different place depending on whether
1574		 * the chip is an 82550/82551 or not.
1575		 */
1576		if (sc->flags & FXP_FLAG_EXT_RFA) {
1577			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1578			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1579		} else {
1580			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1581			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1582		}
1583	}
1584	if (sc->flags & FXP_FLAG_EXT_RFA) {
1585		/* Configure dynamic TBD for 82550/82551. */
1586		cbp->tbd_number = 0xFF;
1587		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1588	} else
1589		cbp->tbd_number = nseg;
1590	/* Configure TSO. */
1591	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1592		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1593		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1594		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1595		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1596		    FXP_IPCB_TCP_PACKET |
1597		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1598	}
1599	/* Configure VLAN hardware tag insertion. */
1600	if ((m->m_flags & M_VLANTAG) != 0) {
1601		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1602		txp->tx_cb->ipcb_ip_activation_high |=
1603		    FXP_IPCB_INSERTVLAN_ENABLE;
1604	}
1605
1606	txp->tx_mbuf = m;
1607	txp->tx_cb->cb_status = 0;
1608	txp->tx_cb->byte_count = 0;
1609	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1610		txp->tx_cb->cb_command =
1611		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1612		    FXP_CB_COMMAND_S);
1613	else
1614		txp->tx_cb->cb_command =
1615		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1616		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1617	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1618		txp->tx_cb->tx_threshold = tx_threshold;
1619
1620	/*
1621	 * Advance the end of list forward.
1622	 */
1623	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1624	sc->fxp_desc.tx_last = txp;
1625
1626	/*
1627	 * Advance the beginning of the list forward if there are
1628	 * no other packets queued (when nothing is queued, tx_first
1629	 * sits on the last TxCB that was sent out).
1630	 */
1631	if (sc->tx_queued == 0)
1632		sc->fxp_desc.tx_first = txp;
1633
1634	sc->tx_queued++;
1635
1636	return (0);
1637}
1638
1639#ifdef DEVICE_POLLING
1640static poll_handler_t fxp_poll;
1641
1642static int
1643fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1644{
1645	struct fxp_softc *sc = ifp->if_softc;
1646	uint8_t statack;
1647	int rx_npkts = 0;
1648
1649	FXP_LOCK(sc);
1650	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1651		FXP_UNLOCK(sc);
1652		return (rx_npkts);
1653	}
1654
1655	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1656	    FXP_SCB_STATACK_FR;
1657	if (cmd == POLL_AND_CHECK_STATUS) {
1658		uint8_t tmp;
1659
1660		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1661		if (tmp == 0xff || tmp == 0) {
1662			FXP_UNLOCK(sc);
1663			return (rx_npkts); /* nothing to do */
1664		}
1665		tmp &= ~statack;
1666		/* ack what we can */
1667		if (tmp != 0)
1668			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1669		statack |= tmp;
1670	}
1671	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1672	FXP_UNLOCK(sc);
1673	return (rx_npkts);
1674}
1675#endif /* DEVICE_POLLING */
1676
1677/*
1678 * Process interface interrupts.
1679 */
1680static void
1681fxp_intr(void *xsc)
1682{
1683	struct fxp_softc *sc = xsc;
1684	struct ifnet *ifp = sc->ifp;
1685	uint8_t statack;
1686
1687	FXP_LOCK(sc);
1688	if (sc->suspended) {
1689		FXP_UNLOCK(sc);
1690		return;
1691	}
1692
1693#ifdef DEVICE_POLLING
1694	if (ifp->if_capenable & IFCAP_POLLING) {
1695		FXP_UNLOCK(sc);
1696		return;
1697	}
1698#endif
1699	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1700		/*
1701		 * It should not be possible to have all bits set; the
1702		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1703		 * all bits are set, this may indicate that the card has
1704		 * been physically ejected, so ignore it.
1705		 */
1706		if (statack == 0xff) {
1707			FXP_UNLOCK(sc);
1708			return;
1709		}
1710
1711		/*
1712		 * First ACK all the interrupts in this pass.
1713		 */
1714		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1715		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1716			fxp_intr_body(sc, ifp, statack, -1);
1717	}
1718	FXP_UNLOCK(sc);
1719}
1720
1721static void
1722fxp_txeof(struct fxp_softc *sc)
1723{
1724	struct ifnet *ifp;
1725	struct fxp_tx *txp;
1726
1727	ifp = sc->ifp;
1728	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1729	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1730	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1731	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1732	    txp = txp->tx_next) {
1733		if (txp->tx_mbuf != NULL) {
1734			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1735			    BUS_DMASYNC_POSTWRITE);
1736			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1737			m_freem(txp->tx_mbuf);
1738			txp->tx_mbuf = NULL;
1739			/* clear this to reset csum offload bits */
1740			txp->tx_cb->tbd[0].tb_addr = 0;
1741		}
1742		sc->tx_queued--;
1743		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1744	}
1745	sc->fxp_desc.tx_first = txp;
1746	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1747	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1748	if (sc->tx_queued == 0)
1749		sc->watchdog_timer = 0;
1750}
1751
1752static void
1753fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1754    uint16_t status, int pos)
1755{
1756	struct ether_header *eh;
1757	struct ip *ip;
1758	struct udphdr *uh;
1759	int32_t hlen, len, pktlen, temp32;
1760	uint16_t csum, *opts;
1761
1762	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1763		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1764			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1765				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1766			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1767				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1768			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1769			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1770				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1771				    CSUM_PSEUDO_HDR;
1772				m->m_pkthdr.csum_data = 0xffff;
1773			}
1774		}
1775		return;
1776	}
1777
1778	pktlen = m->m_pkthdr.len;
