if_fxp.c revision 150408
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 150408 2005-09-21 04:36:40Z marcel $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
194    { 0,	-1,	NULL },
195};
196
197#ifdef FXP_IP_CSUM_WAR
198#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
199#else
200#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
201#endif
202
203static int		fxp_probe(device_t dev);
204static int		fxp_attach(device_t dev);
205static int		fxp_detach(device_t dev);
206static int		fxp_shutdown(device_t dev);
207static int		fxp_suspend(device_t dev);
208static int		fxp_resume(device_t dev);
209
210static void		fxp_intr(void *xsc);
211static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
212			    uint8_t statack, int count);
213static void 		fxp_init(void *xsc);
214static void 		fxp_init_body(struct fxp_softc *sc);
215static void 		fxp_tick(void *xsc);
216static void 		fxp_start(struct ifnet *ifp);
217static void 		fxp_start_body(struct ifnet *ifp);
218static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
219static void		fxp_stop(struct fxp_softc *sc);
220static void 		fxp_release(struct fxp_softc *sc);
221static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222			    caddr_t data);
223static void 		fxp_watchdog(struct ifnet *ifp);
224static int		fxp_add_rfabuf(struct fxp_softc *sc,
225    			    struct fxp_rx *rxp);
226static int		fxp_mc_addrs(struct fxp_softc *sc);
227static void		fxp_mc_setup(struct fxp_softc *sc);
228static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229			    int autosize);
230static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231			    uint16_t data);
232static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234			    int offset, int words);
235static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236			    int offset, int words);
237static int		fxp_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242			    struct ifmediareq *ifmr);
243static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245			    int value);
246static void		fxp_load_ucode(struct fxp_softc *sc);
247static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248			    int low, int high);
249static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251static void 		fxp_scb_wait(struct fxp_softc *sc);
252static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253static void		fxp_dma_wait(struct fxp_softc *sc,
254    			    volatile uint16_t *status, bus_dma_tag_t dmat,
255			    bus_dmamap_t map);
256
257static device_method_t fxp_methods[] = {
258	/* Device interface */
259	DEVMETHOD(device_probe,		fxp_probe),
260	DEVMETHOD(device_attach,	fxp_attach),
261	DEVMETHOD(device_detach,	fxp_detach),
262	DEVMETHOD(device_shutdown,	fxp_shutdown),
263	DEVMETHOD(device_suspend,	fxp_suspend),
264	DEVMETHOD(device_resume,	fxp_resume),
265
266	/* MII interface */
267	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269
270	{ 0, 0 }
271};
272
273static driver_t fxp_driver = {
274	"fxp",
275	fxp_methods,
276	sizeof(struct fxp_softc),
277};
278
279static devclass_t fxp_devclass;
280
281DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284
285/*
286 * Wait for the previous command to be accepted (but not necessarily
287 * completed).
288 */
289static void
290fxp_scb_wait(struct fxp_softc *sc)
291{
292	union {
293		uint16_t w;
294		uint8_t b[2];
295	} flowctl;
296	int i = 10000;
297
298	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
299		DELAY(2);
300	if (i == 0) {
301		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
302		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
303		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
304		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
305		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
306		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
307	}
308}
309
310static void
311fxp_scb_cmd(struct fxp_softc *sc, int cmd)
312{
313
314	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
315		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
316		fxp_scb_wait(sc);
317	}
318	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
319}
320
321static void
322fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
323    bus_dma_tag_t dmat, bus_dmamap_t map)
324{
325	int i = 10000;
326
327	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
328	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
329		DELAY(2);
330		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
331	}
332	if (i == 0)
333		device_printf(sc->dev, "DMA timeout\n");
334}
335
336/*
337 * Return identification string if this device is ours.
