if_fxp.c revision 170125
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 170125 2007-05-30 03:46:04Z kevlo $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/endian.h>
44#include <sys/mbuf.h>
45		/* #include <sys/mutex.h> */
46#include <sys/kernel.h>
47#include <sys/module.h>
48#include <sys/socket.h>
49#include <sys/sysctl.h>
50
51#include <net/if.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54
55#include <net/bpf.h>
56#include <sys/sockio.h>
57#include <sys/bus.h>
58#include <machine/bus.h>
59#include <sys/rman.h>
60#include <machine/resource.h>
61
62#include <net/ethernet.h>
63#include <net/if_arp.h>
64
65
66#include <net/if_types.h>
67#include <net/if_vlan_var.h>
68
69#ifdef FXP_IP_CSUM_WAR
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/ip.h>
73#include <machine/in_cksum.h>
74#endif
75
76#include <dev/pci/pcivar.h>
77#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78
79#include <dev/mii/mii.h>
80#include <dev/mii/miivar.h>
81
82#include <dev/fxp/if_fxpreg.h>
83#include <dev/fxp/if_fxpvar.h>
84#include <dev/fxp/rcvbundl.h>
85
86MODULE_DEPEND(fxp, pci, 1, 1, 1);
87MODULE_DEPEND(fxp, ether, 1, 1, 1);
88MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89#include "miibus_if.h"
90
91/*
92 * NOTE!  On the Alpha, we have an alignment constraint.  The
93 * card DMAs the packet immediately following the RFA.  However,
94 * the first thing in the packet is a 14-byte Ethernet header.
95 * This means that the packet is misaligned.  To compensate,
96 * we actually offset the RFA 2 bytes into the cluster.  This
97 * alignes the packet after the Ethernet header at a 32-bit
98 * boundary.  HOWEVER!  This means that the RFA is misaligned!
99 */
100#define	RFA_ALIGNMENT_FUDGE	2
101
102/*
103 * Set initial transmit threshold at 64 (512 bytes). This is
104 * increased by 64 (512 bytes) at a time, to maximum of 192
105 * (1536 bytes), if an underrun occurs.
106 */
107static int tx_threshold = 64;
108
109/*
110 * The configuration byte map has several undefined fields which
111 * must be one or must be zero.  Set up a template for these bits
112 * only, (assuming a 82557 chip) leaving the actual configuration
113 * to fxp_init.
114 *
115 * See struct fxp_cb_config for the bit definitions.
116 */
117static u_char fxp_cb_config_template[] = {
118	0x0, 0x0,		/* cb_status */
119	0x0, 0x0,		/* cb_command */
120	0x0, 0x0, 0x0, 0x0,	/* link_addr */
121	0x0,	/*  0 */
122	0x0,	/*  1 */
123	0x0,	/*  2 */
124	0x0,	/*  3 */
125	0x0,	/*  4 */
126	0x0,	/*  5 */
127	0x32,	/*  6 */
128	0x0,	/*  7 */
129	0x0,	/*  8 */
130	0x0,	/*  9 */
131	0x6,	/* 10 */
132	0x0,	/* 11 */
133	0x0,	/* 12 */
134	0x0,	/* 13 */
135	0xf2,	/* 14 */
136	0x48,	/* 15 */
137	0x0,	/* 16 */
138	0x40,	/* 17 */
139	0xf0,	/* 18 */
140	0x0,	/* 19 */
141	0x3f,	/* 20 */
142	0x5	/* 21 */
143};
144
145struct fxp_ident {
146	uint16_t	devid;
147	int16_t		revid;		/* -1 matches anything */
148	char 		*name;
149};
150
151/*
152 * Claim various Intel PCI device identifiers for this driver.  The
153 * sub-vendor and sub-device field are extensively used to identify
154 * particular variants, but we don't currently differentiate between
155 * them.
156 */
157static struct fxp_ident fxp_ident_table[] = {
158    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
159    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
160    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
172    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
173    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
175    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
176    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
177    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
178    { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
179    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180    { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181    { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
182    { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
183    { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
184    { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
185    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
186    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
187    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
190    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
191    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
192    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
195    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
196    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
198    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
199    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
200    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
201    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
202    { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
203    { 0,	-1,	NULL },
204};
205
206#ifdef FXP_IP_CSUM_WAR
207#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
208#else
209#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
210#endif
211
212static int		fxp_probe(device_t dev);
213static int		fxp_attach(device_t dev);
214static int		fxp_detach(device_t dev);
215static int		fxp_shutdown(device_t dev);
216static int		fxp_suspend(device_t dev);
217static int		fxp_resume(device_t dev);
218
219static void		fxp_intr(void *xsc);
220static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
221			    uint8_t statack, int count);
222static void 		fxp_init(void *xsc);
223static void 		fxp_init_body(struct fxp_softc *sc);
224static void 		fxp_tick(void *xsc);
225static void 		fxp_start(struct ifnet *ifp);
226static void 		fxp_start_body(struct ifnet *ifp);
227static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
228static void		fxp_stop(struct fxp_softc *sc);
229static void 		fxp_release(struct fxp_softc *sc);
230static int		fxp_ioctl(struct ifnet *ifp, u_long command,
231			    caddr_t data);
232static void 		fxp_watchdog(struct fxp_softc *sc);
233static int		fxp_add_rfabuf(struct fxp_softc *sc,
234    			    struct fxp_rx *rxp);
235static int		fxp_mc_addrs(struct fxp_softc *sc);
236static void		fxp_mc_setup(struct fxp_softc *sc);
237static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
238			    int autosize);
239static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
240			    uint16_t data);
241static void		fxp_autosize_eeprom(struct fxp_softc *sc);
242static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
243			    int offset, int words);
244static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
245			    int offset, int words);
246static int		fxp_ifmedia_upd(struct ifnet *ifp);
247static void		fxp_ifmedia_sts(struct ifnet *ifp,
248			    struct ifmediareq *ifmr);
249static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
250static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
251			    struct ifmediareq *ifmr);
252static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
253static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
254			    int value);
255static void		fxp_load_ucode(struct fxp_softc *sc);
256static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
257			    int low, int high);
258static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
259static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
260static void 		fxp_scb_wait(struct fxp_softc *sc);
261static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
262static void		fxp_dma_wait(struct fxp_softc *sc,
263    			    volatile uint16_t *status, bus_dma_tag_t dmat,
264			    bus_dmamap_t map);
265
266static device_method_t fxp_methods[] = {
267	/* Device interface */
268	DEVMETHOD(device_probe,		fxp_probe),
269	DEVMETHOD(device_attach,	fxp_attach),
270	DEVMETHOD(device_detach,	fxp_detach),
271	DEVMETHOD(device_shutdown,	fxp_shutdown),
272	DEVMETHOD(device_suspend,	fxp_suspend),
273	DEVMETHOD(device_resume,	fxp_resume),
274
275	/* MII interface */
276	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
277	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
278
279	{ 0, 0 }
280};
281
282static driver_t fxp_driver = {
283	"fxp",
284	fxp_methods,
285	sizeof(struct fxp_softc),
286};
287
288static devclass_t fxp_devclass;
289
290DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
291DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
292DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
293
294static struct resource_spec fxp_res_spec_mem[] = {
295	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
296	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
297	{ -1, 0 }
298};
299
300static struct resource_spec fxp_res_spec_io[] = {
301	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
302	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
303	{ -1, 0 }
304};
305
306/*
307 * Wait for the previous command to be accepted (but not necessarily
308 * completed).
309 */
310static void
311fxp_scb_wait(struct fxp_softc *sc)
312{
313	union {
314		uint16_t w;
315		uint8_t b[2];
316	} flowctl;
317	int i = 10000;
318
319	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
320		DELAY(2);
321	if (i == 0) {
322		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
323		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
324		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
325		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
326		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
327		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
328	}
329}
330
331static void
332fxp_scb_cmd(struct fxp_softc *sc, int cmd)
333{
334
335	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
336		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
337		fxp_scb_wait(sc);
338	}
339	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
340}
341
342static void
343fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
344    bus_dma_tag_t dmat, bus_dmamap_t map)
345{
346	int i = 10000;
347
348	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
349	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
350		DELAY(2);
351		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
352	}
353	if (i == 0)
354		device_printf(sc->dev, "DMA timeout\n");
355}
356
357/*
358 * Return identification string if this device is ours.
359 */
360static int
361fxp_probe(device_t dev)
362{
363	uint16_t devid;
364	uint8_t revid;
365	struct fxp_ident *ident;
366
367	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
368		devid = pci_get_device(dev);
369		revid = pci_get_revid(dev);
370		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
371			if (ident->devid == devid &&
372			    (ident->revid == revid || ident->revid == -1)) {
373				device_set_desc(dev, ident->name);
374				return (BUS_PROBE_DEFAULT);
375			}
376		}
377	}
378	return (ENXIO);
379}
380
381static void
382fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
383{
384	uint32_t *addr;
385
386	if (error)
387		return;
388
389	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
390	addr = arg;
391	*addr = segs->ds_addr;
392}
393
394static int
395fxp_attach(device_t dev)
396{
397	struct fxp_softc *sc;
398	struct fxp_cb_tx *tcbp;
399	struct fxp_tx *txp;
400	struct fxp_rx *rxp;
401	struct ifnet *ifp;
402	uint32_t val;
403	uint16_t data, myea[ETHER_ADDR_LEN / 2];
404	u_char eaddr[ETHER_ADDR_LEN];
405	int i, prefer_iomap;
406	int error;
407
408	error = 0;
409	sc = device_get_softc(dev);
410	sc->dev = dev;
411	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
412	    MTX_DEF);
413	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
414	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
415	    fxp_serial_ifmedia_sts);
416
417	ifp = sc->ifp = if_alloc(IFT_ETHER);
418	if (ifp == NULL) {
419		device_printf(dev, "can not if_alloc()\n");
420		error = ENOSPC;
421		goto fail;
422	}
423
424	/*
425	 * Enable bus mastering.