1779	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1780		return;
1781	eh = mtod(m, struct ether_header *);
1782	if (eh->ether_type != htons(ETHERTYPE_IP))
1783		return;
1784	ip = (struct ip *)(eh + 1);
1785	if (ip->ip_v != IPVERSION)
1786		return;
1787
1788	hlen = ip->ip_hl << 2;
1789	pktlen -= sizeof(struct ether_header);
1790	if (hlen < sizeof(struct ip))
1791		return;
1792	if (ntohs(ip->ip_len) < hlen)
1793		return;
1794	if (ntohs(ip->ip_len) != pktlen)
1795		return;
1796	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1797		return;	/* can't handle fragmented packet */
1798
1799	switch (ip->ip_p) {
1800	case IPPROTO_TCP:
1801		if (pktlen < (hlen + sizeof(struct tcphdr)))
1802			return;
1803		break;
1804	case IPPROTO_UDP:
1805		if (pktlen < (hlen + sizeof(struct udphdr)))
1806			return;
1807		uh = (struct udphdr *)((caddr_t)ip + hlen);
1808		if (uh->uh_sum == 0)
1809			return; /* no checksum */
1810		break;
1811	default:
1812		return;
1813	}
1814	/* Extract computed checksum. */
1815	csum = be16dec(mtod(m, char *) + pos);
1816	/* checksum fixup for IP options */
1817	len = hlen - sizeof(struct ip);
1818	if (len > 0) {
1819		opts = (uint16_t *)(ip + 1);
1820		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1821			temp32 = csum - *opts;
1822			temp32 = (temp32 >> 16) + (temp32 & 65535);
1823			csum = temp32 & 65535;
1824		}
1825	}
1826	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1827	m->m_pkthdr.csum_data = csum;
1828}
1829
1830static int
1831fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1832    int count)
1833{
1834	struct mbuf *m;
1835	struct fxp_rx *rxp;
1836	struct fxp_rfa *rfa;
1837	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1838	int rx_npkts;
1839	uint16_t status;
1840
1841	rx_npkts = 0;
1842	FXP_LOCK_ASSERT(sc, MA_OWNED);
1843
1844	if (rnr)
1845		sc->rnr++;
1846#ifdef DEVICE_POLLING
1847	/* Pick up a deferred RNR condition if `count' ran out last time. */
1848	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1849		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1850		rnr = 1;
1851	}
1852#endif
1853
1854	/*
1855	 * Free any finished transmit mbuf chains.
1856	 *
1857	 * Handle the CNA event likt a CXTNO event. It used to
1858	 * be that this event (control unit not ready) was not
1859	 * encountered, but it is now with the SMPng modifications.
1860	 * The exact sequence of events that occur when the interface
1861	 * is brought up are different now, and if this event
1862	 * goes unhandled, the configuration/rxfilter setup sequence
1863	 * can stall for several seconds. The result is that no
1864	 * packets go out onto the wire for about 5 to 10 seconds
1865	 * after the interface is ifconfig'ed for the first time.
1866	 */
1867	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1868		fxp_txeof(sc);
1869
1870	/*
1871	 * Try to start more packets transmitting.
1872	 */
1873	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1874		fxp_start_body(ifp);
1875
1876	/*
1877	 * Just return if nothing happened on the receive side.
1878	 */
1879	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1880		return (rx_npkts);
1881
1882	/*
1883	 * Process receiver interrupts. If a no-resource (RNR)
1884	 * condition exists, get whatever packets we can and
1885	 * re-start the receiver.
1886	 *
1887	 * When using polling, we do not process the list to completion,
1888	 * so when we get an RNR interrupt we must defer the restart
1889	 * until we hit the last buffer with the C bit set.
1890	 * If we run out of cycles and rfa_headm has the C bit set,
1891	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1892	 * that the info will be used in the subsequent polling cycle.
1893	 */
1894	for (;;) {
1895		rxp = sc->fxp_desc.rx_head;
1896		m = rxp->rx_mbuf;
1897		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1898		    RFA_ALIGNMENT_FUDGE);
1899		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1900		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1901
1902#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1903		if (count >= 0 && count-- == 0) {
1904			if (rnr) {
1905				/* Defer RNR processing until the next time. */
1906				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1907				rnr = 0;
1908			}
1909			break;
1910		}
1911#endif /* DEVICE_POLLING */
1912
1913		status = le16toh(rfa->rfa_status);
1914		if ((status & FXP_RFA_STATUS_C) == 0)
1915			break;
1916
1917		if ((status & FXP_RFA_STATUS_RNR) != 0)
1918			rnr++;
1919		/*
1920		 * Advance head forward.
1921		 */
1922		sc->fxp_desc.rx_head = rxp->rx_next;
1923
1924		/*
1925		 * Add a new buffer to the receive chain.
1926		 * If this fails, the old buffer is recycled
1927		 * instead.
1928		 */
1929		if (fxp_new_rfabuf(sc, rxp) == 0) {
1930			int total_len;
1931
1932			/*
1933			 * Fetch packet length (the top 2 bits of
1934			 * actual_size are flags set by the controller
1935			 * upon completion), and drop the packet in case
1936			 * of bogus length or CRC errors.
1937			 */
1938			total_len = le16toh(rfa->actual_size) & 0x3fff;
1939			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1940			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1941				/* Adjust for appended checksum bytes. */
1942				total_len -= 2;
1943			}
1944			if (total_len < (int)sizeof(struct ether_header) ||
1945			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1946			    sc->rfa_size) ||
1947			    status & (FXP_RFA_STATUS_CRC |
1948			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1949				m_freem(m);
1950				fxp_add_rfabuf(sc, rxp);
1951				continue;
1952			}
1953
1954			m->m_pkthdr.len = m->m_len = total_len;
1955			m->m_pkthdr.rcvif = ifp;
1956
1957                        /* Do IP checksum checking. */
1958			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1959				fxp_rxcsum(sc, ifp, m, status, total_len);
1960			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1961			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1962				m->m_pkthdr.ether_vtag =
1963				    ntohs(rfa->rfax_vlan_id);
1964				m->m_flags |= M_VLANTAG;
1965			}
1966			/*
1967			 * Drop locks before calling if_input() since it
1968			 * may re-enter fxp_start() in the netisr case.
1969			 * This would result in a lock reversal.  Better
1970			 * performance might be obtained by chaining all
1971			 * packets received, dropping the lock, and then
1972			 * calling if_input() on each one.