338 */
339static int
340fxp_probe(device_t dev)
341{
342	uint16_t devid;
343	uint8_t revid;
344	struct fxp_ident *ident;
345
346	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
347		devid = pci_get_device(dev);
348		revid = pci_get_revid(dev);
349		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
350			if (ident->devid == devid &&
351			    (ident->revid == revid || ident->revid == -1)) {
352				device_set_desc(dev, ident->name);
353				return (BUS_PROBE_DEFAULT);
354			}
355		}
356	}
357	return (ENXIO);
358}
359
360static void
361fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
362{
363	uint32_t *addr;
364
365	if (error)
366		return;
367
368	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
369	addr = arg;
370	*addr = segs->ds_addr;
371}
372
373static int
374fxp_attach(device_t dev)
375{
376	struct fxp_softc *sc;
377	struct fxp_cb_tx *tcbp;
378	struct fxp_tx *txp;
379	struct fxp_rx *rxp;
380	struct ifnet *ifp;
381	uint32_t val;
382	uint16_t data, myea[ETHER_ADDR_LEN / 2];
383	u_char eaddr[ETHER_ADDR_LEN];
384	int i, rid, m1, m2, prefer_iomap;
385	int error;
386
387	error = 0;
388	sc = device_get_softc(dev);
389	sc->dev = dev;
390	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
391	    MTX_DEF);
392	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
393	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
394	    fxp_serial_ifmedia_sts);
395
396	ifp = sc->ifp = if_alloc(IFT_ETHER);
397	if (ifp == NULL) {
398		device_printf(dev, "can not if_alloc()\n");
399		error = ENOSPC;
400		goto fail;
401	}
402
403	/*
404	 * Enable bus mastering.
405	 */
406	pci_enable_busmaster(dev);
407	val = pci_read_config(dev, PCIR_COMMAND, 2);
408
409	/*
410	 * Figure out which we should try first - memory mapping or i/o mapping?
411	 * We default to memory mapping. Then we accept an override from the
412	 * command line. Then we check to see which one is enabled.
413	 */
414	m1 = PCIM_CMD_MEMEN;
415	m2 = PCIM_CMD_PORTEN;
416	prefer_iomap = 0;
417	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
418	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
419		m1 = PCIM_CMD_PORTEN;
420		m2 = PCIM_CMD_MEMEN;
421	}
422
423	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
424	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
425	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
426	if (sc->mem == NULL) {
427		sc->rtp =
428		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
429		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
430		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
431                                            RF_ACTIVE);
432	}
433
434	if (!sc->mem) {
435		error = ENXIO;
436		goto fail;
437        }
438	if (bootverbose) {
439		device_printf(dev, "using %s space register mapping\n",
440		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
441	}
442
443	sc->sc_st = rman_get_bustag(sc->mem);
444	sc->sc_sh = rman_get_bushandle(sc->mem);
445
446	/*
447	 * Allocate our interrupt.
448	 */
449	rid = 0;
450	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
451				 RF_SHAREABLE | RF_ACTIVE);
452	if (sc->irq == NULL) {
453		device_printf(dev, "could not map interrupt\n");
454		error = ENXIO;
455		goto fail;
456	}
457
458	/*
459	 * Reset to a stable state.
460	 */
461	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
462	DELAY(10);
463
464	/*
465	 * Find out how large of an SEEPROM we have.
466	 */
467	fxp_autosize_eeprom(sc);
468
469	/*
470	 * Find out the chip revision; lump all 82557 revs together.
471	 */
472	fxp_read_eeprom(sc, &data, 5, 1);
473	if ((data >> 8) == 1)
474		sc->revision = FXP_REV_82557;
475	else
476		sc->revision = pci_get_revid(dev);
477
478	/*
479	 * Determine whether we must use the 503 serial interface.
480	 */
481	fxp_read_eeprom(sc, &data, 6, 1);
482	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
483	    && (data & FXP_PHY_SERIAL_ONLY))
484		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
485
486	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
487	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
488	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
489	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
490	    "FXP driver receive interrupt microcode bundling delay");
491	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
492	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
494	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
495	    "FXP driver receive interrupt microcode bundle size limit");
496	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
497	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
498	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
499	    "FXP RNR events");
500	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
501	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
502	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
503	    "FXP flow control disabled");
504
505	/*
506	 * Pull in device tunables.
507	 */
508	sc->tunable_int_delay = TUNABLE_INT_DELAY;
509	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
510	sc->tunable_noflow = 1;
511	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
512	    "int_delay", &sc->tunable_int_delay);
513	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
514	    "bundle_max", &sc->tunable_bundle_max);
515	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516	    "noflow", &sc->tunable_noflow);
517	sc->rnr = 0;
518
519	/*
520	 * Enable workarounds for certain chip revision deficiencies.
521	 *
522	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
523	 * some systems based a normal 82559 design, have a defect where
524	 * the chip can cause a PCI protocol violation if it receives
525	 * a CU_RESUME command when it is entering the IDLE state.  The
526	 * workaround is to disable Dynamic Standby Mode, so the chip never
527	 * deasserts CLKRUN#, and always remains in an active state.
