if_fxp.c revision 214302
155825Speter/*-
278388Sbenno * Copyright (c) 1995, David Greenman
378388Sbenno * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
478388Sbenno * All rights reserved.
537684Sdfr *
655825Speter * Redistribution and use in source and binary forms, with or without
778388Sbenno * modification, are permitted provided that the following conditions
837684Sdfr * are met:
937684Sdfr * 1. Redistributions of source code must retain the above copyright
1037684Sdfr *    notice unmodified, this list of conditions, and the following
11176617Smarcel *    disclaimer.
12176617Smarcel * 2. Redistributions in binary form must reproduce the above copyright
13176617Smarcel *    notice, this list of conditions and the following disclaimer in the
14176617Smarcel *    documentation and/or other materials provided with the distribution.
15176617Smarcel *
16176617Smarcel * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17176617Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18176617Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19176617Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20176617Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21176617Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22176617Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23176617Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24176617Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2537684Sdfr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2637684Sdfr * SUCH DAMAGE.
2737684Sdfr *
2837684Sdfr */
2937684Sdfr
3037684Sdfr#include <sys/cdefs.h>
3137684Sdfr__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 214302 2010-10-24 21:59:51Z yongari $");
3237684Sdfr
3337684Sdfr/*
3437684Sdfr * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
3537684Sdfr */
3637684Sdfr
3737684Sdfr#ifdef HAVE_KERNEL_OPTION_HEADERS
3837684Sdfr#include "opt_device_polling.h"
3978388Sbenno#endif
4078388Sbenno
4137684Sdfr#include <sys/param.h>
4237684Sdfr#include <sys/systm.h>
4337684Sdfr#include <sys/bus.h>
4437684Sdfr#include <sys/endian.h>
4537684Sdfr#include <sys/kernel.h>
4637684Sdfr#include <sys/mbuf.h>
4778388Sbenno#include <sys/lock.h>
4878388Sbenno#include <sys/module.h>
4978388Sbenno#include <sys/mutex.h>
5078388Sbenno#include <sys/rman.h>
51176617Smarcel#include <sys/socket.h>
5278388Sbenno#include <sys/sockio.h>
5378388Sbenno#include <sys/sysctl.h>
5437684Sdfr
5537684Sdfr#include <net/bpf.h>
5678388Sbenno#include <net/ethernet.h>
5778388Sbenno#include <net/if.h>
5884665Smp#include <net/if_arp.h>
5984665Smp#include <net/if_dl.h>
6037684Sdfr#include <net/if_media.h>
6137684Sdfr#include <net/if_types.h>
6237684Sdfr#include <net/if_vlan_var.h>
6337684Sdfr
6437684Sdfr#include <netinet/in.h>
6537684Sdfr#include <netinet/in_systm.h>
6637684Sdfr#include <netinet/ip.h>
6778388Sbenno#include <netinet/tcp.h>
6878388Sbenno#include <netinet/udp.h>
6978388Sbenno
7078388Sbenno#include <machine/bus.h>
7178388Sbenno#include <machine/in_cksum.h>
7278388Sbenno#include <machine/resource.h>
7378388Sbenno
7478388Sbenno#include <dev/pci/pcivar.h>
7578388Sbenno#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
7678388Sbenno
7778388Sbenno#include <dev/mii/mii.h>
7878388Sbenno#include <dev/mii/miivar.h>
7978388Sbenno
8078388Sbenno#include <dev/fxp/if_fxpreg.h>
8178388Sbenno#include <dev/fxp/if_fxpvar.h>
8278388Sbenno#include <dev/fxp/rcvbundl.h>
8378388Sbenno
8478388SbennoMODULE_DEPEND(fxp, pci, 1, 1, 1);
8578388SbennoMODULE_DEPEND(fxp, ether, 1, 1, 1);
8678388SbennoMODULE_DEPEND(fxp, miibus, 1, 1, 1);
8778388Sbenno#include "miibus_if.h"
8837684Sdfr
8937684Sdfr/*
9037684Sdfr * NOTE!  On the Alpha, we have an alignment constraint.  The
9137684Sdfr * card DMAs the packet immediately following the RFA.  However,
9237684Sdfr * the first thing in the packet is a 14-byte Ethernet header.
9337684Sdfr * This means that the packet is misaligned.  To compensate,
9478388Sbenno * we actually offset the RFA 2 bytes into the cluster.  This
9578388Sbenno * alignes the packet after the Ethernet header at a 32-bit
9678388Sbenno * boundary.  HOWEVER!  This means that the RFA is misaligned!
9778388Sbenno */
9878388Sbenno#define	RFA_ALIGNMENT_FUDGE	2
9978388Sbenno
10078388Sbenno/*
10178388Sbenno * Set initial transmit threshold at 64 (512 bytes). This is
10278388Sbenno * increased by 64 (512 bytes) at a time, to maximum of 192
10337684Sdfr * (1536 bytes), if an underrun occurs.
10437684Sdfr */
10578388Sbennostatic int tx_threshold = 64;
10637684Sdfr
10737684Sdfr/*
10837684Sdfr * The configuration byte map has several undefined fields which
10937684Sdfr * must be one or must be zero.  Set up a template for these bits.
11037684Sdfr * The actual configuration is performed in fxp_init.
11137684Sdfr *
11237684Sdfr * See struct fxp_cb_config for the bit definitions.
11337684Sdfr */
11437684Sdfrstatic u_char fxp_cb_config_template[] = {
11537684Sdfr	0x0, 0x0,		/* cb_status */
11637684Sdfr	0x0, 0x0,		/* cb_command */
11737684Sdfr	0x0, 0x0, 0x0, 0x0,	/* link_addr */
11837684Sdfr	0x0,	/*  0 */
11937684Sdfr	0x0,	/*  1 */
12037684Sdfr	0x0,	/*  2 */
12137684Sdfr	0x0,	/*  3 */
12237684Sdfr	0x0,	/*  4 */
12337684Sdfr	0x0,	/*  5 */
12437684Sdfr	0x32,	/*  6 */
12537684Sdfr	0x0,	/*  7 */
12637684Sdfr	0x0,	/*  8 */
12737684Sdfr	0x0,	/*  9 */
12837684Sdfr	0x6,	/* 10 */
12937684Sdfr	0x0,	/* 11 */
13037684Sdfr	0x0,	/* 12 */
13137684Sdfr	0x0,	/* 13 */
13237684Sdfr	0xf2,	/* 14 */
13337684Sdfr	0x48,	/* 15 */
13437684Sdfr	0x0,	/* 16 */
13537684Sdfr	0x40,	/* 17 */
13637684Sdfr	0xf0,	/* 18 */
13737684Sdfr	0x0,	/* 19 */
13837684Sdfr	0x3f,	/* 20 */
13937684Sdfr	0x5,	/* 21 */
14037684Sdfr	0x0,	/* 22 */
14137684Sdfr	0x0,	/* 23 */
14237684Sdfr	0x0,	/* 24 */
143	0x0,	/* 25 */
144	0x0,	/* 26 */
145	0x0,	/* 27 */
146	0x0,	/* 28 */
147	0x0,	/* 29 */
148	0x0,	/* 30 */
149	0x0	/* 31 */
150};
151
152/*
153 * Claim various Intel PCI device identifiers for this driver.  The
154 * sub-vendor and sub-device field are extensively used to identify
155 * particular variants, but we don't currently differentiate between
156 * them.
157 */
158static struct fxp_ident fxp_ident_table[] = {
159    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
198    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204    { 0,	-1,	0, NULL },
205};
206
207#ifdef FXP_IP_CSUM_WAR
208#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209#else
210#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211#endif
212
213static int		fxp_probe(device_t dev);
214static int		fxp_attach(device_t dev);
215static int		fxp_detach(device_t dev);
216static int		fxp_shutdown(device_t dev);
217static int		fxp_suspend(device_t dev);
218static int		fxp_resume(device_t dev);
219
220static struct fxp_ident	*fxp_find_ident(device_t dev);
221static void		fxp_intr(void *xsc);
222static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223			    struct mbuf *m, uint16_t status, int pos);
224static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225			    uint8_t statack, int count);
226static void 		fxp_init(void *xsc);
227static void 		fxp_init_body(struct fxp_softc *sc);
228static void 		fxp_tick(void *xsc);
229static void 		fxp_start(struct ifnet *ifp);
230static void 		fxp_start_body(struct ifnet *ifp);
231static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232static void		fxp_txeof(struct fxp_softc *sc);
233static void		fxp_stop(struct fxp_softc *sc);
234static void 		fxp_release(struct fxp_softc *sc);
235static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236			    caddr_t data);
237static void 		fxp_watchdog(struct fxp_softc *sc);
238static void		fxp_add_rfabuf(struct fxp_softc *sc,
239    			    struct fxp_rx *rxp);
240static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241    			    struct fxp_rx *rxp);
242static int		fxp_new_rfabuf(struct fxp_softc *sc,
243    			    struct fxp_rx *rxp);
244static int		fxp_mc_addrs(struct fxp_softc *sc);
245static void		fxp_mc_setup(struct fxp_softc *sc);
246static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247			    int autosize);
248static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249			    uint16_t data);
250static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
252			    int offset, int words);
253static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
254			    int offset, int words);
255static int		fxp_ifmedia_upd(struct ifnet *ifp);
256static void		fxp_ifmedia_sts(struct ifnet *ifp,
257			    struct ifmediareq *ifmr);
258static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
259static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
260			    struct ifmediareq *ifmr);
261static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
262static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
263			    int value);
264static void		fxp_load_ucode(struct fxp_softc *sc);
265static void		fxp_update_stats(struct fxp_softc *sc);
266static void		fxp_sysctl_node(struct fxp_softc *sc);
267static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
268			    int low, int high);
269static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
270static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
271static void 		fxp_scb_wait(struct fxp_softc *sc);
272static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
273static void		fxp_dma_wait(struct fxp_softc *sc,
274    			    volatile uint16_t *status, bus_dma_tag_t dmat,
275			    bus_dmamap_t map);
276
277static device_method_t fxp_methods[] = {
278	/* Device interface */
279	DEVMETHOD(device_probe,		fxp_probe),
280	DEVMETHOD(device_attach,	fxp_attach),
281	DEVMETHOD(device_detach,	fxp_detach),
282	DEVMETHOD(device_shutdown,	fxp_shutdown),
283	DEVMETHOD(device_suspend,	fxp_suspend),
284	DEVMETHOD(device_resume,	fxp_resume),
285
286	/* MII interface */
287	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
288	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
289
290	{ 0, 0 }
291};
292
293static driver_t fxp_driver = {
294	"fxp",
295	fxp_methods,
296	sizeof(struct fxp_softc),
297};
298
299static devclass_t fxp_devclass;
300
301DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
302DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
303
304static struct resource_spec fxp_res_spec_mem[] = {
305	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
306	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
307	{ -1, 0 }
308};
309
310static struct resource_spec fxp_res_spec_io[] = {
311	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
312	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
313	{ -1, 0 }
314};
315
316/*
317 * Wait for the previous command to be accepted (but not necessarily
318 * completed).