1973			 */
1974			FXP_UNLOCK(sc);
1975			(*ifp->if_input)(ifp, m);
1976			FXP_LOCK(sc);
1977			rx_npkts++;
1978			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1979				return (rx_npkts);
1980		} else {
1981			/* Reuse RFA and loaded DMA map. */
1982			ifp->if_iqdrops++;
1983			fxp_discard_rfabuf(sc, rxp);
1984		}
1985		fxp_add_rfabuf(sc, rxp);
1986	}
1987	if (rnr) {
1988		fxp_scb_wait(sc);
1989		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1990		    sc->fxp_desc.rx_head->rx_addr);
1991		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1992	}
1993	return (rx_npkts);
1994}
1995
1996static void
1997fxp_update_stats(struct fxp_softc *sc)
1998{
1999	struct ifnet *ifp = sc->ifp;
2000	struct fxp_stats *sp = sc->fxp_stats;
2001	struct fxp_hwstats *hsp;
2002	uint32_t *status;
2003
2004	FXP_LOCK_ASSERT(sc, MA_OWNED);
2005
2006	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2007	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2008	/* Update statistical counters. */
2009	if (sc->revision >= FXP_REV_82559_A0)
2010		status = &sp->completion_status;
2011	else if (sc->revision >= FXP_REV_82558_A4)
2012		status = (uint32_t *)&sp->tx_tco;
2013	else
2014		status = &sp->tx_pause;
2015	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2016		hsp = &sc->fxp_hwstats;
2017		hsp->tx_good += le32toh(sp->tx_good);
2018		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2019		hsp->tx_latecols += le32toh(sp->tx_latecols);
2020		hsp->tx_underruns += le32toh(sp->tx_underruns);
2021		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2022		hsp->tx_deffered += le32toh(sp->tx_deffered);
2023		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2024		hsp->tx_multiple_collisions +=
2025		    le32toh(sp->tx_multiple_collisions);
2026		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2027		hsp->rx_good += le32toh(sp->rx_good);
2028		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2029		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2030		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2031		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2032		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2033		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2034		hsp->tx_pause += le32toh(sp->tx_pause);
2035		hsp->rx_pause += le32toh(sp->rx_pause);
2036		hsp->rx_controls += le32toh(sp->rx_controls);
2037		hsp->tx_tco += le16toh(sp->tx_tco);
2038		hsp->rx_tco += le16toh(sp->rx_tco);
2039
2040		ifp->if_opackets += le32toh(sp->tx_good);
2041		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2042		if (sp->rx_good) {
2043			ifp->if_ipackets += le32toh(sp->rx_good);
2044			sc->rx_idle_secs = 0;
2045		} else if (sc->flags & FXP_FLAG_RXBUG) {
2046			/*
2047			 * Receiver's been idle for another second.
2048			 */
2049			sc->rx_idle_secs++;
2050		}
2051		ifp->if_ierrors +=
2052		    le32toh(sp->rx_crc_errors) +
2053		    le32toh(sp->rx_alignment_errors) +
2054		    le32toh(sp->rx_rnr_errors) +
2055		    le32toh(sp->rx_overrun_errors);
2056		/*
2057		 * If any transmit underruns occured, bump up the transmit
2058		 * threshold by another 512 bytes (64 * 8).
2059		 */
2060		if (sp->tx_underruns) {
2061			ifp->if_oerrors += le32toh(sp->tx_underruns);
2062			if (tx_threshold < 192)
2063				tx_threshold += 64;
2064		}
2065		*status = 0;
2066		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2067		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2068	}
2069}
2070
2071/*
2072 * Update packet in/out/collision statistics. The i82557 doesn't
2073 * allow you to access these counters without doing a fairly
2074 * expensive DMA to get _all_ of the statistics it maintains, so
2075 * we do this operation here only once per second. The statistics
2076 * counters in the kernel are updated from the previous dump-stats
2077 * DMA and then a new dump-stats DMA is started. The on-chip
2078 * counters are zeroed when the DMA completes. If we can't start
2079 * the DMA immediately, we don't wait - we just prepare to read
2080 * them again next time.
2081 */
2082static void
2083fxp_tick(void *xsc)
2084{
2085	struct fxp_softc *sc = xsc;
2086	struct ifnet *ifp = sc->ifp;
2087
2088	FXP_LOCK_ASSERT(sc, MA_OWNED);
2089
2090	/* Update statistical counters. */
2091	fxp_update_stats(sc);
2092
2093	/*
2094	 * Release any xmit buffers that have completed DMA. This isn't
2095	 * strictly necessary to do here, but it's advantagous for mbufs
2096	 * with external storage to be released in a timely manner rather
2097	 * than being defered for a potentially long time. This limits
2098	 * the delay to a maximum of one second.
2099	 */
2100	fxp_txeof(sc);
2101
2102	/*
2103	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2104	 * then assume the receiver has locked up and attempt to clear
2105	 * the condition by reprogramming the multicast filter. This is
2106	 * a work-around for a bug in the 82557 where the receiver locks
2107	 * up if it gets certain types of garbage in the syncronization
2108	 * bits prior to the packet header. This bug is supposed to only
2109	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2110	 * mode as well (perhaps due to a 10/100 speed transition).
2111	 */
2112	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2113		sc->rx_idle_secs = 0;
2114		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2115			fxp_init_body(sc, 1);
2116		return;
2117	}
2118	/*
2119	 * If there is no pending command, start another stats
2120	 * dump. Otherwise punt for now.
2121	 */
2122	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2123		/*
2124		 * Start another stats dump.
2125		 */
2126		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2127	}
2128	if (sc->miibus != NULL)
2129		mii_tick(device_get_softc(sc->miibus));
2130
2131	/*
2132	 * Check that chip hasn't hung.
2133	 */
2134	fxp_watchdog(sc);
2135
2136	/*
2137	 * Schedule another timeout one second from now.
2138	 */
2139	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2140}
2141
2142/*
2143 * Stop the interface. Cancels the statistics updater and resets
2144 * the interface.
2145 */
2146static void
2147fxp_stop(struct fxp_softc *sc)
2148{
2149	struct ifnet *ifp = sc->ifp;
2150	struct fxp_tx *txp;
2151	int i;
2152
2153	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2154	sc->watchdog_timer = 0;
2155
2156	/*
2157	 * Cancel stats updater.
