if_fxp.c revision 186262
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 186262 2008-12-18 01:36:46Z yongari $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/module.h>
49#include <sys/mutex.h>
50#include <sys/rman.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54
55#include <net/bpf.h>
56#include <net/ethernet.h>
57#include <net/if.h>
58#include <net/if_arp.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72#include <machine/resource.h>
73
74#include <dev/pci/pcivar.h>
75#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76
77#include <dev/mii/mii.h>
78#include <dev/mii/miivar.h>
79
80#include <dev/fxp/if_fxpreg.h>
81#include <dev/fxp/if_fxpvar.h>
82#include <dev/fxp/rcvbundl.h>
83
84MODULE_DEPEND(fxp, pci, 1, 1, 1);
85MODULE_DEPEND(fxp, ether, 1, 1, 1);
86MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87#include "miibus_if.h"
88
89/*
90 * NOTE!  On the Alpha, we have an alignment constraint.  The
91 * card DMAs the packet immediately following the RFA.  However,
92 * the first thing in the packet is a 14-byte Ethernet header.
93 * This means that the packet is misaligned.  To compensate,
94 * we actually offset the RFA 2 bytes into the cluster.  This
95 * alignes the packet after the Ethernet header at a 32-bit
96 * boundary.  HOWEVER!  This means that the RFA is misaligned!
97 */
98#define	RFA_ALIGNMENT_FUDGE	2
99
100/*
101 * Set initial transmit threshold at 64 (512 bytes). This is
102 * increased by 64 (512 bytes) at a time, to maximum of 192
103 * (1536 bytes), if an underrun occurs.
104 */
105static int tx_threshold = 64;
106
107/*
108 * The configuration byte map has several undefined fields which
109 * must be one or must be zero.  Set up a template for these bits
110 * only, (assuming a 82557 chip) leaving the actual configuration
111 * to fxp_init.
112 *
113 * See struct fxp_cb_config for the bit definitions.
114 */
115static u_char fxp_cb_config_template[] = {
116	0x0, 0x0,		/* cb_status */
117	0x0, 0x0,		/* cb_command */
118	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119	0x0,	/*  0 */
120	0x0,	/*  1 */
121	0x0,	/*  2 */
122	0x0,	/*  3 */
123	0x0,	/*  4 */
124	0x0,	/*  5 */
125	0x32,	/*  6 */
126	0x0,	/*  7 */
127	0x0,	/*  8 */
128	0x0,	/*  9 */
129	0x6,	/* 10 */
130	0x0,	/* 11 */
131	0x0,	/* 12 */
132	0x0,	/* 13 */
133	0xf2,	/* 14 */
134	0x48,	/* 15 */
135	0x0,	/* 16 */
136	0x40,	/* 17 */
137	0xf0,	/* 18 */
138	0x0,	/* 19 */
139	0x3f,	/* 20 */
140	0x5	/* 21 */
141};
142
143struct fxp_ident {
144	uint16_t	devid;
145	int16_t		revid;		/* -1 matches anything */
146	char 		*name;
147};
148
149/*
150 * Claim various Intel PCI device identifiers for this driver.  The
151 * sub-vendor and sub-device field are extensively used to identify
152 * particular variants, but we don't currently differentiate between
153 * them.
154 */
155static struct fxp_ident fxp_ident_table[] = {
156    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
157    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
158    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
171    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
173    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
174    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
176    { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
177    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
178    { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
179    { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
180    { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
181    { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
182    { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
183    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
184    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
185    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
186    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
187    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
188    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
189    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
190    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
191    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
192    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
193    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
194    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
195    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
196    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
197    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
198    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
199    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
200    { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
201    { 0,	-1,	NULL },
202};
203
204#ifdef FXP_IP_CSUM_WAR
205#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
206#else
207#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
208#endif
209
210static int		fxp_probe(device_t dev);
211static int		fxp_attach(device_t dev);
212static int		fxp_detach(device_t dev);
213static int		fxp_shutdown(device_t dev);
214static int		fxp_suspend(device_t dev);
215static int		fxp_resume(device_t dev);
216
217static void		fxp_intr(void *xsc);
218static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
219			    struct mbuf *m, uint16_t status, int pos);
220static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
221			    uint8_t statack, int count);
222static void 		fxp_init(void *xsc);
223static void 		fxp_init_body(struct fxp_softc *sc);
224static void 		fxp_tick(void *xsc);
225static void 		fxp_start(struct ifnet *ifp);
226static void 		fxp_start_body(struct ifnet *ifp);
227static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
228static void		fxp_txeof(struct fxp_softc *sc);
229static void		fxp_stop(struct fxp_softc *sc);
230static void 		fxp_release(struct fxp_softc *sc);
231static int		fxp_ioctl(struct ifnet *ifp, u_long command,
232			    caddr_t data);
233static void 		fxp_watchdog(struct fxp_softc *sc);
234static void		fxp_add_rfabuf(struct fxp_softc *sc,
235    			    struct fxp_rx *rxp);
236static void		fxp_discard_rfabuf(struct fxp_softc *sc,
237    			    struct fxp_rx *rxp);
238static int		fxp_new_rfabuf(struct fxp_softc *sc,
239    			    struct fxp_rx *rxp);
240static int		fxp_mc_addrs(struct fxp_softc *sc);
241static void		fxp_mc_setup(struct fxp_softc *sc);
242static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
243			    int autosize);
244static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
245			    uint16_t data);
246static void		fxp_autosize_eeprom(struct fxp_softc *sc);
247static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
248			    int offset, int words);
249static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
250			    int offset, int words);
251static int		fxp_ifmedia_upd(struct ifnet *ifp);
252static void		fxp_ifmedia_sts(struct ifnet *ifp,
253			    struct ifmediareq *ifmr);
254static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
255static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
256			    struct ifmediareq *ifmr);
257static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
258static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
259			    int value);
260static void		fxp_load_ucode(struct fxp_softc *sc);
261static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
262			    int low, int high);
263static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
264static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
265static void 		fxp_scb_wait(struct fxp_softc *sc);
266static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
267static void		fxp_dma_wait(struct fxp_softc *sc,
268    			    volatile uint16_t *status, bus_dma_tag_t dmat,
269			    bus_dmamap_t map);
270
271static device_method_t fxp_methods[] = {
272	/* Device interface */
273	DEVMETHOD(device_probe,		fxp_probe),
274	DEVMETHOD(device_attach,	fxp_attach),
275	DEVMETHOD(device_detach,	fxp_detach),
276	DEVMETHOD(device_shutdown,	fxp_shutdown),
277	DEVMETHOD(device_suspend,	fxp_suspend),
278	DEVMETHOD(device_resume,	fxp_resume),
279
280	/* MII interface */
281	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
282	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
283
284	{ 0, 0 }
285};
286
287static driver_t fxp_driver = {
288	"fxp",
289	fxp_methods,
290	sizeof(struct fxp_softc),
291};
292
293static devclass_t fxp_devclass;
294
295DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
296DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
297DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
298
299static struct resource_spec fxp_res_spec_mem[] = {
300	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
301	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302	{ -1, 0 }
303};
304
305static struct resource_spec fxp_res_spec_io[] = {
306	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
307	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
308	{ -1, 0 }
309};
310
311/*
312 * Wait for the previous command to be accepted (but not necessarily
313 * completed).
314 */
315static void
316fxp_scb_wait(struct fxp_softc *sc)
317{
318	union {
319		uint16_t w;
320		uint8_t b[2];
321	} flowctl;
322	int i = 10000;
323
324	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
325		DELAY(2);
326	if (i == 0) {
327		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
328		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
329		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
330		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
331		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
332		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
333	}
334}
335
336static void
337fxp_scb_cmd(struct fxp_softc *sc, int cmd)
338{
339
340	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
341		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
342		fxp_scb_wait(sc);
343	}
344	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
345}
346
347static void
348fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
349    bus_dma_tag_t dmat, bus_dmamap_t map)
350{
351	int i = 10000;
352
353	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
354	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
355		DELAY(2);
356		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
357	}
358	if (i == 0)
359		device_printf(sc->dev, "DMA timeout\n");
360}
361
362/*
363 * Return identification string if this device is ours.
364 */
365static int
366fxp_probe(device_t dev)
367{
368	uint16_t devid;
369	uint8_t revid;
370	struct fxp_ident *ident;
371
372	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
373		devid = pci_get_device(dev);
374		revid = pci_get_revid(dev);
375		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
376			if (ident->devid == devid &&
377			    (ident->revid == revid || ident->revid == -1)) {
378				device_set_desc(dev, ident->name);
379				return (BUS_PROBE_DEFAULT);
380			}
381		}
382	}
383	return (ENXIO);
384}
385
386static void
387fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
388{
389	uint32_t *addr;
390
391	if (error)
392		return;
393
394	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
395	addr = arg;
396	*addr = segs->ds_addr;
397}
398
399static int
400fxp_attach(device_t dev)
401{
402	struct fxp_softc *sc;
403	struct fxp_cb_tx *tcbp;
404	struct fxp_tx *txp;
405	struct fxp_rx *rxp;
406	struct ifnet *ifp;
407	uint32_t val;
408	uint16_t data, myea[ETHER_ADDR_LEN / 2];
409	u_char eaddr[ETHER_ADDR_LEN];
410	int i, pmc, prefer_iomap;
411	int error;
412
413	error = 0;
414	sc = device_get_softc(dev);
415	sc->dev = dev;
416	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
417	    MTX_DEF);
418	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
419	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
420	    fxp_serial_ifmedia_sts);
421
422	ifp = sc->ifp = if_alloc(IFT_ETHER);
423	if (ifp == NULL) {
424		device_printf(dev, "can not if_alloc()\n");
425		error = ENOSPC;
426		goto fail;
427	}
428
429	/*
430	 * Enable bus mastering.
431	 */
432	pci_enable_busmaster(dev);
433	val = pci_read_config(dev, PCIR_COMMAND, 2);
434
435	/*
436	 * Figure out which we should try first - memory mapping or i/o mapping?
437	 * We default to memory mapping. Then we accept an override from the
438	 * command line. Then we check to see which one is enabled.
439	 */
440	prefer_iomap = 0;
441	resource_int_value(device_get_name(dev), device_get_unit(dev),
442	    "prefer_iomap", &prefer_iomap);
443	if (prefer_iomap)
444		sc->fxp_spec = fxp_res_spec_io;
445	else
446		sc->fxp_spec = fxp_res_spec_mem;
447
448	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
449	if (error) {
450		if (sc->fxp_spec == fxp_res_spec_mem)
451			sc->fxp_spec = fxp_res_spec_io;
452		else
453			sc->fxp_spec = fxp_res_spec_mem;
454		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
455	}
456	if (error) {
457		device_printf(dev, "could not allocate resources\n");
458		error = ENXIO;
459		goto fail;
460	}
461
462	if (bootverbose) {
463		device_printf(dev, "using %s space register mapping\n",
464		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
465	}
466
467	/*
468	 * Reset to a stable state.