319 */
320static void
321fxp_scb_wait(struct fxp_softc *sc)
322{
323	union {
324		uint16_t w;
325		uint8_t b[2];
326	} flowctl;
327	int i = 10000;
328
329	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
330		DELAY(2);
331	if (i == 0) {
332		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
333		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
334		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
335		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
336		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
337		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
338	}
339}
340
341static void
342fxp_scb_cmd(struct fxp_softc *sc, int cmd)
343{
344
345	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
346		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
347		fxp_scb_wait(sc);
348	}
349	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
350}
351
352static void
353fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
354    bus_dma_tag_t dmat, bus_dmamap_t map)
355{
356	int i;
357
358	for (i = 10000; i > 0; i--) {
359		DELAY(2);
360		bus_dmamap_sync(dmat, map,
361		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
362		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
363			break;
364	}
365	if (i == 0)
366		device_printf(sc->dev, "DMA timeout\n");
367}
368
369static struct fxp_ident *
370fxp_find_ident(device_t dev)
371{
372	uint16_t devid;
373	uint8_t revid;
374	struct fxp_ident *ident;
375
376	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
377		devid = pci_get_device(dev);
378		revid = pci_get_revid(dev);
379		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
380			if (ident->devid == devid &&
381			    (ident->revid == revid || ident->revid == -1)) {
382				return (ident);
383			}
384		}
385	}
386	return (NULL);
387}
388
389/*
390 * Return identification string if this device is ours.
391 */
392static int
393fxp_probe(device_t dev)
394{
395	struct fxp_ident *ident;
396
397	ident = fxp_find_ident(dev);
398	if (ident != NULL) {
399		device_set_desc(dev, ident->name);
400		return (BUS_PROBE_DEFAULT);
401	}
402	return (ENXIO);
403}
404
405static void
406fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
407{
408	uint32_t *addr;
409
410	if (error)
411		return;
412
413	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
414	addr = arg;
415	*addr = segs->ds_addr;
416}
417
418static int
419fxp_attach(device_t dev)
420{
421	struct fxp_softc *sc;
422	struct fxp_cb_tx *tcbp;
423	struct fxp_tx *txp;
424	struct fxp_rx *rxp;
425	struct ifnet *ifp;
426	uint32_t val;
427	uint16_t data, myea[ETHER_ADDR_LEN / 2];
428	u_char eaddr[ETHER_ADDR_LEN];
429	int i, pmc, prefer_iomap;
430	int error;
431
432	error = 0;
433	sc = device_get_softc(dev);
434	sc->dev = dev;
435	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
436	    MTX_DEF);
437	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
438	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
439	    fxp_serial_ifmedia_sts);
440
441	ifp = sc->ifp = if_alloc(IFT_ETHER);
442	if (ifp == NULL) {
443		device_printf(dev, "can not if_alloc()\n");
444		error = ENOSPC;
445		goto fail;
446	}
447
448	/*
449	 * Enable bus mastering.
450	 */
451	pci_enable_busmaster(dev);
452	val = pci_read_config(dev, PCIR_COMMAND, 2);
453
454	/*
455	 * Figure out which we should try first - memory mapping or i/o mapping?
456	 * We default to memory mapping. Then we accept an override from the
457	 * command line. Then we check to see which one is enabled.
458	 */
459	prefer_iomap = 0;
460	resource_int_value(device_get_name(dev), device_get_unit(dev),
461	    "prefer_iomap", &prefer_iomap);
462	if (prefer_iomap)
463		sc->fxp_spec = fxp_res_spec_io;
464	else
465		sc->fxp_spec = fxp_res_spec_mem;
466
467	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
468	if (error) {
469		if (sc->fxp_spec == fxp_res_spec_mem)
470			sc->fxp_spec = fxp_res_spec_io;
471		else
472			sc->fxp_spec = fxp_res_spec_mem;
473		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
474	}
475	if (error) {
476		device_printf(dev, "could not allocate resources\n");
477		error = ENXIO;
478		goto fail;
479	}
480
481	if (bootverbose) {
482		device_printf(dev, "using %s space register mapping\n",
483		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
484	}
485
486	/*
487	 * Put CU/RU idle state and prepare full reset.
488	 */
489	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
490	DELAY(10);
491	/* Full reset and disable interrupts. */
492	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
493	DELAY(10);
494	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
495
496	/*
497	 * Find out how large of an SEEPROM we have.
498	 */
499	fxp_autosize_eeprom(sc);
500
501	/*
502	 * Find out the chip revision; lump all 82557 revs together.
503	 */
504	sc->ident = fxp_find_ident(dev);
505	if (sc->ident->ich > 0) {
506		/* Assume ICH controllers are 82559. */
507		sc->revision = FXP_REV_82559_A0;
508	} else {
509		fxp_read_eeprom(sc, &data, 5, 1);
510		if ((data >> 8) == 1)
511			sc->revision = FXP_REV_82557;
512		else
513			sc->revision = pci_get_revid(dev);
514	}
515
516	/*
517	 * Check availability of WOL. 82559ER does not support WOL.
518	 */
519	if (sc->revision >= FXP_REV_82558_A4 &&
520	    sc->revision != FXP_REV_82559S_A) {
521		fxp_read_eeprom(sc, &data, 10, 1);
522		if ((data & 0x20) != 0 &&
523		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
524			sc->flags |= FXP_FLAG_WOLCAP;
525	}
526
527	/* Receiver lock-up workaround detection. */
528	fxp_read_eeprom(sc, &data, 3, 1);
529	if ((data & 0x03) != 0x03) {
530		sc->flags |= FXP_FLAG_RXBUG;
531		device_printf(dev, "Enabling Rx lock-up workaround\n");
532	}
533
534	/*
535	 * Determine whether we must use the 503 serial interface.
536	 */
537	fxp_read_eeprom(sc, &data, 6, 1);
538	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
539	    && (data & FXP_PHY_SERIAL_ONLY))
540		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
541
542	fxp_sysctl_node(sc);
543	/*
544	 * Enable workarounds for certain chip revision deficiencies.
545	 *
546	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
547	 * some systems based a normal 82559 design, have a defect where
548	 * the chip can cause a PCI protocol violation if it receives
549	 * a CU_RESUME command when it is entering the IDLE state.  The
550	 * workaround is to disable Dynamic Standby Mode, so the chip never
551	 * deasserts CLKRUN#, and always remains in an active state.
552	 *
553	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
554	 */
555	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
556	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
557		fxp_read_eeprom(sc, &data, 10, 1);
558		if (data & 0x02) {			/* STB enable */
559			uint16_t cksum;
560			int i;
561
562			device_printf(dev,
563			    "Disabling dynamic standby mode in EEPROM\n");
564			data &= ~0x02;
565			fxp_write_eeprom(sc, &data, 10, 1);
566			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
567			cksum = 0;
568			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
569				fxp_read_eeprom(sc, &data, i, 1);
570				cksum += data;
571			}
572			i = (1 << sc->eeprom_size) - 1;
573			cksum = 0xBABA - cksum;
574			fxp_read_eeprom(sc, &data, i, 1);
575			fxp_write_eeprom(sc, &cksum, i, 1);
576			device_printf(dev,
577			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
578			    i, data, cksum);
579#if 1
580			/*
581			 * If the user elects to continue, try the software
582			 * workaround, as it is better than nothing.
583			 */
584			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
585#endif
586		}
587	}
588
589	/*
590	 * If we are not a 82557 chip, we can enable extended features.
591	 */
592	if (sc->revision != FXP_REV_82557) {
593		/*
594		 * If MWI is enabled in the PCI configuration, and there
595		 * is a valid cacheline size (8 or 16 dwords), then tell
596		 * the board to turn on MWI.
597		 */
598		if (val & PCIM_CMD_MWRICEN &&
599		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
600			sc->flags |= FXP_FLAG_MWI_ENABLE;
601
602		/* turn on the extended TxCB feature */
603		sc->flags |= FXP_FLAG_EXT_TXCB;
604
605		/* enable reception of long frames for VLAN */
606		sc->flags |= FXP_FLAG_LONG_PKT_EN;
607	} else {
608		/* a hack to get long VLAN frames on a 82557 */
609		sc->flags |= FXP_FLAG_SAVE_BAD;
610	}
611
612	/* For 82559 or later chips, Rx checksum offload is supported. */
613	if (sc->revision >= FXP_REV_82559_A0) {
614		/* 82559ER does not support Rx checksum offloading. */
615		if (sc->ident->devid != 0x1209)
616			sc->flags |= FXP_FLAG_82559_RXCSUM;
617	}
618	/*
619	 * Enable use of extended RFDs and TCBs for 82550
620	 * and later chips. Note: we need extended TXCB support
621	 * too, but that's already enabled by the code above.
622	 * Be careful to do this only on the right devices.
623	 */
624	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
625	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
626	    || sc->revision == FXP_REV_82551_10) {
627		sc->rfa_size = sizeof (struct fxp_rfa);
628		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
629		sc->flags |= FXP_FLAG_EXT_RFA;
630		/* Use extended RFA instead of 82559 checksum mode. */
631		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
632	} else {
633		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
634		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
635	}
636
637	/*
638	 * Allocate DMA tags and DMA safe memory.
639	 */
640	sc->maxtxseg = FXP_NTXSEG;
641	sc->maxsegsize = MCLBYTES;
642	if (sc->flags & FXP_FLAG_EXT_RFA) {
643		sc->maxtxseg--;
644		sc->maxsegsize = FXP_TSO_SEGSIZE;
645	}
646	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
647	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
648	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
649	    sc->maxtxseg, sc->maxsegsize, 0,
650	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
651	if (error) {
652		device_printf(dev, "could not create TX DMA tag\n");
653		goto fail;
654	}
655
656	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
657	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
658	    MCLBYTES, 1, MCLBYTES, 0,
659	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
660	if (error) {
661		device_printf(dev, "could not create RX DMA tag\n");
662		goto fail;
663	}
664
665	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
666	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
667	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
668	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
669	if (error) {
670		device_printf(dev, "could not create stats DMA tag\n");
671		goto fail;
672	}
673
674	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
675	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
676	if (error) {
677		device_printf(dev, "could not allocate stats DMA memory\n");
678		goto fail;
679	}
680	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
681	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
682	if (error) {
683		device_printf(dev, "could not load the stats DMA buffer\n");
684		goto fail;
685	}
686
687	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
688	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
689	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
690	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
691	if (error) {
692		device_printf(dev, "could not create TxCB DMA tag\n");
693		goto fail;
694	}
695
696	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
697	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
698	if (error) {
699		device_printf(dev, "could not allocate TxCB DMA memory\n");
700		goto fail;
701	}
702
703	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
704	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
705	    &sc->fxp_desc.cbl_addr, 0);
706	if (error) {
707		device_printf(dev, "could not load TxCB DMA buffer\n");
708		goto fail;
709	}
710
711	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
712	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
713	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
714	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
715	if (error) {
716		device_printf(dev,
717		    "could not create multicast setup DMA tag\n");
718		goto fail;
719	}
720
721	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
722	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->mcs_map);
723	if (error) {
724		device_printf(dev,
725		    "could not allocate multicast setup DMA memory\n");
726		goto fail;
727	}
728	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
729	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
730	if (error) {
731		device_printf(dev,
732		    "can't load the multicast setup DMA buffer\n");
733		goto fail;
734	}
735
736	/*
737	 * Pre-allocate the TX DMA maps and setup the pointers to
738	 * the TX command blocks.
739	 */
740	txp = sc->fxp_desc.tx_list;
741	tcbp = sc->fxp_desc.cbl_list;
742	for (i = 0; i < FXP_NTXCB; i++) {
743		txp[i].tx_cb = tcbp + i;
744		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
745		if (error) {
746			device_printf(dev, "can't create DMA map for TX\n");
747			goto fail;
748		}
749	}
750	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
751	if (error) {
752		device_printf(dev, "can't create spare DMA map\n");
753		goto fail;
754	}
755
756	/*
757	 * Pre-allocate our receive buffers.
758	 */
759	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
760	for (i = 0; i < FXP_NRFABUFS; i++) {
761		rxp = &sc->fxp_desc.rx_list[i];
762		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
763		if (error) {
764			device_printf(dev, "can't create DMA map for RX\n");
765			goto fail;
766		}
767		if (fxp_new_rfabuf(sc, rxp) != 0) {
768			error = ENOMEM;
769			goto fail;
770		}
771		fxp_add_rfabuf(sc, rxp);
772	}
773
774	/*
775	 * Read MAC address.