2158	 */
2159	callout_stop(&sc->stat_ch);
2160
2161	/*
2162	 * Preserve PCI configuration, configure, IA/multicast
2163	 * setup and put RU and CU into idle state.
2164	 */
2165	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2166	DELAY(50);
2167	/* Disable interrupts. */
2168	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2169
2170	fxp_update_stats(sc);
2171
2172	/*
2173	 * Release any xmit buffers.
2174	 */
2175	txp = sc->fxp_desc.tx_list;
2176	if (txp != NULL) {
2177		for (i = 0; i < FXP_NTXCB; i++) {
2178 			if (txp[i].tx_mbuf != NULL) {
2179				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2180				    BUS_DMASYNC_POSTWRITE);
2181				bus_dmamap_unload(sc->fxp_txmtag,
2182				    txp[i].tx_map);
2183				m_freem(txp[i].tx_mbuf);
2184				txp[i].tx_mbuf = NULL;
2185				/* clear this to reset csum offload bits */
2186				txp[i].tx_cb->tbd[0].tb_addr = 0;
2187			}
2188		}
2189	}
2190	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2191	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2192	sc->tx_queued = 0;
2193}
2194
2195/*
2196 * Watchdog/transmission transmit timeout handler. Called when a
2197 * transmission is started on the interface, but no interrupt is
2198 * received before the timeout. This usually indicates that the
2199 * card has wedged for some reason.
2200 */
2201static void
2202fxp_watchdog(struct fxp_softc *sc)
2203{
2204
2205	FXP_LOCK_ASSERT(sc, MA_OWNED);
2206
2207	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2208		return;
2209
2210	device_printf(sc->dev, "device timeout\n");
2211	sc->ifp->if_oerrors++;
2212
2213	fxp_init_body(sc, 1);
2214}
2215
2216/*
2217 * Acquire locks and then call the real initialization function.  This
2218 * is necessary because ether_ioctl() calls if_init() and this would
2219 * result in mutex recursion if the mutex was held.
2220 */
2221static void
2222fxp_init(void *xsc)
2223{
2224	struct fxp_softc *sc = xsc;
2225
2226	FXP_LOCK(sc);
2227	fxp_init_body(sc, 1);
2228	FXP_UNLOCK(sc);
2229}
2230
2231/*
2232 * Perform device initialization. This routine must be called with the
2233 * softc lock held.
2234 */
2235static void
2236fxp_init_body(struct fxp_softc *sc, int setmedia)
2237{
2238	struct ifnet *ifp = sc->ifp;
2239	struct mii_data *mii;
2240	struct fxp_cb_config *cbp;
2241	struct fxp_cb_ias *cb_ias;
2242	struct fxp_cb_tx *tcbp;
2243	struct fxp_tx *txp;
2244	int i, prm;
2245
2246	FXP_LOCK_ASSERT(sc, MA_OWNED);
2247	/*
2248	 * Cancel any pending I/O
2249	 */
2250	fxp_stop(sc);
2251
2252	/*
2253	 * Issue software reset, which also unloads the microcode.
2254	 */
2255	sc->flags &= ~FXP_FLAG_UCODE;
2256	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2257	DELAY(50);
2258
2259	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2260
2261	/*
2262	 * Initialize base of CBL and RFA memory. Loading with zero
2263	 * sets it up for regular linear addressing.
2264	 */
2265	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2266	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2267
2268	fxp_scb_wait(sc);
2269	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2270
2271	/*
2272	 * Initialize base of dump-stats buffer.
2273	 */
2274	fxp_scb_wait(sc);
2275	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2276	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2277	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2278	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2279	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2280
2281	/*
2282	 * Attempt to load microcode if requested.
2283	 * For ICH based controllers do not load microcode.
2284	 */
2285	if (sc->ident->ich == 0) {
2286		if (ifp->if_flags & IFF_LINK0 &&
2287		    (sc->flags & FXP_FLAG_UCODE) == 0)
2288			fxp_load_ucode(sc);
2289	}
2290
2291	/*
2292	 * Set IFF_ALLMULTI status. It's needed in configure action
2293	 * command.
2294	 */
2295	fxp_mc_addrs(sc);
2296
2297	/*
2298	 * We temporarily use memory that contains the TxCB list to
2299	 * construct the config CB. The TxCB list memory is rebuilt
2300	 * later.
2301	 */
2302	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2303
2304	/*
2305	 * This bcopy is kind of disgusting, but there are a bunch of must be
2306	 * zero and must be one bits in this structure and this is the easiest
2307	 * way to initialize them all to proper values.
2308	 */
2309	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2310
2311	cbp->cb_status =	0;
2312	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2313	    FXP_CB_COMMAND_EL);
2314	cbp->link_addr =	0xffffffff;	/* (no) next command */
2315	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2316	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2317	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2318	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2319	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2320	cbp->type_enable =	0;	/* actually reserved */
2321	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2322	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2323	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2324	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2325	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2326	cbp->late_scb =		0;	/* (don't) defer SCB update */
2327	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2328	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2329	cbp->ci_int =		1;	/* interrupt on CU idle */
2330	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2331	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2332	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2333	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2334	cbp->disc_short_rx =	!prm;	/* discard short packets */
2335	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2336	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2337	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2338	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2339	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2340	cbp->csma_dis =		0;	/* (don't) disable link */
2341	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2342	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2343	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2344	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2345	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2346	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2347	cbp->nsai =		1;	/* (don't) disable source addr insert */
2348	cbp->preamble_length =	2;	/* (7 byte) preamble */
2349	cbp->loopback =		0;	/* (don't) loopback */
2350	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2351	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2352	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2353	cbp->promiscuous =	prm;	/* promiscuous mode */
2354	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2355	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2356	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2357	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2358	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2359
2360	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2361	cbp->padding =		1;	/* (do) pad short tx packets */
2362	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2363	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2364	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2365	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2366	cbp->force_fdx =	0;	/* (don't) force full duplex */
2367	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2368	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2369	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2370	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2371	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2372	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2373
2374	if (sc->revision == FXP_REV_82557) {
2375		/*
2376		 * The 82557 has no hardware flow control, the values
2377		 * below are the defaults for the chip.