469	 */
470	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
471	DELAY(10);
472
473	/*
474	 * Find out how large of an SEEPROM we have.
475	 */
476	fxp_autosize_eeprom(sc);
477
478	/*
479	 * Find out the chip revision; lump all 82557 revs together.
480	 */
481	fxp_read_eeprom(sc, &data, 5, 1);
482	if ((data >> 8) == 1)
483		sc->revision = FXP_REV_82557;
484	else
485		sc->revision = pci_get_revid(dev);
486
487	/*
488	 * Check availability of WOL. 82559ER does not support WOL.
489	 */
490	if (sc->revision >= FXP_REV_82558_A4 &&
491	    sc->revision != FXP_REV_82559S_A) {
492		fxp_read_eeprom(sc, &data, 10, 1);
493		if ((data & 0x20) != 0 &&
494		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
495			sc->flags |= FXP_FLAG_WOLCAP;
496	}
497
498	/*
499	 * Determine whether we must use the 503 serial interface.
500	 */
501	fxp_read_eeprom(sc, &data, 6, 1);
502	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
503	    && (data & FXP_PHY_SERIAL_ONLY))
504		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
505
506	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
507	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
508	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
509	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
510	    "FXP driver receive interrupt microcode bundling delay");
511	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
512	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
513	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
514	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515	    "FXP driver receive interrupt microcode bundle size limit");
516	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
517	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
518	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
519	    "FXP RNR events");
520	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
521	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
522	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
523	    "FXP flow control disabled");
524
525	/*
526	 * Pull in device tunables.
527	 */
528	sc->tunable_int_delay = TUNABLE_INT_DELAY;
529	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
530	sc->tunable_noflow = 1;
531	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532	    "int_delay", &sc->tunable_int_delay);
533	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534	    "bundle_max", &sc->tunable_bundle_max);
535	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
536	    "noflow", &sc->tunable_noflow);
537	sc->rnr = 0;
538
539	/*
540	 * Enable workarounds for certain chip revision deficiencies.
541	 *
542	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543	 * some systems based a normal 82559 design, have a defect where
544	 * the chip can cause a PCI protocol violation if it receives
545	 * a CU_RESUME command when it is entering the IDLE state.  The
546	 * workaround is to disable Dynamic Standby Mode, so the chip never
547	 * deasserts CLKRUN#, and always remains in an active state.
548	 *
549	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550	 */
551	i = pci_get_device(dev);
552	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553	    sc->revision >= FXP_REV_82559_A0) {
554		fxp_read_eeprom(sc, &data, 10, 1);
555		if (data & 0x02) {			/* STB enable */
556			uint16_t cksum;
557			int i;
558
559			device_printf(dev,
560			    "Disabling dynamic standby mode in EEPROM\n");
561			data &= ~0x02;
562			fxp_write_eeprom(sc, &data, 10, 1);
563			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564			cksum = 0;
565			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566				fxp_read_eeprom(sc, &data, i, 1);
567				cksum += data;
568			}
569			i = (1 << sc->eeprom_size) - 1;
570			cksum = 0xBABA - cksum;
571			fxp_read_eeprom(sc, &data, i, 1);
572			fxp_write_eeprom(sc, &cksum, i, 1);
573			device_printf(dev,
574			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575			    i, data, cksum);
576#if 1
577			/*
578			 * If the user elects to continue, try the software
579			 * workaround, as it is better than nothing.
580			 */
581			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582#endif
583		}
584	}
585
586	/*
587	 * If we are not a 82557 chip, we can enable extended features.
588	 */
589	if (sc->revision != FXP_REV_82557) {
590		/*
591		 * If MWI is enabled in the PCI configuration, and there
592		 * is a valid cacheline size (8 or 16 dwords), then tell
593		 * the board to turn on MWI.
594		 */
595		if (val & PCIM_CMD_MWRICEN &&
596		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597			sc->flags |= FXP_FLAG_MWI_ENABLE;
598
599		/* turn on the extended TxCB feature */
600		sc->flags |= FXP_FLAG_EXT_TXCB;
601
602		/* enable reception of long frames for VLAN */
603		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604	} else {
605		/* a hack to get long VLAN frames on a 82557 */
606		sc->flags |= FXP_FLAG_SAVE_BAD;
607	}
608
609	/* For 82559 or later chips, Rx checksum offload is supported. */
610	if (sc->revision >= FXP_REV_82559_A0)
611		sc->flags |= FXP_FLAG_82559_RXCSUM;
612	/*
613	 * Enable use of extended RFDs and TCBs for 82550
614	 * and later chips. Note: we need extended TXCB support
615	 * too, but that's already enabled by the code above.
616	 * Be careful to do this only on the right devices.
617	 */
618	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
619	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
620	    || sc->revision == FXP_REV_82551_10) {
621		sc->rfa_size = sizeof (struct fxp_rfa);
622		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
623		sc->flags |= FXP_FLAG_EXT_RFA;
624		/* Use extended RFA instead of 82559 checksum mode. */
625		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
626	} else {
627		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
628		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
629	}
630
631	/*
632	 * Allocate DMA tags and DMA safe memory.
633	 */
634	sc->maxtxseg = FXP_NTXSEG;
635	sc->maxsegsize = MCLBYTES;
636	if (sc->flags & FXP_FLAG_EXT_RFA) {
637		sc->maxtxseg--;
638		sc->maxsegsize = FXP_TSO_SEGSIZE;
639	}
640	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
641	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
642	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
643	    sc->maxtxseg, sc->maxsegsize, 0,
644	    busdma_lock_mutex, &Giant, &sc->fxp_mtag);
645	if (error) {
646		device_printf(dev, "could not allocate dma tag\n");
647		goto fail;
648	}
649
650	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
651	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
652	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
653	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
654	if (error) {
655		device_printf(dev, "could not allocate dma tag\n");
656		goto fail;
657	}
658
659	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
660	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
661	if (error)
662		goto fail;
663	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
664	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
665	if (error) {
666		device_printf(dev, "could not map the stats buffer\n");
667		goto fail;
668	}
669
670	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
671	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
672	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
673	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
674	if (error) {
675		device_printf(dev, "could not allocate dma tag\n");
676		goto fail;
677	}
678
679	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
680	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
681	if (error)
682		goto fail;
683
684	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
685	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
686	    &sc->fxp_desc.cbl_addr, 0);
687	if (error) {
688		device_printf(dev, "could not map DMA memory\n");
689		goto fail;
690	}
691
692	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
693	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
694	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
695	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
696	if (error) {
697		device_printf(dev, "could not allocate dma tag\n");
698		goto fail;
699	}
700
701	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
702	    BUS_DMA_NOWAIT, &sc->mcs_map);
703	if (error)
704		goto fail;
705	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
706	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
707	if (error) {
708		device_printf(dev, "can't map the multicast setup command\n");
709		goto fail;
710	}
711
712	/*
713	 * Pre-allocate the TX DMA maps and setup the pointers to
714	 * the TX command blocks.
715	 */
716	txp = sc->fxp_desc.tx_list;
717	tcbp = sc->fxp_desc.cbl_list;
718	for (i = 0; i < FXP_NTXCB; i++) {
719		txp[i].tx_cb = tcbp + i;
720		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
721		if (error) {
722			device_printf(dev, "can't create DMA map for TX\n");
723			goto fail;
724		}
725	}
726	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
727	if (error) {
728		device_printf(dev, "can't create spare DMA map\n");
729		goto fail;
730	}
731
732	/*
733	 * Pre-allocate our receive buffers.
734	 */
735	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
736	for (i = 0; i < FXP_NRFABUFS; i++) {
737		rxp = &sc->fxp_desc.rx_list[i];
738		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
739		if (error) {
740			device_printf(dev, "can't create DMA map for RX\n");
741			goto fail;
742		}
743		if (fxp_new_rfabuf(sc, rxp) != 0) {
744			error = ENOMEM;
745			goto fail;
746		}
747		fxp_add_rfabuf(sc, rxp);
748	}
749
750	/*
751	 * Read MAC address.
752	 */
753	fxp_read_eeprom(sc, myea, 0, 3);
754	eaddr[0] = myea[0] & 0xff;
755	eaddr[1] = myea[0] >> 8;
756	eaddr[2] = myea[1] & 0xff;
757	eaddr[3] = myea[1] >> 8;
758	eaddr[4] = myea[2] & 0xff;
759	eaddr[5] = myea[2] >> 8;
760	if (bootverbose) {
761		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
762		    pci_get_vendor(dev), pci_get_device(dev),
763		    pci_get_subvendor(dev), pci_get_subdevice(dev),
764		    pci_get_revid(dev));
765		fxp_read_eeprom(sc, &data, 10, 1);
766		device_printf(dev, "Dynamic Standby mode is %s\n",
767		    data & 0x02 ? "enabled" : "disabled");
768	}
769
770	/*
771	 * If this is only a 10Mbps device, then there is no MII, and
772	 * the PHY will use a serial interface instead.
773	 *
774	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
775	 * doesn't have a programming interface of any sort.  The
776	 * media is sensed automatically based on how the link partner
777	 * is configured.  This is, in essence, manual configuration.
778	 */
779	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
780		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
781		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
782	} else {
783		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
784		    fxp_ifmedia_sts)) {
785	                device_printf(dev, "MII without any PHY!\n");
786			error = ENXIO;
787			goto fail;
788		}
789	}
790
791	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
792	ifp->if_init = fxp_init;
793	ifp->if_softc = sc;
794	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
795	ifp->if_ioctl = fxp_ioctl;
796	ifp->if_start = fxp_start;
797
798	ifp->if_capabilities = ifp->if_capenable = 0;
799
800	/* Enable checksum offload/TSO for 82550 or better chips */
801	if (sc->flags & FXP_FLAG_EXT_RFA) {
802		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
803		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
804		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
805	}
806
807	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
808		ifp->if_capabilities |= IFCAP_RXCSUM;
809		ifp->if_capenable |= IFCAP_RXCSUM;
810	}
811
812	if (sc->flags & FXP_FLAG_WOLCAP) {
813		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
814		ifp->if_capenable |= IFCAP_WOL_MAGIC;
815	}
816
817#ifdef DEVICE_POLLING
818	/* Inform the world we support polling. */
819	ifp->if_capabilities |= IFCAP_POLLING;
820#endif
821
822	/*
823	 * Attach the interface.
