if_fxp.c revision 164771
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 164771 2006-11-30 14:58:01Z glebius $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/endian.h>
44#include <sys/mbuf.h>
45		/* #include <sys/mutex.h> */
46#include <sys/kernel.h>
47#include <sys/module.h>
48#include <sys/socket.h>
49#include <sys/sysctl.h>
50
51#include <net/if.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54
55#include <net/bpf.h>
56#include <sys/sockio.h>
57#include <sys/bus.h>
58#include <machine/bus.h>
59#include <sys/rman.h>
60#include <machine/resource.h>
61
62#include <net/ethernet.h>
63#include <net/if_arp.h>
64
65
66#include <net/if_types.h>
67#include <net/if_vlan_var.h>
68
69#ifdef FXP_IP_CSUM_WAR
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/ip.h>
73#include <machine/in_cksum.h>
74#endif
75
76#include <dev/pci/pcivar.h>
77#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78
79#include <dev/mii/mii.h>
80#include <dev/mii/miivar.h>
81
82#include <dev/fxp/if_fxpreg.h>
83#include <dev/fxp/if_fxpvar.h>
84#include <dev/fxp/rcvbundl.h>
85
86MODULE_DEPEND(fxp, pci, 1, 1, 1);
87MODULE_DEPEND(fxp, ether, 1, 1, 1);
88MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89#include "miibus_if.h"
90
91/*
92 * NOTE!  On the Alpha, we have an alignment constraint.  The
93 * card DMAs the packet immediately following the RFA.  However,
94 * the first thing in the packet is a 14-byte Ethernet header.
95 * This means that the packet is misaligned.  To compensate,
96 * we actually offset the RFA 2 bytes into the cluster.  This
97 * alignes the packet after the Ethernet header at a 32-bit
98 * boundary.  HOWEVER!  This means that the RFA is misaligned!
99 */
100#define	RFA_ALIGNMENT_FUDGE	2
101
102/*
103 * Set initial transmit threshold at 64 (512 bytes). This is
104 * increased by 64 (512 bytes) at a time, to maximum of 192
105 * (1536 bytes), if an underrun occurs.
106 */
107static int tx_threshold = 64;
108
109/*
110 * The configuration byte map has several undefined fields which
111 * must be one or must be zero.  Set up a template for these bits
112 * only, (assuming a 82557 chip) leaving the actual configuration
113 * to fxp_init.
114 *
115 * See struct fxp_cb_config for the bit definitions.
116 */
117static u_char fxp_cb_config_template[] = {
118	0x0, 0x0,		/* cb_status */
119	0x0, 0x0,		/* cb_command */
120	0x0, 0x0, 0x0, 0x0,	/* link_addr */
121	0x0,	/*  0 */
122	0x0,	/*  1 */
123	0x0,	/*  2 */
124	0x0,	/*  3 */
125	0x0,	/*  4 */
126	0x0,	/*  5 */
127	0x32,	/*  6 */
128	0x0,	/*  7 */
129	0x0,	/*  8 */
130	0x0,	/*  9 */
131	0x6,	/* 10 */
132	0x0,	/* 11 */
133	0x0,	/* 12 */
134	0x0,	/* 13 */
135	0xf2,	/* 14 */
136	0x48,	/* 15 */
137	0x0,	/* 16 */
138	0x40,	/* 17 */
139	0xf0,	/* 18 */
140	0x0,	/* 19 */
141	0x3f,	/* 20 */
142	0x5	/* 21 */
143};
144
145struct fxp_ident {
146	uint16_t	devid;
147	int16_t		revid;		/* -1 matches anything */
148	char 		*name;
149};
150
151/*
152 * Claim various Intel PCI device identifiers for this driver.  The
153 * sub-vendor and sub-device field are extensively used to identify
154 * particular variants, but we don't currently differentiate between
155 * them.
156 */
157static struct fxp_ident fxp_ident_table[] = {
158    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
159    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
160    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
172    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
173    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
175    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
176    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
177    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
178    { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
179    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180    { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181    { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
182    { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
183    { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
184    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
185    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
186    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
187    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
189    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
190    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
191    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
192    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
194    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
195    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
196    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
198    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
199    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
200    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
201    { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
202    { 0,	-1,	NULL },
203};
204
205#ifdef FXP_IP_CSUM_WAR
206#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
207#else
208#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
209#endif
210
211static int		fxp_probe(device_t dev);
212static int		fxp_attach(device_t dev);
213static int		fxp_detach(device_t dev);
214static int		fxp_shutdown(device_t dev);
215static int		fxp_suspend(device_t dev);
216static int		fxp_resume(device_t dev);
217
218static void		fxp_intr(void *xsc);
219static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
220			    uint8_t statack, int count);
221static void 		fxp_init(void *xsc);
222static void 		fxp_init_body(struct fxp_softc *sc);
223static void 		fxp_tick(void *xsc);
224static void 		fxp_start(struct ifnet *ifp);
225static void 		fxp_start_body(struct ifnet *ifp);
226static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
227static void		fxp_stop(struct fxp_softc *sc);
228static void 		fxp_release(struct fxp_softc *sc);
229static int		fxp_ioctl(struct ifnet *ifp, u_long command,
230			    caddr_t data);
231static void 		fxp_watchdog(struct fxp_softc *sc);
232static int		fxp_add_rfabuf(struct fxp_softc *sc,
233    			    struct fxp_rx *rxp);
234static int		fxp_mc_addrs(struct fxp_softc *sc);
235static void		fxp_mc_setup(struct fxp_softc *sc);
236static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
237			    int autosize);
238static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
239			    uint16_t data);
240static void		fxp_autosize_eeprom(struct fxp_softc *sc);
241static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
242			    int offset, int words);
243static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
244			    int offset, int words);
245static int		fxp_ifmedia_upd(struct ifnet *ifp);
246static void		fxp_ifmedia_sts(struct ifnet *ifp,
247			    struct ifmediareq *ifmr);
248static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
249static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
250			    struct ifmediareq *ifmr);
251static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
252static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
253			    int value);
254static void		fxp_load_ucode(struct fxp_softc *sc);
255static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
256			    int low, int high);
257static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
258static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
259static void 		fxp_scb_wait(struct fxp_softc *sc);
260static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
261static void		fxp_dma_wait(struct fxp_softc *sc,
262    			    volatile uint16_t *status, bus_dma_tag_t dmat,
263			    bus_dmamap_t map);
264
265static device_method_t fxp_methods[] = {
266	/* Device interface */
267	DEVMETHOD(device_probe,		fxp_probe),
268	DEVMETHOD(device_attach,	fxp_attach),
269	DEVMETHOD(device_detach,	fxp_detach),
270	DEVMETHOD(device_shutdown,	fxp_shutdown),
271	DEVMETHOD(device_suspend,	fxp_suspend),
272	DEVMETHOD(device_resume,	fxp_resume),
273
274	/* MII interface */
275	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
276	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
277
278	{ 0, 0 }
279};
280
281static driver_t fxp_driver = {
282	"fxp",
283	fxp_methods,
284	sizeof(struct fxp_softc),
285};
286
287static devclass_t fxp_devclass;
288
289DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
290DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
291DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
292
293static struct resource_spec fxp_res_spec_mem[] = {
294	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
295	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
296	{ -1, 0 }
297};
298
299static struct resource_spec fxp_res_spec_io[] = {
300	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
301	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302	{ -1, 0 }
303};
304
305/*
306 * Wait for the previous command to be accepted (but not necessarily
307 * completed).
308 */
309static void
310fxp_scb_wait(struct fxp_softc *sc)
311{
312	union {
313		uint16_t w;
314		uint8_t b[2];
315	} flowctl;
316	int i = 10000;
317
318	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
319		DELAY(2);
320	if (i == 0) {
321		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
322		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
323		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
324		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
325		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
326		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
327	}
328}
329
330static void
331fxp_scb_cmd(struct fxp_softc *sc, int cmd)
332{
333
334	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
335		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
336		fxp_scb_wait(sc);
337	}
338	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
339}
340
341static void
342fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
343    bus_dma_tag_t dmat, bus_dmamap_t map)
344{
345	int i = 10000;
346
347	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
348	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
349		DELAY(2);
350		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
351	}
352	if (i == 0)
353		device_printf(sc->dev, "DMA timeout\n");
354}
355
356/*
357 * Return identification string if this device is ours.
358 */
359static int
360fxp_probe(device_t dev)
361{
362	uint16_t devid;
363	uint8_t revid;
364	struct fxp_ident *ident;
365
366	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
367		devid = pci_get_device(dev);
368		revid = pci_get_revid(dev);
369		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
370			if (ident->devid == devid &&
371			    (ident->revid == revid || ident->revid == -1)) {
372				device_set_desc(dev, ident->name);
373				return (BUS_PROBE_DEFAULT);
374			}
375		}
376	}
377	return (ENXIO);
378}
379
380static void
381fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
382{
383	uint32_t *addr;
384
385	if (error)
386		return;
387
388	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
389	addr = arg;
390	*addr = segs->ds_addr;
391}
392
393static int
394fxp_attach(device_t dev)
395{
396	struct fxp_softc *sc;
397	struct fxp_cb_tx *tcbp;
398	struct fxp_tx *txp;
399	struct fxp_rx *rxp;
400	struct ifnet *ifp;
401	uint32_t val;
402	uint16_t data, myea[ETHER_ADDR_LEN / 2];
403	u_char eaddr[ETHER_ADDR_LEN];
404	int i, prefer_iomap;
405	int error;
406
407	error = 0;
408	sc = device_get_softc(dev);
409	sc->dev = dev;
410	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
411	    MTX_DEF);
412	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
413	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
414	    fxp_serial_ifmedia_sts);
415
416	ifp = sc->ifp = if_alloc(IFT_ETHER);
417	if (ifp == NULL) {
418		device_printf(dev, "can not if_alloc()\n");
419		error = ENOSPC;
420		goto fail;
421	}
422
423	/*
424	 * Enable bus mastering.