2378		 */
2379		cbp->fc_delay_lsb =	0;
2380		cbp->fc_delay_msb =	0x40;
2381		cbp->pri_fc_thresh =	3;
2382		cbp->tx_fc_dis =	0;
2383		cbp->rx_fc_restop =	0;
2384		cbp->rx_fc_restart =	0;
2385		cbp->fc_filter =	0;
2386		cbp->pri_fc_loc =	1;
2387	} else {
2388		/* Set pause RX FIFO threshold to 1KB. */
2389		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2390		/* Set pause time. */
2391		cbp->fc_delay_lsb =	0xff;
2392		cbp->fc_delay_msb =	0xff;
2393		cbp->pri_fc_thresh =	3;
2394		mii = device_get_softc(sc->miibus);
2395		if ((IFM_OPTIONS(mii->mii_media_active) &
2396		    IFM_ETH_TXPAUSE) != 0)
2397			/* enable transmit FC */
2398			cbp->tx_fc_dis = 0;
2399		else
2400			/* disable transmit FC */
2401			cbp->tx_fc_dis = 1;
2402		if ((IFM_OPTIONS(mii->mii_media_active) &
2403		    IFM_ETH_RXPAUSE) != 0) {
2404			/* enable FC restart/restop frames */
2405			cbp->rx_fc_restart = 1;
2406			cbp->rx_fc_restop = 1;
2407		} else {
2408			/* disable FC restart/restop frames */
2409			cbp->rx_fc_restart = 0;
2410			cbp->rx_fc_restop = 0;
2411		}
2412		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2413		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2414	}
2415
2416	/* Enable 82558 and 82559 extended statistics functionality. */
2417	if (sc->revision >= FXP_REV_82558_A4) {
2418		if (sc->revision >= FXP_REV_82559_A0) {
2419			/*
2420			 * Extend configuration table size to 32
2421			 * to include TCO configuration.
2422			 */
2423			cbp->byte_count = 32;
2424			cbp->ext_stats_dis = 1;
2425			/* Enable TCO stats. */
2426			cbp->tno_int_or_tco_en = 1;
2427			cbp->gamla_rx = 1;
2428		} else
2429			cbp->ext_stats_dis = 0;
2430	}
2431
2432	/*
2433	 * Start the config command/DMA.
2434	 */
2435	fxp_scb_wait(sc);
2436	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2437	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2438	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2439	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2440	/* ...and wait for it to complete. */
2441	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2442
2443	/*
2444	 * Now initialize the station address. Temporarily use the TxCB
2445	 * memory area like we did above for the config CB.
2446	 */
2447	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2448	cb_ias->cb_status = 0;
2449	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2450	cb_ias->link_addr = 0xffffffff;
2451	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2452
2453	/*
2454	 * Start the IAS (Individual Address Setup) command/DMA.
2455	 */
2456	fxp_scb_wait(sc);
2457	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2458	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2459	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2460	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2461	/* ...and wait for it to complete. */
2462	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2463
2464	/*
2465	 * Initialize the multicast address list.
2466	 */
2467	fxp_mc_setup(sc);
2468
2469	/*
2470	 * Initialize transmit control block (TxCB) list.
2471	 */
2472	txp = sc->fxp_desc.tx_list;
2473	tcbp = sc->fxp_desc.cbl_list;
2474	bzero(tcbp, FXP_TXCB_SZ);
2475	for (i = 0; i < FXP_NTXCB; i++) {
2476		txp[i].tx_mbuf = NULL;
2477		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2478		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2479		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2480		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2481		if (sc->flags & FXP_FLAG_EXT_TXCB)
2482			tcbp[i].tbd_array_addr =
2483			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2484		else
2485			tcbp[i].tbd_array_addr =
2486			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2487		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2488	}
2489	/*
2490	 * Set the suspend flag on the first TxCB and start the control
2491	 * unit. It will execute the NOP and then suspend.
2492	 */
2493	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2494	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2495	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2496	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2497	sc->tx_queued = 1;
2498
2499	fxp_scb_wait(sc);
2500	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2501	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2502
2503	/*
2504	 * Initialize receiver buffer area - RFA.
2505	 */
2506	fxp_scb_wait(sc);
2507	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2508	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2509
2510	if (sc->miibus != NULL && setmedia != 0)
2511		mii_mediachg(device_get_softc(sc->miibus));
2512
2513	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2514	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2515
2516	/*
2517	 * Enable interrupts.
2518	 */
2519#ifdef DEVICE_POLLING
2520	/*
2521	 * ... but only do that if we are not polling. And because (presumably)
2522	 * the default is interrupts on, we need to disable them explicitly!
2523	 */
2524	if (ifp->if_capenable & IFCAP_POLLING )
2525		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2526	else
2527#endif /* DEVICE_POLLING */
2528	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2529
2530	/*
2531	 * Start stats updater.
2532	 */
2533	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2534}
2535
2536static int
2537fxp_serial_ifmedia_upd(struct ifnet *ifp)
2538{
2539
2540	return (0);
2541}
2542
2543static void
2544fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2545{
2546
2547	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2548}
2549
2550/*
2551 * Change media according to request.
2552 */
2553static int
2554fxp_ifmedia_upd(struct ifnet *ifp)
2555{
2556	struct fxp_softc *sc = ifp->if_softc;
2557	struct mii_data *mii;
2558
2559	mii = device_get_softc(sc->miibus);
2560	FXP_LOCK(sc);
2561	if (mii->mii_instance) {
2562		struct mii_softc	*miisc;
2563		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2564			mii_phy_reset(miisc);
2565	}
2566	mii_mediachg(mii);
2567	FXP_UNLOCK(sc);
2568	return (0);
2569}
2570
2571/*
2572 * Notify the world which media we're using.