824	 */
825	ether_ifattach(ifp, eaddr);
826
827	/*
828	 * Tell the upper layer(s) we support long frames.
829	 * Must appear after the call to ether_ifattach() because
830	 * ether_ifattach() sets ifi_hdrlen to the default value.
831	 */
832	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
833	ifp->if_capabilities |= IFCAP_VLAN_MTU;
834	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
835	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
836		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
837		    IFCAP_VLAN_HWCSUM;
838		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
839		    IFCAP_VLAN_HWCSUM;
840	}
841
842	/*
843	 * Let the system queue as many packets as we have available
844	 * TX descriptors.
845	 */
846	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
847	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
848	IFQ_SET_READY(&ifp->if_snd);
849
850	/*
851	 * Hook our interrupt after all initialization is complete.
852	 */
853	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
854			       NULL, fxp_intr, sc, &sc->ih);
855	if (error) {
856		device_printf(dev, "could not setup irq\n");
857		ether_ifdetach(sc->ifp);
858		goto fail;
859	}
860
861	/*
862	 * Configure hardware to reject magic frames otherwise
863	 * system will hang on recipt of magic frames.
864	 */
865	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
866		FXP_LOCK(sc);
867		/* Clear wakeup events. */
868		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
869		fxp_init_body(sc);
870		fxp_stop(sc);
871		FXP_UNLOCK(sc);
872	}
873
874fail:
875	if (error)
876		fxp_release(sc);
877	return (error);
878}
879
880/*
881 * Release all resources.  The softc lock should not be held and the
882 * interrupt should already be torn down.
883 */
884static void
885fxp_release(struct fxp_softc *sc)
886{
887	struct fxp_rx *rxp;
888	struct fxp_tx *txp;
889	int i;
890
891	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
892	KASSERT(sc->ih == NULL,
893	    ("fxp_release() called with intr handle still active"));
894	if (sc->miibus)
895		device_delete_child(sc->dev, sc->miibus);
896	bus_generic_detach(sc->dev);
897	ifmedia_removeall(&sc->sc_media);
898	if (sc->fxp_desc.cbl_list) {
899		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
900		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
901		    sc->cbl_map);
902	}
903	if (sc->fxp_stats) {
904		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
905		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
906	}
907	if (sc->mcsp) {
908		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
909		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
910	}
911	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
912	if (sc->fxp_mtag) {
913		for (i = 0; i < FXP_NRFABUFS; i++) {
914			rxp = &sc->fxp_desc.rx_list[i];
915			if (rxp->rx_mbuf != NULL) {
916				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
917				    BUS_DMASYNC_POSTREAD);
918				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
919				m_freem(rxp->rx_mbuf);
920			}
921			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
922		}
923		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
924		for (i = 0; i < FXP_NTXCB; i++) {
925			txp = &sc->fxp_desc.tx_list[i];
926			if (txp->tx_mbuf != NULL) {
927				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
928				    BUS_DMASYNC_POSTWRITE);
929				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
930				m_freem(txp->tx_mbuf);
931			}
932			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
933		}
934		bus_dma_tag_destroy(sc->fxp_mtag);
935	}
936	if (sc->fxp_stag)
937		bus_dma_tag_destroy(sc->fxp_stag);
938	if (sc->cbl_tag)
939		bus_dma_tag_destroy(sc->cbl_tag);
940	if (sc->mcs_tag)
941		bus_dma_tag_destroy(sc->mcs_tag);
942	if (sc->ifp)
943		if_free(sc->ifp);
944
945	mtx_destroy(&sc->sc_mtx);
946}
947
948/*
949 * Detach interface.
950 */
951static int
952fxp_detach(device_t dev)
953{
954	struct fxp_softc *sc = device_get_softc(dev);
955
956#ifdef DEVICE_POLLING
957	if (sc->ifp->if_capenable & IFCAP_POLLING)
958		ether_poll_deregister(sc->ifp);
959#endif
960
961	FXP_LOCK(sc);
962	sc->suspended = 1;	/* Do same thing as we do for suspend */
963	/*
964	 * Stop DMA and drop transmit queue, but disable interrupts first.
965	 */
966	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
967	fxp_stop(sc);
968	FXP_UNLOCK(sc);
969	callout_drain(&sc->stat_ch);
970
971	/*
972	 * Close down routes etc.
973	 */
974	ether_ifdetach(sc->ifp);
975
976	/*
977	 * Unhook interrupt before dropping lock. This is to prevent
978	 * races with fxp_intr().
979	 */
980	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
981	sc->ih = NULL;
982
983	/* Release our allocated resources. */
984	fxp_release(sc);
985	return (0);
986}
987
988/*
989 * Device shutdown routine. Called at system shutdown after sync. The
990 * main purpose of this routine is to shut off receiver DMA so that
991 * kernel memory doesn't get clobbered during warmboot.
992 */
993static int
994fxp_shutdown(device_t dev)
995{
996
997	/*
998	 * Make sure that DMA is disabled prior to reboot. Not doing
999	 * do could allow DMA to corrupt kernel memory during the
1000	 * reboot before the driver initializes.
1001	 */
1002	return (fxp_suspend(dev));
1003}
1004
1005/*
1006 * Device suspend routine.  Stop the interface and save some PCI
1007 * settings in case the BIOS doesn't restore them properly on
1008 * resume.
1009 */
1010static int
1011fxp_suspend(device_t dev)
1012{
1013	struct fxp_softc *sc = device_get_softc(dev);
1014	struct ifnet *ifp;
1015	int pmc;
1016	uint16_t pmstat;
1017
1018	FXP_LOCK(sc);
1019
1020	ifp = sc->ifp;
1021	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1022		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1023		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1024		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1025			/* Request PME. */
1026			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1027			sc->flags |= FXP_FLAG_WOL;
1028			/* Reconfigure hardware to accept magic frames. */
1029			fxp_init_body(sc);
1030		}
1031		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1032	}
1033	fxp_stop(sc);
1034
1035	sc->suspended = 1;
1036
1037	FXP_UNLOCK(sc);
1038	return (0);
1039}
1040
1041/*
1042 * Device resume routine. re-enable busmastering, and restart the interface if
1043 * appropriate.
1044 */
1045static int
1046fxp_resume(device_t dev)
1047{
1048	struct fxp_softc *sc = device_get_softc(dev);
1049	struct ifnet *ifp = sc->ifp;
1050	int pmc;
1051	uint16_t pmstat;
1052
1053	FXP_LOCK(sc);
1054
1055	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1056		sc->flags &= ~FXP_FLAG_WOL;
1057		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1058		/* Disable PME and clear PME status. */
1059		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1060		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1061		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1062			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1063			    CSR_READ_1(sc, FXP_CSR_PMDR));
1064	}
1065
1066	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1067	DELAY(10);
1068
1069	/* reinitialize interface if necessary */
1070	if (ifp->if_flags & IFF_UP)
1071		fxp_init_body(sc);
1072
1073	sc->suspended = 0;
1074
1075	FXP_UNLOCK(sc);
1076	return (0);
1077}
1078
1079static void
1080fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1081{
1082	uint16_t reg;
1083	int x;
1084
1085	/*
1086	 * Shift in data.
1087	 */
1088	for (x = 1 << (length - 1); x; x >>= 1) {
1089		if (data & x)
1090			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1091		else
1092			reg = FXP_EEPROM_EECS;
1093		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1094		DELAY(1);
1095		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1096		DELAY(1);
1097		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1098		DELAY(1);
1099	}
1100}
1101
1102/*
1103 * Read from the serial EEPROM. Basically, you manually shift in
1104 * the read opcode (one bit at a time) and then shift in the address,
1105 * and then you shift out the data (all of this one bit at a time).
1106 * The word size is 16 bits, so you have to provide the address for
1107 * every 16 bits of data.
1108 */
1109static uint16_t
1110fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1111{
1112	uint16_t reg, data;
1113	int x;
1114
1115	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1116	/*
1117	 * Shift in read opcode.
1118	 */
1119	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1120	/*
1121	 * Shift in address.
1122	 */
1123	data = 0;
1124	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1125		if (offset & x)
1126			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1127		else
1128			reg = FXP_EEPROM_EECS;
1129		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1130		DELAY(1);
1131		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1132		DELAY(1);
1133		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1134		DELAY(1);
1135		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1136		data++;
1137		if (autosize && reg == 0) {
1138			sc->eeprom_size = data;
1139			break;
1140		}
1141	}
1142	/*
1143	 * Shift out data.
1144	 */
1145	data = 0;
1146	reg = FXP_EEPROM_EECS;
1147	for (x = 1 << 15; x; x >>= 1) {
1148		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1149		DELAY(1);
1150		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1151			data |= x;
1152		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1153		DELAY(1);
1154	}
1155	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1156	DELAY(1);
1157
1158	return (data);
1159}
1160
1161static void
1162fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1163{
1164	int i;
1165
1166	/*
1167	 * Erase/write enable.
1168	 */
1169	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1170	fxp_eeprom_shiftin(sc, 0x4, 3);
1171	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1172	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1173	DELAY(1);
1174	/*
1175	 * Shift in write opcode, address, data.
1176	 */
1177	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1178	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1179	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1180	fxp_eeprom_shiftin(sc, data, 16);
1181	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1182	DELAY(1);
1183	/*
1184	 * Wait for EEPROM to finish up.
1185	 */
1186	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1187	DELAY(1);
1188	for (i = 0; i < 1000; i++) {
1189		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1190			break;
1191		DELAY(50);
1192	}
1193	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1194	DELAY(1);
1195	/*
1196	 * Erase/write disable.
1197	 */
1198	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1199	fxp_eeprom_shiftin(sc, 0x4, 3);
1200	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1201	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1202	DELAY(1);
1203}
1204
1205/*
1206 * From NetBSD:
1207 *
1208 * Figure out EEPROM size.
1209 *
1210 * 559's can have either 64-word or 256-word EEPROMs, the 558
1211 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1212 * talks about the existance of 16 to 256 word EEPROMs.
1213 *
1214 * The only known sizes are 64 and 256, where the 256 version is used
1215 * by CardBus cards to store CIS information.
1216 *
1217 * The address is shifted in msb-to-lsb, and after the last
1218 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1219 * after which follows the actual data. We try to detect this zero, by
1220 * probing the data-out bit in the EEPROM control register just after
1221 * having shifted in a bit. If the bit is zero, we assume we've
1222 * shifted enough address bits. The data-out should be tri-state,
1223 * before this, which should translate to a logical one.