528	 *
529	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
530	 */
531	i = pci_get_device(dev);
532	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
533	    sc->revision >= FXP_REV_82559_A0) {
534		fxp_read_eeprom(sc, &data, 10, 1);
535		if (data & 0x02) {			/* STB enable */
536			uint16_t cksum;
537			int i;
538
539			device_printf(dev,
540			    "Disabling dynamic standby mode in EEPROM\n");
541			data &= ~0x02;
542			fxp_write_eeprom(sc, &data, 10, 1);
543			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
544			cksum = 0;
545			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
546				fxp_read_eeprom(sc, &data, i, 1);
547				cksum += data;
548			}
549			i = (1 << sc->eeprom_size) - 1;
550			cksum = 0xBABA - cksum;
551			fxp_read_eeprom(sc, &data, i, 1);
552			fxp_write_eeprom(sc, &cksum, i, 1);
553			device_printf(dev,
554			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
555			    i, data, cksum);
556#if 1
557			/*
558			 * If the user elects to continue, try the software
559			 * workaround, as it is better than nothing.
560			 */
561			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
562#endif
563		}
564	}
565
566	/*
567	 * If we are not a 82557 chip, we can enable extended features.
568	 */
569	if (sc->revision != FXP_REV_82557) {
570		/*
571		 * If MWI is enabled in the PCI configuration, and there
572		 * is a valid cacheline size (8 or 16 dwords), then tell
573		 * the board to turn on MWI.
574		 */
575		if (val & PCIM_CMD_MWRICEN &&
576		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
577			sc->flags |= FXP_FLAG_MWI_ENABLE;
578
579		/* turn on the extended TxCB feature */
580		sc->flags |= FXP_FLAG_EXT_TXCB;
581
582		/* enable reception of long frames for VLAN */
583		sc->flags |= FXP_FLAG_LONG_PKT_EN;
584	} else {
585		/* a hack to get long VLAN frames on a 82557 */
586		sc->flags |= FXP_FLAG_SAVE_BAD;
587	}
588
589	/*
590	 * Enable use of extended RFDs and TCBs for 82550
591	 * and later chips. Note: we need extended TXCB support
592	 * too, but that's already enabled by the code above.
593	 * Be careful to do this only on the right devices.
594	 */
595	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
596	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
597	    || sc->revision == FXP_REV_82551_10) {
598		sc->rfa_size = sizeof (struct fxp_rfa);
599		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
600		sc->flags |= FXP_FLAG_EXT_RFA;
601	} else {
602		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
603		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
604	}
605
606	/*
607	 * Allocate DMA tags and DMA safe memory.
608	 */
609	sc->maxtxseg = FXP_NTXSEG;
610	if (sc->flags & FXP_FLAG_EXT_RFA)
611		sc->maxtxseg--;
612	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
613	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
614	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
615	    &sc->fxp_mtag);
616	if (error) {
617		device_printf(dev, "could not allocate dma tag\n");
618		goto fail;
619	}
620
621	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
622	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
623	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
624	    &sc->fxp_stag);
625	if (error) {
626		device_printf(dev, "could not allocate dma tag\n");
627		goto fail;
628	}
629
630	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
631	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
632	if (error)
633		goto fail;
634	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
635	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
636	if (error) {
637		device_printf(dev, "could not map the stats buffer\n");
638		goto fail;
639	}
640
641	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
642	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
643	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
644	if (error) {
645		device_printf(dev, "could not allocate dma tag\n");
646		goto fail;
647	}
648
649	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
650	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
651	if (error)
652		goto fail;
653
654	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
655	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
656	    &sc->fxp_desc.cbl_addr, 0);
657	if (error) {
658		device_printf(dev, "could not map DMA memory\n");
659		goto fail;
660	}
661
662	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
663	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
664	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
665	    &sc->mcs_tag);
666	if (error) {
667		device_printf(dev, "could not allocate dma tag\n");
668		goto fail;
669	}
670
671	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
672	    BUS_DMA_NOWAIT, &sc->mcs_map);
673	if (error)
674		goto fail;
675	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
676	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
677	if (error) {
678		device_printf(dev, "can't map the multicast setup command\n");
679		goto fail;
680	}
681
682	/*
683	 * Pre-allocate the TX DMA maps and setup the pointers to
684	 * the TX command blocks.
685	 */
686	txp = sc->fxp_desc.tx_list;
687	tcbp = sc->fxp_desc.cbl_list;
688	for (i = 0; i < FXP_NTXCB; i++) {
689		txp[i].tx_cb = tcbp + i;
690		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
691		if (error) {
692			device_printf(dev, "can't create DMA map for TX\n");
693			goto fail;
694		}
695	}
696	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
697	if (error) {
698		device_printf(dev, "can't create spare DMA map\n");
699		goto fail;
700	}
701
702	/*
703	 * Pre-allocate our receive buffers.