2573 */
2574static void
2575fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2576{
2577	struct fxp_softc *sc = ifp->if_softc;
2578	struct mii_data *mii;
2579
2580	mii = device_get_softc(sc->miibus);
2581	FXP_LOCK(sc);
2582	mii_pollstat(mii);
2583	ifmr->ifm_active = mii->mii_media_active;
2584	ifmr->ifm_status = mii->mii_media_status;
2585
2586	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2587	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2588		sc->cu_resume_bug = 1;
2589	else
2590		sc->cu_resume_bug = 0;
2591	FXP_UNLOCK(sc);
2592}
2593
2594/*
2595 * Add a buffer to the end of the RFA buffer list.
2596 * Return 0 if successful, 1 for failure. A failure results in
2597 * reusing the RFA buffer.
2598 * The RFA struct is stuck at the beginning of mbuf cluster and the
2599 * data pointer is fixed up to point just past it.
2600 */
2601static int
2602fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2603{
2604	struct mbuf *m;
2605	struct fxp_rfa *rfa;
2606	bus_dmamap_t tmp_map;
2607	int error;
2608
2609	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2610	if (m == NULL)
2611		return (ENOBUFS);
2612
2613	/*
2614	 * Move the data pointer up so that the incoming data packet
2615	 * will be 32-bit aligned.
2616	 */
2617	m->m_data += RFA_ALIGNMENT_FUDGE;
2618
2619	/*
2620	 * Get a pointer to the base of the mbuf cluster and move
2621	 * data start past it.
2622	 */
2623	rfa = mtod(m, struct fxp_rfa *);
2624	m->m_data += sc->rfa_size;
2625	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2626
2627	rfa->rfa_status = 0;
2628	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2629	rfa->actual_size = 0;
2630	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2631	    sc->rfa_size;
2632
2633	/*
2634	 * Initialize the rest of the RFA.  Note that since the RFA
2635	 * is misaligned, we cannot store values directly.  We're thus
2636	 * using the le32enc() function which handles endianness and
2637	 * is also alignment-safe.
2638	 */
2639	le32enc(&rfa->link_addr, 0xffffffff);
2640	le32enc(&rfa->rbd_addr, 0xffffffff);
2641
2642	/* Map the RFA into DMA memory. */
2643	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2644	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2645	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2646	if (error) {
2647		m_freem(m);
2648		return (error);
2649	}
2650
2651	if (rxp->rx_mbuf != NULL)
2652		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2653	tmp_map = sc->spare_map;
2654	sc->spare_map = rxp->rx_map;
2655	rxp->rx_map = tmp_map;
2656	rxp->rx_mbuf = m;
2657
2658	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2659	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2660	return (0);
2661}
2662
2663static void
2664fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2665{
2666	struct fxp_rfa *p_rfa;
2667	struct fxp_rx *p_rx;
2668
2669	/*
2670	 * If there are other buffers already on the list, attach this
2671	 * one to the end by fixing up the tail to point to this one.
2672	 */
2673	if (sc->fxp_desc.rx_head != NULL) {
2674		p_rx = sc->fxp_desc.rx_tail;
2675		p_rfa = (struct fxp_rfa *)
2676		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2677		p_rx->rx_next = rxp;
2678		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2679		p_rfa->rfa_control = 0;
2680		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2681		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2682	} else {
2683		rxp->rx_next = NULL;
2684		sc->fxp_desc.rx_head = rxp;
2685	}
2686	sc->fxp_desc.rx_tail = rxp;
2687}
2688
2689static void
2690fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2691{
2692	struct mbuf *m;
2693	struct fxp_rfa *rfa;
2694
2695	m = rxp->rx_mbuf;
2696	m->m_data = m->m_ext.ext_buf;
2697	/*
2698	 * Move the data pointer up so that the incoming data packet
2699	 * will be 32-bit aligned.
2700	 */
2701	m->m_data += RFA_ALIGNMENT_FUDGE;
2702
2703	/*
2704	 * Get a pointer to the base of the mbuf cluster and move
2705	 * data start past it.
2706	 */
2707	rfa = mtod(m, struct fxp_rfa *);
2708	m->m_data += sc->rfa_size;
2709	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2710
2711	rfa->rfa_status = 0;
2712	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2713	rfa->actual_size = 0;
2714
2715	/*
2716	 * Initialize the rest of the RFA.  Note that since the RFA
2717	 * is misaligned, we cannot store values directly.  We're thus
2718	 * using the le32enc() function which handles endianness and
2719	 * is also alignment-safe.
2720	 */
2721	le32enc(&rfa->link_addr, 0xffffffff);
2722	le32enc(&rfa->rbd_addr, 0xffffffff);
2723
2724	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2725	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2726}
2727
2728static int
2729fxp_miibus_readreg(device_t dev, int phy, int reg)
2730{
2731	struct fxp_softc *sc = device_get_softc(dev);
2732	int count = 10000;
2733	int value;
2734
2735	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2736	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2737
2738	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2739	    && count--)
2740		DELAY(10);
2741
2742	if (count <= 0)
2743		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2744
2745	return (value & 0xffff);
2746}
2747
2748static int
2749fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2750{
2751	struct fxp_softc *sc = device_get_softc(dev);
2752	int count = 10000;
2753
2754	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2755	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2756	    (value & 0xffff));
2757
2758	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2759	    count--)
2760		DELAY(10);
2761
2762	if (count <= 0)
2763		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2764	return (0);
2765}
2766
2767static void
2768fxp_miibus_statchg(device_t dev)
2769{
2770	struct fxp_softc *sc;
2771	struct mii_data *mii;
2772	struct ifnet *ifp;
2773
2774	sc = device_get_softc(dev);
2775	mii = device_get_softc(sc->miibus);
2776	ifp = sc->ifp;
2777	if (mii == NULL || ifp == NULL ||
2778	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2779	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2780	    (IFM_AVALID | IFM_ACTIVE))
2781		return;
2782
2783	/*
2784	 * Call fxp_init_body in order to adjust the flow control settings.
2785	 * Note that the 82557 doesn't support hardware flow control.
2786	 */
2787	if (sc->revision == FXP_REV_82557)
2788		return;
2789	fxp_init_body(sc, 0);
2790}
2791
2792static int
2793fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2794{
2795	struct fxp_softc *sc = ifp->if_softc;
2796	struct ifreq *ifr = (struct ifreq *)data;
2797	struct mii_data *mii;
2798	int flag, mask, error = 0, reinit;
2799
2800	switch (command) {
2801	case SIOCSIFFLAGS:
2802		FXP_LOCK(sc);
2803		/*
2804		 * If interface is marked up and not running, then start it.