1224 */
1225static void
1226fxp_autosize_eeprom(struct fxp_softc *sc)
1227{
1228
1229	/* guess maximum size of 256 words */
1230	sc->eeprom_size = 8;
1231
1232	/* autosize */
1233	(void) fxp_eeprom_getword(sc, 0, 1);
1234}
1235
1236static void
1237fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1238{
1239	int i;
1240
1241	for (i = 0; i < words; i++)
1242		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1243}
1244
1245static void
1246fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1247{
1248	int i;
1249
1250	for (i = 0; i < words; i++)
1251		fxp_eeprom_putword(sc, offset + i, data[i]);
1252}
1253
1254/*
1255 * Grab the softc lock and call the real fxp_start_body() routine
1256 */
1257static void
1258fxp_start(struct ifnet *ifp)
1259{
1260	struct fxp_softc *sc = ifp->if_softc;
1261
1262	FXP_LOCK(sc);
1263	fxp_start_body(ifp);
1264	FXP_UNLOCK(sc);
1265}
1266
1267/*
1268 * Start packet transmission on the interface.
1269 * This routine must be called with the softc lock held, and is an
1270 * internal entry point only.
1271 */
1272static void
1273fxp_start_body(struct ifnet *ifp)
1274{
1275	struct fxp_softc *sc = ifp->if_softc;
1276	struct mbuf *mb_head;
1277	int txqueued;
1278
1279	FXP_LOCK_ASSERT(sc, MA_OWNED);
1280
1281	/*
1282	 * See if we need to suspend xmit until the multicast filter
1283	 * has been reprogrammed (which can only be done at the head
1284	 * of the command chain).
1285	 */
1286	if (sc->need_mcsetup)
1287		return;
1288
1289	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1290		fxp_txeof(sc);
1291	/*
1292	 * We're finished if there is nothing more to add to the list or if
1293	 * we're all filled up with buffers to transmit.
1294	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1295	 *       a NOP command when needed.
1296	 */
1297	txqueued = 0;
1298	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1299	    sc->tx_queued < FXP_NTXCB - 1) {
1300
1301		/*
1302		 * Grab a packet to transmit.
1303		 */
1304		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1305		if (mb_head == NULL)
1306			break;
1307
1308		if (fxp_encap(sc, &mb_head)) {
1309			if (mb_head == NULL)
1310				break;
1311			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1312			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1313		}
1314		txqueued++;
1315		/*
1316		 * Pass packet to bpf if there is a listener.
1317		 */
1318		BPF_MTAP(ifp, mb_head);
1319	}
1320
1321	/*
1322	 * We're finished. If we added to the list, issue a RESUME to get DMA
1323	 * going again if suspended.
1324	 */
1325	if (txqueued > 0) {
1326		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1327		fxp_scb_wait(sc);
1328		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1329		/*
1330		 * Set a 5 second timer just in case we don't hear
1331		 * from the card again.
1332		 */
1333		sc->watchdog_timer = 5;
1334	}
1335}
1336
1337static int
1338fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1339{
1340	struct ifnet *ifp;
1341	struct mbuf *m;
1342	struct fxp_tx *txp;
1343	struct fxp_cb_tx *cbp;
1344	struct tcphdr *tcp;
1345	bus_dma_segment_t segs[FXP_NTXSEG];
1346	int error, i, nseg, tcp_payload;
1347
1348	FXP_LOCK_ASSERT(sc, MA_OWNED);
1349	ifp = sc->ifp;
1350
1351	tcp_payload = 0;
1352	tcp = NULL;
1353	/*
1354	 * Get pointer to next available tx desc.
1355	 */
1356	txp = sc->fxp_desc.tx_last->tx_next;
1357
1358	/*
1359	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1360	 * Ethernet Controller Family Open Source Software
1361	 * Developer Manual says:
1362	 *   Using software parsing is only allowed with legal
1363	 *   TCP/IP or UDP/IP packets.
1364	 *   ...
1365	 *   For all other datagrams, hardware parsing must
1366	 *   be used.
1367	 * Software parsing appears to truncate ICMP and
1368	 * fragmented UDP packets that contain one to three
1369	 * bytes in the second (and final) mbuf of the packet.
1370	 */
1371	if (sc->flags & FXP_FLAG_EXT_RFA)
1372		txp->tx_cb->ipcb_ip_activation_high =
1373		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1374
1375	m = *m_head;
1376	/*
1377	 * Deal with TCP/IP checksum offload. Note that
1378	 * in order for TCP checksum offload to work,
1379	 * the pseudo header checksum must have already
1380	 * been computed and stored in the checksum field
1381	 * in the TCP header. The stack should have
1382	 * already done this for us.
1383	 */
1384	if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1385		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1386		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1387			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1388
1389#ifdef FXP_IP_CSUM_WAR
1390		/*
1391		 * XXX The 82550 chip appears to have trouble
1392		 * dealing with IP header checksums in very small
1393		 * datagrams, namely fragments from 1 to 3 bytes
1394		 * in size. For example, say you want to transmit
1395		 * a UDP packet of 1473 bytes. The packet will be
1396		 * fragmented over two IP datagrams, the latter
1397		 * containing only one byte of data. The 82550 will
1398		 * botch the header checksum on the 1-byte fragment.
1399		 * As long as the datagram contains 4 or more bytes
1400		 * of data, you're ok.
1401		 *
1402                 * The following code attempts to work around this
1403		 * problem: if the datagram is less than 38 bytes
1404		 * in size (14 bytes ether header, 20 bytes IP header,
1405		 * plus 4 bytes of data), we punt and compute the IP
1406		 * header checksum by hand. This workaround doesn't
1407		 * work very well, however, since it can be fooled
1408		 * by things like VLAN tags and IP options that make
1409		 * the header sizes/offsets vary.
1410		 */
1411
1412		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1413			if (m->m_pkthdr.len < 38) {
1414				struct ip *ip;
1415				m->m_data += ETHER_HDR_LEN;
1416				ip = mtod(m, struct ip *);
1417				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1418				m->m_data -= ETHER_HDR_LEN;
1419				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1420			} else {
1421				txp->tx_cb->ipcb_ip_activation_high =
1422				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1423				txp->tx_cb->ipcb_ip_schedule |=
1424				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1425			}
1426		}
1427#endif
1428	}
1429
1430	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1431		/*
1432		 * 82550/82551 requires ethernet/IP/TCP headers must be
1433		 * contained in the first active transmit buffer.
1434		 */
1435		struct ether_header *eh;
1436		struct ip *ip;
1437		uint32_t ip_off, poff;
1438
1439		if (M_WRITABLE(*m_head) == 0) {
1440			/* Get a writable copy. */
1441			m = m_dup(*m_head, M_DONTWAIT);
1442			m_freem(*m_head);
1443			if (m == NULL) {
1444				*m_head = NULL;
1445				return (ENOBUFS);
1446			}
1447			*m_head = m;
1448		}
1449		ip_off = sizeof(struct ether_header);
1450		m = m_pullup(*m_head, ip_off);
1451		if (m == NULL) {
1452			*m_head = NULL;
1453			return (ENOBUFS);
1454		}
1455		eh = mtod(m, struct ether_header *);
1456		/* Check the existence of VLAN tag. */
1457		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1458			ip_off = sizeof(struct ether_vlan_header);
1459			m = m_pullup(m, ip_off);
1460			if (m == NULL) {
1461				*m_head = NULL;
1462				return (ENOBUFS);
1463			}
1464		}
1465		m = m_pullup(m, ip_off + sizeof(struct ip));
1466		if (m == NULL) {
1467			*m_head = NULL;
1468			return (ENOBUFS);
1469		}
1470		ip = (struct ip *)(mtod(m, char *) + ip_off);
1471		poff = ip_off + (ip->ip_hl << 2);
1472		m = m_pullup(m, poff + sizeof(struct tcphdr));
1473		if (m == NULL) {
1474			*m_head = NULL;
1475			return (ENOBUFS);
1476		}
1477		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1478		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1479		if (m == NULL) {
1480			*m_head = NULL;
1481			return (ENOBUFS);
1482		}
1483
1484		/*
1485		 * Since 82550/82551 doesn't modify IP length and pseudo
1486		 * checksum in the first frame driver should compute it.
1487		 */
1488		ip->ip_sum = 0;
1489		ip->ip_len = htons(ifp->if_mtu);
1490		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1491		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1492		    m->m_pkthdr.tso_segsz));
1493		/* Compute total TCP payload. */
1494		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1495		tcp_payload -= tcp->th_off << 2;
1496		*m_head = m;
1497	}
1498
1499	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map, *m_head,
1500	    segs, &nseg, 0);
1501	if (error == EFBIG) {
1502		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1503		if (m == NULL) {
1504			m_freem(*m_head);
1505			*m_head = NULL;
1506			return (ENOMEM);
1507		}
1508		*m_head = m;
1509		error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1510	    	    *m_head, segs, &nseg, 0);
1511		if (error != 0) {
1512			m_freem(*m_head);
1513			*m_head = NULL;
1514			return (ENOMEM);
1515		}
1516	} else if (error != 0)
1517		return (error);
1518	if (nseg == 0) {
1519		m_freem(*m_head);
1520		*m_head = NULL;
1521		return (EIO);
1522	}
1523
1524	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1525	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1526
1527	cbp = txp->tx_cb;
1528	for (i = 0; i < nseg; i++) {
1529		/*
1530		 * If this is an 82550/82551, then we're using extended
1531		 * TxCBs _and_ we're using checksum offload. This means
1532		 * that the TxCB is really an IPCB. One major difference
1533		 * between the two is that with plain extended TxCBs,
1534		 * the bottom half of the TxCB contains two entries from
1535		 * the TBD array, whereas IPCBs contain just one entry:
1536		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1537		 * checksum offload control bits. So to make things work
1538		 * right, we have to start filling in the TBD array
1539		 * starting from a different place depending on whether
1540		 * the chip is an 82550/82551 or not.
1541		 */
1542		if (sc->flags & FXP_FLAG_EXT_RFA) {
1543			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1544			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1545		} else {
1546			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1547			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1548		}
1549	}
1550	if (sc->flags & FXP_FLAG_EXT_RFA) {
1551		/* Configure dynamic TBD for 82550/82551. */
1552		cbp->tbd_number = 0xFF;
1553		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1554	} else
1555		cbp->tbd_number = nseg;
1556	/* Configure TSO. */
1557	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1558		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1559		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1560		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1561		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1562		    FXP_IPCB_TCP_PACKET |
1563		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1564	}
1565	/* Configure VLAN hardware tag insertion. */
1566	if ((m->m_flags & M_VLANTAG) != 0) {
1567		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1568		txp->tx_cb->ipcb_ip_activation_high |=
1569		    FXP_IPCB_INSERTVLAN_ENABLE;
1570	}
1571
1572	txp->tx_mbuf = m;
1573	txp->tx_cb->cb_status = 0;
1574	txp->tx_cb->byte_count = 0;
1575	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1576		txp->tx_cb->cb_command =
1577		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1578		    FXP_CB_COMMAND_S);
1579	else
1580		txp->tx_cb->cb_command =
1581		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1582		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1583	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1584		txp->tx_cb->tx_threshold = tx_threshold;
1585
1586	/*
1587	 * Advance the end of list forward.