425	 */
426	pci_enable_busmaster(dev);
427	val = pci_read_config(dev, PCIR_COMMAND, 2);
428
429	/*
430	 * Figure out which we should try first - memory mapping or i/o mapping?
431	 * We default to memory mapping. Then we accept an override from the
432	 * command line. Then we check to see which one is enabled.
433	 */
434	prefer_iomap = 0;
435	resource_int_value(device_get_name(dev), device_get_unit(dev),
436	    "prefer_iomap", &prefer_iomap);
437	if (prefer_iomap)
438		sc->fxp_spec = fxp_res_spec_io;
439	else
440		sc->fxp_spec = fxp_res_spec_mem;
441
442	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
443	if (error) {
444		if (sc->fxp_spec == fxp_res_spec_mem)
445			sc->fxp_spec = fxp_res_spec_io;
446		else
447			sc->fxp_spec = fxp_res_spec_mem;
448		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
449	}
450	if (error) {
451		device_printf(dev, "could not allocate resources\n");
452		error = ENXIO;
453		goto fail;
454	}
455
456	if (bootverbose) {
457		device_printf(dev, "using %s space register mapping\n",
458		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
459	}
460
461	/*
462	 * Reset to a stable state.
463	 */
464	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
465	DELAY(10);
466
467	/*
468	 * Find out how large of an SEEPROM we have.
469	 */
470	fxp_autosize_eeprom(sc);
471
472	/*
473	 * Find out the chip revision; lump all 82557 revs together.
474	 */
475	fxp_read_eeprom(sc, &data, 5, 1);
476	if ((data >> 8) == 1)
477		sc->revision = FXP_REV_82557;
478	else
479		sc->revision = pci_get_revid(dev);
480
481	/*
482	 * Determine whether we must use the 503 serial interface.
483	 */
484	fxp_read_eeprom(sc, &data, 6, 1);
485	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
486	    && (data & FXP_PHY_SERIAL_ONLY))
487		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
488
489	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
490	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
491	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
492	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
493	    "FXP driver receive interrupt microcode bundling delay");
494	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
495	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
496	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
497	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
498	    "FXP driver receive interrupt microcode bundle size limit");
499	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
500	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
501	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
502	    "FXP RNR events");
503	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
504	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
505	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
506	    "FXP flow control disabled");
507
508	/*
509	 * Pull in device tunables.
510	 */
511	sc->tunable_int_delay = TUNABLE_INT_DELAY;
512	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
513	sc->tunable_noflow = 1;
514	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515	    "int_delay", &sc->tunable_int_delay);
516	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517	    "bundle_max", &sc->tunable_bundle_max);
518	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
519	    "noflow", &sc->tunable_noflow);
520	sc->rnr = 0;
521
522	/*
523	 * Enable workarounds for certain chip revision deficiencies.
524	 *
525	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
526	 * some systems based a normal 82559 design, have a defect where
527	 * the chip can cause a PCI protocol violation if it receives
528	 * a CU_RESUME command when it is entering the IDLE state.  The
529	 * workaround is to disable Dynamic Standby Mode, so the chip never
530	 * deasserts CLKRUN#, and always remains in an active state.
531	 *
532	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
533	 */
534	i = pci_get_device(dev);
535	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
536	    sc->revision >= FXP_REV_82559_A0) {
537		fxp_read_eeprom(sc, &data, 10, 1);
538		if (data & 0x02) {			/* STB enable */
539			uint16_t cksum;
540			int i;
541
542			device_printf(dev,
543			    "Disabling dynamic standby mode in EEPROM\n");
544			data &= ~0x02;
545			fxp_write_eeprom(sc, &data, 10, 1);
546			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
547			cksum = 0;
548			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
549				fxp_read_eeprom(sc, &data, i, 1);
550				cksum += data;
551			}
552			i = (1 << sc->eeprom_size) - 1;
553			cksum = 0xBABA - cksum;
554			fxp_read_eeprom(sc, &data, i, 1);
555			fxp_write_eeprom(sc, &cksum, i, 1);
556			device_printf(dev,
557			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
558			    i, data, cksum);
559#if 1
560			/*
561			 * If the user elects to continue, try the software
562			 * workaround, as it is better than nothing.
563			 */
564			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
565#endif
566		}
567	}
568
569	/*
570	 * If we are not a 82557 chip, we can enable extended features.
571	 */
572	if (sc->revision != FXP_REV_82557) {
573		/*
574		 * If MWI is enabled in the PCI configuration, and there
575		 * is a valid cacheline size (8 or 16 dwords), then tell
576		 * the board to turn on MWI.
577		 */
578		if (val & PCIM_CMD_MWRICEN &&
579		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
580			sc->flags |= FXP_FLAG_MWI_ENABLE;
581
582		/* turn on the extended TxCB feature */
583		sc->flags |= FXP_FLAG_EXT_TXCB;
584
585		/* enable reception of long frames for VLAN */
586		sc->flags |= FXP_FLAG_LONG_PKT_EN;
587	} else {
588		/* a hack to get long VLAN frames on a 82557 */
589		sc->flags |= FXP_FLAG_SAVE_BAD;
590	}
591
592	/*
593	 * Enable use of extended RFDs and TCBs for 82550
594	 * and later chips. Note: we need extended TXCB support
595	 * too, but that's already enabled by the code above.
596	 * Be careful to do this only on the right devices.
597	 */
598	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
599	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
600	    || sc->revision == FXP_REV_82551_10) {
601		sc->rfa_size = sizeof (struct fxp_rfa);
602		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
603		sc->flags |= FXP_FLAG_EXT_RFA;
604	} else {
605		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
606		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
607	}
608
609	/*
610	 * Allocate DMA tags and DMA safe memory.
611	 */
612	sc->maxtxseg = FXP_NTXSEG;
613	if (sc->flags & FXP_FLAG_EXT_RFA)
614		sc->maxtxseg--;
615	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
616	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
617	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
618	    &sc->fxp_mtag);
619	if (error) {
620		device_printf(dev, "could not allocate dma tag\n");
621		goto fail;
622	}
623
624	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
625	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
626	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
627	    &sc->fxp_stag);
628	if (error) {
629		device_printf(dev, "could not allocate dma tag\n");
630		goto fail;
631	}
632
633	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
634	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
635	if (error)
636		goto fail;
637	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
638	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
639	if (error) {
640		device_printf(dev, "could not map the stats buffer\n");
641		goto fail;
642	}
643
644	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
645	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
646	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
647	if (error) {
648		device_printf(dev, "could not allocate dma tag\n");
649		goto fail;
650	}
651
652	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
653	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
654	if (error)
655		goto fail;
656
657	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
658	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
659	    &sc->fxp_desc.cbl_addr, 0);
660	if (error) {
661		device_printf(dev, "could not map DMA memory\n");
662		goto fail;
663	}
664
665	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
666	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
667	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
668	    &sc->mcs_tag);
669	if (error) {
670		device_printf(dev, "could not allocate dma tag\n");
671		goto fail;
672	}
673
674	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
675	    BUS_DMA_NOWAIT, &sc->mcs_map);
676	if (error)
677		goto fail;
678	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
679	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
680	if (error) {
681		device_printf(dev, "can't map the multicast setup command\n");
682		goto fail;
683	}
684
685	/*
686	 * Pre-allocate the TX DMA maps and setup the pointers to
687	 * the TX command blocks.
688	 */
689	txp = sc->fxp_desc.tx_list;
690	tcbp = sc->fxp_desc.cbl_list;
691	for (i = 0; i < FXP_NTXCB; i++) {
692		txp[i].tx_cb = tcbp + i;
693		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
694		if (error) {
695			device_printf(dev, "can't create DMA map for TX\n");
696			goto fail;
697		}
698	}
699	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
700	if (error) {
701		device_printf(dev, "can't create spare DMA map\n");
702		goto fail;
703	}
704
705	/*
706	 * Pre-allocate our receive buffers.
707	 */
708	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
709	for (i = 0; i < FXP_NRFABUFS; i++) {
710		rxp = &sc->fxp_desc.rx_list[i];
711		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
712		if (error) {
713			device_printf(dev, "can't create DMA map for RX\n");
714			goto fail;
715		}
716		if (fxp_add_rfabuf(sc, rxp) != 0) {
717			error = ENOMEM;
718			goto fail;
719		}
720	}
721
722	/*
723	 * Read MAC address.
724	 */
725	fxp_read_eeprom(sc, myea, 0, 3);
726	eaddr[0] = myea[0] & 0xff;
727	eaddr[1] = myea[0] >> 8;
728	eaddr[2] = myea[1] & 0xff;
729	eaddr[3] = myea[1] >> 8;
730	eaddr[4] = myea[2] & 0xff;
731	eaddr[5] = myea[2] >> 8;
732	if (bootverbose) {
733		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
734		    pci_get_vendor(dev), pci_get_device(dev),
735		    pci_get_subvendor(dev), pci_get_subdevice(dev),
736		    pci_get_revid(dev));
737		fxp_read_eeprom(sc, &data, 10, 1);
738		device_printf(dev, "Dynamic Standby mode is %s\n",
739		    data & 0x02 ? "enabled" : "disabled");
740	}
741
742	/*
743	 * If this is only a 10Mbps device, then there is no MII, and
744	 * the PHY will use a serial interface instead.