704	 */
705	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
706	for (i = 0; i < FXP_NRFABUFS; i++) {
707		rxp = &sc->fxp_desc.rx_list[i];
708		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
709		if (error) {
710			device_printf(dev, "can't create DMA map for RX\n");
711			goto fail;
712		}
713		if (fxp_add_rfabuf(sc, rxp) != 0) {
714			error = ENOMEM;
715			goto fail;
716		}
717	}
718
719	/*
720	 * Read MAC address.
721	 */
722	fxp_read_eeprom(sc, myea, 0, 3);
723	eaddr[0] = myea[0] & 0xff;
724	eaddr[1] = myea[0] >> 8;
725	eaddr[2] = myea[1] & 0xff;
726	eaddr[3] = myea[1] >> 8;
727	eaddr[4] = myea[2] & 0xff;
728	eaddr[5] = myea[2] >> 8;
729	if (bootverbose) {
730		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
731		    pci_get_vendor(dev), pci_get_device(dev),
732		    pci_get_subvendor(dev), pci_get_subdevice(dev),
733		    pci_get_revid(dev));
734		fxp_read_eeprom(sc, &data, 10, 1);
735		device_printf(dev, "Dynamic Standby mode is %s\n",
736		    data & 0x02 ? "enabled" : "disabled");
737	}
738
739	/*
740	 * If this is only a 10Mbps device, then there is no MII, and
741	 * the PHY will use a serial interface instead.
742	 *
743	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
744	 * doesn't have a programming interface of any sort.  The
745	 * media is sensed automatically based on how the link partner
746	 * is configured.  This is, in essence, manual configuration.
747	 */
748	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
749		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
750		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
751	} else {
752		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
753		    fxp_ifmedia_sts)) {
754	                device_printf(dev, "MII without any PHY!\n");
755			error = ENXIO;
756			goto fail;
757		}
758	}
759
760	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
761	ifp->if_baudrate = 100000000;
762	ifp->if_init = fxp_init;
763	ifp->if_softc = sc;
764	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
765	ifp->if_ioctl = fxp_ioctl;
766	ifp->if_start = fxp_start;
767	ifp->if_watchdog = fxp_watchdog;
768
769	ifp->if_capabilities = ifp->if_capenable = 0;
770
771	/* Enable checksum offload for 82550 or better chips */
772	if (sc->flags & FXP_FLAG_EXT_RFA) {
773		ifp->if_hwassist = FXP_CSUM_FEATURES;
774		ifp->if_capabilities |= IFCAP_HWCSUM;
775		ifp->if_capenable |= IFCAP_HWCSUM;
776	}
777
778#ifdef DEVICE_POLLING
779	/* Inform the world we support polling. */
780	ifp->if_capabilities |= IFCAP_POLLING;
781	ifp->if_capenable |= IFCAP_POLLING;
782#endif
783
784	/*
785	 * Attach the interface.
786	 */
787	ether_ifattach(ifp, eaddr);
788
789	/*
790	 * Tell the upper layer(s) we support long frames.
791	 * Must appear after the call to ether_ifattach() because
792	 * ether_ifattach() sets ifi_hdrlen to the default value.
793	 */
794	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
795	ifp->if_capabilities |= IFCAP_VLAN_MTU;
796	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
797
798	/*
799	 * Let the system queue as many packets as we have available
800	 * TX descriptors.
801	 */
802	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
803	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
804	IFQ_SET_READY(&ifp->if_snd);
805
806	/*
807	 * Hook our interrupt after all initialization is complete.
808	 */
809	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
810			       fxp_intr, sc, &sc->ih);
811	if (error) {
812		device_printf(dev, "could not setup irq\n");
813		ether_ifdetach(sc->ifp);
814		goto fail;
815	}
816
817fail:
818	if (error)
819		fxp_release(sc);
820	return (error);
821}
822
823/*
824 * Release all resources.  The softc lock should not be held and the
825 * interrupt should already be torn down.