1588	 */
1589
1590#ifdef __alpha__
1591	/*
1592	 * On platforms which can't access memory in 16-bit
1593	 * granularities, we must prevent the card from DMA'ing
1594	 * up the status while we update the command field.
1595	 * This could cause us to overwrite the completion status.
1596	 * XXX This is probably bogus and we're _not_ looking
1597	 * for atomicity here.
1598	 */
1599	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1600	    htole16(FXP_CB_COMMAND_S));
1601#else
1602	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1603#endif /*__alpha__*/
1604	sc->fxp_desc.tx_last = txp;
1605
1606	/*
1607	 * Advance the beginning of the list forward if there are
1608	 * no other packets queued (when nothing is queued, tx_first
1609	 * sits on the last TxCB that was sent out).
1610	 */
1611	if (sc->tx_queued == 0)
1612		sc->fxp_desc.tx_first = txp;
1613
1614	sc->tx_queued++;
1615
1616	return (0);
1617}
1618
1619#ifdef DEVICE_POLLING
1620static poll_handler_t fxp_poll;
1621
1622static void
1623fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1624{
1625	struct fxp_softc *sc = ifp->if_softc;
1626	uint8_t statack;
1627
1628	FXP_LOCK(sc);
1629	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1630		FXP_UNLOCK(sc);
1631		return;
1632	}
1633
1634	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1635	    FXP_SCB_STATACK_FR;
1636	if (cmd == POLL_AND_CHECK_STATUS) {
1637		uint8_t tmp;
1638
1639		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1640		if (tmp == 0xff || tmp == 0) {
1641			FXP_UNLOCK(sc);
1642			return; /* nothing to do */
1643		}
1644		tmp &= ~statack;
1645		/* ack what we can */
1646		if (tmp != 0)
1647			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1648		statack |= tmp;
1649	}
1650	fxp_intr_body(sc, ifp, statack, count);
1651	FXP_UNLOCK(sc);
1652}
1653#endif /* DEVICE_POLLING */
1654
1655/*
1656 * Process interface interrupts.
1657 */
1658static void
1659fxp_intr(void *xsc)
1660{
1661	struct fxp_softc *sc = xsc;
1662	struct ifnet *ifp = sc->ifp;
1663	uint8_t statack;
1664
1665	FXP_LOCK(sc);
1666	if (sc->suspended) {
1667		FXP_UNLOCK(sc);
1668		return;
1669	}
1670
1671#ifdef DEVICE_POLLING
1672	if (ifp->if_capenable & IFCAP_POLLING) {
1673		FXP_UNLOCK(sc);
1674		return;
1675	}
1676#endif
1677	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1678		/*
1679		 * It should not be possible to have all bits set; the
1680		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1681		 * all bits are set, this may indicate that the card has
1682		 * been physically ejected, so ignore it.
1683		 */
1684		if (statack == 0xff) {
1685			FXP_UNLOCK(sc);
1686			return;
1687		}
1688
1689		/*
1690		 * First ACK all the interrupts in this pass.
1691		 */
1692		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1693		fxp_intr_body(sc, ifp, statack, -1);
1694	}
1695	FXP_UNLOCK(sc);
1696}
1697
1698static void
1699fxp_txeof(struct fxp_softc *sc)
1700{
1701	struct ifnet *ifp;
1702	struct fxp_tx *txp;
1703
1704	ifp = sc->ifp;
1705	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1706	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1707	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1708	    txp = txp->tx_next) {
1709		if (txp->tx_mbuf != NULL) {
1710			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1711			    BUS_DMASYNC_POSTWRITE);
1712			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1713			m_freem(txp->tx_mbuf);
1714			txp->tx_mbuf = NULL;
1715			/* clear this to reset csum offload bits */
1716			txp->tx_cb->tbd[0].tb_addr = 0;
1717		}
1718		sc->tx_queued--;
1719		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1720	}
1721	sc->fxp_desc.tx_first = txp;
1722	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1723	if (sc->tx_queued == 0) {
1724		sc->watchdog_timer = 0;
1725		if (sc->need_mcsetup)
1726			fxp_mc_setup(sc);
1727	}
1728}
1729
1730static void
1731fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1732    uint16_t status, int pos)
1733{
1734	struct ether_header *eh;
1735	struct ip *ip;
1736	struct udphdr *uh;
1737	int32_t hlen, len, pktlen, temp32;
1738	uint16_t csum, *opts;
1739
1740	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1741		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1742			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1743				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1744			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1745				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1746			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1747			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1748				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1749				    CSUM_PSEUDO_HDR;
1750				m->m_pkthdr.csum_data = 0xffff;
1751			}
1752		}
1753		return;
1754	}
1755
1756	pktlen = m->m_pkthdr.len;
1757	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1758		return;
1759	eh = mtod(m, struct ether_header *);
1760	if (eh->ether_type != htons(ETHERTYPE_IP))
1761		return;
1762	ip = (struct ip *)(eh + 1);
1763	if (ip->ip_v != IPVERSION)
1764		return;
1765
1766	hlen = ip->ip_hl << 2;
1767	pktlen -= sizeof(struct ether_header);
1768	if (hlen < sizeof(struct ip))
1769		return;
1770	if (ntohs(ip->ip_len) < hlen)
1771		return;
1772	if (ntohs(ip->ip_len) != pktlen)
1773		return;
1774	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1775		return;	/* can't handle fragmented packet */
1776
1777	switch (ip->ip_p) {
1778	case IPPROTO_TCP:
1779		if (pktlen < (hlen + sizeof(struct tcphdr)))
1780			return;
1781		break;
1782	case IPPROTO_UDP:
1783		if (pktlen < (hlen + sizeof(struct udphdr)))
1784			return;
1785		uh = (struct udphdr *)((caddr_t)ip + hlen);
1786		if (uh->uh_sum == 0)
1787			return; /* no checksum */
1788		break;
1789	default:
1790		return;
1791	}
1792	/* Extract computed checksum. */
1793	csum = be16dec(mtod(m, char *) + pos);
1794	/* checksum fixup for IP options */
1795	len = hlen - sizeof(struct ip);
1796	if (len > 0) {
1797		opts = (uint16_t *)(ip + 1);
1798		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1799			temp32 = csum - *opts;
1800			temp32 = (temp32 >> 16) + (temp32 & 65535);
1801			csum = temp32 & 65535;
1802		}
1803	}
1804	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1805	m->m_pkthdr.csum_data = csum;
1806}
1807
1808static void
1809fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1810    int count)
1811{
1812	struct mbuf *m;
1813	struct fxp_rx *rxp;
1814	struct fxp_rfa *rfa;
1815	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1816	uint16_t status;
1817
1818	FXP_LOCK_ASSERT(sc, MA_OWNED);
1819	if (rnr)
1820		sc->rnr++;
1821#ifdef DEVICE_POLLING
1822	/* Pick up a deferred RNR condition if `count' ran out last time. */
1823	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1824		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1825		rnr = 1;
1826	}
1827#endif
1828
1829	/*
1830	 * Free any finished transmit mbuf chains.
1831	 *
1832	 * Handle the CNA event likt a CXTNO event. It used to
1833	 * be that this event (control unit not ready) was not
1834	 * encountered, but it is now with the SMPng modifications.
1835	 * The exact sequence of events that occur when the interface
1836	 * is brought up are different now, and if this event
1837	 * goes unhandled, the configuration/rxfilter setup sequence
1838	 * can stall for several seconds. The result is that no
1839	 * packets go out onto the wire for about 5 to 10 seconds
1840	 * after the interface is ifconfig'ed for the first time.
1841	 */
1842	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1843		fxp_txeof(sc);
1844
1845	/*
1846	 * Try to start more packets transmitting.
1847	 */
1848	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1849		fxp_start_body(ifp);
1850
1851	/*
1852	 * Just return if nothing happened on the receive side.
1853	 */
1854	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1855		return;
1856
1857	/*
1858	 * Process receiver interrupts. If a no-resource (RNR)
1859	 * condition exists, get whatever packets we can and
1860	 * re-start the receiver.
1861	 *
1862	 * When using polling, we do not process the list to completion,
1863	 * so when we get an RNR interrupt we must defer the restart
1864	 * until we hit the last buffer with the C bit set.
1865	 * If we run out of cycles and rfa_headm has the C bit set,
1866	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1867	 * that the info will be used in the subsequent polling cycle.
1868	 */
1869	for (;;) {
1870		rxp = sc->fxp_desc.rx_head;
1871		m = rxp->rx_mbuf;
1872		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1873		    RFA_ALIGNMENT_FUDGE);
1874		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1875		    BUS_DMASYNC_POSTREAD);
1876
1877#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1878		if (count >= 0 && count-- == 0) {
1879			if (rnr) {
1880				/* Defer RNR processing until the next time. */
1881				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1882				rnr = 0;
1883			}
1884			break;
1885		}
1886#endif /* DEVICE_POLLING */
1887
1888		status = le16toh(rfa->rfa_status);
1889		if ((status & FXP_RFA_STATUS_C) == 0)
1890			break;
1891
1892		/*
1893		 * Advance head forward.
1894		 */
1895		sc->fxp_desc.rx_head = rxp->rx_next;
1896
1897		/*
1898		 * Add a new buffer to the receive chain.
1899		 * If this fails, the old buffer is recycled
1900		 * instead.
1901		 */
1902		if (fxp_new_rfabuf(sc, rxp) == 0) {
1903			int total_len;
1904
1905			/*
1906			 * Fetch packet length (the top 2 bits of
1907			 * actual_size are flags set by the controller
1908			 * upon completion), and drop the packet in case
1909			 * of bogus length or CRC errors.
1910			 */
1911			total_len = le16toh(rfa->actual_size) & 0x3fff;
1912			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1913			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1914				/* Adjust for appended checksum bytes. */
1915				total_len -= 2;
1916			}
1917			if (total_len < sizeof(struct ether_header) ||
1918			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1919				sc->rfa_size || status & FXP_RFA_STATUS_CRC) {
1920				m_freem(m);
1921				continue;
1922			}
1923
1924			m->m_pkthdr.len = m->m_len = total_len;
1925			m->m_pkthdr.rcvif = ifp;
1926
1927                        /* Do IP checksum checking. */
1928			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1929				fxp_rxcsum(sc, ifp, m, status, total_len);
1930			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1931			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1932				m->m_pkthdr.ether_vtag =
1933				    ntohs(rfa->rfax_vlan_id);
1934				m->m_flags |= M_VLANTAG;
1935			}
1936			/*
1937			 * Drop locks before calling if_input() since it
1938			 * may re-enter fxp_start() in the netisr case.