745	 *
746	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
747	 * doesn't have a programming interface of any sort.  The
748	 * media is sensed automatically based on how the link partner
749	 * is configured.  This is, in essence, manual configuration.
750	 */
751	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
752		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
753		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
754	} else {
755		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
756		    fxp_ifmedia_sts)) {
757	                device_printf(dev, "MII without any PHY!\n");
758			error = ENXIO;
759			goto fail;
760		}
761	}
762
763	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
764	ifp->if_init = fxp_init;
765	ifp->if_softc = sc;
766	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
767	ifp->if_ioctl = fxp_ioctl;
768	ifp->if_start = fxp_start;
769
770	ifp->if_capabilities = ifp->if_capenable = 0;
771
772	/* Enable checksum offload for 82550 or better chips */
773	if (sc->flags & FXP_FLAG_EXT_RFA) {
774		ifp->if_hwassist = FXP_CSUM_FEATURES;
775		ifp->if_capabilities |= IFCAP_HWCSUM;
776		ifp->if_capenable |= IFCAP_HWCSUM;
777	}
778
779#ifdef DEVICE_POLLING
780	/* Inform the world we support polling. */
781	ifp->if_capabilities |= IFCAP_POLLING;
782#endif
783
784	/*
785	 * Attach the interface.
786	 */
787	ether_ifattach(ifp, eaddr);
788
789	/*
790	 * Tell the upper layer(s) we support long frames.
791	 * Must appear after the call to ether_ifattach() because
792	 * ether_ifattach() sets ifi_hdrlen to the default value.
793	 */
794	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
795	ifp->if_capabilities |= IFCAP_VLAN_MTU;
796	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
797
798	/*
799	 * Let the system queue as many packets as we have available
800	 * TX descriptors.
801	 */
802	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
803	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
804	IFQ_SET_READY(&ifp->if_snd);
805
806	/*
807	 * Hook our interrupt after all initialization is complete.
808	 */
809	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
810			       fxp_intr, sc, &sc->ih);
811	if (error) {
812		device_printf(dev, "could not setup irq\n");
813		ether_ifdetach(sc->ifp);
814		goto fail;
815	}
816
817fail:
818	if (error)
819		fxp_release(sc);
820	return (error);
821}
822
823/*
824 * Release all resources.  The softc lock should not be held and the
825 * interrupt should already be torn down.
826 */
827static void
828fxp_release(struct fxp_softc *sc)
829{
830	struct fxp_rx *rxp;
831	struct fxp_tx *txp;
832	int i;
833
834	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
835	KASSERT(sc->ih == NULL,
836	    ("fxp_release() called with intr handle still active"));
837	if (sc->miibus)
838		device_delete_child(sc->dev, sc->miibus);
839	bus_generic_detach(sc->dev);
840	ifmedia_removeall(&sc->sc_media);
841	if (sc->fxp_desc.cbl_list) {
842		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
843		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
844		    sc->cbl_map);
845	}
846	if (sc->fxp_stats) {
847		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
848		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
849	}
850	if (sc->mcsp) {
851		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
852		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
853	}
854	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
855	if (sc->fxp_mtag) {
856		for (i = 0; i < FXP_NRFABUFS; i++) {
857			rxp = &sc->fxp_desc.rx_list[i];
858			if (rxp->rx_mbuf != NULL) {
859				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
860				    BUS_DMASYNC_POSTREAD);
861				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
862				m_freem(rxp->rx_mbuf);
863			}
864			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
865		}
866		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
867		for (i = 0; i < FXP_NTXCB; i++) {
868			txp = &sc->fxp_desc.tx_list[i];
869			if (txp->tx_mbuf != NULL) {
870				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
871				    BUS_DMASYNC_POSTWRITE);
872				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
873				m_freem(txp->tx_mbuf);
874			}
875			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
876		}
877		bus_dma_tag_destroy(sc->fxp_mtag);
878	}
879	if (sc->fxp_stag)
880		bus_dma_tag_destroy(sc->fxp_stag);
881	if (sc->cbl_tag)
882		bus_dma_tag_destroy(sc->cbl_tag);
883	if (sc->mcs_tag)
884		bus_dma_tag_destroy(sc->mcs_tag);
885	if (sc->ifp)
886		if_free(sc->ifp);
887
888	mtx_destroy(&sc->sc_mtx);
889}
890
891/*
892 * Detach interface.
893 */
894static int
895fxp_detach(device_t dev)
896{
897	struct fxp_softc *sc = device_get_softc(dev);
898
899#ifdef DEVICE_POLLING
900	if (sc->ifp->if_capenable & IFCAP_POLLING)
901		ether_poll_deregister(sc->ifp);
902#endif
903
904	FXP_LOCK(sc);
905	sc->suspended = 1;	/* Do same thing as we do for suspend */
906	/*
907	 * Stop DMA and drop transmit queue, but disable interrupts first.
908	 */
909	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
910	fxp_stop(sc);
911	FXP_UNLOCK(sc);
912	callout_drain(&sc->stat_ch);
913
914	/*
915	 * Close down routes etc.
916	 */
917	ether_ifdetach(sc->ifp);
918
919	/*
920	 * Unhook interrupt before dropping lock. This is to prevent
921	 * races with fxp_intr().
922	 */
923	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
924	sc->ih = NULL;
925
926	/* Release our allocated resources. */
927	fxp_release(sc);
928	return (0);
929}
930
931/*
932 * Device shutdown routine. Called at system shutdown after sync. The
933 * main purpose of this routine is to shut off receiver DMA so that
934 * kernel memory doesn't get clobbered during warmboot.
935 */
936static int
937fxp_shutdown(device_t dev)
938{
939	struct fxp_softc *sc = device_get_softc(dev);
940
941	/*
942	 * Make sure that DMA is disabled prior to reboot. Not doing
943	 * do could allow DMA to corrupt kernel memory during the
944	 * reboot before the driver initializes.
945	 */
946	FXP_LOCK(sc);
947	fxp_stop(sc);
948	FXP_UNLOCK(sc);
949	return (0);
950}
951
952/*
953 * Device suspend routine.  Stop the interface and save some PCI
954 * settings in case the BIOS doesn't restore them properly on
955 * resume.
956 */
957static int
958fxp_suspend(device_t dev)
959{
960	struct fxp_softc *sc = device_get_softc(dev);
961
962	FXP_LOCK(sc);
963
964	fxp_stop(sc);
965
966	sc->suspended = 1;
967
968	FXP_UNLOCK(sc);
969	return (0);
970}
971
972/*
973 * Device resume routine. re-enable busmastering, and restart the interface if
974 * appropriate.
975 */
976static int
977fxp_resume(device_t dev)
978{
979	struct fxp_softc *sc = device_get_softc(dev);
980	struct ifnet *ifp = sc->ifp;
981
982	FXP_LOCK(sc);
983
984	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
985	DELAY(10);
986
987	/* reinitialize interface if necessary */
988	if (ifp->if_flags & IFF_UP)
989		fxp_init_body(sc);
990
991	sc->suspended = 0;
992
993	FXP_UNLOCK(sc);
994	return (0);
995}
996
997static void
998fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
999{
1000	uint16_t reg;
1001	int x;
1002
1003	/*
1004	 * Shift in data.
1005	 */
1006	for (x = 1 << (length - 1); x; x >>= 1) {
1007		if (data & x)
1008			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1009		else
1010			reg = FXP_EEPROM_EECS;
1011		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1012		DELAY(1);
1013		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1014		DELAY(1);
1015		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1016		DELAY(1);
1017	}
1018}
1019
1020/*
1021 * Read from the serial EEPROM. Basically, you manually shift in
1022 * the read opcode (one bit at a time) and then shift in the address,
1023 * and then you shift out the data (all of this one bit at a time).
1024 * The word size is 16 bits, so you have to provide the address for
1025 * every 16 bits of data.
1026 */
1027static uint16_t
1028fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1029{
1030	uint16_t reg, data;
1031	int x;
1032
1033	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1034	/*
1035	 * Shift in read opcode.
1036	 */
1037	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1038	/*
1039	 * Shift in address.
1040	 */
1041	data = 0;
1042	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1043		if (offset & x)
1044			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1045		else
1046			reg = FXP_EEPROM_EECS;
1047		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1048		DELAY(1);
1049		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1050		DELAY(1);
1051		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1052		DELAY(1);
1053		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1054		data++;
1055		if (autosize && reg == 0) {
1056			sc->eeprom_size = data;
1057			break;
1058		}
1059	}
1060	/*
1061	 * Shift out data.
1062	 */
1063	data = 0;
1064	reg = FXP_EEPROM_EECS;
1065	for (x = 1 << 15; x; x >>= 1) {
1066		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1067		DELAY(1);
1068		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1069			data |= x;
1070		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1071		DELAY(1);
1072	}
1073	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1074	DELAY(1);
1075
1076	return (data);
1077}
1078
1079static void
1080fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1081{
1082	int i;
1083
1084	/*
1085	 * Erase/write enable.
1086	 */
1087	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1088	fxp_eeprom_shiftin(sc, 0x4, 3);
1089	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1090	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1091	DELAY(1);
1092	/*
1093	 * Shift in write opcode, address, data.