426	 */
427	pci_enable_busmaster(dev);
428	val = pci_read_config(dev, PCIR_COMMAND, 2);
429
430	/*
431	 * Figure out which we should try first - memory mapping or i/o mapping?
432	 * We default to memory mapping. Then we accept an override from the
433	 * command line. Then we check to see which one is enabled.
434	 */
435	prefer_iomap = 0;
436	resource_int_value(device_get_name(dev), device_get_unit(dev),
437	    "prefer_iomap", &prefer_iomap);
438	if (prefer_iomap)
439		sc->fxp_spec = fxp_res_spec_io;
440	else
441		sc->fxp_spec = fxp_res_spec_mem;
442
443	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
444	if (error) {
445		if (sc->fxp_spec == fxp_res_spec_mem)
446			sc->fxp_spec = fxp_res_spec_io;
447		else
448			sc->fxp_spec = fxp_res_spec_mem;
449		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
450	}
451	if (error) {
452		device_printf(dev, "could not allocate resources\n");
453		error = ENXIO;
454		goto fail;
455	}
456
457	if (bootverbose) {
458		device_printf(dev, "using %s space register mapping\n",
459		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
460	}
461
462	/*
463	 * Reset to a stable state.
464	 */
465	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
466	DELAY(10);
467
468	/*
469	 * Find out how large of an SEEPROM we have.
470	 */
471	fxp_autosize_eeprom(sc);
472
473	/*
474	 * Find out the chip revision; lump all 82557 revs together.
475	 */
476	fxp_read_eeprom(sc, &data, 5, 1);
477	if ((data >> 8) == 1)
478		sc->revision = FXP_REV_82557;
479	else
480		sc->revision = pci_get_revid(dev);
481
482	/*
483	 * Determine whether we must use the 503 serial interface.
484	 */
485	fxp_read_eeprom(sc, &data, 6, 1);
486	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
487	    && (data & FXP_PHY_SERIAL_ONLY))
488		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
489
490	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
491	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
492	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
493	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
494	    "FXP driver receive interrupt microcode bundling delay");
495	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
496	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
497	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
498	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
499	    "FXP driver receive interrupt microcode bundle size limit");
500	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
501	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
502	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
503	    "FXP RNR events");
504	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
505	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
506	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
507	    "FXP flow control disabled");
508
509	/*
510	 * Pull in device tunables.
511	 */
512	sc->tunable_int_delay = TUNABLE_INT_DELAY;
513	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
514	sc->tunable_noflow = 1;
515	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516	    "int_delay", &sc->tunable_int_delay);
517	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
518	    "bundle_max", &sc->tunable_bundle_max);
519	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
520	    "noflow", &sc->tunable_noflow);
521	sc->rnr = 0;
522
523	/*
524	 * Enable workarounds for certain chip revision deficiencies.
525	 *
526	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
527	 * some systems based a normal 82559 design, have a defect where
528	 * the chip can cause a PCI protocol violation if it receives
529	 * a CU_RESUME command when it is entering the IDLE state.  The
530	 * workaround is to disable Dynamic Standby Mode, so the chip never
531	 * deasserts CLKRUN#, and always remains in an active state.
532	 *
533	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
534	 */
535	i = pci_get_device(dev);
536	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
537	    sc->revision >= FXP_REV_82559_A0) {
538		fxp_read_eeprom(sc, &data, 10, 1);
539		if (data & 0x02) {			/* STB enable */
540			uint16_t cksum;
541			int i;
542
543			device_printf(dev,
544			    "Disabling dynamic standby mode in EEPROM\n");
545			data &= ~0x02;
546			fxp_write_eeprom(sc, &data, 10, 1);
547			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
548			cksum = 0;
549			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
550				fxp_read_eeprom(sc, &data, i, 1);
551				cksum += data;
552			}
553			i = (1 << sc->eeprom_size) - 1;
554			cksum = 0xBABA - cksum;
555			fxp_read_eeprom(sc, &data, i, 1);
556			fxp_write_eeprom(sc, &cksum, i, 1);
557			device_printf(dev,
558			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
559			    i, data, cksum);
560#if 1
561			/*
562			 * If the user elects to continue, try the software
563			 * workaround, as it is better than nothing.
564			 */
565			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
566#endif
567		}
568	}
569
570	/*
571	 * If we are not a 82557 chip, we can enable extended features.
572	 */
573	if (sc->revision != FXP_REV_82557) {
574		/*
575		 * If MWI is enabled in the PCI configuration, and there
576		 * is a valid cacheline size (8 or 16 dwords), then tell
577		 * the board to turn on MWI.
578		 */
579		if (val & PCIM_CMD_MWRICEN &&
580		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
581			sc->flags |= FXP_FLAG_MWI_ENABLE;
582
583		/* turn on the extended TxCB feature */
584		sc->flags |= FXP_FLAG_EXT_TXCB;
585
586		/* enable reception of long frames for VLAN */
587		sc->flags |= FXP_FLAG_LONG_PKT_EN;
588	} else {
589		/* a hack to get long VLAN frames on a 82557 */
590		sc->flags |= FXP_FLAG_SAVE_BAD;
591	}
592
593	/*
594	 * Enable use of extended RFDs and TCBs for 82550
595	 * and later chips. Note: we need extended TXCB support
596	 * too, but that's already enabled by the code above.
597	 * Be careful to do this only on the right devices.
598	 */
599	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
600	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
601	    || sc->revision == FXP_REV_82551_10) {
602		sc->rfa_size = sizeof (struct fxp_rfa);
603		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
604		sc->flags |= FXP_FLAG_EXT_RFA;
605	} else {
606		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
607		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
608	}
609
610	/*
611	 * Allocate DMA tags and DMA safe memory.
612	 */
613	sc->maxtxseg = FXP_NTXSEG;
614	if (sc->flags & FXP_FLAG_EXT_RFA)
615		sc->maxtxseg--;
616	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
617	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
618	    MCLBYTES * sc->maxtxseg, sc->maxtxseg, MCLBYTES, 0,
619	    busdma_lock_mutex, &Giant, &sc->fxp_mtag);
620	if (error) {
621		device_printf(dev, "could not allocate dma tag\n");
622		goto fail;
623	}
624
625	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
626	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
627	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
628	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
629	if (error) {
630		device_printf(dev, "could not allocate dma tag\n");
631		goto fail;
632	}
633
634	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
635	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
636	if (error)
637		goto fail;
638	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
639	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
640	if (error) {
641		device_printf(dev, "could not map the stats buffer\n");
642		goto fail;
643	}
644
645	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
646	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
647	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
648	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
649	if (error) {
650		device_printf(dev, "could not allocate dma tag\n");
651		goto fail;
652	}
653
654	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
655	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
656	if (error)
657		goto fail;
658
659	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
660	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
661	    &sc->fxp_desc.cbl_addr, 0);
662	if (error) {
663		device_printf(dev, "could not map DMA memory\n");
664		goto fail;
665	}
666
667	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
668	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
670	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
671	if (error) {
672		device_printf(dev, "could not allocate dma tag\n");
673		goto fail;
674	}
675
676	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
677	    BUS_DMA_NOWAIT, &sc->mcs_map);
678	if (error)
679		goto fail;
680	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
681	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
682	if (error) {
683		device_printf(dev, "can't map the multicast setup command\n");
684		goto fail;
685	}
686
687	/*
688	 * Pre-allocate the TX DMA maps and setup the pointers to
689	 * the TX command blocks.
690	 */
691	txp = sc->fxp_desc.tx_list;
692	tcbp = sc->fxp_desc.cbl_list;
693	for (i = 0; i < FXP_NTXCB; i++) {
694		txp[i].tx_cb = tcbp + i;
695		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
696		if (error) {
697			device_printf(dev, "can't create DMA map for TX\n");
698			goto fail;
699		}
700	}
701	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
702	if (error) {
703		device_printf(dev, "can't create spare DMA map\n");
704		goto fail;
705	}
706
707	/*
708	 * Pre-allocate our receive buffers.
709	 */
710	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
711	for (i = 0; i < FXP_NRFABUFS; i++) {
712		rxp = &sc->fxp_desc.rx_list[i];
713		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
714		if (error) {
715			device_printf(dev, "can't create DMA map for RX\n");
716			goto fail;
717		}
718		if (fxp_add_rfabuf(sc, rxp) != 0) {
719			error = ENOMEM;
720			goto fail;
721		}
722	}
723
724	/*
725	 * Read MAC address.
726	 */
727	fxp_read_eeprom(sc, myea, 0, 3);
728	eaddr[0] = myea[0] & 0xff;
729	eaddr[1] = myea[0] >> 8;
730	eaddr[2] = myea[1] & 0xff;
731	eaddr[3] = myea[1] >> 8;
732	eaddr[4] = myea[2] & 0xff;
733	eaddr[5] = myea[2] >> 8;
734	if (bootverbose) {
735		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
736		    pci_get_vendor(dev), pci_get_device(dev),
737		    pci_get_subvendor(dev), pci_get_subdevice(dev),
738		    pci_get_revid(dev));
739		fxp_read_eeprom(sc, &data, 10, 1);
740		device_printf(dev, "Dynamic Standby mode is %s\n",
741		    data & 0x02 ? "enabled" : "disabled");
742	}
743
744	/*
745	 * If this is only a 10Mbps device, then there is no MII, and
746	 * the PHY will use a serial interface instead.