776	 */
777	fxp_read_eeprom(sc, myea, 0, 3);
778	eaddr[0] = myea[0] & 0xff;
779	eaddr[1] = myea[0] >> 8;
780	eaddr[2] = myea[1] & 0xff;
781	eaddr[3] = myea[1] >> 8;
782	eaddr[4] = myea[2] & 0xff;
783	eaddr[5] = myea[2] >> 8;
784	if (bootverbose) {
785		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
786		    pci_get_vendor(dev), pci_get_device(dev),
787		    pci_get_subvendor(dev), pci_get_subdevice(dev),
788		    pci_get_revid(dev));
789		fxp_read_eeprom(sc, &data, 10, 1);
790		device_printf(dev, "Dynamic Standby mode is %s\n",
791		    data & 0x02 ? "enabled" : "disabled");
792	}
793
794	/*
795	 * If this is only a 10Mbps device, then there is no MII, and
796	 * the PHY will use a serial interface instead.
797	 *
798	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
799	 * doesn't have a programming interface of any sort.  The
800	 * media is sensed automatically based on how the link partner
801	 * is configured.  This is, in essence, manual configuration.
802	 */
803	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
804		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
805		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
806	} else {
807		/*
808		 * i82557 wedge when isolating all of their PHYs.
809		 */
810		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
811		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
812		    MII_OFFSET_ANY, MIIF_NOISOLATE);
813		if (error != 0) {
814	                device_printf(dev, "attaching PHYs failed\n");
815			goto fail;
816		}
817	}
818
819	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
820	ifp->if_init = fxp_init;
821	ifp->if_softc = sc;
822	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823	ifp->if_ioctl = fxp_ioctl;
824	ifp->if_start = fxp_start;
825
826	ifp->if_capabilities = ifp->if_capenable = 0;
827
828	/* Enable checksum offload/TSO for 82550 or better chips */
829	if (sc->flags & FXP_FLAG_EXT_RFA) {
830		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
831		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
832		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
833	}
834
835	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
836		ifp->if_capabilities |= IFCAP_RXCSUM;
837		ifp->if_capenable |= IFCAP_RXCSUM;
838	}
839
840	if (sc->flags & FXP_FLAG_WOLCAP) {
841		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
842		ifp->if_capenable |= IFCAP_WOL_MAGIC;
843	}
844
845#ifdef DEVICE_POLLING
846	/* Inform the world we support polling. */
847	ifp->if_capabilities |= IFCAP_POLLING;
848#endif
849
850	/*
851	 * Attach the interface.
852	 */
853	ether_ifattach(ifp, eaddr);
854
855	/*
856	 * Tell the upper layer(s) we support long frames.
857	 * Must appear after the call to ether_ifattach() because
858	 * ether_ifattach() sets ifi_hdrlen to the default value.
859	 */
860	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
861	ifp->if_capabilities |= IFCAP_VLAN_MTU;
862	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
863	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
864		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
865		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
866		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
867		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
868	}
869
870	/*
871	 * Let the system queue as many packets as we have available
872	 * TX descriptors.
873	 */
874	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
875	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
876	IFQ_SET_READY(&ifp->if_snd);
877
878	/*
879	 * Hook our interrupt after all initialization is complete.
880	 */
881	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
882			       NULL, fxp_intr, sc, &sc->ih);
883	if (error) {
884		device_printf(dev, "could not setup irq\n");
885		ether_ifdetach(sc->ifp);
886		goto fail;
887	}
888
889	/*
890	 * Configure hardware to reject magic frames otherwise
891	 * system will hang on recipt of magic frames.
892	 */
893	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
894		FXP_LOCK(sc);
895		/* Clear wakeup events. */
896		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
897		fxp_init_body(sc);
898		fxp_stop(sc);
899		FXP_UNLOCK(sc);
900	}
901
902fail:
903	if (error)
904		fxp_release(sc);
905	return (error);
906}
907
908/*
909 * Release all resources.  The softc lock should not be held and the
910 * interrupt should already be torn down.
911 */
912static void
913fxp_release(struct fxp_softc *sc)
914{
915	struct fxp_rx *rxp;
916	struct fxp_tx *txp;
917	int i;
918
919	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
920	KASSERT(sc->ih == NULL,
921	    ("fxp_release() called with intr handle still active"));
922	if (sc->miibus)
923		device_delete_child(sc->dev, sc->miibus);
924	bus_generic_detach(sc->dev);
925	ifmedia_removeall(&sc->sc_media);
926	if (sc->fxp_desc.cbl_list) {
927		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
928		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
929		    sc->cbl_map);
930	}
931	if (sc->fxp_stats) {
932		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
933		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
934	}
935	if (sc->mcsp) {
936		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
937		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
938	}
939	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
940	if (sc->fxp_rxmtag) {
941		for (i = 0; i < FXP_NRFABUFS; i++) {
942			rxp = &sc->fxp_desc.rx_list[i];
943			if (rxp->rx_mbuf != NULL) {
944				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
945				    BUS_DMASYNC_POSTREAD);
946				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
947				m_freem(rxp->rx_mbuf);
948			}
949			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
950		}
951		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
952		bus_dma_tag_destroy(sc->fxp_rxmtag);
953	}
954	if (sc->fxp_txmtag) {
955		for (i = 0; i < FXP_NTXCB; i++) {
956			txp = &sc->fxp_desc.tx_list[i];
957			if (txp->tx_mbuf != NULL) {
958				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
959				    BUS_DMASYNC_POSTWRITE);
960				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
961				m_freem(txp->tx_mbuf);
962			}
963			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
964		}
965		bus_dma_tag_destroy(sc->fxp_txmtag);
966	}
967	if (sc->fxp_stag)
968		bus_dma_tag_destroy(sc->fxp_stag);
969	if (sc->cbl_tag)
970		bus_dma_tag_destroy(sc->cbl_tag);
971	if (sc->mcs_tag)
972		bus_dma_tag_destroy(sc->mcs_tag);
973	if (sc->ifp)
974		if_free(sc->ifp);
975
976	mtx_destroy(&sc->sc_mtx);
977}
978
979/*
980 * Detach interface.
981 */
982static int
983fxp_detach(device_t dev)
984{
985	struct fxp_softc *sc = device_get_softc(dev);
986
987#ifdef DEVICE_POLLING
988	if (sc->ifp->if_capenable & IFCAP_POLLING)
989		ether_poll_deregister(sc->ifp);
990#endif
991
992	FXP_LOCK(sc);
993	/*
994	 * Stop DMA and drop transmit queue, but disable interrupts first.
995	 */
996	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
997	fxp_stop(sc);
998	FXP_UNLOCK(sc);
999	callout_drain(&sc->stat_ch);
1000
1001	/*
1002	 * Close down routes etc.
1003	 */
1004	ether_ifdetach(sc->ifp);
1005
1006	/*
1007	 * Unhook interrupt before dropping lock. This is to prevent
1008	 * races with fxp_intr().
1009	 */
1010	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1011	sc->ih = NULL;
1012
1013	/* Release our allocated resources. */
1014	fxp_release(sc);
1015	return (0);
1016}
1017
1018/*
1019 * Device shutdown routine. Called at system shutdown after sync. The
1020 * main purpose of this routine is to shut off receiver DMA so that
1021 * kernel memory doesn't get clobbered during warmboot.
1022 */
1023static int
1024fxp_shutdown(device_t dev)
1025{
1026
1027	/*
1028	 * Make sure that DMA is disabled prior to reboot. Not doing
1029	 * do could allow DMA to corrupt kernel memory during the
1030	 * reboot before the driver initializes.
1031	 */
1032	return (fxp_suspend(dev));
1033}
1034
1035/*
1036 * Device suspend routine.  Stop the interface and save some PCI
1037 * settings in case the BIOS doesn't restore them properly on
1038 * resume.
1039 */
1040static int
1041fxp_suspend(device_t dev)
1042{
1043	struct fxp_softc *sc = device_get_softc(dev);
1044	struct ifnet *ifp;
1045	int pmc;
1046	uint16_t pmstat;
1047
1048	FXP_LOCK(sc);
1049
1050	ifp = sc->ifp;
1051	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1052		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1053		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1054		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1055			/* Request PME. */
1056			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1057			sc->flags |= FXP_FLAG_WOL;
1058			/* Reconfigure hardware to accept magic frames. */
1059			fxp_init_body(sc);
1060		}
1061		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1062	}
1063	fxp_stop(sc);
1064
1065	sc->suspended = 1;
1066
1067	FXP_UNLOCK(sc);
1068	return (0);
1069}
1070
1071/*
1072 * Device resume routine. re-enable busmastering, and restart the interface if
1073 * appropriate.
1074 */
1075static int
1076fxp_resume(device_t dev)
1077{
1078	struct fxp_softc *sc = device_get_softc(dev);
1079	struct ifnet *ifp = sc->ifp;
1080	int pmc;
1081	uint16_t pmstat;
1082
1083	FXP_LOCK(sc);
1084
1085	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1086		sc->flags &= ~FXP_FLAG_WOL;
1087		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1088		/* Disable PME and clear PME status. */
1089		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1090		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1091		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1092			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1093			    CSR_READ_1(sc, FXP_CSR_PMDR));
1094	}
1095
1096	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1097	DELAY(10);
1098
1099	/* reinitialize interface if necessary */
1100	if (ifp->if_flags & IFF_UP)
1101		fxp_init_body(sc);
1102
1103	sc->suspended = 0;
1104
1105	FXP_UNLOCK(sc);
1106	return (0);
1107}
1108
1109static void
1110fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1111{
1112	uint16_t reg;
1113	int x;
1114
1115	/*
1116	 * Shift in data.
1117	 */
1118	for (x = 1 << (length - 1); x; x >>= 1) {
1119		if (data & x)
1120			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1121		else
1122			reg = FXP_EEPROM_EECS;
1123		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1124		DELAY(1);
1125		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1126		DELAY(1);
1127		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128		DELAY(1);
1129	}
1130}
1131
1132/*
1133 * Read from the serial EEPROM. Basically, you manually shift in
1134 * the read opcode (one bit at a time) and then shift in the address,
1135 * and then you shift out the data (all of this one bit at a time).
1136 * The word size is 16 bits, so you have to provide the address for
1137 * every 16 bits of data.
1138 */
1139static uint16_t
1140fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1141{
1142	uint16_t reg, data;
1143	int x;
1144
1145	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1146	/*
1147	 * Shift in read opcode.
1148	 */
1149	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1150	/*
1151	 * Shift in address.
1152	 */
1153	data = 0;
1154	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1155		if (offset & x)
1156			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1157		else
1158			reg = FXP_EEPROM_EECS;
1159		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1160		DELAY(1);
1161		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1162		DELAY(1);
1163		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1164		DELAY(1);
1165		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1166		data++;
1167		if (autosize && reg == 0) {
1168			sc->eeprom_size = data;
1169			break;
1170		}
1171	}
1172	/*
1173	 * Shift out data.
1174	 */
1175	data = 0;
1176	reg = FXP_EEPROM_EECS;
1177	for (x = 1 << 15; x; x >>= 1) {
1178		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1179		DELAY(1);
1180		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1181			data |= x;
1182		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1183		DELAY(1);
1184	}
1185	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1186	DELAY(1);
1187
1188	return (data);
1189}
1190
1191static void
1192fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1193{
1194	int i;
1195
1196	/*
1197	 * Erase/write enable.
1198	 */
1199	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1200	fxp_eeprom_shiftin(sc, 0x4, 3);
1201	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1202	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1203	DELAY(1);
1204	/*
1205	 * Shift in write opcode, address, data.