1094	 */
1095	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1096	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1097	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1098	fxp_eeprom_shiftin(sc, data, 16);
1099	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1100	DELAY(1);
1101	/*
1102	 * Wait for EEPROM to finish up.
1103	 */
1104	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1105	DELAY(1);
1106	for (i = 0; i < 1000; i++) {
1107		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1108			break;
1109		DELAY(50);
1110	}
1111	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112	DELAY(1);
1113	/*
1114	 * Erase/write disable.
1115	 */
1116	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1117	fxp_eeprom_shiftin(sc, 0x4, 3);
1118	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1119	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1120	DELAY(1);
1121}
1122
1123/*
1124 * From NetBSD:
1125 *
1126 * Figure out EEPROM size.
1127 *
1128 * 559's can have either 64-word or 256-word EEPROMs, the 558
1129 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1130 * talks about the existance of 16 to 256 word EEPROMs.
1131 *
1132 * The only known sizes are 64 and 256, where the 256 version is used
1133 * by CardBus cards to store CIS information.
1134 *
1135 * The address is shifted in msb-to-lsb, and after the last
1136 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1137 * after which follows the actual data. We try to detect this zero, by
1138 * probing the data-out bit in the EEPROM control register just after
1139 * having shifted in a bit. If the bit is zero, we assume we've
1140 * shifted enough address bits. The data-out should be tri-state,
1141 * before this, which should translate to a logical one.
1142 */
1143static void
1144fxp_autosize_eeprom(struct fxp_softc *sc)
1145{
1146
1147	/* guess maximum size of 256 words */
1148	sc->eeprom_size = 8;
1149
1150	/* autosize */
1151	(void) fxp_eeprom_getword(sc, 0, 1);
1152}
1153
1154static void
1155fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1156{
1157	int i;
1158
1159	for (i = 0; i < words; i++)
1160		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1161}
1162
1163static void
1164fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1165{
1166	int i;
1167
1168	for (i = 0; i < words; i++)
1169		fxp_eeprom_putword(sc, offset + i, data[i]);
1170}
1171
1172/*
1173 * Grab the softc lock and call the real fxp_start_body() routine
1174 */
1175static void
1176fxp_start(struct ifnet *ifp)
1177{
1178	struct fxp_softc *sc = ifp->if_softc;
1179
1180	FXP_LOCK(sc);
1181	fxp_start_body(ifp);
1182	FXP_UNLOCK(sc);
1183}
1184
1185/*
1186 * Start packet transmission on the interface.
1187 * This routine must be called with the softc lock held, and is an
1188 * internal entry point only.
1189 */
1190static void
1191fxp_start_body(struct ifnet *ifp)
1192{
1193	struct fxp_softc *sc = ifp->if_softc;
1194	struct mbuf *mb_head;
1195	int error, txqueued;
1196
1197	FXP_LOCK_ASSERT(sc, MA_OWNED);
1198
1199	/*
1200	 * See if we need to suspend xmit until the multicast filter
1201	 * has been reprogrammed (which can only be done at the head
1202	 * of the command chain).
1203	 */
1204	if (sc->need_mcsetup)
1205		return;
1206
1207	/*
1208	 * We're finished if there is nothing more to add to the list or if
1209	 * we're all filled up with buffers to transmit.
1210	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1211	 *       a NOP command when needed.
1212	 */
1213	txqueued = 0;
1214	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1215	    sc->tx_queued < FXP_NTXCB - 1) {
1216
1217		/*
1218		 * Grab a packet to transmit.
1219		 */
1220		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1221		if (mb_head == NULL)
1222			break;
1223
1224		error = fxp_encap(sc, mb_head);
1225		if (error)
1226			break;
1227		txqueued = 1;
1228	}
1229	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1230
1231	/*
1232	 * We're finished. If we added to the list, issue a RESUME to get DMA
1233	 * going again if suspended.
1234	 */
1235	if (txqueued) {
1236		fxp_scb_wait(sc);
1237		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1238	}
1239}
1240
1241static int
1242fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1243{
1244	struct ifnet *ifp;
1245	struct mbuf *m;
1246	struct fxp_tx *txp;
1247	struct fxp_cb_tx *cbp;
1248	bus_dma_segment_t segs[FXP_NTXSEG];
1249	int chainlen, error, i, nseg;
1250
1251	FXP_LOCK_ASSERT(sc, MA_OWNED);
1252	ifp = sc->ifp;
1253
1254	/*
1255	 * Get pointer to next available tx desc.
1256	 */
1257	txp = sc->fxp_desc.tx_last->tx_next;
1258
1259	/*
1260	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1261	 * Ethernet Controller Family Open Source Software
1262	 * Developer Manual says:
1263	 *   Using software parsing is only allowed with legal
1264	 *   TCP/IP or UDP/IP packets.
1265	 *   ...
1266	 *   For all other datagrams, hardware parsing must
1267	 *   be used.
1268	 * Software parsing appears to truncate ICMP and
1269	 * fragmented UDP packets that contain one to three
1270	 * bytes in the second (and final) mbuf of the packet.
1271	 */
1272	if (sc->flags & FXP_FLAG_EXT_RFA)
1273		txp->tx_cb->ipcb_ip_activation_high =
1274		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1275
1276	/*
1277	 * Deal with TCP/IP checksum offload. Note that
1278	 * in order for TCP checksum offload to work,
1279	 * the pseudo header checksum must have already
1280	 * been computed and stored in the checksum field
1281	 * in the TCP header. The stack should have
1282	 * already done this for us.
1283	 */
1284	if (m_head->m_pkthdr.csum_flags) {
1285		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1286			txp->tx_cb->ipcb_ip_schedule =
1287			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1288			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1289				txp->tx_cb->ipcb_ip_schedule |=
1290				    FXP_IPCB_TCP_PACKET;
1291		}
1292
1293#ifdef FXP_IP_CSUM_WAR
1294		/*
1295		 * XXX The 82550 chip appears to have trouble
1296		 * dealing with IP header checksums in very small
1297		 * datagrams, namely fragments from 1 to 3 bytes
1298		 * in size. For example, say you want to transmit
1299		 * a UDP packet of 1473 bytes. The packet will be
1300		 * fragmented over two IP datagrams, the latter
1301		 * containing only one byte of data. The 82550 will
1302		 * botch the header checksum on the 1-byte fragment.
1303		 * As long as the datagram contains 4 or more bytes
1304		 * of data, you're ok.
1305		 *
1306                 * The following code attempts to work around this
1307		 * problem: if the datagram is less than 38 bytes
1308		 * in size (14 bytes ether header, 20 bytes IP header,
1309		 * plus 4 bytes of data), we punt and compute the IP
1310		 * header checksum by hand. This workaround doesn't
1311		 * work very well, however, since it can be fooled
1312		 * by things like VLAN tags and IP options that make
1313		 * the header sizes/offsets vary.
1314		 */
1315
1316		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1317			if (m_head->m_pkthdr.len < 38) {
1318				struct ip *ip;
1319				m_head->m_data += ETHER_HDR_LEN;
1320				ip = mtod(mb_head, struct ip *);
1321				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1322				m_head->m_data -= ETHER_HDR_LEN;
1323			} else {
1324				txp->tx_cb->ipcb_ip_activation_high =
1325				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1326				txp->tx_cb->ipcb_ip_schedule |=
1327				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1328			}
1329		}
1330#endif
1331	}
1332
1333	chainlen = 0;
1334	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1335		chainlen++;
1336	if (chainlen > sc->maxtxseg) {
1337		struct mbuf *mn;
1338
1339		/*
1340		 * We ran out of segments. We have to recopy this
1341		 * mbuf chain first. Bail out if we can't get the
1342		 * new buffers.
1343		 */
1344		mn = m_defrag(m_head, M_DONTWAIT);
1345		if (mn == NULL) {
1346			m_freem(m_head);
1347			return (-1);
1348		} else {
1349			m_head = mn;
1350		}
1351	}
1352
1353	/*
1354	 * Go through each of the mbufs in the chain and initialize
1355	 * the transmit buffer descriptors with the physical address
1356	 * and size of the mbuf.
1357	 */
1358	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1359	    m_head, segs, &nseg, 0);
1360	if (error) {
1361		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1362		m_freem(m_head);
1363		return (-1);
1364	}
1365
1366	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1367
1368	cbp = txp->tx_cb;
1369	for (i = 0; i < nseg; i++) {
1370		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1371		/*
1372		 * If this is an 82550/82551, then we're using extended
1373		 * TxCBs _and_ we're using checksum offload. This means
1374		 * that the TxCB is really an IPCB. One major difference
1375		 * between the two is that with plain extended TxCBs,
1376		 * the bottom half of the TxCB contains two entries from
1377		 * the TBD array, whereas IPCBs contain just one entry:
1378		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1379		 * checksum offload control bits. So to make things work
1380		 * right, we have to start filling in the TBD array
1381		 * starting from a different place depending on whether
1382		 * the chip is an 82550/82551 or not.
1383		 */
1384		if (sc->flags & FXP_FLAG_EXT_RFA) {
1385			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1386			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1387		} else {
1388			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1389			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1390		}
1391	}
1392	cbp->tbd_number = nseg;
1393
1394	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1395	txp->tx_mbuf = m_head;
1396	txp->tx_cb->cb_status = 0;
1397	txp->tx_cb->byte_count = 0;
1398	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1399		txp->tx_cb->cb_command =
1400		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1401		    FXP_CB_COMMAND_S);
1402	} else {
1403		txp->tx_cb->cb_command =
1404		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1405		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1406		/*
1407		 * Set a 5 second timer just in case we don't hear
1408		 * from the card again.