826 */
827static void
828fxp_release(struct fxp_softc *sc)
829{
830	struct fxp_rx *rxp;
831	struct fxp_tx *txp;
832	int i;
833
834	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
835	KASSERT(sc->ih == NULL,
836	    ("fxp_release() called with intr handle still active"));
837	if (sc->miibus)
838		device_delete_child(sc->dev, sc->miibus);
839	bus_generic_detach(sc->dev);
840	ifmedia_removeall(&sc->sc_media);
841	if (sc->fxp_desc.cbl_list) {
842		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
843		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
844		    sc->cbl_map);
845	}
846	if (sc->fxp_stats) {
847		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
848		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
849	}
850	if (sc->mcsp) {
851		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
852		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
853	}
854	if (sc->irq)
855		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
856	if (sc->mem)
857		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
858	if (sc->fxp_mtag) {
859		for (i = 0; i < FXP_NRFABUFS; i++) {
860			rxp = &sc->fxp_desc.rx_list[i];
861			if (rxp->rx_mbuf != NULL) {
862				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
863				    BUS_DMASYNC_POSTREAD);
864				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
865				m_freem(rxp->rx_mbuf);
866			}
867			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
868		}
869		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
870		for (i = 0; i < FXP_NTXCB; i++) {
871			txp = &sc->fxp_desc.tx_list[i];
872			if (txp->tx_mbuf != NULL) {
873				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
874				    BUS_DMASYNC_POSTWRITE);
875				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
876				m_freem(txp->tx_mbuf);
877			}
878			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
879		}
880		bus_dma_tag_destroy(sc->fxp_mtag);
881	}
882	if (sc->fxp_stag)
883		bus_dma_tag_destroy(sc->fxp_stag);
884	if (sc->cbl_tag)
885		bus_dma_tag_destroy(sc->cbl_tag);
886	if (sc->mcs_tag)
887		bus_dma_tag_destroy(sc->mcs_tag);
888	if (sc->ifp)
889		if_free(sc->ifp);
890
891	mtx_destroy(&sc->sc_mtx);
892}
893
894/*
895 * Detach interface.
896 */
897static int
898fxp_detach(device_t dev)
899{
900	struct fxp_softc *sc = device_get_softc(dev);
901
902	FXP_LOCK(sc);
903	sc->suspended = 1;	/* Do same thing as we do for suspend */
904	/*
905	 * Stop DMA and drop transmit queue, but disable interrupts first.
906	 */
907	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
908	fxp_stop(sc);
909	FXP_UNLOCK(sc);
910	callout_drain(&sc->stat_ch);
911
912	/*
913	 * Close down routes etc.
914	 */
915	ether_ifdetach(sc->ifp);
916
917	/*
918	 * Unhook interrupt before dropping lock. This is to prevent
919	 * races with fxp_intr().
920	 */
921	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
922	sc->ih = NULL;
923
924	/* Release our allocated resources. */
925	fxp_release(sc);
926	return (0);
927}
928
929/*
930 * Device shutdown routine. Called at system shutdown after sync. The
931 * main purpose of this routine is to shut off receiver DMA so that
932 * kernel memory doesn't get clobbered during warmboot.
933 */
934static int
935fxp_shutdown(device_t dev)
936{
937	struct fxp_softc *sc = device_get_softc(dev);
938
939	/*
940	 * Make sure that DMA is disabled prior to reboot. Not doing
941	 * do could allow DMA to corrupt kernel memory during the
942	 * reboot before the driver initializes.
943	 */
944	FXP_LOCK(sc);
945	fxp_stop(sc);
946	FXP_UNLOCK(sc);
947	return (0);
948}
949
950/*
951 * Device suspend routine.  Stop the interface and save some PCI
952 * settings in case the BIOS doesn't restore them properly on
953 * resume.
954 */
955static int
956fxp_suspend(device_t dev)
957{
958	struct fxp_softc *sc = device_get_softc(dev);
959
960	FXP_LOCK(sc);
961
962	fxp_stop(sc);
963
964	sc->suspended = 1;
965
966	FXP_UNLOCK(sc);
967	return (0);
968}
969
970/*
971 * Device resume routine. re-enable busmastering, and restart the interface if
972 * appropriate.
973 */
974static int
975fxp_resume(device_t dev)
976{
977	struct fxp_softc *sc = device_get_softc(dev);
978	struct ifnet *ifp = sc->ifp;
979
980	FXP_LOCK(sc);
981
982	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
983	DELAY(10);
984
985	/* reinitialize interface if necessary */
986	if (ifp->if_flags & IFF_UP)
987		fxp_init_body(sc);
988
989	sc->suspended = 0;
990
991	FXP_UNLOCK(sc);
992	return (0);
993}
994
995static void
996fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
997{
998	uint16_t reg;
999	int x;
1000
1001	/*
1002	 * Shift in data.