1939			 * This would result in a lock reversal.  Better
1940			 * performance might be obtained by chaining all
1941			 * packets received, dropping the lock, and then
1942			 * calling if_input() on each one.
1943			 */
1944			FXP_UNLOCK(sc);
1945			(*ifp->if_input)(ifp, m);
1946			FXP_LOCK(sc);
1947		} else {
1948			/* Reuse RFA and loaded DMA map. */
1949			ifp->if_iqdrops++;
1950			fxp_discard_rfabuf(sc, rxp);
1951		}
1952		fxp_add_rfabuf(sc, rxp);
1953	}
1954	if (rnr) {
1955		fxp_scb_wait(sc);
1956		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1957		    sc->fxp_desc.rx_head->rx_addr);
1958		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1959	}
1960}
1961
1962/*
1963 * Update packet in/out/collision statistics. The i82557 doesn't
1964 * allow you to access these counters without doing a fairly
1965 * expensive DMA to get _all_ of the statistics it maintains, so
1966 * we do this operation here only once per second. The statistics
1967 * counters in the kernel are updated from the previous dump-stats
1968 * DMA and then a new dump-stats DMA is started. The on-chip
1969 * counters are zeroed when the DMA completes. If we can't start
1970 * the DMA immediately, we don't wait - we just prepare to read
1971 * them again next time.
1972 */
1973static void
1974fxp_tick(void *xsc)
1975{
1976	struct fxp_softc *sc = xsc;
1977	struct ifnet *ifp = sc->ifp;
1978	struct fxp_stats *sp = sc->fxp_stats;
1979
1980	FXP_LOCK_ASSERT(sc, MA_OWNED);
1981	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1982	ifp->if_opackets += le32toh(sp->tx_good);
1983	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1984	if (sp->rx_good) {
1985		ifp->if_ipackets += le32toh(sp->rx_good);
1986		sc->rx_idle_secs = 0;
1987	} else {
1988		/*
1989		 * Receiver's been idle for another second.
1990		 */
1991		sc->rx_idle_secs++;
1992	}
1993	ifp->if_ierrors +=
1994	    le32toh(sp->rx_crc_errors) +
1995	    le32toh(sp->rx_alignment_errors) +
1996	    le32toh(sp->rx_rnr_errors) +
1997	    le32toh(sp->rx_overrun_errors);
1998	/*
1999	 * If any transmit underruns occured, bump up the transmit
2000	 * threshold by another 512 bytes (64 * 8).
2001	 */
2002	if (sp->tx_underruns) {
2003		ifp->if_oerrors += le32toh(sp->tx_underruns);
2004		if (tx_threshold < 192)
2005			tx_threshold += 64;
2006	}
2007
2008	/*
2009	 * Release any xmit buffers that have completed DMA. This isn't
2010	 * strictly necessary to do here, but it's advantagous for mbufs
2011	 * with external storage to be released in a timely manner rather
2012	 * than being defered for a potentially long time. This limits
2013	 * the delay to a maximum of one second.
2014	 */
2015	fxp_txeof(sc);
2016
2017	/*
2018	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2019	 * then assume the receiver has locked up and attempt to clear
2020	 * the condition by reprogramming the multicast filter. This is
2021	 * a work-around for a bug in the 82557 where the receiver locks
2022	 * up if it gets certain types of garbage in the syncronization
2023	 * bits prior to the packet header. This bug is supposed to only
2024	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2025	 * mode as well (perhaps due to a 10/100 speed transition).
2026	 */
2027	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2028		sc->rx_idle_secs = 0;
2029		fxp_mc_setup(sc);
2030	}
2031	/*
2032	 * If there is no pending command, start another stats
2033	 * dump. Otherwise punt for now.
2034	 */
2035	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2036		/*
2037		 * Start another stats dump.
2038		 */
2039		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2040		    BUS_DMASYNC_PREREAD);
2041		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2042	} else {
2043		/*
2044		 * A previous command is still waiting to be accepted.
2045		 * Just zero our copy of the stats and wait for the
2046		 * next timer event to update them.
2047		 */
2048		sp->tx_good = 0;
2049		sp->tx_underruns = 0;
2050		sp->tx_total_collisions = 0;
2051
2052		sp->rx_good = 0;
2053		sp->rx_crc_errors = 0;
2054		sp->rx_alignment_errors = 0;
2055		sp->rx_rnr_errors = 0;
2056		sp->rx_overrun_errors = 0;
2057	}
2058	if (sc->miibus != NULL)
2059		mii_tick(device_get_softc(sc->miibus));
2060
2061	/*
2062	 * Check that chip hasn't hung.
2063	 */
2064	fxp_watchdog(sc);
2065
2066	/*
2067	 * Schedule another timeout one second from now.
2068	 */
2069	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2070}
2071
2072/*
2073 * Stop the interface. Cancels the statistics updater and resets
2074 * the interface.
2075 */
2076static void
2077fxp_stop(struct fxp_softc *sc)
2078{
2079	struct ifnet *ifp = sc->ifp;
2080	struct fxp_tx *txp;
2081	int i;
2082
2083	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2084	sc->watchdog_timer = 0;
2085
2086	/*
2087	 * Cancel stats updater.
2088	 */
2089	callout_stop(&sc->stat_ch);
2090
2091	/*
2092	 * Preserve PCI configuration, configure, IA/multicast
2093	 * setup and put RU and CU into idle state.
2094	 */
2095	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2096	DELAY(50);
2097	/* Disable interrupts. */
2098	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2099
2100	/*
2101	 * Release any xmit buffers.
2102	 */
2103	txp = sc->fxp_desc.tx_list;
2104	if (txp != NULL) {
2105		for (i = 0; i < FXP_NTXCB; i++) {
2106 			if (txp[i].tx_mbuf != NULL) {
2107				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
2108				    BUS_DMASYNC_POSTWRITE);
2109				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
2110				m_freem(txp[i].tx_mbuf);
2111				txp[i].tx_mbuf = NULL;
2112				/* clear this to reset csum offload bits */
2113				txp[i].tx_cb->tbd[0].tb_addr = 0;
2114			}
2115		}
2116	}
2117	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2118	sc->tx_queued = 0;
2119}
2120
2121/*
2122 * Watchdog/transmission transmit timeout handler. Called when a
2123 * transmission is started on the interface, but no interrupt is
2124 * received before the timeout. This usually indicates that the
2125 * card has wedged for some reason.
2126 */
2127static void
2128fxp_watchdog(struct fxp_softc *sc)
2129{
2130
2131	FXP_LOCK_ASSERT(sc, MA_OWNED);
2132
2133	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2134		return;
2135
2136	device_printf(sc->dev, "device timeout\n");
2137	sc->ifp->if_oerrors++;
2138
2139	fxp_init_body(sc);
2140}
2141
2142/*
2143 * Acquire locks and then call the real initialization function.  This
2144 * is necessary because ether_ioctl() calls if_init() and this would
2145 * result in mutex recursion if the mutex was held.
2146 */
2147static void
2148fxp_init(void *xsc)
2149{
2150	struct fxp_softc *sc = xsc;
2151
2152	FXP_LOCK(sc);
2153	fxp_init_body(sc);
2154	FXP_UNLOCK(sc);
2155}
2156
2157/*
2158 * Perform device initialization. This routine must be called with the
2159 * softc lock held.
2160 */
2161static void
2162fxp_init_body(struct fxp_softc *sc)
2163{
2164	struct ifnet *ifp = sc->ifp;
2165	struct fxp_cb_config *cbp;
2166	struct fxp_cb_ias *cb_ias;
2167	struct fxp_cb_tx *tcbp;
2168	struct fxp_tx *txp;
2169	struct fxp_cb_mcs *mcsp;
2170	int i, prm;
2171
2172	FXP_LOCK_ASSERT(sc, MA_OWNED);
2173	/*
2174	 * Cancel any pending I/O
2175	 */
2176	fxp_stop(sc);
2177
2178	/*
2179	 * Issue software reset, which also unloads the microcode.
2180	 */
2181	sc->flags &= ~FXP_FLAG_UCODE;
2182	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2183	DELAY(50);
2184
2185	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2186
2187	/*
2188	 * Initialize base of CBL and RFA memory. Loading with zero
2189	 * sets it up for regular linear addressing.
2190	 */
2191	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2192	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2193
2194	fxp_scb_wait(sc);
2195	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2196
2197	/*
2198	 * Initialize base of dump-stats buffer.
2199	 */
2200	fxp_scb_wait(sc);
2201	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2202	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2203	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2204
2205	/*
2206	 * Attempt to load microcode if requested.
2207	 */
2208	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2209		fxp_load_ucode(sc);
2210
2211	/*
2212	 * Initialize the multicast address list.
2213	 */
2214	if (fxp_mc_addrs(sc)) {
2215		mcsp = sc->mcsp;
2216		mcsp->cb_status = 0;
2217		mcsp->cb_command =
2218		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2219		mcsp->link_addr = 0xffffffff;
2220		/*
2221	 	 * Start the multicast setup command.
2222		 */
2223		fxp_scb_wait(sc);
2224		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2225		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2226		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2227		/* ...and wait for it to complete. */
2228		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2229		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2230		    BUS_DMASYNC_POSTWRITE);
2231	}
2232
2233	/*
2234	 * We temporarily use memory that contains the TxCB list to
2235	 * construct the config CB. The TxCB list memory is rebuilt
2236	 * later.
2237	 */
2238	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2239
2240	/*
2241	 * This bcopy is kind of disgusting, but there are a bunch of must be
2242	 * zero and must be one bits in this structure and this is the easiest
2243	 * way to initialize them all to proper values.