2805		 * If it is marked down and running, stop it.
2806		 * XXX If it's up then re-initialize it. This is so flags
2807		 * such as IFF_PROMISC are handled.
2808		 */
2809		if (ifp->if_flags & IFF_UP) {
2810			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2811			    ((ifp->if_flags ^ sc->if_flags) &
2812			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2813				fxp_init_body(sc, 1);
2814			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2815				fxp_init_body(sc, 1);
2816		} else {
2817			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2818				fxp_stop(sc);
2819		}
2820		sc->if_flags = ifp->if_flags;
2821		FXP_UNLOCK(sc);
2822		break;
2823
2824	case SIOCADDMULTI:
2825	case SIOCDELMULTI:
2826		FXP_LOCK(sc);
2827		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2828			fxp_init_body(sc, 0);
2829		FXP_UNLOCK(sc);
2830		break;
2831
2832	case SIOCSIFMEDIA:
2833	case SIOCGIFMEDIA:
2834		if (sc->miibus != NULL) {
2835			mii = device_get_softc(sc->miibus);
2836                        error = ifmedia_ioctl(ifp, ifr,
2837                            &mii->mii_media, command);
2838		} else {
2839                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2840		}
2841		break;
2842
2843	case SIOCSIFCAP:
2844		reinit = 0;
2845		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2846#ifdef DEVICE_POLLING
2847		if (mask & IFCAP_POLLING) {
2848			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2849				error = ether_poll_register(fxp_poll, ifp);
2850				if (error)
2851					return(error);
2852				FXP_LOCK(sc);
2853				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2854				    FXP_SCB_INTR_DISABLE);
2855				ifp->if_capenable |= IFCAP_POLLING;
2856				FXP_UNLOCK(sc);
2857			} else {
2858				error = ether_poll_deregister(ifp);
2859				/* Enable interrupts in any case */
2860				FXP_LOCK(sc);
2861				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2862				ifp->if_capenable &= ~IFCAP_POLLING;
2863				FXP_UNLOCK(sc);
2864			}
2865		}
2866#endif
2867		FXP_LOCK(sc);
2868		if ((mask & IFCAP_TXCSUM) != 0 &&
2869		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2870			ifp->if_capenable ^= IFCAP_TXCSUM;
2871			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2872				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2873			else
2874				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2875		}
2876		if ((mask & IFCAP_RXCSUM) != 0 &&
2877		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2878			ifp->if_capenable ^= IFCAP_RXCSUM;
2879			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2880				reinit++;
2881		}
2882		if ((mask & IFCAP_TSO4) != 0 &&
2883		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2884			ifp->if_capenable ^= IFCAP_TSO4;
2885			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2886				ifp->if_hwassist |= CSUM_TSO;
2887			else
2888				ifp->if_hwassist &= ~CSUM_TSO;
2889		}
2890		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2891		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2892			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2893		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2894		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2895			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2896			if (sc->revision != FXP_REV_82557)
2897				flag = FXP_FLAG_LONG_PKT_EN;
2898			else /* a hack to get long frames on the old chip */
2899				flag = FXP_FLAG_SAVE_BAD;
2900			sc->flags ^= flag;
2901			if (ifp->if_flags & IFF_UP)
2902				reinit++;
2903		}
2904		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2905		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2906			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2907		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2908		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2909			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2910		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2911		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2912			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2913			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2914				ifp->if_capenable &=
2915				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2916			reinit++;
2917		}
2918		if (reinit > 0 && ifp->if_flags & IFF_UP)
2919			fxp_init_body(sc, 1);
2920		FXP_UNLOCK(sc);
2921		VLAN_CAPABILITIES(ifp);
2922		break;
2923
2924	default:
2925		error = ether_ioctl(ifp, command, data);
2926	}
2927	return (error);
2928}
2929
2930/*
2931 * Fill in the multicast address list and return number of entries.
2932 */
2933static int
2934fxp_mc_addrs(struct fxp_softc *sc)
2935{
2936	struct fxp_cb_mcs *mcsp = sc->mcsp;
2937	struct ifnet *ifp = sc->ifp;
2938	struct ifmultiaddr *ifma;
2939	int nmcasts;
2940
2941	nmcasts = 0;
2942	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2943		if_maddr_rlock(ifp);
2944		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2945			if (ifma->ifma_addr->sa_family != AF_LINK)
2946				continue;
2947			if (nmcasts >= MAXMCADDR) {
2948				ifp->if_flags |= IFF_ALLMULTI;
2949				nmcasts = 0;
2950				break;
2951			}
2952			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2953			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2954			nmcasts++;
2955		}
2956		if_maddr_runlock(ifp);
2957	}
2958	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2959	return (nmcasts);
2960}
2961
2962/*
2963 * Program the multicast filter.
2964 *
2965 * We have an artificial restriction that the multicast setup command
2966 * must be the first command in the chain, so we take steps to ensure
2967 * this. By requiring this, it allows us to keep up the performance of
2968 * the pre-initialized command ring (esp. link pointers) by not actually
2969 * inserting the mcsetup command in the ring - i.e. its link pointer
2970 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2971 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2972 * lead into the regular TxCB ring when it completes.
2973 */
2974static void
2975fxp_mc_setup(struct fxp_softc *sc)
2976{
2977	struct fxp_cb_mcs *mcsp;
2978	int count;
2979
2980	FXP_LOCK_ASSERT(sc, MA_OWNED);
2981
2982	mcsp = sc->mcsp;
2983	mcsp->cb_status = 0;
2984	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2985	mcsp->link_addr = 0xffffffff;
2986	fxp_mc_addrs(sc);
2987
2988	/*
2989	 * Wait until command unit is idle. This should never be the
2990	 * case when nothing is queued, but make sure anyway.