1003	 */
1004	for (x = 1 << (length - 1); x; x >>= 1) {
1005		if (data & x)
1006			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1007		else
1008			reg = FXP_EEPROM_EECS;
1009		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1010		DELAY(1);
1011		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1012		DELAY(1);
1013		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1014		DELAY(1);
1015	}
1016}
1017
1018/*
1019 * Read from the serial EEPROM. Basically, you manually shift in
1020 * the read opcode (one bit at a time) and then shift in the address,
1021 * and then you shift out the data (all of this one bit at a time).
1022 * The word size is 16 bits, so you have to provide the address for
1023 * every 16 bits of data.
1024 */
1025static uint16_t
1026fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1027{
1028	uint16_t reg, data;
1029	int x;
1030
1031	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1032	/*
1033	 * Shift in read opcode.
1034	 */
1035	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1036	/*
1037	 * Shift in address.
1038	 */
1039	data = 0;
1040	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1041		if (offset & x)
1042			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1043		else
1044			reg = FXP_EEPROM_EECS;
1045		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1046		DELAY(1);
1047		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1048		DELAY(1);
1049		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1050		DELAY(1);
1051		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1052		data++;
1053		if (autosize && reg == 0) {
1054			sc->eeprom_size = data;
1055			break;
1056		}
1057	}
1058	/*
1059	 * Shift out data.
1060	 */
1061	data = 0;
1062	reg = FXP_EEPROM_EECS;
1063	for (x = 1 << 15; x; x >>= 1) {
1064		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1065		DELAY(1);
1066		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1067			data |= x;
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1069		DELAY(1);
1070	}
1071	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1072	DELAY(1);
1073
1074	return (data);
1075}
1076
1077static void
1078fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1079{
1080	int i;
1081
1082	/*
1083	 * Erase/write enable.
1084	 */
1085	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1086	fxp_eeprom_shiftin(sc, 0x4, 3);
1087	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1088	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1089	DELAY(1);
1090	/*
1091	 * Shift in write opcode, address, data.
1092	 */
1093	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1094	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1095	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1096	fxp_eeprom_shiftin(sc, data, 16);
1097	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1098	DELAY(1);
1099	/*
1100	 * Wait for EEPROM to finish up.
1101	 */
1102	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1103	DELAY(1);
1104	for (i = 0; i < 1000; i++) {
1105		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1106			break;
1107		DELAY(50);
1108	}
1109	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1110	DELAY(1);
1111	/*
1112	 * Erase/write disable.
1113	 */
1114	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1115	fxp_eeprom_shiftin(sc, 0x4, 3);
1116	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1117	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1118	DELAY(1);
1119}
1120
1121/*
1122 * From NetBSD:
1123 *
1124 * Figure out EEPROM size.
1125 *
1126 * 559's can have either 64-word or 256-word EEPROMs, the 558
1127 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1128 * talks about the existance of 16 to 256 word EEPROMs.
1129 *
1130 * The only known sizes are 64 and 256, where the 256 version is used
1131 * by CardBus cards to store CIS information.
1132 *
1133 * The address is shifted in msb-to-lsb, and after the last
1134 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1135 * after which follows the actual data. We try to detect this zero, by
1136 * probing the data-out bit in the EEPROM control register just after
1137 * having shifted in a bit. If the bit is zero, we assume we've
1138 * shifted enough address bits. The data-out should be tri-state,
1139 * before this, which should translate to a logical one.
1140 */
1141static void
1142fxp_autosize_eeprom(struct fxp_softc *sc)
1143{
1144
1145	/* guess maximum size of 256 words */
1146	sc->eeprom_size = 8;
1147
1148	/* autosize */
1149	(void) fxp_eeprom_getword(sc, 0, 1);
1150}
1151
1152static void
1153fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1154{
1155	int i;
1156
1157	for (i = 0; i < words; i++)
1158		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1159}
1160
1161static void
1162fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1163{
1164	int i;
1165
1166	for (i = 0; i < words; i++)
1167		fxp_eeprom_putword(sc, offset + i, data[i]);
1168}
1169
1170/*
1171 * Grab the softc lock and call the real fxp_start_body() routine
1172 */
1173static void
1174fxp_start(struct ifnet *ifp)
1175{
1176	struct fxp_softc *sc = ifp->if_softc;
1177
1178	FXP_LOCK(sc);
1179	fxp_start_body(ifp);
1180	FXP_UNLOCK(sc);
1181}
1182
1183/*
1184 * Start packet transmission on the interface.
1185 * This routine must be called with the softc lock held, and is an
1186 * internal entry point only.