2244	 */
2245	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2246
2247	cbp->cb_status =	0;
2248	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2249	    FXP_CB_COMMAND_EL);
2250	cbp->link_addr =	0xffffffff;	/* (no) next command */
2251	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2252	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2253	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2254	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2255	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2256	cbp->type_enable =	0;	/* actually reserved */
2257	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2258	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2259	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2260	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2261	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2262	cbp->late_scb =		0;	/* (don't) defer SCB update */
2263	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2264	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2265	cbp->ci_int =		1;	/* interrupt on CU idle */
2266	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2267	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2268	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2269	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2270	cbp->disc_short_rx =	!prm;	/* discard short packets */
2271	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2272	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2273	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2274	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2275	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2276	cbp->csma_dis =		0;	/* (don't) disable link */
2277	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2278	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2279	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2280	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2281	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2282	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2283	cbp->nsai =		1;	/* (don't) disable source addr insert */
2284	cbp->preamble_length =	2;	/* (7 byte) preamble */
2285	cbp->loopback =		0;	/* (don't) loopback */
2286	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2287	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2288	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2289	cbp->promiscuous =	prm;	/* promiscuous mode */
2290	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2291	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2292	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2293	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2294	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2295
2296	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2297	cbp->padding =		1;	/* (do) pad short tx packets */
2298	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2299	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2300	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2301	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2302	cbp->force_fdx =	0;	/* (don't) force full duplex */
2303	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2304	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2305	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2306	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2307	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2308	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2309
2310	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2311		/*
2312		 * The 82557 has no hardware flow control, the values
2313		 * below are the defaults for the chip.
2314		 */
2315		cbp->fc_delay_lsb =	0;
2316		cbp->fc_delay_msb =	0x40;
2317		cbp->pri_fc_thresh =	3;
2318		cbp->tx_fc_dis =	0;
2319		cbp->rx_fc_restop =	0;
2320		cbp->rx_fc_restart =	0;
2321		cbp->fc_filter =	0;
2322		cbp->pri_fc_loc =	1;
2323	} else {
2324		cbp->fc_delay_lsb =	0x1f;
2325		cbp->fc_delay_msb =	0x01;
2326		cbp->pri_fc_thresh =	3;
2327		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2328		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2329		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2330		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2331		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2332	}
2333
2334	/*
2335	 * Start the config command/DMA.
2336	 */
2337	fxp_scb_wait(sc);
2338	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2339	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2340	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2341	/* ...and wait for it to complete. */
2342	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2343	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2344
2345	/*
2346	 * Now initialize the station address. Temporarily use the TxCB
2347	 * memory area like we did above for the config CB.
2348	 */
2349	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2350	cb_ias->cb_status = 0;
2351	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2352	cb_ias->link_addr = 0xffffffff;
2353	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2354
2355	/*
2356	 * Start the IAS (Individual Address Setup) command/DMA.
2357	 */
2358	fxp_scb_wait(sc);
2359	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2360	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2361	/* ...and wait for it to complete. */
2362	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2363	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2364
2365	/*
2366	 * Initialize transmit control block (TxCB) list.
2367	 */
2368	txp = sc->fxp_desc.tx_list;
2369	tcbp = sc->fxp_desc.cbl_list;
2370	bzero(tcbp, FXP_TXCB_SZ);
2371	for (i = 0; i < FXP_NTXCB; i++) {
2372		txp[i].tx_mbuf = NULL;
2373		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2374		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2375		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2376		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2377		if (sc->flags & FXP_FLAG_EXT_TXCB)
2378			tcbp[i].tbd_array_addr =
2379			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2380		else
2381			tcbp[i].tbd_array_addr =
2382			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2383		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2384	}
2385	/*
2386	 * Set the suspend flag on the first TxCB and start the control
2387	 * unit. It will execute the NOP and then suspend.
2388	 */
2389	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2390	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2391	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2392	sc->tx_queued = 1;
2393
2394	fxp_scb_wait(sc);
2395	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2396
2397	/*
2398	 * Initialize receiver buffer area - RFA.
2399	 */
2400	fxp_scb_wait(sc);
2401	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2402	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2403
2404	/*
2405	 * Set current media.
2406	 */
2407	if (sc->miibus != NULL)
2408		mii_mediachg(device_get_softc(sc->miibus));
2409
2410	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2411	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2412
2413	/*
2414	 * Enable interrupts.
2415	 */
2416#ifdef DEVICE_POLLING
2417	/*
2418	 * ... but only do that if we are not polling. And because (presumably)
2419	 * the default is interrupts on, we need to disable them explicitly!
2420	 */
2421	if (ifp->if_capenable & IFCAP_POLLING )
2422		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2423	else
2424#endif /* DEVICE_POLLING */
2425	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2426
2427	/*
2428	 * Start stats updater.
2429	 */
2430	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2431}
2432
2433static int
2434fxp_serial_ifmedia_upd(struct ifnet *ifp)
2435{
2436
2437	return (0);
2438}
2439
2440static void
2441fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2442{
2443
2444	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2445}
2446
2447/*
2448 * Change media according to request.
2449 */
2450static int
2451fxp_ifmedia_upd(struct ifnet *ifp)
2452{
2453	struct fxp_softc *sc = ifp->if_softc;
2454	struct mii_data *mii;
2455
2456	mii = device_get_softc(sc->miibus);
2457	FXP_LOCK(sc);
2458	if (mii->mii_instance) {
2459		struct mii_softc	*miisc;
2460		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2461			mii_phy_reset(miisc);
2462	}
2463	mii_mediachg(mii);
2464	FXP_UNLOCK(sc);
2465	return (0);
2466}
2467
2468/*
2469 * Notify the world which media we're using.
2470 */
2471static void
2472fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2473{
2474	struct fxp_softc *sc = ifp->if_softc;
2475	struct mii_data *mii;
2476
2477	mii = device_get_softc(sc->miibus);
2478	FXP_LOCK(sc);
2479	mii_pollstat(mii);
2480	ifmr->ifm_active = mii->mii_media_active;
2481	ifmr->ifm_status = mii->mii_media_status;
2482
2483	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2484	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2485		sc->cu_resume_bug = 1;
2486	else
2487		sc->cu_resume_bug = 0;
2488	FXP_UNLOCK(sc);
2489}
2490
2491/*
2492 * Add a buffer to the end of the RFA buffer list.
2493 * Return 0 if successful, 1 for failure. A failure results in
2494 * reusing the RFA buffer.
2495 * The RFA struct is stuck at the beginning of mbuf cluster and the
2496 * data pointer is fixed up to point just past it.
2497 */
2498static int
2499fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2500{
2501	struct mbuf *m;
2502	struct fxp_rfa *rfa;
2503	bus_dmamap_t tmp_map;
2504	int error;
2505
2506	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2507	if (m == NULL)
2508		return (ENOBUFS);
2509
2510	/*
2511	 * Move the data pointer up so that the incoming data packet
2512	 * will be 32-bit aligned.
2513	 */
2514	m->m_data += RFA_ALIGNMENT_FUDGE;
2515
2516	/*
2517	 * Get a pointer to the base of the mbuf cluster and move
2518	 * data start past it.
2519	 */
2520	rfa = mtod(m, struct fxp_rfa *);
2521	m->m_data += sc->rfa_size;
2522	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2523
2524	rfa->rfa_status = 0;
2525	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2526	rfa->actual_size = 0;
2527	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2528	    sc->rfa_size;
2529
2530	/*
2531	 * Initialize the rest of the RFA.  Note that since the RFA
2532	 * is misaligned, we cannot store values directly.  We're thus
2533	 * using the le32enc() function which handles endianness and
2534	 * is also alignment-safe.
2535	 */
2536	le32enc(&rfa->link_addr, 0xffffffff);
2537	le32enc(&rfa->rbd_addr, 0xffffffff);
2538
2539	/* Map the RFA into DMA memory. */
2540	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2541	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2542	    &rxp->rx_addr, 0);
2543	if (error) {
2544		m_freem(m);
2545		return (error);
2546	}
2547
2548	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2549	tmp_map = sc->spare_map;
2550	sc->spare_map = rxp->rx_map;
2551	rxp->rx_map = tmp_map;
2552	rxp->rx_mbuf = m;
2553
2554	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2555	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2556	return (0);
2557}
2558
2559static void
2560fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2561{
2562	struct fxp_rfa *p_rfa;
2563	struct fxp_rx *p_rx;
2564
2565	/*
2566	 * If there are other buffers already on the list, attach this
2567	 * one to the end by fixing up the tail to point to this one.
2568	 */
2569	if (sc->fxp_desc.rx_head != NULL) {
2570		p_rx = sc->fxp_desc.rx_tail;
2571		p_rfa = (struct fxp_rfa *)
2572		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2573		p_rx->rx_next = rxp;
2574		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2575		p_rfa->rfa_control = 0;
2576		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2577		    BUS_DMASYNC_PREWRITE);
2578	} else {
2579		rxp->rx_next = NULL;
2580		sc->fxp_desc.rx_head = rxp;
2581	}
2582	sc->fxp_desc.rx_tail = rxp;
2583}
2584
2585static void
2586fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2587{
2588	struct mbuf *m;
2589	struct fxp_rfa *rfa;
2590
2591	m = rxp->rx_mbuf;
2592	m->m_data = m->m_ext.ext_buf;
2593	/*
2594	 * Move the data pointer up so that the incoming data packet
2595	 * will be 32-bit aligned.
2596	 */
2597	m->m_data += RFA_ALIGNMENT_FUDGE;
2598
2599	/*
2600	 * Get a pointer to the base of the mbuf cluster and move
2601	 * data start past it.
2602	 */
2603	rfa = mtod(m, struct fxp_rfa *);
2604	m->m_data += sc->rfa_size;
2605	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2606
2607	rfa->rfa_status = 0;
2608	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2609	rfa->actual_size = 0;
2610
2611	/*
2612	 * Initialize the rest of the RFA.  Note that since the RFA
2613	 * is misaligned, we cannot store values directly.  We're thus
2614	 * using the le32enc() function which handles endianness and
2615	 * is also alignment-safe.
2616	 */
2617	le32enc(&rfa->link_addr, 0xffffffff);
2618	le32enc(&rfa->rbd_addr, 0xffffffff);
2619
2620	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2621	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2622}
2623
2624static int
2625fxp_miibus_readreg(device_t dev, int phy, int reg)
2626{
2627	struct fxp_softc *sc = device_get_softc(dev);
2628	int count = 10000;
2629	int value;
2630
2631	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2632	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2633
2634	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2635	    && count--)
2636		DELAY(10);
2637
2638	if (count <= 0)
2639		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2640
2641	return (value & 0xffff);
2642}
2643
2644static void
2645fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2646{
2647	struct fxp_softc *sc = device_get_softc(dev);
2648	int count = 10000;
2649
2650	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2651	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2652	    (value & 0xffff));
2653
2654	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2655	    count--)
2656		DELAY(10);
2657
2658	if (count <= 0)
2659		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2660}
2661
2662static int
2663fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2664{
2665	struct fxp_softc *sc = ifp->if_softc;
2666	struct ifreq *ifr = (struct ifreq *)data;
2667	struct mii_data *mii;
2668	int flag, mask, error = 0, reinit;
2669
2670	switch (command) {
2671	case SIOCSIFFLAGS:
2672		FXP_LOCK(sc);
2673		if (ifp->if_flags & IFF_ALLMULTI)
2674			sc->flags |= FXP_FLAG_ALL_MCAST;
2675		else
2676			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2677
2678		/*
2679		 * If interface is marked up and not running, then start it.