747	 *
748	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
749	 * doesn't have a programming interface of any sort.  The
750	 * media is sensed automatically based on how the link partner
751	 * is configured.  This is, in essence, manual configuration.
752	 */
753	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
754		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
755		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
756	} else {
757		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
758		    fxp_ifmedia_sts)) {
759	                device_printf(dev, "MII without any PHY!\n");
760			error = ENXIO;
761			goto fail;
762		}
763	}
764
765	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
766	ifp->if_init = fxp_init;
767	ifp->if_softc = sc;
768	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
769	ifp->if_ioctl = fxp_ioctl;
770	ifp->if_start = fxp_start;
771
772	ifp->if_capabilities = ifp->if_capenable = 0;
773
774	/* Enable checksum offload for 82550 or better chips */
775	if (sc->flags & FXP_FLAG_EXT_RFA) {
776		ifp->if_hwassist = FXP_CSUM_FEATURES;
777		ifp->if_capabilities |= IFCAP_HWCSUM;
778		ifp->if_capenable |= IFCAP_HWCSUM;
779	}
780
781#ifdef DEVICE_POLLING
782	/* Inform the world we support polling. */
783	ifp->if_capabilities |= IFCAP_POLLING;
784#endif
785
786	/*
787	 * Attach the interface.
788	 */
789	ether_ifattach(ifp, eaddr);
790
791	/*
792	 * Tell the upper layer(s) we support long frames.
793	 * Must appear after the call to ether_ifattach() because
794	 * ether_ifattach() sets ifi_hdrlen to the default value.
795	 */
796	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
797	ifp->if_capabilities |= IFCAP_VLAN_MTU;
798	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
799
800	/*
801	 * Let the system queue as many packets as we have available
802	 * TX descriptors.
803	 */
804	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
805	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
806	IFQ_SET_READY(&ifp->if_snd);
807
808	/*
809	 * Hook our interrupt after all initialization is complete.
810	 */
811	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
812			       NULL, fxp_intr, sc, &sc->ih);
813	if (error) {
814		device_printf(dev, "could not setup irq\n");
815		ether_ifdetach(sc->ifp);
816		goto fail;
817	}
818
819fail:
820	if (error)
821		fxp_release(sc);
822	return (error);
823}
824
825/*
826 * Release all resources.  The softc lock should not be held and the
827 * interrupt should already be torn down.
828 */
829static void
830fxp_release(struct fxp_softc *sc)
831{
832	struct fxp_rx *rxp;
833	struct fxp_tx *txp;
834	int i;
835
836	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
837	KASSERT(sc->ih == NULL,
838	    ("fxp_release() called with intr handle still active"));
839	if (sc->miibus)
840		device_delete_child(sc->dev, sc->miibus);
841	bus_generic_detach(sc->dev);
842	ifmedia_removeall(&sc->sc_media);
843	if (sc->fxp_desc.cbl_list) {
844		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
845		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
846		    sc->cbl_map);
847	}
848	if (sc->fxp_stats) {
849		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
850		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
851	}
852	if (sc->mcsp) {
853		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
854		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
855	}
856	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
857	if (sc->fxp_mtag) {
858		for (i = 0; i < FXP_NRFABUFS; i++) {
859			rxp = &sc->fxp_desc.rx_list[i];
860			if (rxp->rx_mbuf != NULL) {
861				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
862				    BUS_DMASYNC_POSTREAD);
863				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
864				m_freem(rxp->rx_mbuf);
865			}
866			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
867		}
868		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
869		for (i = 0; i < FXP_NTXCB; i++) {
870			txp = &sc->fxp_desc.tx_list[i];
871			if (txp->tx_mbuf != NULL) {
872				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
873				    BUS_DMASYNC_POSTWRITE);
874				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
875				m_freem(txp->tx_mbuf);
876			}
877			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
878		}
879		bus_dma_tag_destroy(sc->fxp_mtag);
880	}
881	if (sc->fxp_stag)
882		bus_dma_tag_destroy(sc->fxp_stag);
883	if (sc->cbl_tag)
884		bus_dma_tag_destroy(sc->cbl_tag);
885	if (sc->mcs_tag)
886		bus_dma_tag_destroy(sc->mcs_tag);
887	if (sc->ifp)
888		if_free(sc->ifp);
889
890	mtx_destroy(&sc->sc_mtx);
891}
892
893/*
894 * Detach interface.
895 */
896static int
897fxp_detach(device_t dev)
898{
899	struct fxp_softc *sc = device_get_softc(dev);
900
901#ifdef DEVICE_POLLING
902	if (sc->ifp->if_capenable & IFCAP_POLLING)
903		ether_poll_deregister(sc->ifp);
904#endif
905
906	FXP_LOCK(sc);
907	sc->suspended = 1;	/* Do same thing as we do for suspend */
908	/*
909	 * Stop DMA and drop transmit queue, but disable interrupts first.
910	 */
911	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
912	fxp_stop(sc);
913	FXP_UNLOCK(sc);
914	callout_drain(&sc->stat_ch);
915
916	/*
917	 * Close down routes etc.
918	 */
919	ether_ifdetach(sc->ifp);
920
921	/*
922	 * Unhook interrupt before dropping lock. This is to prevent
923	 * races with fxp_intr().
924	 */
925	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
926	sc->ih = NULL;
927
928	/* Release our allocated resources. */
929	fxp_release(sc);
930	return (0);
931}
932
933/*
934 * Device shutdown routine. Called at system shutdown after sync. The
935 * main purpose of this routine is to shut off receiver DMA so that
936 * kernel memory doesn't get clobbered during warmboot.
937 */
938static int
939fxp_shutdown(device_t dev)
940{
941	struct fxp_softc *sc = device_get_softc(dev);
942
943	/*
944	 * Make sure that DMA is disabled prior to reboot. Not doing
945	 * do could allow DMA to corrupt kernel memory during the
946	 * reboot before the driver initializes.
947	 */
948	FXP_LOCK(sc);
949	fxp_stop(sc);
950	FXP_UNLOCK(sc);
951	return (0);
952}
953
954/*
955 * Device suspend routine.  Stop the interface and save some PCI
956 * settings in case the BIOS doesn't restore them properly on
957 * resume.
958 */
959static int
960fxp_suspend(device_t dev)
961{
962	struct fxp_softc *sc = device_get_softc(dev);
963
964	FXP_LOCK(sc);
965
966	fxp_stop(sc);
967
968	sc->suspended = 1;
969
970	FXP_UNLOCK(sc);
971	return (0);
972}
973
974/*
975 * Device resume routine. re-enable busmastering, and restart the interface if
976 * appropriate.
977 */
978static int
979fxp_resume(device_t dev)
980{
981	struct fxp_softc *sc = device_get_softc(dev);
982	struct ifnet *ifp = sc->ifp;
983
984	FXP_LOCK(sc);
985
986	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
987	DELAY(10);
988
989	/* reinitialize interface if necessary */
990	if (ifp->if_flags & IFF_UP)
991		fxp_init_body(sc);
992
993	sc->suspended = 0;
994
995	FXP_UNLOCK(sc);
996	return (0);
997}
998
999static void
1000fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1001{
1002	uint16_t reg;
1003	int x;
1004
1005	/*
1006	 * Shift in data.
1007	 */
1008	for (x = 1 << (length - 1); x; x >>= 1) {
1009		if (data & x)
1010			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1011		else
1012			reg = FXP_EEPROM_EECS;
1013		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1014		DELAY(1);
1015		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1016		DELAY(1);
1017		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1018		DELAY(1);
1019	}
1020}
1021
1022/*
1023 * Read from the serial EEPROM. Basically, you manually shift in
1024 * the read opcode (one bit at a time) and then shift in the address,
1025 * and then you shift out the data (all of this one bit at a time).
1026 * The word size is 16 bits, so you have to provide the address for
1027 * every 16 bits of data.
1028 */
1029static uint16_t
1030fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1031{
1032	uint16_t reg, data;
1033	int x;
1034
1035	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1036	/*
1037	 * Shift in read opcode.
1038	 */
1039	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1040	/*
1041	 * Shift in address.
1042	 */
1043	data = 0;
1044	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1045		if (offset & x)
1046			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1047		else
1048			reg = FXP_EEPROM_EECS;
1049		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1050		DELAY(1);
1051		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1052		DELAY(1);
1053		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1054		DELAY(1);
1055		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1056		data++;
1057		if (autosize && reg == 0) {
1058			sc->eeprom_size = data;
1059			break;
1060		}
1061	}
1062	/*
1063	 * Shift out data.
1064	 */
1065	data = 0;
1066	reg = FXP_EEPROM_EECS;
1067	for (x = 1 << 15; x; x >>= 1) {
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1069		DELAY(1);
1070		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1071			data |= x;
1072		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1073		DELAY(1);
1074	}
1075	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1076	DELAY(1);
1077
1078	return (data);
1079}
1080
1081static void
1082fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1083{
1084	int i;
1085
1086	/*
1087	 * Erase/write enable.
1088	 */
1089	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1090	fxp_eeprom_shiftin(sc, 0x4, 3);
1091	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1092	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1093	DELAY(1);
1094	/*
1095	 * Shift in write opcode, address, data.