1206	 */
1207	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1208	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1209	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1210	fxp_eeprom_shiftin(sc, data, 16);
1211	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1212	DELAY(1);
1213	/*
1214	 * Wait for EEPROM to finish up.
1215	 */
1216	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1217	DELAY(1);
1218	for (i = 0; i < 1000; i++) {
1219		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1220			break;
1221		DELAY(50);
1222	}
1223	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1224	DELAY(1);
1225	/*
1226	 * Erase/write disable.
1227	 */
1228	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1229	fxp_eeprom_shiftin(sc, 0x4, 3);
1230	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1231	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232	DELAY(1);
1233}
1234
1235/*
1236 * From NetBSD:
1237 *
1238 * Figure out EEPROM size.
1239 *
1240 * 559's can have either 64-word or 256-word EEPROMs, the 558
1241 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1242 * talks about the existance of 16 to 256 word EEPROMs.
1243 *
1244 * The only known sizes are 64 and 256, where the 256 version is used
1245 * by CardBus cards to store CIS information.
1246 *
1247 * The address is shifted in msb-to-lsb, and after the last
1248 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1249 * after which follows the actual data. We try to detect this zero, by
1250 * probing the data-out bit in the EEPROM control register just after
1251 * having shifted in a bit. If the bit is zero, we assume we've
1252 * shifted enough address bits. The data-out should be tri-state,
1253 * before this, which should translate to a logical one.
1254 */
1255static void
1256fxp_autosize_eeprom(struct fxp_softc *sc)
1257{
1258
1259	/* guess maximum size of 256 words */
1260	sc->eeprom_size = 8;
1261
1262	/* autosize */
1263	(void) fxp_eeprom_getword(sc, 0, 1);
1264}
1265
1266static void
1267fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1268{
1269	int i;
1270
1271	for (i = 0; i < words; i++)
1272		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1273}
1274
1275static void
1276fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1277{
1278	int i;
1279
1280	for (i = 0; i < words; i++)
1281		fxp_eeprom_putword(sc, offset + i, data[i]);
1282}
1283
1284/*
1285 * Grab the softc lock and call the real fxp_start_body() routine
1286 */
1287static void
1288fxp_start(struct ifnet *ifp)
1289{
1290	struct fxp_softc *sc = ifp->if_softc;
1291
1292	FXP_LOCK(sc);
1293	fxp_start_body(ifp);
1294	FXP_UNLOCK(sc);
1295}
1296
1297/*
1298 * Start packet transmission on the interface.
1299 * This routine must be called with the softc lock held, and is an
1300 * internal entry point only.
1301 */
1302static void
1303fxp_start_body(struct ifnet *ifp)
1304{
1305	struct fxp_softc *sc = ifp->if_softc;
1306	struct mbuf *mb_head;
1307	int txqueued;
1308
1309	FXP_LOCK_ASSERT(sc, MA_OWNED);
1310
1311	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1312	    IFF_DRV_RUNNING)
1313		return;
1314
1315	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1316		fxp_txeof(sc);
1317	/*
1318	 * We're finished if there is nothing more to add to the list or if
1319	 * we're all filled up with buffers to transmit.
1320	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1321	 *       a NOP command when needed.
1322	 */
1323	txqueued = 0;
1324	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1325	    sc->tx_queued < FXP_NTXCB - 1) {
1326
1327		/*
1328		 * Grab a packet to transmit.
1329		 */
1330		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1331		if (mb_head == NULL)
1332			break;
1333
1334		if (fxp_encap(sc, &mb_head)) {
1335			if (mb_head == NULL)
1336				break;
1337			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1338			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1339		}
1340		txqueued++;
1341		/*
1342		 * Pass packet to bpf if there is a listener.
1343		 */
1344		BPF_MTAP(ifp, mb_head);
1345	}
1346
1347	/*
1348	 * We're finished. If we added to the list, issue a RESUME to get DMA
1349	 * going again if suspended.
1350	 */
1351	if (txqueued > 0) {
1352		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1353		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1354		fxp_scb_wait(sc);
1355		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1356		/*
1357		 * Set a 5 second timer just in case we don't hear
1358		 * from the card again.
1359		 */
1360		sc->watchdog_timer = 5;
1361	}
1362}
1363
1364static int
1365fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1366{
1367	struct ifnet *ifp;
1368	struct mbuf *m;
1369	struct fxp_tx *txp;
1370	struct fxp_cb_tx *cbp;
1371	struct tcphdr *tcp;
1372	bus_dma_segment_t segs[FXP_NTXSEG];
1373	int error, i, nseg, tcp_payload;
1374
1375	FXP_LOCK_ASSERT(sc, MA_OWNED);
1376	ifp = sc->ifp;
1377
1378	tcp_payload = 0;
1379	tcp = NULL;
1380	/*
1381	 * Get pointer to next available tx desc.
1382	 */
1383	txp = sc->fxp_desc.tx_last->tx_next;
1384
1385	/*
1386	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1387	 * Ethernet Controller Family Open Source Software
1388	 * Developer Manual says:
1389	 *   Using software parsing is only allowed with legal
1390	 *   TCP/IP or UDP/IP packets.
1391	 *   ...
1392	 *   For all other datagrams, hardware parsing must
1393	 *   be used.
1394	 * Software parsing appears to truncate ICMP and
1395	 * fragmented UDP packets that contain one to three
1396	 * bytes in the second (and final) mbuf of the packet.
1397	 */
1398	if (sc->flags & FXP_FLAG_EXT_RFA)
1399		txp->tx_cb->ipcb_ip_activation_high =
1400		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1401
1402	m = *m_head;
1403	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1404		/*
1405		 * 82550/82551 requires ethernet/IP/TCP headers must be
1406		 * contained in the first active transmit buffer.
1407		 */
1408		struct ether_header *eh;
1409		struct ip *ip;
1410		uint32_t ip_off, poff;
1411
1412		if (M_WRITABLE(*m_head) == 0) {
1413			/* Get a writable copy. */
1414			m = m_dup(*m_head, M_DONTWAIT);
1415			m_freem(*m_head);
1416			if (m == NULL) {
1417				*m_head = NULL;
1418				return (ENOBUFS);
1419			}
1420			*m_head = m;
1421		}
1422		ip_off = sizeof(struct ether_header);
1423		m = m_pullup(*m_head, ip_off);
1424		if (m == NULL) {
1425			*m_head = NULL;
1426			return (ENOBUFS);
1427		}
1428		eh = mtod(m, struct ether_header *);
1429		/* Check the existence of VLAN tag. */
1430		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1431			ip_off = sizeof(struct ether_vlan_header);
1432			m = m_pullup(m, ip_off);
1433			if (m == NULL) {
1434				*m_head = NULL;
1435				return (ENOBUFS);
1436			}
1437		}
1438		m = m_pullup(m, ip_off + sizeof(struct ip));
1439		if (m == NULL) {
1440			*m_head = NULL;
1441			return (ENOBUFS);
1442		}
1443		ip = (struct ip *)(mtod(m, char *) + ip_off);
1444		poff = ip_off + (ip->ip_hl << 2);
1445		m = m_pullup(m, poff + sizeof(struct tcphdr));
1446		if (m == NULL) {
1447			*m_head = NULL;
1448			return (ENOBUFS);
1449		}
1450		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1451		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1452		if (m == NULL) {
1453			*m_head = NULL;
1454			return (ENOBUFS);
1455		}
1456
1457		/*
1458		 * Since 82550/82551 doesn't modify IP length and pseudo
1459		 * checksum in the first frame driver should compute it.
1460		 */
1461		ip = (struct ip *)(mtod(m, char *) + ip_off);
1462		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1463		ip->ip_sum = 0;
1464		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1465		    (tcp->th_off << 2));
1466		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1467		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1468		    m->m_pkthdr.tso_segsz));
1469		/* Compute total TCP payload. */
1470		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1471		tcp_payload -= tcp->th_off << 2;
1472		*m_head = m;
1473	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1474		/*
1475		 * Deal with TCP/IP checksum offload. Note that
1476		 * in order for TCP checksum offload to work,
1477		 * the pseudo header checksum must have already
1478		 * been computed and stored in the checksum field
1479		 * in the TCP header. The stack should have
1480		 * already done this for us.
1481		 */
1482		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1483		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1484			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1485
1486#ifdef FXP_IP_CSUM_WAR
1487		/*
1488		 * XXX The 82550 chip appears to have trouble
1489		 * dealing with IP header checksums in very small
1490		 * datagrams, namely fragments from 1 to 3 bytes
1491		 * in size. For example, say you want to transmit
1492		 * a UDP packet of 1473 bytes. The packet will be
1493		 * fragmented over two IP datagrams, the latter
1494		 * containing only one byte of data. The 82550 will
1495		 * botch the header checksum on the 1-byte fragment.
1496		 * As long as the datagram contains 4 or more bytes
1497		 * of data, you're ok.
1498		 *
1499                 * The following code attempts to work around this
1500		 * problem: if the datagram is less than 38 bytes
1501		 * in size (14 bytes ether header, 20 bytes IP header,
1502		 * plus 4 bytes of data), we punt and compute the IP
1503		 * header checksum by hand. This workaround doesn't
1504		 * work very well, however, since it can be fooled
1505		 * by things like VLAN tags and IP options that make
1506		 * the header sizes/offsets vary.
1507		 */
1508
1509		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1510			if (m->m_pkthdr.len < 38) {
1511				struct ip *ip;
1512				m->m_data += ETHER_HDR_LEN;
1513				ip = mtod(m, struct ip *);
1514				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1515				m->m_data -= ETHER_HDR_LEN;
1516				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1517			} else {
1518				txp->tx_cb->ipcb_ip_activation_high =
1519				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1520				txp->tx_cb->ipcb_ip_schedule |=
1521				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1522			}
1523		}
1524#endif
1525	}
1526
1527	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1528	    segs, &nseg, 0);
1529	if (error == EFBIG) {
1530		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1531		if (m == NULL) {
1532			m_freem(*m_head);
1533			*m_head = NULL;
1534			return (ENOMEM);
1535		}
1536		*m_head = m;
1537		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1538	    	    *m_head, segs, &nseg, 0);
1539		if (error != 0) {
1540			m_freem(*m_head);
1541			*m_head = NULL;
1542			return (ENOMEM);
1543		}
1544	} else if (error != 0)
1545		return (error);
1546	if (nseg == 0) {
1547		m_freem(*m_head);
1548		*m_head = NULL;
1549		return (EIO);
1550	}
1551
1552	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1553	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1554
1555	cbp = txp->tx_cb;
1556	for (i = 0; i < nseg; i++) {
1557		/*
1558		 * If this is an 82550/82551, then we're using extended
1559		 * TxCBs _and_ we're using checksum offload. This means
1560		 * that the TxCB is really an IPCB. One major difference
1561		 * between the two is that with plain extended TxCBs,
1562		 * the bottom half of the TxCB contains two entries from
1563		 * the TBD array, whereas IPCBs contain just one entry:
1564		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1565		 * checksum offload control bits. So to make things work
1566		 * right, we have to start filling in the TBD array
1567		 * starting from a different place depending on whether
1568		 * the chip is an 82550/82551 or not.