1187 */
1188static void
1189fxp_start_body(struct ifnet *ifp)
1190{
1191	struct fxp_softc *sc = ifp->if_softc;
1192	struct mbuf *mb_head;
1193	int error, txqueued;
1194
1195	FXP_LOCK_ASSERT(sc, MA_OWNED);
1196
1197	/*
1198	 * See if we need to suspend xmit until the multicast filter
1199	 * has been reprogrammed (which can only be done at the head
1200	 * of the command chain).
1201	 */
1202	if (sc->need_mcsetup)
1203		return;
1204
1205	/*
1206	 * We're finished if there is nothing more to add to the list or if
1207	 * we're all filled up with buffers to transmit.
1208	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1209	 *       a NOP command when needed.
1210	 */
1211	txqueued = 0;
1212	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1213	    sc->tx_queued < FXP_NTXCB - 1) {
1214
1215		/*
1216		 * Grab a packet to transmit.
1217		 */
1218		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1219		if (mb_head == NULL)
1220			break;
1221
1222		error = fxp_encap(sc, mb_head);
1223		if (error)
1224			break;
1225		txqueued = 1;
1226	}
1227	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1228
1229	/*
1230	 * We're finished. If we added to the list, issue a RESUME to get DMA
1231	 * going again if suspended.
1232	 */
1233	if (txqueued) {
1234		fxp_scb_wait(sc);
1235		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1236	}
1237}
1238
1239static int
1240fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1241{
1242	struct ifnet *ifp;
1243	struct mbuf *m;
1244	struct fxp_tx *txp;
1245	struct fxp_cb_tx *cbp;
1246	bus_dma_segment_t segs[FXP_NTXSEG];
1247	int chainlen, error, i, nseg;
1248
1249	FXP_LOCK_ASSERT(sc, MA_OWNED);
1250	ifp = sc->ifp;
1251
1252	/*
1253	 * Get pointer to next available tx desc.
1254	 */
1255	txp = sc->fxp_desc.tx_last->tx_next;
1256
1257	/*
1258	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1259	 * Ethernet Controller Family Open Source Software
1260	 * Developer Manual says:
1261	 *   Using software parsing is only allowed with legal
1262	 *   TCP/IP or UDP/IP packets.
1263	 *   ...
1264	 *   For all other datagrams, hardware parsing must
1265	 *   be used.
1266	 * Software parsing appears to truncate ICMP and
1267	 * fragmented UDP packets that contain one to three
1268	 * bytes in the second (and final) mbuf of the packet.
1269	 */
1270	if (sc->flags & FXP_FLAG_EXT_RFA)
1271		txp->tx_cb->ipcb_ip_activation_high =
1272		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1273
1274	/*
1275	 * Deal with TCP/IP checksum offload. Note that
1276	 * in order for TCP checksum offload to work,
1277	 * the pseudo header checksum must have already
1278	 * been computed and stored in the checksum field
1279	 * in the TCP header. The stack should have
1280	 * already done this for us.
1281	 */
1282	if (m_head->m_pkthdr.csum_flags) {
1283		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1284			txp->tx_cb->ipcb_ip_schedule =
1285			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1286			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1287				txp->tx_cb->ipcb_ip_schedule |=
1288				    FXP_IPCB_TCP_PACKET;
1289		}
1290
1291#ifdef FXP_IP_CSUM_WAR
1292		/*
1293		 * XXX The 82550 chip appears to have trouble
1294		 * dealing with IP header checksums in very small
1295		 * datagrams, namely fragments from 1 to 3 bytes
1296		 * in size. For example, say you want to transmit
1297		 * a UDP packet of 1473 bytes. The packet will be
1298		 * fragmented over two IP datagrams, the latter
1299		 * containing only one byte of data. The 82550 will
1300		 * botch the header checksum on the 1-byte fragment.
1301		 * As long as the datagram contains 4 or more bytes
1302		 * of data, you're ok.
1303		 *
1304                 * The following code attempts to work around this
1305		 * problem: if the datagram is less than 38 bytes
1306		 * in size (14 bytes ether header, 20 bytes IP header,
1307		 * plus 4 bytes of data), we punt and compute the IP
1308		 * header checksum by hand. This workaround doesn't
1309		 * work very well, however, since it can be fooled
1310		 * by things like VLAN tags and IP options that make
1311		 * the header sizes/offsets vary.