1409		 */
1410		sc->watchdog_timer = 5;
1411	}
1412	txp->tx_cb->tx_threshold = tx_threshold;
1413
1414	/*
1415	 * Advance the end of list forward.
1416	 */
1417
1418#ifdef __alpha__
1419	/*
1420	 * On platforms which can't access memory in 16-bit
1421	 * granularities, we must prevent the card from DMA'ing
1422	 * up the status while we update the command field.
1423	 * This could cause us to overwrite the completion status.
1424	 * XXX This is probably bogus and we're _not_ looking
1425	 * for atomicity here.
1426	 */
1427	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1428	    htole16(FXP_CB_COMMAND_S));
1429#else
1430	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1431#endif /*__alpha__*/
1432	sc->fxp_desc.tx_last = txp;
1433
1434	/*
1435	 * Advance the beginning of the list forward if there are
1436	 * no other packets queued (when nothing is queued, tx_first
1437	 * sits on the last TxCB that was sent out).
1438	 */
1439	if (sc->tx_queued == 0)
1440		sc->fxp_desc.tx_first = txp;
1441
1442	sc->tx_queued++;
1443
1444	/*
1445	 * Pass packet to bpf if there is a listener.
1446	 */
1447	BPF_MTAP(ifp, m_head);
1448	return (0);
1449}
1450
1451#ifdef DEVICE_POLLING
1452static poll_handler_t fxp_poll;
1453
1454static void
1455fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1456{
1457	struct fxp_softc *sc = ifp->if_softc;
1458	uint8_t statack;
1459
1460	FXP_LOCK(sc);
1461	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1462		FXP_UNLOCK(sc);
1463		return;
1464	}
1465
1466	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1467	    FXP_SCB_STATACK_FR;
1468	if (cmd == POLL_AND_CHECK_STATUS) {
1469		uint8_t tmp;
1470
1471		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1472		if (tmp == 0xff || tmp == 0) {
1473			FXP_UNLOCK(sc);
1474			return; /* nothing to do */
1475		}
1476		tmp &= ~statack;
1477		/* ack what we can */
1478		if (tmp != 0)
1479			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1480		statack |= tmp;
1481	}
1482	fxp_intr_body(sc, ifp, statack, count);
1483	FXP_UNLOCK(sc);
1484}
1485#endif /* DEVICE_POLLING */
1486
1487/*
1488 * Process interface interrupts.
1489 */
1490static void
1491fxp_intr(void *xsc)
1492{
1493	struct fxp_softc *sc = xsc;
1494	struct ifnet *ifp = sc->ifp;
1495	uint8_t statack;
1496
1497	FXP_LOCK(sc);
1498	if (sc->suspended) {
1499		FXP_UNLOCK(sc);
1500		return;
1501	}
1502
1503#ifdef DEVICE_POLLING
1504	if (ifp->if_capenable & IFCAP_POLLING) {
1505		FXP_UNLOCK(sc);
1506		return;
1507	}
1508#endif
1509	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1510		/*
1511		 * It should not be possible to have all bits set; the
1512		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1513		 * all bits are set, this may indicate that the card has
1514		 * been physically ejected, so ignore it.
1515		 */
1516		if (statack == 0xff) {
1517			FXP_UNLOCK(sc);
1518			return;
1519		}
1520
1521		/*
1522		 * First ACK all the interrupts in this pass.
1523		 */
1524		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1525		fxp_intr_body(sc, ifp, statack, -1);
1526	}
1527	FXP_UNLOCK(sc);
1528}
1529
1530static void
1531fxp_txeof(struct fxp_softc *sc)
1532{
1533	struct fxp_tx *txp;
1534
1535	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1536	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1537	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1538	    txp = txp->tx_next) {
1539		if (txp->tx_mbuf != NULL) {
1540			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1541			    BUS_DMASYNC_POSTWRITE);
1542			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1543			m_freem(txp->tx_mbuf);
1544			txp->tx_mbuf = NULL;
1545			/* clear this to reset csum offload bits */
1546			txp->tx_cb->tbd[0].tb_addr = 0;
1547		}
1548		sc->tx_queued--;
1549	}
1550	sc->fxp_desc.tx_first = txp;
1551	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1552}
1553
1554static void
1555fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1556    int count)
1557{
1558	struct mbuf *m;
1559	struct fxp_rx *rxp;
1560	struct fxp_rfa *rfa;
1561	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1562	int fxp_rc = 0;
1563
1564	FXP_LOCK_ASSERT(sc, MA_OWNED);
1565	if (rnr)
1566		sc->rnr++;
1567#ifdef DEVICE_POLLING
1568	/* Pick up a deferred RNR condition if `count' ran out last time. */
1569	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1570		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1571		rnr = 1;
1572	}
1573#endif
1574
1575	/*
1576	 * Free any finished transmit mbuf chains.
1577	 *
1578	 * Handle the CNA event likt a CXTNO event. It used to
1579	 * be that this event (control unit not ready) was not
1580	 * encountered, but it is now with the SMPng modifications.
1581	 * The exact sequence of events that occur when the interface
1582	 * is brought up are different now, and if this event
1583	 * goes unhandled, the configuration/rxfilter setup sequence
1584	 * can stall for several seconds. The result is that no
1585	 * packets go out onto the wire for about 5 to 10 seconds
1586	 * after the interface is ifconfig'ed for the first time.
1587	 */
1588	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1589		fxp_txeof(sc);
1590
1591		sc->watchdog_timer = 0;
1592		if (sc->tx_queued == 0) {
1593			if (sc->need_mcsetup)
1594				fxp_mc_setup(sc);
1595		}
1596		/*
1597		 * Try to start more packets transmitting.
1598		 */
1599		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600			fxp_start_body(ifp);
1601	}
1602
1603	/*
1604	 * Just return if nothing happened on the receive side.
1605	 */
1606	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1607		return;
1608
1609	/*
1610	 * Process receiver interrupts. If a no-resource (RNR)
1611	 * condition exists, get whatever packets we can and
1612	 * re-start the receiver.
1613	 *
1614	 * When using polling, we do not process the list to completion,
1615	 * so when we get an RNR interrupt we must defer the restart
1616	 * until we hit the last buffer with the C bit set.
1617	 * If we run out of cycles and rfa_headm has the C bit set,
1618	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1619	 * that the info will be used in the subsequent polling cycle.
1620	 */
1621	for (;;) {
1622		rxp = sc->fxp_desc.rx_head;
1623		m = rxp->rx_mbuf;
1624		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1625		    RFA_ALIGNMENT_FUDGE);
1626		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1627		    BUS_DMASYNC_POSTREAD);
1628
1629#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1630		if (count >= 0 && count-- == 0) {
1631			if (rnr) {
1632				/* Defer RNR processing until the next time. */
1633				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1634				rnr = 0;
1635			}
1636			break;
1637		}
1638#endif /* DEVICE_POLLING */
1639
1640		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1641			break;
1642
1643		/*
1644		 * Advance head forward.
1645		 */
1646		sc->fxp_desc.rx_head = rxp->rx_next;
1647
1648		/*
1649		 * Add a new buffer to the receive chain.
1650		 * If this fails, the old buffer is recycled
1651		 * instead.
1652		 */
1653		fxp_rc = fxp_add_rfabuf(sc, rxp);
1654		if (fxp_rc == 0) {
1655			int total_len;
1656
1657			/*
1658			 * Fetch packet length (the top 2 bits of
1659			 * actual_size are flags set by the controller
1660			 * upon completion), and drop the packet in case
1661			 * of bogus length or CRC errors.
1662			 */
1663			total_len = le16toh(rfa->actual_size) & 0x3fff;
1664			if (total_len < sizeof(struct ether_header) ||
1665			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1666				sc->rfa_size ||
1667			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1668				m_freem(m);
1669				continue;
1670			}
1671
1672                        /* Do IP checksum checking. */
1673			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1674				if (rfa->rfax_csum_sts &
1675				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1676					m->m_pkthdr.csum_flags |=
1677					    CSUM_IP_CHECKED;
1678				if (rfa->rfax_csum_sts &
1679				    FXP_RFDX_CS_IP_CSUM_VALID)
1680					m->m_pkthdr.csum_flags |=
1681					    CSUM_IP_VALID;
1682				if ((rfa->rfax_csum_sts &
1683				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1684				    (rfa->rfax_csum_sts &
1685				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1686					m->m_pkthdr.csum_flags |=
1687					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1688					m->m_pkthdr.csum_data = 0xffff;
1689				}
1690			}
1691
1692			m->m_pkthdr.len = m->m_len = total_len;
1693			m->m_pkthdr.rcvif = ifp;
1694
1695			/*
1696			 * Drop locks before calling if_input() since it
1697			 * may re-enter fxp_start() in the netisr case.
1698			 * This would result in a lock reversal.  Better
1699			 * performance might be obtained by chaining all
1700			 * packets received, dropping the lock, and then
1701			 * calling if_input() on each one.
1702			 */
1703			FXP_UNLOCK(sc);
1704			(*ifp->if_input)(ifp, m);
1705			FXP_LOCK(sc);
1706		} else if (fxp_rc == ENOBUFS) {
1707			rnr = 0;
1708			break;
1709		}
1710	}
1711	if (rnr) {
1712		fxp_scb_wait(sc);
1713		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1714		    sc->fxp_desc.rx_head->rx_addr);
1715		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1716	}
1717}
1718
1719/*
1720 * Update packet in/out/collision statistics. The i82557 doesn't
1721 * allow you to access these counters without doing a fairly
1722 * expensive DMA to get _all_ of the statistics it maintains, so
1723 * we do this operation here only once per second. The statistics
1724 * counters in the kernel are updated from the previous dump-stats
1725 * DMA and then a new dump-stats DMA is started. The on-chip
1726 * counters are zeroed when the DMA completes. If we can't start
1727 * the DMA immediately, we don't wait - we just prepare to read
1728 * them again next time.