1569		 */
1570		if (sc->flags & FXP_FLAG_EXT_RFA) {
1571			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1572			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1573		} else {
1574			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1575			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1576		}
1577	}
1578	if (sc->flags & FXP_FLAG_EXT_RFA) {
1579		/* Configure dynamic TBD for 82550/82551. */
1580		cbp->tbd_number = 0xFF;
1581		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1582	} else
1583		cbp->tbd_number = nseg;
1584	/* Configure TSO. */
1585	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1586		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1587		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1588		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1589		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1590		    FXP_IPCB_TCP_PACKET |
1591		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1592	}
1593	/* Configure VLAN hardware tag insertion. */
1594	if ((m->m_flags & M_VLANTAG) != 0) {
1595		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1596		txp->tx_cb->ipcb_ip_activation_high |=
1597		    FXP_IPCB_INSERTVLAN_ENABLE;
1598	}
1599
1600	txp->tx_mbuf = m;
1601	txp->tx_cb->cb_status = 0;
1602	txp->tx_cb->byte_count = 0;
1603	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1604		txp->tx_cb->cb_command =
1605		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1606		    FXP_CB_COMMAND_S);
1607	else
1608		txp->tx_cb->cb_command =
1609		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1610		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1611	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1612		txp->tx_cb->tx_threshold = tx_threshold;
1613
1614	/*
1615	 * Advance the end of list forward.
1616	 */
1617
1618#ifdef __alpha__
1619	/*
1620	 * On platforms which can't access memory in 16-bit
1621	 * granularities, we must prevent the card from DMA'ing
1622	 * up the status while we update the command field.
1623	 * This could cause us to overwrite the completion status.
1624	 * XXX This is probably bogus and we're _not_ looking
1625	 * for atomicity here.
1626	 */
1627	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1628	    htole16(FXP_CB_COMMAND_S));
1629#else
1630	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1631#endif /*__alpha__*/
1632	sc->fxp_desc.tx_last = txp;
1633
1634	/*
1635	 * Advance the beginning of the list forward if there are
1636	 * no other packets queued (when nothing is queued, tx_first
1637	 * sits on the last TxCB that was sent out).
1638	 */
1639	if (sc->tx_queued == 0)
1640		sc->fxp_desc.tx_first = txp;
1641
1642	sc->tx_queued++;
1643
1644	return (0);
1645}
1646
1647#ifdef DEVICE_POLLING
1648static poll_handler_t fxp_poll;
1649
1650static int
1651fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1652{
1653	struct fxp_softc *sc = ifp->if_softc;
1654	uint8_t statack;
1655	int rx_npkts = 0;
1656
1657	FXP_LOCK(sc);
1658	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1659		FXP_UNLOCK(sc);
1660		return (rx_npkts);
1661	}
1662
1663	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1664	    FXP_SCB_STATACK_FR;
1665	if (cmd == POLL_AND_CHECK_STATUS) {
1666		uint8_t tmp;
1667
1668		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1669		if (tmp == 0xff || tmp == 0) {
1670			FXP_UNLOCK(sc);
1671			return (rx_npkts); /* nothing to do */
1672		}
1673		tmp &= ~statack;
1674		/* ack what we can */
1675		if (tmp != 0)
1676			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1677		statack |= tmp;
1678	}
1679	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1680	FXP_UNLOCK(sc);
1681	return (rx_npkts);
1682}
1683#endif /* DEVICE_POLLING */
1684
1685/*
1686 * Process interface interrupts.
1687 */
1688static void
1689fxp_intr(void *xsc)
1690{
1691	struct fxp_softc *sc = xsc;
1692	struct ifnet *ifp = sc->ifp;
1693	uint8_t statack;
1694
1695	FXP_LOCK(sc);
1696	if (sc->suspended) {
1697		FXP_UNLOCK(sc);
1698		return;
1699	}
1700
1701#ifdef DEVICE_POLLING
1702	if (ifp->if_capenable & IFCAP_POLLING) {
1703		FXP_UNLOCK(sc);
1704		return;
1705	}
1706#endif
1707	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1708		/*
1709		 * It should not be possible to have all bits set; the
1710		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1711		 * all bits are set, this may indicate that the card has
1712		 * been physically ejected, so ignore it.
1713		 */
1714		if (statack == 0xff) {
1715			FXP_UNLOCK(sc);
1716			return;
1717		}
1718
1719		/*
1720		 * First ACK all the interrupts in this pass.
1721		 */
1722		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1723		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1724			fxp_intr_body(sc, ifp, statack, -1);
1725	}
1726	FXP_UNLOCK(sc);
1727}
1728
1729static void
1730fxp_txeof(struct fxp_softc *sc)
1731{
1732	struct ifnet *ifp;
1733	struct fxp_tx *txp;
1734
1735	ifp = sc->ifp;
1736	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1737	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1738	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1739	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1740	    txp = txp->tx_next) {
1741		if (txp->tx_mbuf != NULL) {
1742			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1743			    BUS_DMASYNC_POSTWRITE);
1744			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1745			m_freem(txp->tx_mbuf);
1746			txp->tx_mbuf = NULL;
1747			/* clear this to reset csum offload bits */
1748			txp->tx_cb->tbd[0].tb_addr = 0;
1749		}
1750		sc->tx_queued--;
1751		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1752	}
1753	sc->fxp_desc.tx_first = txp;
1754	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1755	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1756	if (sc->tx_queued == 0)
1757		sc->watchdog_timer = 0;
1758}
1759
1760static void
1761fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1762    uint16_t status, int pos)
1763{
1764	struct ether_header *eh;
1765	struct ip *ip;
1766	struct udphdr *uh;
1767	int32_t hlen, len, pktlen, temp32;
1768	uint16_t csum, *opts;
1769
1770	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1771		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1772			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1773				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1774			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1775				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1776			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1777			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1778				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1779				    CSUM_PSEUDO_HDR;
1780				m->m_pkthdr.csum_data = 0xffff;
1781			}
1782		}
1783		return;
1784	}
1785
1786	pktlen = m->m_pkthdr.len;
1787	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1788		return;
1789	eh = mtod(m, struct ether_header *);
1790	if (eh->ether_type != htons(ETHERTYPE_IP))
1791		return;
1792	ip = (struct ip *)(eh + 1);
1793	if (ip->ip_v != IPVERSION)
1794		return;
1795
1796	hlen = ip->ip_hl << 2;
1797	pktlen -= sizeof(struct ether_header);
1798	if (hlen < sizeof(struct ip))
1799		return;
1800	if (ntohs(ip->ip_len) < hlen)
1801		return;
1802	if (ntohs(ip->ip_len) != pktlen)
1803		return;
1804	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1805		return;	/* can't handle fragmented packet */
1806
1807	switch (ip->ip_p) {
1808	case IPPROTO_TCP:
1809		if (pktlen < (hlen + sizeof(struct tcphdr)))
1810			return;
1811		break;
1812	case IPPROTO_UDP:
1813		if (pktlen < (hlen + sizeof(struct udphdr)))
1814			return;
1815		uh = (struct udphdr *)((caddr_t)ip + hlen);
1816		if (uh->uh_sum == 0)
1817			return; /* no checksum */
1818		break;
1819	default:
1820		return;
1821	}
1822	/* Extract computed checksum. */
1823	csum = be16dec(mtod(m, char *) + pos);
1824	/* checksum fixup for IP options */
1825	len = hlen - sizeof(struct ip);
1826	if (len > 0) {
1827		opts = (uint16_t *)(ip + 1);
1828		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1829			temp32 = csum - *opts;
1830			temp32 = (temp32 >> 16) + (temp32 & 65535);
1831			csum = temp32 & 65535;
1832		}
1833	}
1834	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1835	m->m_pkthdr.csum_data = csum;
1836}
1837
1838static int
1839fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1840    int count)
1841{
1842	struct mbuf *m;
1843	struct fxp_rx *rxp;
1844	struct fxp_rfa *rfa;
1845	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1846	int rx_npkts;
1847	uint16_t status;
1848
1849	rx_npkts = 0;
1850	FXP_LOCK_ASSERT(sc, MA_OWNED);
1851
1852	if (rnr)
1853		sc->rnr++;
1854#ifdef DEVICE_POLLING
1855	/* Pick up a deferred RNR condition if `count' ran out last time. */
1856	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1857		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1858		rnr = 1;
1859	}
1860#endif
1861
1862	/*
1863	 * Free any finished transmit mbuf chains.
1864	 *
1865	 * Handle the CNA event likt a CXTNO event. It used to
1866	 * be that this event (control unit not ready) was not
1867	 * encountered, but it is now with the SMPng modifications.
1868	 * The exact sequence of events that occur when the interface
1869	 * is brought up are different now, and if this event
1870	 * goes unhandled, the configuration/rxfilter setup sequence
1871	 * can stall for several seconds. The result is that no
1872	 * packets go out onto the wire for about 5 to 10 seconds
1873	 * after the interface is ifconfig'ed for the first time.
1874	 */
1875	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1876		fxp_txeof(sc);
1877
1878	/*
1879	 * Try to start more packets transmitting.
1880	 */
1881	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1882		fxp_start_body(ifp);
1883
1884	/*
1885	 * Just return if nothing happened on the receive side.
1886	 */
1887	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1888		return (rx_npkts);
1889
1890	/*
1891	 * Process receiver interrupts. If a no-resource (RNR)
1892	 * condition exists, get whatever packets we can and
1893	 * re-start the receiver.
1894	 *
1895	 * When using polling, we do not process the list to completion,
1896	 * so when we get an RNR interrupt we must defer the restart
1897	 * until we hit the last buffer with the C bit set.
1898	 * If we run out of cycles and rfa_headm has the C bit set,
1899	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1900	 * that the info will be used in the subsequent polling cycle.
1901	 */
1902	for (;;) {
1903		rxp = sc->fxp_desc.rx_head;
1904		m = rxp->rx_mbuf;
1905		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1906		    RFA_ALIGNMENT_FUDGE);
1907		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1908		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1909
1910#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1911		if (count >= 0 && count-- == 0) {
1912			if (rnr) {
1913				/* Defer RNR processing until the next time. */
1914				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1915				rnr = 0;
1916			}
1917			break;
1918		}
1919#endif /* DEVICE_POLLING */
1920
1921		status = le16toh(rfa->rfa_status);
1922		if ((status & FXP_RFA_STATUS_C) == 0)
1923			break;
1924
1925		if ((status & FXP_RFA_STATUS_RNR) != 0)
1926			rnr++;
1927		/*
1928		 * Advance head forward.
1929		 */
1930		sc->fxp_desc.rx_head = rxp->rx_next;
1931
1932		/*
1933		 * Add a new buffer to the receive chain.
1934		 * If this fails, the old buffer is recycled
1935		 * instead.
1936		 */
1937		if (fxp_new_rfabuf(sc, rxp) == 0) {
1938			int total_len;
1939
1940			/*
1941			 * Fetch packet length (the top 2 bits of
1942			 * actual_size are flags set by the controller
1943			 * upon completion), and drop the packet in case
1944			 * of bogus length or CRC errors.
1945			 */
1946			total_len = le16toh(rfa->actual_size) & 0x3fff;
1947			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1948			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1949				/* Adjust for appended checksum bytes. */
1950				total_len -= 2;
1951			}
1952			if (total_len < sizeof(struct ether_header) ||
1953			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1954			    sc->rfa_size) ||
1955			    status & (FXP_RFA_STATUS_CRC |
1956			    FXP_RFA_STATUS_ALIGN)) {
1957				m_freem(m);
1958				fxp_add_rfabuf(sc, rxp);
1959				continue;
1960			}
1961
1962			m->m_pkthdr.len = m->m_len = total_len;
1963			m->m_pkthdr.rcvif = ifp;
1964
1965                        /* Do IP checksum checking. */
1966			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1967				fxp_rxcsum(sc, ifp, m, status, total_len);
1968			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1969			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1970				m->m_pkthdr.ether_vtag =
1971				    ntohs(rfa->rfax_vlan_id);
1972				m->m_flags |= M_VLANTAG;
1973			}
1974			/*
1975			 * Drop locks before calling if_input() since it
1976			 * may re-enter fxp_start() in the netisr case.