2991	 */
2992	count = 100;
2993	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2994	    FXP_SCB_CUS_IDLE && --count)
2995		DELAY(10);
2996	if (count == 0) {
2997		device_printf(sc->dev, "command queue timeout\n");
2998		return;
2999	}
3000
3001	/*
3002	 * Start the multicast setup command.
3003	 */
3004	fxp_scb_wait(sc);
3005	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3006	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3008	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3009	/* ...and wait for it to complete. */
3010	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3011}
3012
3013static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3014static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3015static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3016static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3017static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3018static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3019static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3020
3021#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3022
3023static const struct ucode {
3024	uint32_t	revision;
3025	uint32_t	*ucode;
3026	int		length;
3027	u_short		int_delay_offset;
3028	u_short		bundle_max_offset;
3029} const ucode_table[] = {
3030	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3031	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3032	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3033	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3034	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3035	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3036	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3037	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3038	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3039	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3040	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3041	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3042	{ 0, NULL, 0, 0, 0 }
3043};
3044
3045static void
3046fxp_load_ucode(struct fxp_softc *sc)
3047{
3048	const struct ucode *uc;
3049	struct fxp_cb_ucode *cbp;
3050	int i;
3051
3052	for (uc = ucode_table; uc->ucode != NULL; uc++)
3053		if (sc->revision == uc->revision)
3054			break;
3055	if (uc->ucode == NULL)
3056		return;
3057	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3058	cbp->cb_status = 0;
3059	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3060	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3061	for (i = 0; i < uc->length; i++)
3062		cbp->ucode[i] = htole32(uc->ucode[i]);
3063	if (uc->int_delay_offset)
3064		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3065		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3066	if (uc->bundle_max_offset)
3067		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3068		    htole16(sc->tunable_bundle_max);
3069	/*
3070	 * Download the ucode to the chip.
3071	 */
3072	fxp_scb_wait(sc);
3073	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3074	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3075	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3076	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3077	/* ...and wait for it to complete. */
3078	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3079	device_printf(sc->dev,
3080	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3081	    sc->tunable_int_delay,
3082	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3083	sc->flags |= FXP_FLAG_UCODE;
3084}
3085
3086#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3087	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3088
3089static void
3090fxp_sysctl_node(struct fxp_softc *sc)
3091{
3092	struct sysctl_ctx_list *ctx;
3093	struct sysctl_oid_list *child, *parent;
3094	struct sysctl_oid *tree;
3095	struct fxp_hwstats *hsp;
3096
3097	ctx = device_get_sysctl_ctx(sc->dev);
3098	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3099
3100	SYSCTL_ADD_PROC(ctx, child,
3101	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3102	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3103	    "FXP driver receive interrupt microcode bundling delay");
3104	SYSCTL_ADD_PROC(ctx, child,
3105	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3106	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3107	    "FXP driver receive interrupt microcode bundle size limit");
3108	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3109	    "FXP RNR events");
3110
3111	/*
3112	 * Pull in device tunables.
3113	 */
3114	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3115	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3116	(void) resource_int_value(device_get_name(sc->dev),
3117	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3118	(void) resource_int_value(device_get_name(sc->dev),
3119	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3120	sc->rnr = 0;
3121
3122	hsp = &sc->fxp_hwstats;
3123	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3124	    NULL, "FXP statistics");
3125	parent = SYSCTL_CHILDREN(tree);
3126
3127	/* Rx MAC statistics. */
3128	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3129	    NULL, "Rx MAC statistics");
3130	child = SYSCTL_CHILDREN(tree);
3131	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3132	    &hsp->rx_good, "Good frames");
3133	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3134	    &hsp->rx_crc_errors, "CRC errors");
3135	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3136	    &hsp->rx_alignment_errors, "Alignment errors");
3137	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3138	    &hsp->rx_rnr_errors, "RNR errors");
3139	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3140	    &hsp->rx_overrun_errors, "Overrun errors");
3141	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3142	    &hsp->rx_cdt_errors, "Collision detect errors");
3143	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3144	    &hsp->rx_shortframes, "Short frame errors");
3145	if (sc->revision >= FXP_REV_82558_A4) {
3146		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3147		    &hsp->rx_pause, "Pause frames");
3148		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3149		    &hsp->rx_controls, "Unsupported control frames");
3150	}
3151	if (sc->revision >= FXP_REV_82559_A0)
3152		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3153		    &hsp->rx_tco, "TCO frames");
3154
3155	/* Tx MAC statistics. */
3156	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3157	    NULL, "Tx MAC statistics");
3158	child = SYSCTL_CHILDREN(tree);
3159	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3160	    &hsp->tx_good, "Good frames");
3161	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3162	    &hsp->tx_maxcols, "Maximum collisions errors");
3163	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3164	    &hsp->tx_latecols, "Late collisions errors");
3165	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3166	    &hsp->tx_underruns, "Underrun errors");
3167	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3168	    &hsp->tx_lostcrs, "Lost carrier sense");
3169	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3170	    &hsp->tx_deffered, "Deferred");
3171	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3172	    &hsp->tx_single_collisions, "Single collisions");
3173	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3174	    &hsp->tx_multiple_collisions, "Multiple collisions");
3175	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3176	    &hsp->tx_total_collisions, "Total collisions");
3177	if (sc->revision >= FXP_REV_82558_A4)
3178		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3179		    &hsp->tx_pause, "Pause frames");
3180	if (sc->revision >= FXP_REV_82559_A0)
3181		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3182		    &hsp->tx_tco, "TCO frames");
3183}
3184
3185#undef FXP_SYSCTL_STAT_ADD
3186
3187static int
3188sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3189{
3190	int error, value;
3191
3192	value = *(int *)arg1;
3193	error = sysctl_handle_int(oidp, &value, 0, req);
3194	if (error || !req->newptr)
3195		return (error);
3196	if (value < low || value > high)
3197		return (EINVAL);
3198	*(int *)arg1 = value;
3199	return (0);
3200}
3201
3202/*
3203 * Interrupt delay is expressed in microseconds, a multiplier is used
3204 * to convert this to the appropriate clock ticks before using.
3205 */
3206static int
3207sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3208{
3209
3210	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3211}
3212
3213static int
3214sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3215{
3216
3217	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3218}
3219