1729 */
1730static void
1731fxp_tick(void *xsc)
1732{
1733	struct fxp_softc *sc = xsc;
1734	struct ifnet *ifp = sc->ifp;
1735	struct fxp_stats *sp = sc->fxp_stats;
1736
1737	FXP_LOCK_ASSERT(sc, MA_OWNED);
1738	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1739	ifp->if_opackets += le32toh(sp->tx_good);
1740	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1741	if (sp->rx_good) {
1742		ifp->if_ipackets += le32toh(sp->rx_good);
1743		sc->rx_idle_secs = 0;
1744	} else {
1745		/*
1746		 * Receiver's been idle for another second.
1747		 */
1748		sc->rx_idle_secs++;
1749	}
1750	ifp->if_ierrors +=
1751	    le32toh(sp->rx_crc_errors) +
1752	    le32toh(sp->rx_alignment_errors) +
1753	    le32toh(sp->rx_rnr_errors) +
1754	    le32toh(sp->rx_overrun_errors);
1755	/*
1756	 * If any transmit underruns occured, bump up the transmit
1757	 * threshold by another 512 bytes (64 * 8).
1758	 */
1759	if (sp->tx_underruns) {
1760		ifp->if_oerrors += le32toh(sp->tx_underruns);
1761		if (tx_threshold < 192)
1762			tx_threshold += 64;
1763	}
1764
1765	/*
1766	 * Release any xmit buffers that have completed DMA. This isn't
1767	 * strictly necessary to do here, but it's advantagous for mbufs
1768	 * with external storage to be released in a timely manner rather
1769	 * than being defered for a potentially long time. This limits
1770	 * the delay to a maximum of one second.
1771	 */
1772	fxp_txeof(sc);
1773
1774	/*
1775	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1776	 * then assume the receiver has locked up and attempt to clear
1777	 * the condition by reprogramming the multicast filter. This is
1778	 * a work-around for a bug in the 82557 where the receiver locks
1779	 * up if it gets certain types of garbage in the syncronization
1780	 * bits prior to the packet header. This bug is supposed to only
1781	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1782	 * mode as well (perhaps due to a 10/100 speed transition).
1783	 */
1784	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1785		sc->rx_idle_secs = 0;
1786		fxp_mc_setup(sc);
1787	}
1788	/*
1789	 * If there is no pending command, start another stats
1790	 * dump. Otherwise punt for now.
1791	 */
1792	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1793		/*
1794		 * Start another stats dump.
1795		 */
1796		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1797		    BUS_DMASYNC_PREREAD);
1798		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1799	} else {
1800		/*
1801		 * A previous command is still waiting to be accepted.
1802		 * Just zero our copy of the stats and wait for the
1803		 * next timer event to update them.
1804		 */
1805		sp->tx_good = 0;
1806		sp->tx_underruns = 0;
1807		sp->tx_total_collisions = 0;
1808
1809		sp->rx_good = 0;
1810		sp->rx_crc_errors = 0;
1811		sp->rx_alignment_errors = 0;
1812		sp->rx_rnr_errors = 0;
1813		sp->rx_overrun_errors = 0;
1814	}
1815	if (sc->miibus != NULL)
1816		mii_tick(device_get_softc(sc->miibus));
1817
1818	/*
1819	 * Check that chip hasn't hang.
1820	 */
1821	fxp_watchdog(sc);
1822
1823	/*
1824	 * Schedule another timeout one second from now.
1825	 */
1826	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1827}
1828
1829/*
1830 * Stop the interface. Cancels the statistics updater and resets
1831 * the interface.
1832 */
1833static void
1834fxp_stop(struct fxp_softc *sc)
1835{
1836	struct ifnet *ifp = sc->ifp;
1837	struct fxp_tx *txp;
1838	int i;
1839
1840	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1841	sc->watchdog_timer = 0;
1842
1843	/*
1844	 * Cancel stats updater.
1845	 */
1846	callout_stop(&sc->stat_ch);
1847
1848	/*
1849	 * Issue software reset, which also unloads the microcode.
1850	 */
1851	sc->flags &= ~FXP_FLAG_UCODE;
1852	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1853	DELAY(50);
1854
1855	/*
1856	 * Release any xmit buffers.
1857	 */
1858	txp = sc->fxp_desc.tx_list;
1859	if (txp != NULL) {
1860		for (i = 0; i < FXP_NTXCB; i++) {
1861 			if (txp[i].tx_mbuf != NULL) {
1862				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1863				    BUS_DMASYNC_POSTWRITE);
1864				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1865				m_freem(txp[i].tx_mbuf);
1866				txp[i].tx_mbuf = NULL;
1867				/* clear this to reset csum offload bits */
1868				txp[i].tx_cb->tbd[0].tb_addr = 0;
1869			}
1870		}
1871	}
1872	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1873	sc->tx_queued = 0;
1874}
1875
1876/*
1877 * Watchdog/transmission transmit timeout handler. Called when a
1878 * transmission is started on the interface, but no interrupt is
1879 * received before the timeout. This usually indicates that the
1880 * card has wedged for some reason.
1881 */
1882static void
1883fxp_watchdog(struct fxp_softc *sc)
1884{
1885
1886	FXP_LOCK_ASSERT(sc, MA_OWNED);
1887
1888	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
1889		return;
1890
1891	device_printf(sc->dev, "device timeout\n");
1892	sc->ifp->if_oerrors++;
1893
1894	fxp_init_body(sc);
1895}
1896
1897/*
1898 * Acquire locks and then call the real initialization function.  This
1899 * is necessary because ether_ioctl() calls if_init() and this would
1900 * result in mutex recursion if the mutex was held.
1901 */
1902static void
1903fxp_init(void *xsc)
1904{
1905	struct fxp_softc *sc = xsc;
1906
1907	FXP_LOCK(sc);
1908	fxp_init_body(sc);
1909	FXP_UNLOCK(sc);
1910}
1911
1912/*
1913 * Perform device initialization. This routine must be called with the
1914 * softc lock held.
1915 */
1916static void
1917fxp_init_body(struct fxp_softc *sc)
1918{
1919	struct ifnet *ifp = sc->ifp;
1920	struct fxp_cb_config *cbp;
1921	struct fxp_cb_ias *cb_ias;
1922	struct fxp_cb_tx *tcbp;
1923	struct fxp_tx *txp;
1924	struct fxp_cb_mcs *mcsp;
1925	int i, prm;
1926
1927	FXP_LOCK_ASSERT(sc, MA_OWNED);
1928	/*
1929	 * Cancel any pending I/O
1930	 */
1931	fxp_stop(sc);
1932
1933	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1934
1935	/*
1936	 * Initialize base of CBL and RFA memory. Loading with zero
1937	 * sets it up for regular linear addressing.
1938	 */
1939	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1940	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1941
1942	fxp_scb_wait(sc);
1943	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1944
1945	/*
1946	 * Initialize base of dump-stats buffer.
1947	 */
1948	fxp_scb_wait(sc);
1949	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1950	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1951	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1952
1953	/*
1954	 * Attempt to load microcode if requested.
1955	 */
1956	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1957		fxp_load_ucode(sc);
1958
1959	/*
1960	 * Initialize the multicast address list.
1961	 */
1962	if (fxp_mc_addrs(sc)) {
1963		mcsp = sc->mcsp;
1964		mcsp->cb_status = 0;
1965		mcsp->cb_command =
1966		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1967		mcsp->link_addr = 0xffffffff;
1968		/*
1969	 	 * Start the multicast setup command.
1970		 */
1971		fxp_scb_wait(sc);
1972		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1973		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1974		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1975		/* ...and wait for it to complete. */
1976		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1977		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1978		    BUS_DMASYNC_POSTWRITE);
1979	}
1980
1981	/*
1982	 * We temporarily use memory that contains the TxCB list to
1983	 * construct the config CB. The TxCB list memory is rebuilt
1984	 * later.
1985	 */
1986	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1987
1988	/*
1989	 * This bcopy is kind of disgusting, but there are a bunch of must be
1990	 * zero and must be one bits in this structure and this is the easiest
1991	 * way to initialize them all to proper values.
1992	 */
1993	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1994
1995	cbp->cb_status =	0;
1996	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1997	    FXP_CB_COMMAND_EL);
1998	cbp->link_addr =	0xffffffff;	/* (no) next command */
1999	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2000	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2001	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2002	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2003	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2004	cbp->type_enable =	0;	/* actually reserved */
2005	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2006	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2007	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2008	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2009	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2010	cbp->late_scb =		0;	/* (don't) defer SCB update */
2011	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2012	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2013	cbp->ci_int =		1;	/* interrupt on CU idle */
2014	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2015	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2016	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2017	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2018	cbp->disc_short_rx =	!prm;	/* discard short packets */
2019	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2020	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2021	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2022	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2023	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2024	cbp->csma_dis =		0;	/* (don't) disable link */
2025	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2026	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2027	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2028	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2029	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2030	cbp->nsai =		1;	/* (don't) disable source addr insert */
2031	cbp->preamble_length =	2;	/* (7 byte) preamble */
2032	cbp->loopback =		0;	/* (don't) loopback */
2033	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2034	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2035	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2036	cbp->promiscuous =	prm;	/* promiscuous mode */
2037	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2038	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2039	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2040	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2041	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2042
2043	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2044	cbp->padding =		1;	/* (do) pad short tx packets */
2045	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2046	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2047	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2048	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2049					/* must set wake_en in PMCSR also */
2050	cbp->force_fdx =	0;	/* (don't) force full duplex */
2051	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2052	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2053	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2054	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2055
2056	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2057		/*
2058		 * The 82557 has no hardware flow control, the values
2059		 * below are the defaults for the chip.