1977			 * This would result in a lock reversal.  Better
1978			 * performance might be obtained by chaining all
1979			 * packets received, dropping the lock, and then
1980			 * calling if_input() on each one.
1981			 */
1982			FXP_UNLOCK(sc);
1983			(*ifp->if_input)(ifp, m);
1984			FXP_LOCK(sc);
1985			rx_npkts++;
1986			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1987				return (rx_npkts);
1988		} else {
1989			/* Reuse RFA and loaded DMA map. */
1990			ifp->if_iqdrops++;
1991			fxp_discard_rfabuf(sc, rxp);
1992		}
1993		fxp_add_rfabuf(sc, rxp);
1994	}
1995	if (rnr) {
1996		fxp_scb_wait(sc);
1997		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1998		    sc->fxp_desc.rx_head->rx_addr);
1999		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2000	}
2001	return (rx_npkts);
2002}
2003
2004static void
2005fxp_update_stats(struct fxp_softc *sc)
2006{
2007	struct ifnet *ifp = sc->ifp;
2008	struct fxp_stats *sp = sc->fxp_stats;
2009	struct fxp_hwstats *hsp;
2010	uint32_t *status;
2011
2012	FXP_LOCK_ASSERT(sc, MA_OWNED);
2013
2014	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2015	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016	/* Update statistical counters. */
2017	if (sc->revision >= FXP_REV_82559_A0)
2018		status = &sp->completion_status;
2019	else if (sc->revision >= FXP_REV_82558_A4)
2020		status = (uint32_t *)&sp->tx_tco;
2021	else
2022		status = &sp->tx_pause;
2023	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2024		hsp = &sc->fxp_hwstats;
2025		hsp->tx_good += le32toh(sp->tx_good);
2026		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2027		hsp->tx_latecols += le32toh(sp->tx_latecols);
2028		hsp->tx_underruns += le32toh(sp->tx_underruns);
2029		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2030		hsp->tx_deffered += le32toh(sp->tx_deffered);
2031		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2032		hsp->tx_multiple_collisions +=
2033		    le32toh(sp->tx_multiple_collisions);
2034		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2035		hsp->rx_good += le32toh(sp->rx_good);
2036		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2037		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2038		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2039		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2040		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2041		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2042		hsp->tx_pause += le32toh(sp->tx_pause);
2043		hsp->rx_pause += le32toh(sp->rx_pause);
2044		hsp->rx_controls += le32toh(sp->rx_controls);
2045		hsp->tx_tco += le16toh(sp->tx_tco);
2046		hsp->rx_tco += le16toh(sp->rx_tco);
2047
2048		ifp->if_opackets += le32toh(sp->tx_good);
2049		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2050		if (sp->rx_good) {
2051			ifp->if_ipackets += le32toh(sp->rx_good);
2052			sc->rx_idle_secs = 0;
2053		} else if (sc->flags & FXP_FLAG_RXBUG) {
2054			/*
2055			 * Receiver's been idle for another second.
2056			 */
2057			sc->rx_idle_secs++;
2058		}
2059		ifp->if_ierrors +=
2060		    le32toh(sp->rx_crc_errors) +
2061		    le32toh(sp->rx_alignment_errors) +
2062		    le32toh(sp->rx_rnr_errors) +
2063		    le32toh(sp->rx_overrun_errors);
2064		/*
2065		 * If any transmit underruns occured, bump up the transmit
2066		 * threshold by another 512 bytes (64 * 8).
2067		 */
2068		if (sp->tx_underruns) {
2069			ifp->if_oerrors += le32toh(sp->tx_underruns);
2070			if (tx_threshold < 192)
2071				tx_threshold += 64;
2072		}
2073		*status = 0;
2074		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2075		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2076	}
2077}
2078
2079/*
2080 * Update packet in/out/collision statistics. The i82557 doesn't
2081 * allow you to access these counters without doing a fairly
2082 * expensive DMA to get _all_ of the statistics it maintains, so
2083 * we do this operation here only once per second. The statistics
2084 * counters in the kernel are updated from the previous dump-stats
2085 * DMA and then a new dump-stats DMA is started. The on-chip
2086 * counters are zeroed when the DMA completes. If we can't start
2087 * the DMA immediately, we don't wait - we just prepare to read
2088 * them again next time.
2089 */
2090static void
2091fxp_tick(void *xsc)
2092{
2093	struct fxp_softc *sc = xsc;
2094	struct ifnet *ifp = sc->ifp;
2095
2096	FXP_LOCK_ASSERT(sc, MA_OWNED);
2097
2098	/* Update statistical counters. */
2099	fxp_update_stats(sc);
2100
2101	/*
2102	 * Release any xmit buffers that have completed DMA. This isn't
2103	 * strictly necessary to do here, but it's advantagous for mbufs
2104	 * with external storage to be released in a timely manner rather
2105	 * than being defered for a potentially long time. This limits
2106	 * the delay to a maximum of one second.
2107	 */
2108	fxp_txeof(sc);
2109
2110	/*
2111	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2112	 * then assume the receiver has locked up and attempt to clear
2113	 * the condition by reprogramming the multicast filter. This is
2114	 * a work-around for a bug in the 82557 where the receiver locks
2115	 * up if it gets certain types of garbage in the syncronization
2116	 * bits prior to the packet header. This bug is supposed to only
2117	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2118	 * mode as well (perhaps due to a 10/100 speed transition).
2119	 */
2120	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2121		sc->rx_idle_secs = 0;
2122		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2123			fxp_init_body(sc);
2124		return;
2125	}
2126	/*
2127	 * If there is no pending command, start another stats
2128	 * dump. Otherwise punt for now.
2129	 */
2130	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2131		/*
2132		 * Start another stats dump.
2133		 */
2134		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2135	}
2136	if (sc->miibus != NULL)
2137		mii_tick(device_get_softc(sc->miibus));
2138
2139	/*
2140	 * Check that chip hasn't hung.
2141	 */
2142	fxp_watchdog(sc);
2143
2144	/*
2145	 * Schedule another timeout one second from now.
2146	 */
2147	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2148}
2149
2150/*
2151 * Stop the interface. Cancels the statistics updater and resets
2152 * the interface.
2153 */
2154static void
2155fxp_stop(struct fxp_softc *sc)
2156{
2157	struct ifnet *ifp = sc->ifp;
2158	struct fxp_tx *txp;
2159	int i;
2160
2161	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2162	sc->watchdog_timer = 0;
2163
2164	/*
2165	 * Cancel stats updater.
2166	 */
2167	callout_stop(&sc->stat_ch);
2168
2169	/*
2170	 * Preserve PCI configuration, configure, IA/multicast
2171	 * setup and put RU and CU into idle state.
2172	 */
2173	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2174	DELAY(50);
2175	/* Disable interrupts. */
2176	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2177
2178	fxp_update_stats(sc);
2179
2180	/*
2181	 * Release any xmit buffers.
2182	 */
2183	txp = sc->fxp_desc.tx_list;
2184	if (txp != NULL) {
2185		for (i = 0; i < FXP_NTXCB; i++) {
2186 			if (txp[i].tx_mbuf != NULL) {
2187				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2188				    BUS_DMASYNC_POSTWRITE);
2189				bus_dmamap_unload(sc->fxp_txmtag,
2190				    txp[i].tx_map);
2191				m_freem(txp[i].tx_mbuf);
2192				txp[i].tx_mbuf = NULL;
2193				/* clear this to reset csum offload bits */
2194				txp[i].tx_cb->tbd[0].tb_addr = 0;
2195			}
2196		}
2197	}
2198	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2199	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2200	sc->tx_queued = 0;
2201}
2202
2203/*
2204 * Watchdog/transmission transmit timeout handler. Called when a
2205 * transmission is started on the interface, but no interrupt is
2206 * received before the timeout. This usually indicates that the
2207 * card has wedged for some reason.
2208 */
2209static void
2210fxp_watchdog(struct fxp_softc *sc)
2211{
2212
2213	FXP_LOCK_ASSERT(sc, MA_OWNED);
2214
2215	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2216		return;
2217
2218	device_printf(sc->dev, "device timeout\n");
2219	sc->ifp->if_oerrors++;
2220
2221	fxp_init_body(sc);
2222}
2223
2224/*
2225 * Acquire locks and then call the real initialization function.  This
2226 * is necessary because ether_ioctl() calls if_init() and this would
2227 * result in mutex recursion if the mutex was held.
2228 */
2229static void
2230fxp_init(void *xsc)
2231{
2232	struct fxp_softc *sc = xsc;
2233
2234	FXP_LOCK(sc);
2235	fxp_init_body(sc);
2236	FXP_UNLOCK(sc);
2237}
2238
2239/*
2240 * Perform device initialization. This routine must be called with the
2241 * softc lock held.
2242 */
2243static void
2244fxp_init_body(struct fxp_softc *sc)
2245{
2246	struct ifnet *ifp = sc->ifp;
2247	struct fxp_cb_config *cbp;
2248	struct fxp_cb_ias *cb_ias;
2249	struct fxp_cb_tx *tcbp;
2250	struct fxp_tx *txp;
2251	int i, prm;
2252
2253	FXP_LOCK_ASSERT(sc, MA_OWNED);
2254	/*
2255	 * Cancel any pending I/O
2256	 */
2257	fxp_stop(sc);
2258
2259	/*
2260	 * Issue software reset, which also unloads the microcode.
2261	 */
2262	sc->flags &= ~FXP_FLAG_UCODE;
2263	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2264	DELAY(50);
2265
2266	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2267
2268	/*
2269	 * Initialize base of CBL and RFA memory. Loading with zero
2270	 * sets it up for regular linear addressing.
2271	 */
2272	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2273	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2274
2275	fxp_scb_wait(sc);
2276	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2277
2278	/*
2279	 * Initialize base of dump-stats buffer.
2280	 */
2281	fxp_scb_wait(sc);
2282	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2283	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2284	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2285	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2286	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2287
2288	/*
2289	 * Attempt to load microcode if requested.
2290	 * For ICH based controllers do not load microcode.
2291	 */
2292	if (sc->ident->ich == 0) {
2293		if (ifp->if_flags & IFF_LINK0 &&
2294		    (sc->flags & FXP_FLAG_UCODE) == 0)
2295			fxp_load_ucode(sc);
2296	}
2297
2298	/*
2299	 * Set IFF_ALLMULTI status. It's needed in configure action
2300	 * command.
2301	 */
2302	fxp_mc_addrs(sc);
2303
2304	/*
2305	 * We temporarily use memory that contains the TxCB list to
2306	 * construct the config CB. The TxCB list memory is rebuilt
2307	 * later.
2308	 */
2309	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2310
2311	/*
2312	 * This bcopy is kind of disgusting, but there are a bunch of must be
2313	 * zero and must be one bits in this structure and this is the easiest
2314	 * way to initialize them all to proper values.