1096	 */
1097	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1098	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1099	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1100	fxp_eeprom_shiftin(sc, data, 16);
1101	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1102	DELAY(1);
1103	/*
1104	 * Wait for EEPROM to finish up.
1105	 */
1106	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1107	DELAY(1);
1108	for (i = 0; i < 1000; i++) {
1109		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1110			break;
1111		DELAY(50);
1112	}
1113	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1114	DELAY(1);
1115	/*
1116	 * Erase/write disable.
1117	 */
1118	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1119	fxp_eeprom_shiftin(sc, 0x4, 3);
1120	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1121	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1122	DELAY(1);
1123}
1124
1125/*
1126 * From NetBSD:
1127 *
1128 * Figure out EEPROM size.
1129 *
1130 * 559's can have either 64-word or 256-word EEPROMs, the 558
1131 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1132 * talks about the existance of 16 to 256 word EEPROMs.
1133 *
1134 * The only known sizes are 64 and 256, where the 256 version is used
1135 * by CardBus cards to store CIS information.
1136 *
1137 * The address is shifted in msb-to-lsb, and after the last
1138 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1139 * after which follows the actual data. We try to detect this zero, by
1140 * probing the data-out bit in the EEPROM control register just after
1141 * having shifted in a bit. If the bit is zero, we assume we've
1142 * shifted enough address bits. The data-out should be tri-state,
1143 * before this, which should translate to a logical one.
1144 */
1145static void
1146fxp_autosize_eeprom(struct fxp_softc *sc)
1147{
1148
1149	/* guess maximum size of 256 words */
1150	sc->eeprom_size = 8;
1151
1152	/* autosize */
1153	(void) fxp_eeprom_getword(sc, 0, 1);
1154}
1155
1156static void
1157fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1158{
1159	int i;
1160
1161	for (i = 0; i < words; i++)
1162		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1163}
1164
1165static void
1166fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1167{
1168	int i;
1169
1170	for (i = 0; i < words; i++)
1171		fxp_eeprom_putword(sc, offset + i, data[i]);
1172}
1173
1174/*
1175 * Grab the softc lock and call the real fxp_start_body() routine
1176 */
1177static void
1178fxp_start(struct ifnet *ifp)
1179{
1180	struct fxp_softc *sc = ifp->if_softc;
1181
1182	FXP_LOCK(sc);
1183	fxp_start_body(ifp);
1184	FXP_UNLOCK(sc);
1185}
1186
1187/*
1188 * Start packet transmission on the interface.
1189 * This routine must be called with the softc lock held, and is an
1190 * internal entry point only.
1191 */
1192static void
1193fxp_start_body(struct ifnet *ifp)
1194{
1195	struct fxp_softc *sc = ifp->if_softc;
1196	struct mbuf *mb_head;
1197	int error, txqueued;
1198
1199	FXP_LOCK_ASSERT(sc, MA_OWNED);
1200
1201	/*
1202	 * See if we need to suspend xmit until the multicast filter
1203	 * has been reprogrammed (which can only be done at the head
1204	 * of the command chain).
1205	 */
1206	if (sc->need_mcsetup)
1207		return;
1208
1209	/*
1210	 * We're finished if there is nothing more to add to the list or if
1211	 * we're all filled up with buffers to transmit.
1212	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1213	 *       a NOP command when needed.
1214	 */
1215	txqueued = 0;
1216	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1217	    sc->tx_queued < FXP_NTXCB - 1) {
1218
1219		/*
1220		 * Grab a packet to transmit.
1221		 */
1222		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1223		if (mb_head == NULL)
1224			break;
1225
1226		error = fxp_encap(sc, mb_head);
1227		if (error)
1228			break;
1229		txqueued = 1;
1230	}
1231	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1232
1233	/*
1234	 * We're finished. If we added to the list, issue a RESUME to get DMA
1235	 * going again if suspended.
1236	 */
1237	if (txqueued) {
1238		fxp_scb_wait(sc);
1239		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1240	}
1241}
1242
1243static int
1244fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1245{
1246	struct ifnet *ifp;
1247	struct mbuf *m;
1248	struct fxp_tx *txp;
1249	struct fxp_cb_tx *cbp;
1250	bus_dma_segment_t segs[FXP_NTXSEG];
1251	int chainlen, error, i, nseg;
1252
1253	FXP_LOCK_ASSERT(sc, MA_OWNED);
1254	ifp = sc->ifp;
1255
1256	/*
1257	 * Get pointer to next available tx desc.
1258	 */
1259	txp = sc->fxp_desc.tx_last->tx_next;
1260
1261	/*
1262	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1263	 * Ethernet Controller Family Open Source Software
1264	 * Developer Manual says:
1265	 *   Using software parsing is only allowed with legal
1266	 *   TCP/IP or UDP/IP packets.
1267	 *   ...
1268	 *   For all other datagrams, hardware parsing must
1269	 *   be used.
1270	 * Software parsing appears to truncate ICMP and
1271	 * fragmented UDP packets that contain one to three
1272	 * bytes in the second (and final) mbuf of the packet.
1273	 */
1274	if (sc->flags & FXP_FLAG_EXT_RFA)
1275		txp->tx_cb->ipcb_ip_activation_high =
1276		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1277
1278	/*
1279	 * Deal with TCP/IP checksum offload. Note that
1280	 * in order for TCP checksum offload to work,
1281	 * the pseudo header checksum must have already
1282	 * been computed and stored in the checksum field
1283	 * in the TCP header. The stack should have
1284	 * already done this for us.
1285	 */
1286	if (m_head->m_pkthdr.csum_flags) {
1287		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1288			txp->tx_cb->ipcb_ip_schedule =
1289			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1290			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1291				txp->tx_cb->ipcb_ip_schedule |=
1292				    FXP_IPCB_TCP_PACKET;
1293		}
1294
1295#ifdef FXP_IP_CSUM_WAR
1296		/*
1297		 * XXX The 82550 chip appears to have trouble
1298		 * dealing with IP header checksums in very small
1299		 * datagrams, namely fragments from 1 to 3 bytes
1300		 * in size. For example, say you want to transmit
1301		 * a UDP packet of 1473 bytes. The packet will be
1302		 * fragmented over two IP datagrams, the latter
1303		 * containing only one byte of data. The 82550 will
1304		 * botch the header checksum on the 1-byte fragment.
1305		 * As long as the datagram contains 4 or more bytes
1306		 * of data, you're ok.
1307		 *
1308                 * The following code attempts to work around this
1309		 * problem: if the datagram is less than 38 bytes
1310		 * in size (14 bytes ether header, 20 bytes IP header,
1311		 * plus 4 bytes of data), we punt and compute the IP
1312		 * header checksum by hand. This workaround doesn't
1313		 * work very well, however, since it can be fooled
1314		 * by things like VLAN tags and IP options that make
1315		 * the header sizes/offsets vary.
1316		 */
1317
1318		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1319			if (m_head->m_pkthdr.len < 38) {
1320				struct ip *ip;
1321				m_head->m_data += ETHER_HDR_LEN;
1322				ip = mtod(mb_head, struct ip *);
1323				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1324				m_head->m_data -= ETHER_HDR_LEN;
1325			} else {
1326				txp->tx_cb->ipcb_ip_activation_high =
1327				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1328				txp->tx_cb->ipcb_ip_schedule |=
1329				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1330			}
1331		}
1332#endif
1333	}
1334
1335	chainlen = 0;
1336	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1337		chainlen++;
1338	if (chainlen > sc->maxtxseg) {
1339		struct mbuf *mn;
1340
1341		/*
1342		 * We ran out of segments. We have to recopy this
1343		 * mbuf chain first. Bail out if we can't get the
1344		 * new buffers.
1345		 */
1346		mn = m_defrag(m_head, M_DONTWAIT);
1347		if (mn == NULL) {
1348			m_freem(m_head);
1349			return (-1);
1350		} else {
1351			m_head = mn;
1352		}
1353	}
1354
1355	/*
1356	 * Go through each of the mbufs in the chain and initialize
1357	 * the transmit buffer descriptors with the physical address
1358	 * and size of the mbuf.
1359	 */
1360	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1361	    m_head, segs, &nseg, 0);
1362	if (error) {
1363		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1364		m_freem(m_head);
1365		return (-1);
1366	}
1367
1368	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1369
1370	cbp = txp->tx_cb;
1371	for (i = 0; i < nseg; i++) {
1372		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1373		/*
1374		 * If this is an 82550/82551, then we're using extended
1375		 * TxCBs _and_ we're using checksum offload. This means
1376		 * that the TxCB is really an IPCB. One major difference
1377		 * between the two is that with plain extended TxCBs,
1378		 * the bottom half of the TxCB contains two entries from
1379		 * the TBD array, whereas IPCBs contain just one entry:
1380		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1381		 * checksum offload control bits. So to make things work
1382		 * right, we have to start filling in the TBD array
1383		 * starting from a different place depending on whether
1384		 * the chip is an 82550/82551 or not.
1385		 */
1386		if (sc->flags & FXP_FLAG_EXT_RFA) {
1387			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1388			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1389		} else {
1390			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1391			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1392		}
1393	}
1394	cbp->tbd_number = nseg;
1395
1396	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1397	txp->tx_mbuf = m_head;
1398	txp->tx_cb->cb_status = 0;
1399	txp->tx_cb->byte_count = 0;
1400	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1401		txp->tx_cb->cb_command =
1402		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1403		    FXP_CB_COMMAND_S);
1404	} else {
1405		txp->tx_cb->cb_command =
1406		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1407		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1408		/*
1409		 * Set a 5 second timer just in case we don't hear
1410		 * from the card again.