2060		 */
2061		cbp->fc_delay_lsb =	0;
2062		cbp->fc_delay_msb =	0x40;
2063		cbp->pri_fc_thresh =	3;
2064		cbp->tx_fc_dis =	0;
2065		cbp->rx_fc_restop =	0;
2066		cbp->rx_fc_restart =	0;
2067		cbp->fc_filter =	0;
2068		cbp->pri_fc_loc =	1;
2069	} else {
2070		cbp->fc_delay_lsb =	0x1f;
2071		cbp->fc_delay_msb =	0x01;
2072		cbp->pri_fc_thresh =	3;
2073		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2074		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2075		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2076		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2077		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2078	}
2079
2080	/*
2081	 * Start the config command/DMA.
2082	 */
2083	fxp_scb_wait(sc);
2084	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2085	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2086	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2087	/* ...and wait for it to complete. */
2088	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2089	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2090
2091	/*
2092	 * Now initialize the station address. Temporarily use the TxCB
2093	 * memory area like we did above for the config CB.
2094	 */
2095	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2096	cb_ias->cb_status = 0;
2097	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2098	cb_ias->link_addr = 0xffffffff;
2099	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2100
2101	/*
2102	 * Start the IAS (Individual Address Setup) command/DMA.
2103	 */
2104	fxp_scb_wait(sc);
2105	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2106	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2107	/* ...and wait for it to complete. */
2108	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2109	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2110
2111	/*
2112	 * Initialize transmit control block (TxCB) list.
2113	 */
2114	txp = sc->fxp_desc.tx_list;
2115	tcbp = sc->fxp_desc.cbl_list;
2116	bzero(tcbp, FXP_TXCB_SZ);
2117	for (i = 0; i < FXP_NTXCB; i++) {
2118		txp[i].tx_mbuf = NULL;
2119		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2120		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2121		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2122		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2123		if (sc->flags & FXP_FLAG_EXT_TXCB)
2124			tcbp[i].tbd_array_addr =
2125			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2126		else
2127			tcbp[i].tbd_array_addr =
2128			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2129		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2130	}
2131	/*
2132	 * Set the suspend flag on the first TxCB and start the control
2133	 * unit. It will execute the NOP and then suspend.
2134	 */
2135	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2136	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2137	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2138	sc->tx_queued = 1;
2139
2140	fxp_scb_wait(sc);
2141	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2142
2143	/*
2144	 * Initialize receiver buffer area - RFA.
2145	 */
2146	fxp_scb_wait(sc);
2147	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2148	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2149
2150	/*
2151	 * Set current media.
2152	 */
2153	if (sc->miibus != NULL)
2154		mii_mediachg(device_get_softc(sc->miibus));
2155
2156	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2157	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2158
2159	/*
2160	 * Enable interrupts.
2161	 */
2162#ifdef DEVICE_POLLING
2163	/*
2164	 * ... but only do that if we are not polling. And because (presumably)
2165	 * the default is interrupts on, we need to disable them explicitly!
2166	 */
2167	if (ifp->if_capenable & IFCAP_POLLING )
2168		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2169	else
2170#endif /* DEVICE_POLLING */
2171	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2172
2173	/*
2174	 * Start stats updater.
2175	 */
2176	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2177}
2178
2179static int
2180fxp_serial_ifmedia_upd(struct ifnet *ifp)
2181{
2182
2183	return (0);
2184}
2185
2186static void
2187fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2188{
2189
2190	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2191}
2192
2193/*
2194 * Change media according to request.
2195 */
2196static int
2197fxp_ifmedia_upd(struct ifnet *ifp)
2198{
2199	struct fxp_softc *sc = ifp->if_softc;
2200	struct mii_data *mii;
2201
2202	mii = device_get_softc(sc->miibus);
2203	FXP_LOCK(sc);
2204	if (mii->mii_instance) {
2205		struct mii_softc	*miisc;
2206		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2207			mii_phy_reset(miisc);
2208	}
2209	mii_mediachg(mii);
2210	FXP_UNLOCK(sc);
2211	return (0);
2212}
2213
2214/*
2215 * Notify the world which media we're using.
2216 */
2217static void
2218fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2219{
2220	struct fxp_softc *sc = ifp->if_softc;
2221	struct mii_data *mii;
2222
2223	mii = device_get_softc(sc->miibus);
2224	FXP_LOCK(sc);
2225	mii_pollstat(mii);
2226	ifmr->ifm_active = mii->mii_media_active;
2227	ifmr->ifm_status = mii->mii_media_status;
2228
2229	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2230	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2231		sc->cu_resume_bug = 1;
2232	else
2233		sc->cu_resume_bug = 0;
2234	FXP_UNLOCK(sc);
2235}
2236
2237/*
2238 * Add a buffer to the end of the RFA buffer list.
2239 * Return 0 if successful, 1 for failure. A failure results in
2240 * adding the 'oldm' (if non-NULL) on to the end of the list -
2241 * tossing out its old contents and recycling it.
2242 * The RFA struct is stuck at the beginning of mbuf cluster and the
2243 * data pointer is fixed up to point just past it.
2244 */
2245static int
2246fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2247{
2248	struct mbuf *m;
2249	struct fxp_rfa *rfa, *p_rfa;
2250	struct fxp_rx *p_rx;
2251	bus_dmamap_t tmp_map;
2252	int error;
2253
2254	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2255	if (m == NULL)
2256		return (ENOBUFS);
2257
2258	/*
2259	 * Move the data pointer up so that the incoming data packet
2260	 * will be 32-bit aligned.
2261	 */
2262	m->m_data += RFA_ALIGNMENT_FUDGE;
2263
2264	/*
2265	 * Get a pointer to the base of the mbuf cluster and move
2266	 * data start past it.
2267	 */
2268	rfa = mtod(m, struct fxp_rfa *);
2269	m->m_data += sc->rfa_size;
2270	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2271
2272	rfa->rfa_status = 0;
2273	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2274	rfa->actual_size = 0;
2275
2276	/*
2277	 * Initialize the rest of the RFA.  Note that since the RFA
2278	 * is misaligned, we cannot store values directly.  We're thus
2279	 * using the le32enc() function which handles endianness and
2280	 * is also alignment-safe.
2281	 */
2282	le32enc(&rfa->link_addr, 0xffffffff);
2283	le32enc(&rfa->rbd_addr, 0xffffffff);
2284
2285	/* Map the RFA into DMA memory. */
2286	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2287	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2288	    &rxp->rx_addr, 0);
2289	if (error) {
2290		m_freem(m);
2291		return (error);
2292	}
2293
2294	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2295	tmp_map = sc->spare_map;
2296	sc->spare_map = rxp->rx_map;
2297	rxp->rx_map = tmp_map;
2298	rxp->rx_mbuf = m;
2299
2300	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2301	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2302
2303	/*
2304	 * If there are other buffers already on the list, attach this
2305	 * one to the end by fixing up the tail to point to this one.
2306	 */
2307	if (sc->fxp_desc.rx_head != NULL) {
2308		p_rx = sc->fxp_desc.rx_tail;
2309		p_rfa = (struct fxp_rfa *)
2310		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2311		p_rx->rx_next = rxp;
2312		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2313		p_rfa->rfa_control = 0;
2314		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2315		    BUS_DMASYNC_PREWRITE);
2316	} else {
2317		rxp->rx_next = NULL;
2318		sc->fxp_desc.rx_head = rxp;
2319	}
2320	sc->fxp_desc.rx_tail = rxp;
2321	return (0);
2322}
2323
2324static volatile int
2325fxp_miibus_readreg(device_t dev, int phy, int reg)
2326{
2327	struct fxp_softc *sc = device_get_softc(dev);
2328	int count = 10000;
2329	int value;
2330
2331	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2332	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2333
2334	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2335	    && count--)
2336		DELAY(10);
2337
2338	if (count <= 0)
2339		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2340
2341	return (value & 0xffff);
2342}
2343
2344static void
2345fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2346{
2347	struct fxp_softc *sc = device_get_softc(dev);
2348	int count = 10000;
2349
2350	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2351	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2352	    (value & 0xffff));
2353
2354	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2355	    count--)
2356		DELAY(10);
2357
2358	if (count <= 0)
2359		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2360}
2361
2362static int
2363fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2364{
2365	struct fxp_softc *sc = ifp->if_softc;
2366	struct ifreq *ifr = (struct ifreq *)data;
2367	struct mii_data *mii;
2368	int flag, mask, error = 0;
2369
2370	switch (command) {
2371	case SIOCSIFFLAGS:
2372		FXP_LOCK(sc);
2373		if (ifp->if_flags & IFF_ALLMULTI)
2374			sc->flags |= FXP_FLAG_ALL_MCAST;
2375		else
2376			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2377
2378		/*
2379		 * If interface is marked up and not running, then start it.
2380		 * If it is marked down and running, stop it.