2315	 */
2316	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2317
2318	cbp->cb_status =	0;
2319	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2320	    FXP_CB_COMMAND_EL);
2321	cbp->link_addr =	0xffffffff;	/* (no) next command */
2322	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2323	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2324	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2325	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2326	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2327	cbp->type_enable =	0;	/* actually reserved */
2328	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2329	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2330	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2331	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2332	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2333	cbp->late_scb =		0;	/* (don't) defer SCB update */
2334	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2335	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2336	cbp->ci_int =		1;	/* interrupt on CU idle */
2337	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2338	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2339	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2340	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2341	cbp->disc_short_rx =	!prm;	/* discard short packets */
2342	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2343	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2344	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2345	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2346	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2347	cbp->csma_dis =		0;	/* (don't) disable link */
2348	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2349	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2350	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2351	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2352	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2353	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2354	cbp->nsai =		1;	/* (don't) disable source addr insert */
2355	cbp->preamble_length =	2;	/* (7 byte) preamble */
2356	cbp->loopback =		0;	/* (don't) loopback */
2357	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2358	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2359	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2360	cbp->promiscuous =	prm;	/* promiscuous mode */
2361	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2362	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2363	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2364	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2365	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2366
2367	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2368	cbp->padding =		1;	/* (do) pad short tx packets */
2369	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2370	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2371	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2372	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2373	cbp->force_fdx =	0;	/* (don't) force full duplex */
2374	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2375	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2376	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2377	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2378	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2379	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2380
2381	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2382		/*
2383		 * The 82557 has no hardware flow control, the values
2384		 * below are the defaults for the chip.
2385		 */
2386		cbp->fc_delay_lsb =	0;
2387		cbp->fc_delay_msb =	0x40;
2388		cbp->pri_fc_thresh =	3;
2389		cbp->tx_fc_dis =	0;
2390		cbp->rx_fc_restop =	0;
2391		cbp->rx_fc_restart =	0;
2392		cbp->fc_filter =	0;
2393		cbp->pri_fc_loc =	1;
2394	} else {
2395		cbp->fc_delay_lsb =	0x1f;
2396		cbp->fc_delay_msb =	0x01;
2397		cbp->pri_fc_thresh =	3;
2398		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2399		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2400		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2401		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2402		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2403	}
2404
2405	/* Enable 82558 and 82559 extended statistics functionality. */
2406	if (sc->revision >= FXP_REV_82558_A4) {
2407		if (sc->revision >= FXP_REV_82559_A0) {
2408			/*
2409			 * Extend configuration table size to 32
2410			 * to include TCO configuration.
2411			 */
2412			cbp->byte_count = 32;
2413			cbp->ext_stats_dis = 1;
2414			/* Enable TCO stats. */
2415			cbp->tno_int_or_tco_en = 1;
2416			cbp->gamla_rx = 1;
2417		} else
2418			cbp->ext_stats_dis = 0;
2419	}
2420
2421	/*
2422	 * Start the config command/DMA.
2423	 */
2424	fxp_scb_wait(sc);
2425	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2426	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2427	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2428	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2429	/* ...and wait for it to complete. */
2430	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2431
2432	/*
2433	 * Now initialize the station address. Temporarily use the TxCB
2434	 * memory area like we did above for the config CB.
2435	 */
2436	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2437	cb_ias->cb_status = 0;
2438	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2439	cb_ias->link_addr = 0xffffffff;
2440	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2441
2442	/*
2443	 * Start the IAS (Individual Address Setup) command/DMA.
2444	 */
2445	fxp_scb_wait(sc);
2446	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2447	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2448	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2449	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2450	/* ...and wait for it to complete. */
2451	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2452
2453	/*
2454	 * Initialize the multicast address list.
2455	 */
2456	fxp_mc_setup(sc);
2457
2458	/*
2459	 * Initialize transmit control block (TxCB) list.
2460	 */
2461	txp = sc->fxp_desc.tx_list;
2462	tcbp = sc->fxp_desc.cbl_list;
2463	bzero(tcbp, FXP_TXCB_SZ);
2464	for (i = 0; i < FXP_NTXCB; i++) {
2465		txp[i].tx_mbuf = NULL;
2466		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2467		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2468		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2469		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2470		if (sc->flags & FXP_FLAG_EXT_TXCB)
2471			tcbp[i].tbd_array_addr =
2472			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2473		else
2474			tcbp[i].tbd_array_addr =
2475			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2476		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2477	}
2478	/*
2479	 * Set the suspend flag on the first TxCB and start the control
2480	 * unit. It will execute the NOP and then suspend.
2481	 */
2482	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2483	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2484	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2485	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2486	sc->tx_queued = 1;
2487
2488	fxp_scb_wait(sc);
2489	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2490	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2491
2492	/*
2493	 * Initialize receiver buffer area - RFA.
2494	 */
2495	fxp_scb_wait(sc);
2496	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2497	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2498
2499	/*
2500	 * Set current media.
2501	 */
2502	if (sc->miibus != NULL)
2503		mii_mediachg(device_get_softc(sc->miibus));
2504
2505	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2506	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2507
2508	/*
2509	 * Enable interrupts.
2510	 */
2511#ifdef DEVICE_POLLING
2512	/*
2513	 * ... but only do that if we are not polling. And because (presumably)
2514	 * the default is interrupts on, we need to disable them explicitly!
2515	 */
2516	if (ifp->if_capenable & IFCAP_POLLING )
2517		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2518	else
2519#endif /* DEVICE_POLLING */
2520	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2521
2522	/*
2523	 * Start stats updater.
2524	 */
2525	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2526}
2527
2528static int
2529fxp_serial_ifmedia_upd(struct ifnet *ifp)
2530{
2531
2532	return (0);
2533}
2534
2535static void
2536fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2537{
2538
2539	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2540}
2541
2542/*
2543 * Change media according to request.
2544 */
2545static int
2546fxp_ifmedia_upd(struct ifnet *ifp)
2547{
2548	struct fxp_softc *sc = ifp->if_softc;
2549	struct mii_data *mii;
2550
2551	mii = device_get_softc(sc->miibus);
2552	FXP_LOCK(sc);
2553	if (mii->mii_instance) {
2554		struct mii_softc	*miisc;
2555		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2556			mii_phy_reset(miisc);
2557	}
2558	mii_mediachg(mii);
2559	FXP_UNLOCK(sc);
2560	return (0);
2561}
2562
2563/*
2564 * Notify the world which media we're using.
2565 */
2566static void
2567fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2568{
2569	struct fxp_softc *sc = ifp->if_softc;
2570	struct mii_data *mii;
2571
2572	mii = device_get_softc(sc->miibus);
2573	FXP_LOCK(sc);
2574	mii_pollstat(mii);
2575	ifmr->ifm_active = mii->mii_media_active;
2576	ifmr->ifm_status = mii->mii_media_status;
2577
2578	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2579	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2580		sc->cu_resume_bug = 1;
2581	else
2582		sc->cu_resume_bug = 0;
2583	FXP_UNLOCK(sc);
2584}
2585
2586/*
2587 * Add a buffer to the end of the RFA buffer list.
2588 * Return 0 if successful, 1 for failure. A failure results in
2589 * reusing the RFA buffer.
2590 * The RFA struct is stuck at the beginning of mbuf cluster and the
2591 * data pointer is fixed up to point just past it.
2592 */
2593static int
2594fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2595{
2596	struct mbuf *m;
2597	struct fxp_rfa *rfa;
2598	bus_dmamap_t tmp_map;
2599	int error;
2600
2601	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2602	if (m == NULL)
2603		return (ENOBUFS);
2604
2605	/*
2606	 * Move the data pointer up so that the incoming data packet
2607	 * will be 32-bit aligned.
2608	 */
2609	m->m_data += RFA_ALIGNMENT_FUDGE;
2610
2611	/*
2612	 * Get a pointer to the base of the mbuf cluster and move
2613	 * data start past it.
2614	 */
2615	rfa = mtod(m, struct fxp_rfa *);
2616	m->m_data += sc->rfa_size;
2617	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2618
2619	rfa->rfa_status = 0;
2620	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2621	rfa->actual_size = 0;
2622	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2623	    sc->rfa_size;
2624
2625	/*
2626	 * Initialize the rest of the RFA.  Note that since the RFA
2627	 * is misaligned, we cannot store values directly.  We're thus
2628	 * using the le32enc() function which handles endianness and
2629	 * is also alignment-safe.
2630	 */
2631	le32enc(&rfa->link_addr, 0xffffffff);
2632	le32enc(&rfa->rbd_addr, 0xffffffff);
2633
2634	/* Map the RFA into DMA memory. */
2635	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2636	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2637	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2638	if (error) {
2639		m_freem(m);
2640		return (error);
2641	}
2642
2643	if (rxp->rx_mbuf != NULL)
2644		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2645	tmp_map = sc->spare_map;
2646	sc->spare_map = rxp->rx_map;
2647	rxp->rx_map = tmp_map;
2648	rxp->rx_mbuf = m;
2649
2650	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2651	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2652	return (0);
2653}
2654
2655static void
2656fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2657{
2658	struct fxp_rfa *p_rfa;
2659	struct fxp_rx *p_rx;
2660
2661	/*
2662	 * If there are other buffers already on the list, attach this
2663	 * one to the end by fixing up the tail to point to this one.
2664	 */
2665	if (sc->fxp_desc.rx_head != NULL) {
2666		p_rx = sc->fxp_desc.rx_tail;
2667		p_rfa = (struct fxp_rfa *)
2668		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2669		p_rx->rx_next = rxp;
2670		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2671		p_rfa->rfa_control = 0;
2672		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2673		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2674	} else {
2675		rxp->rx_next = NULL;
2676		sc->fxp_desc.rx_head = rxp;
2677	}
2678	sc->fxp_desc.rx_tail = rxp;
2679}
2680
2681static void
2682fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2683{
2684	struct mbuf *m;
2685	struct fxp_rfa *rfa;
2686
2687	m = rxp->rx_mbuf;
2688	m->m_data = m->m_ext.ext_buf;
2689	/*
2690	 * Move the data pointer up so that the incoming data packet
2691	 * will be 32-bit aligned.
2692	 */
2693	m->m_data += RFA_ALIGNMENT_FUDGE;
2694
2695	/*
2696	 * Get a pointer to the base of the mbuf cluster and move
2697	 * data start past it.
2698	 */
2699	rfa = mtod(m, struct fxp_rfa *);
2700	m->m_data += sc->rfa_size;
2701	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2702
2703	rfa->rfa_status = 0;
2704	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2705	rfa->actual_size = 0;
2706
2707	/*
2708	 * Initialize the rest of the RFA.  Note that since the RFA
2709	 * is misaligned, we cannot store values directly.  We're thus
2710	 * using the le32enc() function which handles endianness and
2711	 * is also alignment-safe.
2712	 */
2713	le32enc(&rfa->link_addr, 0xffffffff);
2714	le32enc(&rfa->rbd_addr, 0xffffffff);
2715
2716	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2717	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2718}
2719
2720static int
2721fxp_miibus_readreg(device_t dev, int phy, int reg)
2722{
2723	struct fxp_softc *sc = device_get_softc(dev);
2724	int count = 10000;
2725	int value;
2726
2727	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2728	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2729
2730	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2731	    && count--)
2732		DELAY(10);
2733
2734	if (count <= 0)
2735		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2736
2737	return (value & 0xffff);
2738}
2739
2740static int
2741fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2742{
2743	struct fxp_softc *sc = device_get_softc(dev);
2744	int count = 10000;
2745
2746	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2747	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2748	    (value & 0xffff));
2749
2750	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2751	    count--)
2752		DELAY(10);
2753
2754	if (count <= 0)
2755		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2756	return (0);
2757}
2758
2759static int
2760fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2761{
2762	struct fxp_softc *sc = ifp->if_softc;
2763	struct ifreq *ifr = (struct ifreq *)data;
2764	struct mii_data *mii;
2765	int flag, mask, error = 0, reinit;
2766
2767	switch (command) {
2768	case SIOCSIFFLAGS:
2769		FXP_LOCK(sc);
2770		/*
2771		 * If interface is marked up and not running, then start it.
2772		 * If it is marked down and running, stop it.
2773		 * XXX If it's up then re-initialize it. This is so flags
2774		 * such as IFF_PROMISC are handled.