1411		 */
1412		sc->watchdog_timer = 5;
1413	}
1414	txp->tx_cb->tx_threshold = tx_threshold;
1415
1416	/*
1417	 * Advance the end of list forward.
1418	 */
1419
1420#ifdef __alpha__
1421	/*
1422	 * On platforms which can't access memory in 16-bit
1423	 * granularities, we must prevent the card from DMA'ing
1424	 * up the status while we update the command field.
1425	 * This could cause us to overwrite the completion status.
1426	 * XXX This is probably bogus and we're _not_ looking
1427	 * for atomicity here.
1428	 */
1429	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1430	    htole16(FXP_CB_COMMAND_S));
1431#else
1432	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1433#endif /*__alpha__*/
1434	sc->fxp_desc.tx_last = txp;
1435
1436	/*
1437	 * Advance the beginning of the list forward if there are
1438	 * no other packets queued (when nothing is queued, tx_first
1439	 * sits on the last TxCB that was sent out).
1440	 */
1441	if (sc->tx_queued == 0)
1442		sc->fxp_desc.tx_first = txp;
1443
1444	sc->tx_queued++;
1445
1446	/*
1447	 * Pass packet to bpf if there is a listener.
1448	 */
1449	BPF_MTAP(ifp, m_head);
1450	return (0);
1451}
1452
1453#ifdef DEVICE_POLLING
1454static poll_handler_t fxp_poll;
1455
1456static void
1457fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1458{
1459	struct fxp_softc *sc = ifp->if_softc;
1460	uint8_t statack;
1461
1462	FXP_LOCK(sc);
1463	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1464		FXP_UNLOCK(sc);
1465		return;
1466	}
1467
1468	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1469	    FXP_SCB_STATACK_FR;
1470	if (cmd == POLL_AND_CHECK_STATUS) {
1471		uint8_t tmp;
1472
1473		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1474		if (tmp == 0xff || tmp == 0) {
1475			FXP_UNLOCK(sc);
1476			return; /* nothing to do */
1477		}
1478		tmp &= ~statack;
1479		/* ack what we can */
1480		if (tmp != 0)
1481			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1482		statack |= tmp;
1483	}
1484	fxp_intr_body(sc, ifp, statack, count);
1485	FXP_UNLOCK(sc);
1486}
1487#endif /* DEVICE_POLLING */
1488
1489/*
1490 * Process interface interrupts.
1491 */
1492static void
1493fxp_intr(void *xsc)
1494{
1495	struct fxp_softc *sc = xsc;
1496	struct ifnet *ifp = sc->ifp;
1497	uint8_t statack;
1498
1499	FXP_LOCK(sc);
1500	if (sc->suspended) {
1501		FXP_UNLOCK(sc);
1502		return;
1503	}
1504
1505#ifdef DEVICE_POLLING
1506	if (ifp->if_capenable & IFCAP_POLLING) {
1507		FXP_UNLOCK(sc);
1508		return;
1509	}
1510#endif
1511	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1512		/*
1513		 * It should not be possible to have all bits set; the
1514		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1515		 * all bits are set, this may indicate that the card has
1516		 * been physically ejected, so ignore it.
1517		 */
1518		if (statack == 0xff) {
1519			FXP_UNLOCK(sc);
1520			return;
1521		}
1522
1523		/*
1524		 * First ACK all the interrupts in this pass.
1525		 */
1526		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1527		fxp_intr_body(sc, ifp, statack, -1);
1528	}
1529	FXP_UNLOCK(sc);
1530}
1531
1532static void
1533fxp_txeof(struct fxp_softc *sc)
1534{
1535	struct fxp_tx *txp;
1536
1537	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1538	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1539	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1540	    txp = txp->tx_next) {
1541		if (txp->tx_mbuf != NULL) {
1542			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1543			    BUS_DMASYNC_POSTWRITE);
1544			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1545			m_freem(txp->tx_mbuf);
1546			txp->tx_mbuf = NULL;
1547			/* clear this to reset csum offload bits */
1548			txp->tx_cb->tbd[0].tb_addr = 0;
1549		}
1550		sc->tx_queued--;
1551	}
1552	sc->fxp_desc.tx_first = txp;
1553	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1554}
1555
1556static void
1557fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1558    int count)
1559{
1560	struct mbuf *m;
1561	struct fxp_rx *rxp;
1562	struct fxp_rfa *rfa;
1563	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1564	int fxp_rc = 0;
1565
1566	FXP_LOCK_ASSERT(sc, MA_OWNED);
1567	if (rnr)
1568		sc->rnr++;
1569#ifdef DEVICE_POLLING
1570	/* Pick up a deferred RNR condition if `count' ran out last time. */
1571	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1572		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1573		rnr = 1;
1574	}
1575#endif
1576
1577	/*
1578	 * Free any finished transmit mbuf chains.
1579	 *
1580	 * Handle the CNA event likt a CXTNO event. It used to
1581	 * be that this event (control unit not ready) was not
1582	 * encountered, but it is now with the SMPng modifications.
1583	 * The exact sequence of events that occur when the interface
1584	 * is brought up are different now, and if this event
1585	 * goes unhandled, the configuration/rxfilter setup sequence
1586	 * can stall for several seconds. The result is that no
1587	 * packets go out onto the wire for about 5 to 10 seconds
1588	 * after the interface is ifconfig'ed for the first time.
1589	 */
1590	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1591		fxp_txeof(sc);
1592
1593		sc->watchdog_timer = 0;
1594		if (sc->tx_queued == 0) {
1595			if (sc->need_mcsetup)
1596				fxp_mc_setup(sc);
1597		}
1598		/*
1599		 * Try to start more packets transmitting.
1600		 */
1601		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602			fxp_start_body(ifp);
1603	}
1604
1605	/*
1606	 * Just return if nothing happened on the receive side.
1607	 */
1608	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1609		return;
1610
1611	/*
1612	 * Process receiver interrupts. If a no-resource (RNR)
1613	 * condition exists, get whatever packets we can and
1614	 * re-start the receiver.
1615	 *
1616	 * When using polling, we do not process the list to completion,
1617	 * so when we get an RNR interrupt we must defer the restart
1618	 * until we hit the last buffer with the C bit set.
1619	 * If we run out of cycles and rfa_headm has the C bit set,
1620	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1621	 * that the info will be used in the subsequent polling cycle.
1622	 */
1623	for (;;) {
1624		rxp = sc->fxp_desc.rx_head;
1625		m = rxp->rx_mbuf;
1626		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1627		    RFA_ALIGNMENT_FUDGE);
1628		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1629		    BUS_DMASYNC_POSTREAD);
1630
1631#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1632		if (count >= 0 && count-- == 0) {
1633			if (rnr) {
1634				/* Defer RNR processing until the next time. */
1635				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1636				rnr = 0;
1637			}
1638			break;
1639		}
1640#endif /* DEVICE_POLLING */
1641
1642		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1643			break;
1644
1645		/*
1646		 * Advance head forward.
1647		 */
1648		sc->fxp_desc.rx_head = rxp->rx_next;
1649
1650		/*
1651		 * Add a new buffer to the receive chain.
1652		 * If this fails, the old buffer is recycled
1653		 * instead.
1654		 */
1655		fxp_rc = fxp_add_rfabuf(sc, rxp);
1656		if (fxp_rc == 0) {
1657			int total_len;
1658
1659			/*
1660			 * Fetch packet length (the top 2 bits of
1661			 * actual_size are flags set by the controller
1662			 * upon completion), and drop the packet in case
1663			 * of bogus length or CRC errors.
1664			 */
1665			total_len = le16toh(rfa->actual_size) & 0x3fff;
1666			if (total_len < sizeof(struct ether_header) ||
1667			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1668				sc->rfa_size ||
1669			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1670				m_freem(m);
1671				continue;
1672			}
1673
1674                        /* Do IP checksum checking. */
1675			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1676				if (rfa->rfax_csum_sts &
1677				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1678					m->m_pkthdr.csum_flags |=
1679					    CSUM_IP_CHECKED;
1680				if (rfa->rfax_csum_sts &
1681				    FXP_RFDX_CS_IP_CSUM_VALID)
1682					m->m_pkthdr.csum_flags |=
1683					    CSUM_IP_VALID;
1684				if ((rfa->rfax_csum_sts &
1685				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1686				    (rfa->rfax_csum_sts &
1687				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1688					m->m_pkthdr.csum_flags |=
1689					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1690					m->m_pkthdr.csum_data = 0xffff;
1691				}
1692			}
1693
1694			m->m_pkthdr.len = m->m_len = total_len;
1695			m->m_pkthdr.rcvif = ifp;
1696
1697			/*
1698			 * Drop locks before calling if_input() since it
1699			 * may re-enter fxp_start() in the netisr case.
1700			 * This would result in a lock reversal.  Better
1701			 * performance might be obtained by chaining all
1702			 * packets received, dropping the lock, and then
1703			 * calling if_input() on each one.