2381		 * XXX If it's up then re-initialize it. This is so flags
2382		 * such as IFF_PROMISC are handled.
2383		 */
2384		if (ifp->if_flags & IFF_UP) {
2385			fxp_init_body(sc);
2386		} else {
2387			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2388				fxp_stop(sc);
2389		}
2390		FXP_UNLOCK(sc);
2391		break;
2392
2393	case SIOCADDMULTI:
2394	case SIOCDELMULTI:
2395		FXP_LOCK(sc);
2396		if (ifp->if_flags & IFF_ALLMULTI)
2397			sc->flags |= FXP_FLAG_ALL_MCAST;
2398		else
2399			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2400		/*
2401		 * Multicast list has changed; set the hardware filter
2402		 * accordingly.
2403		 */
2404		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2405			fxp_mc_setup(sc);
2406		/*
2407		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2408		 * again rather than else {}.
2409		 */
2410		if (sc->flags & FXP_FLAG_ALL_MCAST)
2411			fxp_init_body(sc);
2412		FXP_UNLOCK(sc);
2413		error = 0;
2414		break;
2415
2416	case SIOCSIFMEDIA:
2417	case SIOCGIFMEDIA:
2418		if (sc->miibus != NULL) {
2419			mii = device_get_softc(sc->miibus);
2420                        error = ifmedia_ioctl(ifp, ifr,
2421                            &mii->mii_media, command);
2422		} else {
2423                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2424		}
2425		break;
2426
2427	case SIOCSIFCAP:
2428		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2429#ifdef DEVICE_POLLING
2430		if (mask & IFCAP_POLLING) {
2431			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2432				error = ether_poll_register(fxp_poll, ifp);
2433				if (error)
2434					return(error);
2435				FXP_LOCK(sc);
2436				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2437				    FXP_SCB_INTR_DISABLE);
2438				ifp->if_capenable |= IFCAP_POLLING;
2439				FXP_UNLOCK(sc);
2440			} else {
2441				error = ether_poll_deregister(ifp);
2442				/* Enable interrupts in any case */
2443				FXP_LOCK(sc);
2444				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2445				ifp->if_capenable &= ~IFCAP_POLLING;
2446				FXP_UNLOCK(sc);
2447			}
2448		}
2449#endif
2450		if (mask & IFCAP_VLAN_MTU) {
2451			FXP_LOCK(sc);
2452			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2453			if (sc->revision != FXP_REV_82557)
2454				flag = FXP_FLAG_LONG_PKT_EN;
2455			else /* a hack to get long frames on the old chip */
2456				flag = FXP_FLAG_SAVE_BAD;
2457			sc->flags ^= flag;
2458			if (ifp->if_flags & IFF_UP)
2459				fxp_init_body(sc);
2460			FXP_UNLOCK(sc);
2461		}
2462		break;
2463
2464	default:
2465		error = ether_ioctl(ifp, command, data);
2466	}
2467	return (error);
2468}
2469
2470/*
2471 * Fill in the multicast address list and return number of entries.
2472 */
2473static int
2474fxp_mc_addrs(struct fxp_softc *sc)
2475{
2476	struct fxp_cb_mcs *mcsp = sc->mcsp;
2477	struct ifnet *ifp = sc->ifp;
2478	struct ifmultiaddr *ifma;
2479	int nmcasts;
2480
2481	nmcasts = 0;
2482	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2483		IF_ADDR_LOCK(ifp);
2484		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2485			if (ifma->ifma_addr->sa_family != AF_LINK)
2486				continue;
2487			if (nmcasts >= MAXMCADDR) {
2488				sc->flags |= FXP_FLAG_ALL_MCAST;
2489				nmcasts = 0;
2490				break;
2491			}
2492			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2493			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2494			nmcasts++;
2495		}
2496		IF_ADDR_UNLOCK(ifp);
2497	}
2498	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2499	return (nmcasts);
2500}
2501
2502/*
2503 * Program the multicast filter.
2504 *
2505 * We have an artificial restriction that the multicast setup command
2506 * must be the first command in the chain, so we take steps to ensure
2507 * this. By requiring this, it allows us to keep up the performance of
2508 * the pre-initialized command ring (esp. link pointers) by not actually
2509 * inserting the mcsetup command in the ring - i.e. its link pointer
2510 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2511 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2512 * lead into the regular TxCB ring when it completes.
2513 *
2514 * This function must be called at splimp.
2515 */
2516static void
2517fxp_mc_setup(struct fxp_softc *sc)
2518{
2519	struct fxp_cb_mcs *mcsp = sc->mcsp;
2520	struct fxp_tx *txp;
2521	int count;
2522
2523	FXP_LOCK_ASSERT(sc, MA_OWNED);
2524	/*
2525	 * If there are queued commands, we must wait until they are all
2526	 * completed. If we are already waiting, then add a NOP command
2527	 * with interrupt option so that we're notified when all commands
2528	 * have been completed - fxp_start() ensures that no additional
2529	 * TX commands will be added when need_mcsetup is true.
2530	 */
2531	if (sc->tx_queued) {
2532		/*
2533		 * need_mcsetup will be true if we are already waiting for the
2534		 * NOP command to be completed (see below). In this case, bail.
2535		 */
2536		if (sc->need_mcsetup)
2537			return;
2538		sc->need_mcsetup = 1;
2539
2540		/*
2541		 * Add a NOP command with interrupt so that we are notified
2542		 * when all TX commands have been processed.
2543		 */
2544		txp = sc->fxp_desc.tx_last->tx_next;
2545		txp->tx_mbuf = NULL;
2546		txp->tx_cb->cb_status = 0;
2547		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2548		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2549		/*
2550		 * Advance the end of list forward.
2551		 */
2552		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2553		    htole16(~FXP_CB_COMMAND_S);
2554		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2555		sc->fxp_desc.tx_last = txp;
2556		sc->tx_queued++;
2557		/*
2558		 * Issue a resume in case the CU has just suspended.
2559		 */
2560		fxp_scb_wait(sc);
2561		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2562		/*
2563		 * Set a 5 second timer just in case we don't hear from the
2564		 * card again.
2565		 */
2566		sc->watchdog_timer = 5;
2567
2568		return;
2569	}
2570	sc->need_mcsetup = 0;
2571
2572	/*
2573	 * Initialize multicast setup descriptor.
2574	 */
2575	mcsp->cb_status = 0;
2576	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2577	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2578	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2579	txp = &sc->fxp_desc.mcs_tx;
2580	txp->tx_mbuf = NULL;
2581	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2582	txp->tx_next = sc->fxp_desc.tx_list;
2583	(void) fxp_mc_addrs(sc);
2584	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2585	sc->tx_queued = 1;
2586
2587	/*
2588	 * Wait until command unit is not active. This should never
2589	 * be the case when nothing is queued, but make sure anyway.
2590	 */
2591	count = 100;
2592	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2593	    FXP_SCB_CUS_ACTIVE && --count)
2594		DELAY(10);
2595	if (count == 0) {
2596		device_printf(sc->dev, "command queue timeout\n");
2597		return;
2598	}
2599
2600	/*
2601	 * Start the multicast setup command.
2602	 */
2603	fxp_scb_wait(sc);
2604	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2605	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2606	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2607
2608	sc->watchdog_timer = 2;
2609	return;
2610}
2611
2612static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2613static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2614static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2615static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2616static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2617static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2618static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2619
2620#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2621
2622struct ucode {
2623	uint32_t	revision;
2624	uint32_t	*ucode;
2625	int		length;
2626	u_short		int_delay_offset;
2627	u_short		bundle_max_offset;
2628} ucode_table[] = {
2629	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2630	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2631	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2632	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2633	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2634	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2635	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2636	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2637	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2638	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2639	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2640	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2641	{ 0, NULL, 0, 0, 0 }
2642};
2643
2644static void
2645fxp_load_ucode(struct fxp_softc *sc)
2646{
2647	struct ucode *uc;
2648	struct fxp_cb_ucode *cbp;
2649	int i;
2650
2651	for (uc = ucode_table; uc->ucode != NULL; uc++)
2652		if (sc->revision == uc->revision)
2653			break;
2654	if (uc->ucode == NULL)
2655		return;
2656	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2657	cbp->cb_status = 0;
2658	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2659	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2660	for (i = 0; i < uc->length; i++)
2661		cbp->ucode[i] = htole32(uc->ucode[i]);
2662	if (uc->int_delay_offset)
2663		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2664		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2665	if (uc->bundle_max_offset)
2666		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2667		    htole16(sc->tunable_bundle_max);
2668	/*
2669	 * Download the ucode to the chip.
2670	 */
2671	fxp_scb_wait(sc);
2672	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2673	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2674	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2675	/* ...and wait for it to complete. */
2676	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2677	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2678	device_printf(sc->dev,
2679	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2680	    sc->tunable_int_delay,
2681	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2682	sc->flags |= FXP_FLAG_UCODE;
2683}
2684
2685static int
2686sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2687{
2688	int error, value;
2689
2690	value = *(int *)arg1;
2691	error = sysctl_handle_int(oidp, &value, 0, req);
2692	if (error || !req->newptr)
2693		return (error);
2694	if (value < low || value > high)
2695		return (EINVAL);
2696	*(int *)arg1 = value;
2697	return (0);
2698}
2699
2700/*
2701 * Interrupt delay is expressed in microseconds, a multiplier is used
2702 * to convert this to the appropriate clock ticks before using.
2703 */
2704static int
2705sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2706{
2707	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2708}
2709
2710static int
2711sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2712{
2713	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2714}
2715