2775		 */
2776		if (ifp->if_flags & IFF_UP) {
2777			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2778			    ((ifp->if_flags ^ sc->if_flags) &
2779			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2780				fxp_init_body(sc);
2781			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2782				fxp_init_body(sc);
2783		} else {
2784			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2785				fxp_stop(sc);
2786		}
2787		sc->if_flags = ifp->if_flags;
2788		FXP_UNLOCK(sc);
2789		break;
2790
2791	case SIOCADDMULTI:
2792	case SIOCDELMULTI:
2793		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2794			fxp_init(sc);
2795		break;
2796
2797	case SIOCSIFMEDIA:
2798	case SIOCGIFMEDIA:
2799		if (sc->miibus != NULL) {
2800			mii = device_get_softc(sc->miibus);
2801                        error = ifmedia_ioctl(ifp, ifr,
2802                            &mii->mii_media, command);
2803		} else {
2804                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2805		}
2806		break;
2807
2808	case SIOCSIFCAP:
2809		reinit = 0;
2810		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2811#ifdef DEVICE_POLLING
2812		if (mask & IFCAP_POLLING) {
2813			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2814				error = ether_poll_register(fxp_poll, ifp);
2815				if (error)
2816					return(error);
2817				FXP_LOCK(sc);
2818				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2819				    FXP_SCB_INTR_DISABLE);
2820				ifp->if_capenable |= IFCAP_POLLING;
2821				FXP_UNLOCK(sc);
2822			} else {
2823				error = ether_poll_deregister(ifp);
2824				/* Enable interrupts in any case */
2825				FXP_LOCK(sc);
2826				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2827				ifp->if_capenable &= ~IFCAP_POLLING;
2828				FXP_UNLOCK(sc);
2829			}
2830		}
2831#endif
2832		FXP_LOCK(sc);
2833		if ((mask & IFCAP_TXCSUM) != 0 &&
2834		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2835			ifp->if_capenable ^= IFCAP_TXCSUM;
2836			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2837				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2838			else
2839				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2840		}
2841		if ((mask & IFCAP_RXCSUM) != 0 &&
2842		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2843			ifp->if_capenable ^= IFCAP_RXCSUM;
2844			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2845				reinit++;
2846		}
2847		if ((mask & IFCAP_TSO4) != 0 &&
2848		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2849			ifp->if_capenable ^= IFCAP_TSO4;
2850			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2851				ifp->if_hwassist |= CSUM_TSO;
2852			else
2853				ifp->if_hwassist &= ~CSUM_TSO;
2854		}
2855		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2856		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2857			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2858		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2859		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2860			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2861			if (sc->revision != FXP_REV_82557)
2862				flag = FXP_FLAG_LONG_PKT_EN;
2863			else /* a hack to get long frames on the old chip */
2864				flag = FXP_FLAG_SAVE_BAD;
2865			sc->flags ^= flag;
2866			if (ifp->if_flags & IFF_UP)
2867				reinit++;
2868		}
2869		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2870		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2871			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2872		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2873		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2874			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2875		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2876		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2877			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2878			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2879				ifp->if_capenable &=
2880				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2881			reinit++;
2882		}
2883		if (reinit > 0 && ifp->if_flags & IFF_UP)
2884			fxp_init_body(sc);
2885		FXP_UNLOCK(sc);
2886		VLAN_CAPABILITIES(ifp);
2887		break;
2888
2889	default:
2890		error = ether_ioctl(ifp, command, data);
2891	}
2892	return (error);
2893}
2894
2895/*
2896 * Fill in the multicast address list and return number of entries.
2897 */
2898static int
2899fxp_mc_addrs(struct fxp_softc *sc)
2900{
2901	struct fxp_cb_mcs *mcsp = sc->mcsp;
2902	struct ifnet *ifp = sc->ifp;
2903	struct ifmultiaddr *ifma;
2904	int nmcasts;
2905
2906	nmcasts = 0;
2907	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2908		if_maddr_rlock(ifp);
2909		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2910			if (ifma->ifma_addr->sa_family != AF_LINK)
2911				continue;
2912			if (nmcasts >= MAXMCADDR) {
2913				ifp->if_flags |= IFF_ALLMULTI;
2914				nmcasts = 0;
2915				break;
2916			}
2917			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2918			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2919			nmcasts++;
2920		}
2921		if_maddr_runlock(ifp);
2922	}
2923	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2924	return (nmcasts);
2925}
2926
2927/*
2928 * Program the multicast filter.
2929 *
2930 * We have an artificial restriction that the multicast setup command
2931 * must be the first command in the chain, so we take steps to ensure
2932 * this. By requiring this, it allows us to keep up the performance of
2933 * the pre-initialized command ring (esp. link pointers) by not actually
2934 * inserting the mcsetup command in the ring - i.e. its link pointer
2935 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2936 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2937 * lead into the regular TxCB ring when it completes.
2938 */
2939static void
2940fxp_mc_setup(struct fxp_softc *sc)
2941{
2942	struct fxp_cb_mcs *mcsp;
2943	int count;
2944
2945	FXP_LOCK_ASSERT(sc, MA_OWNED);
2946
2947	mcsp = sc->mcsp;
2948	mcsp->cb_status = 0;
2949	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2950	mcsp->link_addr = 0xffffffff;
2951	fxp_mc_addrs(sc);
2952
2953	/*
2954	 * Wait until command unit is idle. This should never be the
2955	 * case when nothing is queued, but make sure anyway.
2956	 */
2957	count = 100;
2958	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2959	    FXP_SCB_CUS_IDLE && --count)
2960		DELAY(10);
2961	if (count == 0) {
2962		device_printf(sc->dev, "command queue timeout\n");
2963		return;
2964	}
2965
2966	/*
2967	 * Start the multicast setup command.
2968	 */
2969	fxp_scb_wait(sc);
2970	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2971	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2972	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2973	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2974	/* ...and wait for it to complete. */
2975	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2976}
2977
2978static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2979static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2980static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2981static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2982static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2983static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2984static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2985
2986#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2987
2988struct ucode {
2989	uint32_t	revision;
2990	uint32_t	*ucode;
2991	int		length;
2992	u_short		int_delay_offset;
2993	u_short		bundle_max_offset;
2994} ucode_table[] = {
2995	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2996	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2997	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2998	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2999	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3000	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3001	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3002	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3003	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3004	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3005	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3006	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3007	{ 0, NULL, 0, 0, 0 }
3008};
3009
3010static void
3011fxp_load_ucode(struct fxp_softc *sc)
3012{
3013	struct ucode *uc;
3014	struct fxp_cb_ucode *cbp;
3015	int i;
3016
3017	for (uc = ucode_table; uc->ucode != NULL; uc++)
3018		if (sc->revision == uc->revision)
3019			break;
3020	if (uc->ucode == NULL)
3021		return;
3022	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3023	cbp->cb_status = 0;
3024	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3025	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3026	for (i = 0; i < uc->length; i++)
3027		cbp->ucode[i] = htole32(uc->ucode[i]);
3028	if (uc->int_delay_offset)
3029		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3030		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3031	if (uc->bundle_max_offset)
3032		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3033		    htole16(sc->tunable_bundle_max);
3034	/*
3035	 * Download the ucode to the chip.
3036	 */
3037	fxp_scb_wait(sc);
3038	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3039	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3040	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3041	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3042	/* ...and wait for it to complete. */
3043	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3044	device_printf(sc->dev,
3045	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3046	    sc->tunable_int_delay,
3047	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3048	sc->flags |= FXP_FLAG_UCODE;
3049}
3050
3051#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3052	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3053
3054static void
3055fxp_sysctl_node(struct fxp_softc *sc)
3056{
3057	struct sysctl_ctx_list *ctx;
3058	struct sysctl_oid_list *child, *parent;
3059	struct sysctl_oid *tree;
3060	struct fxp_hwstats *hsp;
3061
3062	ctx = device_get_sysctl_ctx(sc->dev);
3063	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3064
3065	SYSCTL_ADD_PROC(ctx, child,
3066	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3067	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3068	    "FXP driver receive interrupt microcode bundling delay");
3069	SYSCTL_ADD_PROC(ctx, child,
3070	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3071	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3072	    "FXP driver receive interrupt microcode bundle size limit");
3073	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3074	    "FXP RNR events");
3075	SYSCTL_ADD_INT(ctx, child,
3076	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
3077	    "FXP flow control disabled");
3078
3079	/*
3080	 * Pull in device tunables.
3081	 */
3082	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3083	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3084	sc->tunable_noflow = 1;
3085	(void) resource_int_value(device_get_name(sc->dev),
3086	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3087	(void) resource_int_value(device_get_name(sc->dev),
3088	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3089	(void) resource_int_value(device_get_name(sc->dev),
3090	    device_get_unit(sc->dev), "noflow", &sc->tunable_noflow);
3091	sc->rnr = 0;
3092
3093	hsp = &sc->fxp_hwstats;
3094	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3095	    NULL, "FXP statistics");
3096	parent = SYSCTL_CHILDREN(tree);
3097
3098	/* Rx MAC statistics. */
3099	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3100	    NULL, "Rx MAC statistics");
3101	child = SYSCTL_CHILDREN(tree);
3102	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3103	    &hsp->rx_good, "Good frames");
3104	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3105	    &hsp->rx_crc_errors, "CRC errors");
3106	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3107	    &hsp->rx_alignment_errors, "Alignment errors");
3108	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3109	    &hsp->rx_rnr_errors, "RNR errors");
3110	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3111	    &hsp->rx_overrun_errors, "Overrun errors");
3112	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3113	    &hsp->rx_cdt_errors, "Collision detect errors");
3114	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3115	    &hsp->rx_shortframes, "Short frame errors");
3116	if (sc->revision >= FXP_REV_82558_A4) {
3117		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3118		    &hsp->rx_pause, "Pause frames");
3119		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3120		    &hsp->rx_controls, "Unsupported control frames");
3121	}
3122	if (sc->revision >= FXP_REV_82559_A0)
3123		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3124		    &hsp->rx_tco, "TCO frames");
3125
3126	/* Tx MAC statistics. */
3127	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3128	    NULL, "Tx MAC statistics");
3129	child = SYSCTL_CHILDREN(tree);
3130	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3131	    &hsp->tx_good, "Good frames");
3132	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3133	    &hsp->tx_maxcols, "Maximum collisions errors");
3134	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3135	    &hsp->tx_latecols, "Late collisions errors");
3136	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3137	    &hsp->tx_underruns, "Underrun errors");
3138	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3139	    &hsp->tx_lostcrs, "Lost carrier sense");
3140	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3141	    &hsp->tx_deffered, "Deferred");
3142	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3143	    &hsp->tx_single_collisions, "Single collisions");
3144	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3145	    &hsp->tx_multiple_collisions, "Multiple collisions");
3146	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3147	    &hsp->tx_total_collisions, "Total collisions");
3148	if (sc->revision >= FXP_REV_82558_A4)
3149		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3150		    &hsp->tx_pause, "Pause frames");
3151	if (sc->revision >= FXP_REV_82559_A0)
3152		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3153		    &hsp->tx_tco, "TCO frames");
3154}
3155
3156#undef FXP_SYSCTL_STAT_ADD
3157
3158static int
3159sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3160{
3161	int error, value;
3162
3163	value = *(int *)arg1;
3164	error = sysctl_handle_int(oidp, &value, 0, req);
3165	if (error || !req->newptr)
3166		return (error);
3167	if (value < low || value > high)
3168		return (EINVAL);
3169	*(int *)arg1 = value;
3170	return (0);
3171}
3172
3173/*
3174 * Interrupt delay is expressed in microseconds, a multiplier is used
3175 * to convert this to the appropriate clock ticks before using.
3176 */
3177static int
3178sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3179{
3180	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3181}
3182
3183static int
3184sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3185{
3186	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3187}
3188