1704			 */
1705			FXP_UNLOCK(sc);
1706			(*ifp->if_input)(ifp, m);
1707			FXP_LOCK(sc);
1708		} else if (fxp_rc == ENOBUFS) {
1709			rnr = 0;
1710			break;
1711		}
1712	}
1713	if (rnr) {
1714		fxp_scb_wait(sc);
1715		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1716		    sc->fxp_desc.rx_head->rx_addr);
1717		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1718	}
1719}
1720
1721/*
1722 * Update packet in/out/collision statistics. The i82557 doesn't
1723 * allow you to access these counters without doing a fairly
1724 * expensive DMA to get _all_ of the statistics it maintains, so
1725 * we do this operation here only once per second. The statistics
1726 * counters in the kernel are updated from the previous dump-stats
1727 * DMA and then a new dump-stats DMA is started. The on-chip
1728 * counters are zeroed when the DMA completes. If we can't start
1729 * the DMA immediately, we don't wait - we just prepare to read
1730 * them again next time.
1731 */
1732static void
1733fxp_tick(void *xsc)
1734{
1735	struct fxp_softc *sc = xsc;
1736	struct ifnet *ifp = sc->ifp;
1737	struct fxp_stats *sp = sc->fxp_stats;
1738
1739	FXP_LOCK_ASSERT(sc, MA_OWNED);
1740	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1741	ifp->if_opackets += le32toh(sp->tx_good);
1742	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1743	if (sp->rx_good) {
1744		ifp->if_ipackets += le32toh(sp->rx_good);
1745		sc->rx_idle_secs = 0;
1746	} else {
1747		/*
1748		 * Receiver's been idle for another second.
1749		 */
1750		sc->rx_idle_secs++;
1751	}
1752	ifp->if_ierrors +=
1753	    le32toh(sp->rx_crc_errors) +
1754	    le32toh(sp->rx_alignment_errors) +
1755	    le32toh(sp->rx_rnr_errors) +
1756	    le32toh(sp->rx_overrun_errors);
1757	/*
1758	 * If any transmit underruns occured, bump up the transmit
1759	 * threshold by another 512 bytes (64 * 8).
1760	 */
1761	if (sp->tx_underruns) {
1762		ifp->if_oerrors += le32toh(sp->tx_underruns);
1763		if (tx_threshold < 192)
1764			tx_threshold += 64;
1765	}
1766
1767	/*
1768	 * Release any xmit buffers that have completed DMA. This isn't
1769	 * strictly necessary to do here, but it's advantagous for mbufs
1770	 * with external storage to be released in a timely manner rather
1771	 * than being defered for a potentially long time. This limits
1772	 * the delay to a maximum of one second.
1773	 */
1774	fxp_txeof(sc);
1775
1776	/*
1777	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1778	 * then assume the receiver has locked up and attempt to clear
1779	 * the condition by reprogramming the multicast filter. This is
1780	 * a work-around for a bug in the 82557 where the receiver locks
1781	 * up if it gets certain types of garbage in the syncronization
1782	 * bits prior to the packet header. This bug is supposed to only
1783	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1784	 * mode as well (perhaps due to a 10/100 speed transition).
1785	 */
1786	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1787		sc->rx_idle_secs = 0;
1788		fxp_mc_setup(sc);
1789	}
1790	/*
1791	 * If there is no pending command, start another stats
1792	 * dump. Otherwise punt for now.
1793	 */
1794	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1795		/*
1796		 * Start another stats dump.
1797		 */
1798		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1799		    BUS_DMASYNC_PREREAD);
1800		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1801	} else {
1802		/*
1803		 * A previous command is still waiting to be accepted.
1804		 * Just zero our copy of the stats and wait for the
1805		 * next timer event to update them.
1806		 */
1807		sp->tx_good = 0;
1808		sp->tx_underruns = 0;
1809		sp->tx_total_collisions = 0;
1810
1811		sp->rx_good = 0;
1812		sp->rx_crc_errors = 0;
1813		sp->rx_alignment_errors = 0;
1814		sp->rx_rnr_errors = 0;
1815		sp->rx_overrun_errors = 0;
1816	}
1817	if (sc->miibus != NULL)
1818		mii_tick(device_get_softc(sc->miibus));
1819
1820	/*
1821	 * Check that chip hasn't hung.
1822	 */
1823	fxp_watchdog(sc);
1824
1825	/*
1826	 * Schedule another timeout one second from now.
1827	 */
1828	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1829}
1830
1831/*
1832 * Stop the interface. Cancels the statistics updater and resets
1833 * the interface.
1834 */
1835static void
1836fxp_stop(struct fxp_softc *sc)
1837{
1838	struct ifnet *ifp = sc->ifp;
1839	struct fxp_tx *txp;
1840	int i;
1841
1842	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1843	sc->watchdog_timer = 0;
1844
1845	/*
1846	 * Cancel stats updater.
1847	 */
1848	callout_stop(&sc->stat_ch);
1849
1850	/*
1851	 * Issue software reset, which also unloads the microcode.
1852	 */
1853	sc->flags &= ~FXP_FLAG_UCODE;
1854	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1855	DELAY(50);
1856
1857	/*
1858	 * Release any xmit buffers.
1859	 */
1860	txp = sc->fxp_desc.tx_list;
1861	if (txp != NULL) {
1862		for (i = 0; i < FXP_NTXCB; i++) {
1863 			if (txp[i].tx_mbuf != NULL) {
1864				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1865				    BUS_DMASYNC_POSTWRITE);
1866				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1867				m_freem(txp[i].tx_mbuf);
1868				txp[i].tx_mbuf = NULL;
1869				/* clear this to reset csum offload bits */
1870				txp[i].tx_cb->tbd[0].tb_addr = 0;
1871			}
1872		}
1873	}
1874	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1875	sc->tx_queued = 0;
1876}
1877
1878/*
1879 * Watchdog/transmission transmit timeout handler. Called when a
1880 * transmission is started on the interface, but no interrupt is
1881 * received before the timeout. This usually indicates that the
1882 * card has wedged for some reason.
1883 */
1884static void
1885fxp_watchdog(struct fxp_softc *sc)
1886{
1887
1888	FXP_LOCK_ASSERT(sc, MA_OWNED);
1889
1890	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
1891		return;
1892
1893	device_printf(sc->dev, "device timeout\n");
1894	sc->ifp->if_oerrors++;
1895
1896	fxp_init_body(sc);
1897}
1898
1899/*
1900 * Acquire locks and then call the real initialization function.  This
1901 * is necessary because ether_ioctl() calls if_init() and this would
1902 * result in mutex recursion if the mutex was held.
1903 */
1904static void
1905fxp_init(void *xsc)
1906{
1907	struct fxp_softc *sc = xsc;
1908
1909	FXP_LOCK(sc);
1910	fxp_init_body(sc);
1911	FXP_UNLOCK(sc);
1912}
1913
1914/*
1915 * Perform device initialization. This routine must be called with the
1916 * softc lock held.
1917 */
1918static void
1919fxp_init_body(struct fxp_softc *sc)
1920{
1921	struct ifnet *ifp = sc->ifp;
1922	struct fxp_cb_config *cbp;
1923	struct fxp_cb_ias *cb_ias;
1924	struct fxp_cb_tx *tcbp;
1925	struct fxp_tx *txp;
1926	struct fxp_cb_mcs *mcsp;
1927	int i, prm;
1928
1929	FXP_LOCK_ASSERT(sc, MA_OWNED);
1930	/*
1931	 * Cancel any pending I/O
1932	 */
1933	fxp_stop(sc);
1934
1935	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1936
1937	/*
1938	 * Initialize base of CBL and RFA memory. Loading with zero
1939	 * sets it up for regular linear addressing.
1940	 */
1941	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1942	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1943
1944	fxp_scb_wait(sc);
1945	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1946
1947	/*
1948	 * Initialize base of dump-stats buffer.
1949	 */
1950	fxp_scb_wait(sc);
1951	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1952	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1953	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1954
1955	/*
1956	 * Attempt to load microcode if requested.
1957	 */
1958	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1959		fxp_load_ucode(sc);
1960
1961	/*
1962	 * Initialize the multicast address list.
1963	 */
1964	if (fxp_mc_addrs(sc)) {
1965		mcsp = sc->mcsp;
1966		mcsp->cb_status = 0;
1967		mcsp->cb_command =
1968		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1969		mcsp->link_addr = 0xffffffff;
1970		/*
1971	 	 * Start the multicast setup command.
1972		 */
1973		fxp_scb_wait(sc);
1974		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1975		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1976		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1977		/* ...and wait for it to complete. */
1978		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1979		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1980		    BUS_DMASYNC_POSTWRITE);
1981	}
1982
1983	/*
1984	 * We temporarily use memory that contains the TxCB list to
1985	 * construct the config CB. The TxCB list memory is rebuilt
1986	 * later.
1987	 */
1988	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1989
1990	/*
1991	 * This bcopy is kind of disgusting, but there are a bunch of must be
1992	 * zero and must be one bits in this structure and this is the easiest
1993	 * way to initialize them all to proper values.
1994	 */
1995	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1996
1997	cbp->cb_status =	0;
1998	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1999	    FXP_CB_COMMAND_EL);
2000	cbp->link_addr =	0xffffffff;	/* (no) next command */
2001	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2002	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2003	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2004	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2005	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2006	cbp->type_enable =	0;	/* actually reserved */
2007	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2008	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2009	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2010	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2011	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2012	cbp->late_scb =		0;	/* (don't) defer SCB update */
2013	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2014	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2015	cbp->ci_int =		1;	/* interrupt on CU idle */
2016	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2017	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2018	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2019	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2020	cbp->disc_short_rx =	!prm;	/* discard short packets */
2021	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2022	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2023	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2024	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2025	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2026	cbp->csma_dis =		0;	/* (don't) disable link */
2027	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2028	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2029	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2030	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2031	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2032	cbp->nsai =		1;	/* (don't) disable source addr insert */
2033	cbp->preamble_length =	2;	/* (7 byte) preamble */
2034	cbp->loopback =		0;	/* (don't) loopback */
2035	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2036	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2037	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2038	cbp->promiscuous =	prm;	/* promiscuous mode */
2039	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2040	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2041	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2042	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2043	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2044
2045	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2046	cbp->padding =		1;	/* (do) pad short tx packets */
2047	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2048	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2049	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2050	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2051					/* must set wake_en in PMCSR also */
2052	cbp->force_fdx =	0;	/* (don't) force full duplex */
2053	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2054	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2055	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2056	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2057
2058	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2059		/*
2060		 * The 82557 has no hardware flow control, the values
2061		 * below are the defaults for the chip.