2680		 * If it is marked down and running, stop it.
2681		 * XXX If it's up then re-initialize it. This is so flags
2682		 * such as IFF_PROMISC are handled.
2683		 */
2684		if (ifp->if_flags & IFF_UP) {
2685			fxp_init_body(sc);
2686		} else {
2687			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2688				fxp_stop(sc);
2689		}
2690		FXP_UNLOCK(sc);
2691		break;
2692
2693	case SIOCADDMULTI:
2694	case SIOCDELMULTI:
2695		FXP_LOCK(sc);
2696		if (ifp->if_flags & IFF_ALLMULTI)
2697			sc->flags |= FXP_FLAG_ALL_MCAST;
2698		else
2699			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2700		/*
2701		 * Multicast list has changed; set the hardware filter
2702		 * accordingly.
2703		 */
2704		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2705			fxp_mc_setup(sc);
2706		/*
2707		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2708		 * again rather than else {}.
2709		 */
2710		if (sc->flags & FXP_FLAG_ALL_MCAST)
2711			fxp_init_body(sc);
2712		FXP_UNLOCK(sc);
2713		error = 0;
2714		break;
2715
2716	case SIOCSIFMEDIA:
2717	case SIOCGIFMEDIA:
2718		if (sc->miibus != NULL) {
2719			mii = device_get_softc(sc->miibus);
2720                        error = ifmedia_ioctl(ifp, ifr,
2721                            &mii->mii_media, command);
2722		} else {
2723                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2724		}
2725		break;
2726
2727	case SIOCSIFCAP:
2728		reinit = 0;
2729		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2730#ifdef DEVICE_POLLING
2731		if (mask & IFCAP_POLLING) {
2732			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2733				error = ether_poll_register(fxp_poll, ifp);
2734				if (error)
2735					return(error);
2736				FXP_LOCK(sc);
2737				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2738				    FXP_SCB_INTR_DISABLE);
2739				ifp->if_capenable |= IFCAP_POLLING;
2740				FXP_UNLOCK(sc);
2741			} else {
2742				error = ether_poll_deregister(ifp);
2743				/* Enable interrupts in any case */
2744				FXP_LOCK(sc);
2745				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2746				ifp->if_capenable &= ~IFCAP_POLLING;
2747				FXP_UNLOCK(sc);
2748			}
2749		}
2750#endif
2751		FXP_LOCK(sc);
2752		if ((mask & IFCAP_TXCSUM) != 0 &&
2753		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2754			ifp->if_capenable ^= IFCAP_TXCSUM;
2755			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2756				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2757			else
2758				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2759		}
2760		if ((mask & IFCAP_RXCSUM) != 0 &&
2761		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2762			ifp->if_capenable ^= IFCAP_RXCSUM;
2763			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2764				reinit++;
2765		}
2766		if ((mask & IFCAP_TSO4) != 0 &&
2767		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2768			ifp->if_capenable ^= IFCAP_TSO4;
2769			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2770				ifp->if_hwassist |= CSUM_TSO;
2771			else
2772				ifp->if_hwassist &= ~CSUM_TSO;
2773		}
2774		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2775		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2776			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2777		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2778		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2779			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2780			if (sc->revision != FXP_REV_82557)
2781				flag = FXP_FLAG_LONG_PKT_EN;
2782			else /* a hack to get long frames on the old chip */
2783				flag = FXP_FLAG_SAVE_BAD;
2784			sc->flags ^= flag;
2785			if (ifp->if_flags & IFF_UP)
2786				reinit++;
2787		}
2788		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2789		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2790			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2791				reinit++;
2792		}
2793		if (reinit > 0 && ifp->if_flags & IFF_UP)
2794			fxp_init_body(sc);
2795		FXP_UNLOCK(sc);
2796		VLAN_CAPABILITIES(ifp);
2797		break;
2798
2799	default:
2800		error = ether_ioctl(ifp, command, data);
2801	}
2802	return (error);
2803}
2804
2805/*
2806 * Fill in the multicast address list and return number of entries.
2807 */
2808static int
2809fxp_mc_addrs(struct fxp_softc *sc)
2810{
2811	struct fxp_cb_mcs *mcsp = sc->mcsp;
2812	struct ifnet *ifp = sc->ifp;
2813	struct ifmultiaddr *ifma;
2814	int nmcasts;
2815
2816	nmcasts = 0;
2817	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2818		IF_ADDR_LOCK(ifp);
2819		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2820			if (ifma->ifma_addr->sa_family != AF_LINK)
2821				continue;
2822			if (nmcasts >= MAXMCADDR) {
2823				sc->flags |= FXP_FLAG_ALL_MCAST;
2824				nmcasts = 0;
2825				break;
2826			}
2827			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2828			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2829			nmcasts++;
2830		}
2831		IF_ADDR_UNLOCK(ifp);
2832	}
2833	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2834	return (nmcasts);
2835}
2836
2837/*
2838 * Program the multicast filter.
2839 *
2840 * We have an artificial restriction that the multicast setup command
2841 * must be the first command in the chain, so we take steps to ensure
2842 * this. By requiring this, it allows us to keep up the performance of
2843 * the pre-initialized command ring (esp. link pointers) by not actually
2844 * inserting the mcsetup command in the ring - i.e. its link pointer
2845 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2846 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2847 * lead into the regular TxCB ring when it completes.
2848 *
2849 * This function must be called at splimp.
2850 */
2851static void
2852fxp_mc_setup(struct fxp_softc *sc)
2853{
2854	struct fxp_cb_mcs *mcsp = sc->mcsp;
2855	struct fxp_tx *txp;
2856	int count;
2857
2858	FXP_LOCK_ASSERT(sc, MA_OWNED);
2859	/*
2860	 * If there are queued commands, we must wait until they are all
2861	 * completed. If we are already waiting, then add a NOP command
2862	 * with interrupt option so that we're notified when all commands
2863	 * have been completed - fxp_start() ensures that no additional
2864	 * TX commands will be added when need_mcsetup is true.
2865	 */
2866	if (sc->tx_queued) {
2867		/*
2868		 * need_mcsetup will be true if we are already waiting for the
2869		 * NOP command to be completed (see below). In this case, bail.
2870		 */
2871		if (sc->need_mcsetup)
2872			return;
2873		sc->need_mcsetup = 1;
2874
2875		/*
2876		 * Add a NOP command with interrupt so that we are notified
2877		 * when all TX commands have been processed.
2878		 */
2879		txp = sc->fxp_desc.tx_last->tx_next;
2880		txp->tx_mbuf = NULL;
2881		txp->tx_cb->cb_status = 0;
2882		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2883		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2884		/*
2885		 * Advance the end of list forward.
2886		 */
2887		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2888		    htole16(~FXP_CB_COMMAND_S);
2889		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2890		sc->fxp_desc.tx_last = txp;
2891		sc->tx_queued++;
2892		/*
2893		 * Issue a resume in case the CU has just suspended.
2894		 */
2895		fxp_scb_wait(sc);
2896		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2897		/*
2898		 * Set a 5 second timer just in case we don't hear from the
2899		 * card again.
2900		 */
2901		sc->watchdog_timer = 5;
2902
2903		return;
2904	}
2905	sc->need_mcsetup = 0;
2906
2907	/*
2908	 * Initialize multicast setup descriptor.
2909	 */
2910	mcsp->cb_status = 0;
2911	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2912	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2913	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2914	txp = &sc->fxp_desc.mcs_tx;
2915	txp->tx_mbuf = NULL;
2916	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2917	txp->tx_next = sc->fxp_desc.tx_list;
2918	(void) fxp_mc_addrs(sc);
2919	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2920	sc->tx_queued = 1;
2921
2922	/*
2923	 * Wait until command unit is not active. This should never
2924	 * be the case when nothing is queued, but make sure anyway.
2925	 */
2926	count = 100;
2927	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2928	    FXP_SCB_CUS_ACTIVE && --count)
2929		DELAY(10);
2930	if (count == 0) {
2931		device_printf(sc->dev, "command queue timeout\n");
2932		return;
2933	}
2934
2935	/*
2936	 * Start the multicast setup command.
2937	 */
2938	fxp_scb_wait(sc);
2939	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2940	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2941	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2942
2943	sc->watchdog_timer = 2;
2944	return;
2945}
2946
2947static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2948static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2949static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2950static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2951static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2952static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2953static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2954
2955#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2956
2957struct ucode {
2958	uint32_t	revision;
2959	uint32_t	*ucode;
2960	int		length;
2961	u_short		int_delay_offset;
2962	u_short		bundle_max_offset;
2963} ucode_table[] = {
2964	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2965	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2966	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2967	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2968	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2969	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2970	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2971	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2972	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2973	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2974	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2975	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2976	{ 0, NULL, 0, 0, 0 }
2977};
2978
2979static void
2980fxp_load_ucode(struct fxp_softc *sc)
2981{
2982	struct ucode *uc;
2983	struct fxp_cb_ucode *cbp;
2984	int i;
2985
2986	for (uc = ucode_table; uc->ucode != NULL; uc++)
2987		if (sc->revision == uc->revision)
2988			break;
2989	if (uc->ucode == NULL)
2990		return;
2991	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2992	cbp->cb_status = 0;
2993	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2994	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2995	for (i = 0; i < uc->length; i++)
2996		cbp->ucode[i] = htole32(uc->ucode[i]);
2997	if (uc->int_delay_offset)
2998		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2999		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3000	if (uc->bundle_max_offset)
3001		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3002		    htole16(sc->tunable_bundle_max);
3003	/*
3004	 * Download the ucode to the chip.
3005	 */
3006	fxp_scb_wait(sc);
3007	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
3008	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3009	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3010	/* ...and wait for it to complete. */
3011	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3012	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
3013	device_printf(sc->dev,
3014	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3015	    sc->tunable_int_delay,
3016	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3017	sc->flags |= FXP_FLAG_UCODE;
3018}
3019
3020static int
3021sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3022{
3023	int error, value;
3024
3025	value = *(int *)arg1;
3026	error = sysctl_handle_int(oidp, &value, 0, req);
3027	if (error || !req->newptr)
3028		return (error);
3029	if (value < low || value > high)
3030		return (EINVAL);
3031	*(int *)arg1 = value;
3032	return (0);
3033}
3034
3035/*
3036 * Interrupt delay is expressed in microseconds, a multiplier is used
3037 * to convert this to the appropriate clock ticks before using.
3038 */
3039static int
3040sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3041{
3042	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3043}
3044
3045static int
3046sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3047{
3048	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3049}
3050