2062		 */
2063		cbp->fc_delay_lsb =	0;
2064		cbp->fc_delay_msb =	0x40;
2065		cbp->pri_fc_thresh =	3;
2066		cbp->tx_fc_dis =	0;
2067		cbp->rx_fc_restop =	0;
2068		cbp->rx_fc_restart =	0;
2069		cbp->fc_filter =	0;
2070		cbp->pri_fc_loc =	1;
2071	} else {
2072		cbp->fc_delay_lsb =	0x1f;
2073		cbp->fc_delay_msb =	0x01;
2074		cbp->pri_fc_thresh =	3;
2075		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2076		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2077		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2078		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2079		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2080	}
2081
2082	/*
2083	 * Start the config command/DMA.
2084	 */
2085	fxp_scb_wait(sc);
2086	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2087	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2088	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2089	/* ...and wait for it to complete. */
2090	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2091	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2092
2093	/*
2094	 * Now initialize the station address. Temporarily use the TxCB
2095	 * memory area like we did above for the config CB.
2096	 */
2097	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2098	cb_ias->cb_status = 0;
2099	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2100	cb_ias->link_addr = 0xffffffff;
2101	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2102
2103	/*
2104	 * Start the IAS (Individual Address Setup) command/DMA.
2105	 */
2106	fxp_scb_wait(sc);
2107	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2108	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2109	/* ...and wait for it to complete. */
2110	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2111	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2112
2113	/*
2114	 * Initialize transmit control block (TxCB) list.
2115	 */
2116	txp = sc->fxp_desc.tx_list;
2117	tcbp = sc->fxp_desc.cbl_list;
2118	bzero(tcbp, FXP_TXCB_SZ);
2119	for (i = 0; i < FXP_NTXCB; i++) {
2120		txp[i].tx_mbuf = NULL;
2121		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2122		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2123		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2124		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2125		if (sc->flags & FXP_FLAG_EXT_TXCB)
2126			tcbp[i].tbd_array_addr =
2127			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2128		else
2129			tcbp[i].tbd_array_addr =
2130			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2131		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2132	}
2133	/*
2134	 * Set the suspend flag on the first TxCB and start the control
2135	 * unit. It will execute the NOP and then suspend.
2136	 */
2137	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2138	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2139	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2140	sc->tx_queued = 1;
2141
2142	fxp_scb_wait(sc);
2143	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2144
2145	/*
2146	 * Initialize receiver buffer area - RFA.
2147	 */
2148	fxp_scb_wait(sc);
2149	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2150	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2151
2152	/*
2153	 * Set current media.
2154	 */
2155	if (sc->miibus != NULL)
2156		mii_mediachg(device_get_softc(sc->miibus));
2157
2158	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2159	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2160
2161	/*
2162	 * Enable interrupts.
2163	 */
2164#ifdef DEVICE_POLLING
2165	/*
2166	 * ... but only do that if we are not polling. And because (presumably)
2167	 * the default is interrupts on, we need to disable them explicitly!
2168	 */
2169	if (ifp->if_capenable & IFCAP_POLLING )
2170		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2171	else
2172#endif /* DEVICE_POLLING */
2173	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2174
2175	/*
2176	 * Start stats updater.
2177	 */
2178	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2179}
2180
2181static int
2182fxp_serial_ifmedia_upd(struct ifnet *ifp)
2183{
2184
2185	return (0);
2186}
2187
2188static void
2189fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2190{
2191
2192	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2193}
2194
2195/*
2196 * Change media according to request.
2197 */
2198static int
2199fxp_ifmedia_upd(struct ifnet *ifp)
2200{
2201	struct fxp_softc *sc = ifp->if_softc;
2202	struct mii_data *mii;
2203
2204	mii = device_get_softc(sc->miibus);
2205	FXP_LOCK(sc);
2206	if (mii->mii_instance) {
2207		struct mii_softc	*miisc;
2208		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2209			mii_phy_reset(miisc);
2210	}
2211	mii_mediachg(mii);
2212	FXP_UNLOCK(sc);
2213	return (0);
2214}
2215
2216/*
2217 * Notify the world which media we're using.
2218 */
2219static void
2220fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2221{
2222	struct fxp_softc *sc = ifp->if_softc;
2223	struct mii_data *mii;
2224
2225	mii = device_get_softc(sc->miibus);
2226	FXP_LOCK(sc);
2227	mii_pollstat(mii);
2228	ifmr->ifm_active = mii->mii_media_active;
2229	ifmr->ifm_status = mii->mii_media_status;
2230
2231	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2232	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2233		sc->cu_resume_bug = 1;
2234	else
2235		sc->cu_resume_bug = 0;
2236	FXP_UNLOCK(sc);
2237}
2238
2239/*
2240 * Add a buffer to the end of the RFA buffer list.
2241 * Return 0 if successful, 1 for failure. A failure results in
2242 * adding the 'oldm' (if non-NULL) on to the end of the list -
2243 * tossing out its old contents and recycling it.
2244 * The RFA struct is stuck at the beginning of mbuf cluster and the
2245 * data pointer is fixed up to point just past it.
2246 */
2247static int
2248fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2249{
2250	struct mbuf *m;
2251	struct fxp_rfa *rfa, *p_rfa;
2252	struct fxp_rx *p_rx;
2253	bus_dmamap_t tmp_map;
2254	int error;
2255
2256	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2257	if (m == NULL)
2258		return (ENOBUFS);
2259
2260	/*
2261	 * Move the data pointer up so that the incoming data packet
2262	 * will be 32-bit aligned.
2263	 */
2264	m->m_data += RFA_ALIGNMENT_FUDGE;
2265
2266	/*
2267	 * Get a pointer to the base of the mbuf cluster and move
2268	 * data start past it.
2269	 */
2270	rfa = mtod(m, struct fxp_rfa *);
2271	m->m_data += sc->rfa_size;
2272	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2273
2274	rfa->rfa_status = 0;
2275	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2276	rfa->actual_size = 0;
2277
2278	/*
2279	 * Initialize the rest of the RFA.  Note that since the RFA
2280	 * is misaligned, we cannot store values directly.  We're thus
2281	 * using the le32enc() function which handles endianness and
2282	 * is also alignment-safe.
2283	 */
2284	le32enc(&rfa->link_addr, 0xffffffff);
2285	le32enc(&rfa->rbd_addr, 0xffffffff);
2286
2287	/* Map the RFA into DMA memory. */
2288	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2289	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2290	    &rxp->rx_addr, 0);
2291	if (error) {
2292		m_freem(m);
2293		return (error);
2294	}
2295
2296	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2297	tmp_map = sc->spare_map;
2298	sc->spare_map = rxp->rx_map;
2299	rxp->rx_map = tmp_map;
2300	rxp->rx_mbuf = m;
2301
2302	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2303	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2304
2305	/*
2306	 * If there are other buffers already on the list, attach this
2307	 * one to the end by fixing up the tail to point to this one.
2308	 */
2309	if (sc->fxp_desc.rx_head != NULL) {
2310		p_rx = sc->fxp_desc.rx_tail;
2311		p_rfa = (struct fxp_rfa *)
2312		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2313		p_rx->rx_next = rxp;
2314		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2315		p_rfa->rfa_control = 0;
2316		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2317		    BUS_DMASYNC_PREWRITE);
2318	} else {
2319		rxp->rx_next = NULL;
2320		sc->fxp_desc.rx_head = rxp;
2321	}
2322	sc->fxp_desc.rx_tail = rxp;
2323	return (0);
2324}
2325
2326static int
2327fxp_miibus_readreg(device_t dev, int phy, int reg)
2328{
2329	struct fxp_softc *sc = device_get_softc(dev);
2330	int count = 10000;
2331	int value;
2332
2333	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2334	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2335
2336	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2337	    && count--)
2338		DELAY(10);
2339
2340	if (count <= 0)
2341		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2342
2343	return (value & 0xffff);
2344}
2345
2346static void
2347fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2348{
2349	struct fxp_softc *sc = device_get_softc(dev);
2350	int count = 10000;
2351
2352	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2353	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2354	    (value & 0xffff));
2355
2356	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2357	    count--)
2358		DELAY(10);
2359
2360	if (count <= 0)
2361		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2362}
2363
2364static int
2365fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2366{
2367	struct fxp_softc *sc = ifp->if_softc;
2368	struct ifreq *ifr = (struct ifreq *)data;
2369	struct mii_data *mii;
2370	int flag, mask, error = 0;
2371
2372	switch (command) {
2373	case SIOCSIFFLAGS:
2374		FXP_LOCK(sc);
2375		if (ifp->if_flags & IFF_ALLMULTI)
2376			sc->flags |= FXP_FLAG_ALL_MCAST;
2377		else
2378			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2379
2380		/*
2381		 * If interface is marked up and not running, then start it.
2382		 * If it is marked down and running, stop it.
2383		 * XXX If it's up then re-initialize it. This is so flags
2384		 * such as IFF_PROMISC are handled.
2385		 */
2386		if (ifp->if_flags & IFF_UP) {
2387			fxp_init_body(sc);
2388		} else {
2389			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2390				fxp_stop(sc);
2391		}
2392		FXP_UNLOCK(sc);
2393		break;
2394
2395	case SIOCADDMULTI:
2396	case SIOCDELMULTI:
2397		FXP_LOCK(sc);
2398		if (ifp->if_flags & IFF_ALLMULTI)
2399			sc->flags |= FXP_FLAG_ALL_MCAST;
2400		else
2401			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2402		/*
2403		 * Multicast list has changed; set the hardware filter
2404		 * accordingly.
2405		 */
2406		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2407			fxp_mc_setup(sc);
2408		/*
2409		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2410		 * again rather than else {}.
2411		 */
2412		if (sc->flags & FXP_FLAG_ALL_MCAST)
2413			fxp_init_body(sc);
2414		FXP_UNLOCK(sc);
2415		error = 0;
2416		break;
2417
2418	case SIOCSIFMEDIA:
2419	case SIOCGIFMEDIA:
2420		if (sc->miibus != NULL) {
2421			mii = device_get_softc(sc->miibus);
2422                        error = ifmedia_ioctl(ifp, ifr,
2423                            &mii->mii_media, command);
2424		} else {
2425                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2426		}
2427		break;
2428
2429	case SIOCSIFCAP:
2430		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2431#ifdef DEVICE_POLLING
2432		if (mask & IFCAP_POLLING) {
2433			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2434				error = ether_poll_register(fxp_poll, ifp);
2435				if (error)
2436					return(error);
2437				FXP_LOCK(sc);
2438				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2439				    FXP_SCB_INTR_DISABLE);
2440				ifp->if_capenable |= IFCAP_POLLING;
2441				FXP_UNLOCK(sc);
2442			} else {
2443				error = ether_poll_deregister(ifp);
2444				/* Enable interrupts in any case */
2445				FXP_LOCK(sc);
2446				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2447				ifp->if_capenable &= ~IFCAP_POLLING;
2448				FXP_UNLOCK(sc);
2449			}
2450		}
2451#endif
2452		if (mask & IFCAP_VLAN_MTU) {
2453			FXP_LOCK(sc);
2454			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2455			if (sc->revision != FXP_REV_82557)
2456				flag = FXP_FLAG_LONG_PKT_EN;
2457			else /* a hack to get long frames on the old chip */
2458				flag = FXP_FLAG_SAVE_BAD;
2459			sc->flags ^= flag;
2460			if (ifp->if_flags & IFF_UP)
2461				fxp_init_body(sc);
2462			FXP_UNLOCK(sc);
2463		}
2464		break;
2465
2466	default:
2467		error = ether_ioctl(ifp, command, data);
2468	}
2469	return (error);
2470}
2471
2472/*
2473 * Fill in the multicast address list and return number of entries.
2474 */
2475static int
2476fxp_mc_addrs(struct fxp_softc *sc)
2477{
2478	struct fxp_cb_mcs *mcsp = sc->mcsp;
2479	struct ifnet *ifp = sc->ifp;
2480	struct ifmultiaddr *ifma;
2481	int nmcasts;
2482
2483	nmcasts = 0;
2484	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2485		IF_ADDR_LOCK(ifp);
2486		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2487			if (ifma->ifma_addr->sa_family != AF_LINK)
2488				continue;
2489			if (nmcasts >= MAXMCADDR) {
2490				sc->flags |= FXP_FLAG_ALL_MCAST;
2491				nmcasts = 0;
2492				break;
2493			}
2494			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2495			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2496			nmcasts++;
2497		}
2498		IF_ADDR_UNLOCK(ifp);
2499	}
2500	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2501	return (nmcasts);
2502}
2503
2504/*
2505 * Program the multicast filter.
2506 *
2507 * We have an artificial restriction that the multicast setup command
2508 * must be the first command in the chain, so we take steps to ensure
2509 * this. By requiring this, it allows us to keep up the performance of
2510 * the pre-initialized command ring (esp. link pointers) by not actually
2511 * inserting the mcsetup command in the ring - i.e. its link pointer
2512 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2513 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2514 * lead into the regular TxCB ring when it completes.
2515 *
2516 * This function must be called at splimp.
2517 */
2518static void
2519fxp_mc_setup(struct fxp_softc *sc)
2520{
2521	struct fxp_cb_mcs *mcsp = sc->mcsp;
2522	struct fxp_tx *txp;
2523	int count;
2524
2525	FXP_LOCK_ASSERT(sc, MA_OWNED);
2526	/*
2527	 * If there are queued commands, we must wait until they are all
2528	 * completed. If we are already waiting, then add a NOP command
2529	 * with interrupt option so that we're notified when all commands
2530	 * have been completed - fxp_start() ensures that no additional
2531	 * TX commands will be added when need_mcsetup is true.
2532	 */
2533	if (sc->tx_queued) {
2534		/*
2535		 * need_mcsetup will be true if we are already waiting for the
2536		 * NOP command to be completed (see below). In this case, bail.
2537		 */
2538		if (sc->need_mcsetup)
2539			return;
2540		sc->need_mcsetup = 1;
2541
2542		/*
2543		 * Add a NOP command with interrupt so that we are notified
2544		 * when all TX commands have been processed.
2545		 */
2546		txp = sc->fxp_desc.tx_last->tx_next;
2547		txp->tx_mbuf = NULL;
2548		txp->tx_cb->cb_status = 0;
2549		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2550		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2551		/*
2552		 * Advance the end of list forward.
2553		 */
2554		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2555		    htole16(~FXP_CB_COMMAND_S);
2556		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2557		sc->fxp_desc.tx_last = txp;
2558		sc->tx_queued++;
2559		/*
2560		 * Issue a resume in case the CU has just suspended.
2561		 */
2562		fxp_scb_wait(sc);
2563		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2564		/*
2565		 * Set a 5 second timer just in case we don't hear from the
2566		 * card again.
2567		 */
2568		sc->watchdog_timer = 5;
2569
2570		return;
2571	}
2572	sc->need_mcsetup = 0;
2573
2574	/*
2575	 * Initialize multicast setup descriptor.
2576	 */
2577	mcsp->cb_status = 0;
2578	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2579	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2580	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2581	txp = &sc->fxp_desc.mcs_tx;
2582	txp->tx_mbuf = NULL;
2583	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2584	txp->tx_next = sc->fxp_desc.tx_list;
2585	(void) fxp_mc_addrs(sc);
2586	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2587	sc->tx_queued = 1;
2588
2589	/*
2590	 * Wait until command unit is not active. This should never
2591	 * be the case when nothing is queued, but make sure anyway.
2592	 */
2593	count = 100;
2594	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2595	    FXP_SCB_CUS_ACTIVE && --count)
2596		DELAY(10);
2597	if (count == 0) {
2598		device_printf(sc->dev, "command queue timeout\n");
2599		return;
2600	}
2601
2602	/*
2603	 * Start the multicast setup command.
2604	 */
2605	fxp_scb_wait(sc);
2606	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2607	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2608	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2609
2610	sc->watchdog_timer = 2;
2611	return;
2612}
2613
2614static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2615static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2616static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2617static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2618static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2619static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2620static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2621
2622#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2623
2624struct ucode {
2625	uint32_t	revision;
2626	uint32_t	*ucode;
2627	int		length;
2628	u_short		int_delay_offset;
2629	u_short		bundle_max_offset;
2630} ucode_table[] = {
2631	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2632	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2633	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2634	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2635	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2636	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2637	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2638	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2639	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2640	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2641	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2642	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2643	{ 0, NULL, 0, 0, 0 }
2644};
2645
2646static void
2647fxp_load_ucode(struct fxp_softc *sc)
2648{
2649	struct ucode *uc;
2650	struct fxp_cb_ucode *cbp;
2651	int i;
2652
2653	for (uc = ucode_table; uc->ucode != NULL; uc++)
2654		if (sc->revision == uc->revision)
2655			break;
2656	if (uc->ucode == NULL)
2657		return;
2658	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2659	cbp->cb_status = 0;
2660	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2661	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2662	for (i = 0; i < uc->length; i++)
2663		cbp->ucode[i] = htole32(uc->ucode[i]);
2664	if (uc->int_delay_offset)
2665		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2666		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2667	if (uc->bundle_max_offset)
2668		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2669		    htole16(sc->tunable_bundle_max);
2670	/*
2671	 * Download the ucode to the chip.
2672	 */
2673	fxp_scb_wait(sc);
2674	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2675	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2676	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2677	/* ...and wait for it to complete. */
2678	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2679	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2680	device_printf(sc->dev,
2681	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2682	    sc->tunable_int_delay,
2683	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2684	sc->flags |= FXP_FLAG_UCODE;
2685}
2686
2687static int
2688sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2689{
2690	int error, value;
2691
2692	value = *(int *)arg1;
2693	error = sysctl_handle_int(oidp, &value, 0, req);
2694	if (error || !req->newptr)
2695		return (error);
2696	if (value < low || value > high)
2697		return (EINVAL);
2698	*(int *)arg1 = value;
2699	return (0);
2700}
2701
2702/*
2703 * Interrupt delay is expressed in microseconds, a multiplier is used
2704 * to convert this to the appropriate clock ticks before using.
2705 */
2706static int
2707sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2708{
2709	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2710}
2711
2712static int
2713sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2714{
2715	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2716}
2717