1312		 */
1313
1314		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1315			if (m_head->m_pkthdr.len < 38) {
1316				struct ip *ip;
1317				m_head->m_data += ETHER_HDR_LEN;
1318				ip = mtod(mb_head, struct ip *);
1319				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1320				m_head->m_data -= ETHER_HDR_LEN;
1321			} else {
1322				txp->tx_cb->ipcb_ip_activation_high =
1323				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1324				txp->tx_cb->ipcb_ip_schedule |=
1325				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1326			}
1327		}
1328#endif
1329	}
1330
1331	chainlen = 0;
1332	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1333		chainlen++;
1334	if (chainlen > sc->maxtxseg) {
1335		struct mbuf *mn;
1336
1337		/*
1338		 * We ran out of segments. We have to recopy this
1339		 * mbuf chain first. Bail out if we can't get the
1340		 * new buffers.
1341		 */
1342		mn = m_defrag(m_head, M_DONTWAIT);
1343		if (mn == NULL) {
1344			m_freem(m_head);
1345			return (-1);
1346		} else {
1347			m_head = mn;
1348		}
1349	}
1350
1351	/*
1352	 * Go through each of the mbufs in the chain and initialize
1353	 * the transmit buffer descriptors with the physical address
1354	 * and size of the mbuf.
1355	 */
1356	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1357	    m_head, segs, &nseg, 0);
1358	if (error) {
1359		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1360		m_freem(m_head);
1361		return (-1);
1362	}
1363
1364	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1365
1366	cbp = txp->tx_cb;
1367	for (i = 0; i < nseg; i++) {
1368		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1369		/*
1370		 * If this is an 82550/82551, then we're using extended
1371		 * TxCBs _and_ we're using checksum offload. This means
1372		 * that the TxCB is really an IPCB. One major difference
1373		 * between the two is that with plain extended TxCBs,
1374		 * the bottom half of the TxCB contains two entries from
1375		 * the TBD array, whereas IPCBs contain just one entry:
1376		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1377		 * checksum offload control bits. So to make things work
1378		 * right, we have to start filling in the TBD array
1379		 * starting from a different place depending on whether
1380		 * the chip is an 82550/82551 or not.
1381		 */
1382		if (sc->flags & FXP_FLAG_EXT_RFA) {
1383			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1384			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1385		} else {
1386			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1387			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1388		}
1389	}
1390	cbp->tbd_number = nseg;
1391
1392	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1393	txp->tx_mbuf = m_head;
1394	txp->tx_cb->cb_status = 0;
1395	txp->tx_cb->byte_count = 0;
1396	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1397		txp->tx_cb->cb_command =
1398		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1399		    FXP_CB_COMMAND_S);
1400	} else {
1401		txp->tx_cb->cb_command =
1402		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1403		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1404		/*
1405		 * Set a 5 second timer just in case we don't hear
1406		 * from the card again.
1407		 */
1408		ifp->if_timer = 5;
1409	}
1410	txp->tx_cb->tx_threshold = tx_threshold;
1411
1412	/*
1413	 * Advance the end of list forward.
1414	 */
1415
1416#ifdef __alpha__
1417	/*
1418	 * On platforms which can't access memory in 16-bit
1419	 * granularities, we must prevent the card from DMA'ing
1420	 * up the status while we update the command field.
1421	 * This could cause us to overwrite the completion status.
1422	 * XXX This is probably bogus and we're _not_ looking
1423	 * for atomicity here.
1424	 */
1425	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1426	    htole16(FXP_CB_COMMAND_S));
1427#else
1428	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1429#endif /*__alpha__*/
1430	sc->fxp_desc.tx_last = txp;
1431
1432	/*
1433	 * Advance the beginning of the list forward if there are
1434	 * no other packets queued (when nothing is queued, tx_first
1435	 * sits on the last TxCB that was sent out).
1436	 */
1437	if (sc->tx_queued == 0)
1438		sc->fxp_desc.tx_first = txp;
1439
1440	sc->tx_queued++;
1441
1442	/*
1443	 * Pass packet to bpf if there is a listener.
1444	 */
1445	BPF_MTAP(ifp, m_head);
1446	return (0);
1447}
1448
1449#ifdef DEVICE_POLLING
1450static poll_handler_t fxp_poll;
1451
1452static void
1453fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1454{
1455	struct fxp_softc *sc = ifp->if_softc;
1456	uint8_t statack;
1457
1458	FXP_LOCK(sc);
1459	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1460		ether_poll_deregister(ifp);
1461		cmd = POLL_DEREGISTER;
1462	}
1463	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1464		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1465		FXP_UNLOCK(sc);
1466		return;
1467	}
1468	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1469	    FXP_SCB_STATACK_FR;
1470	if (cmd == POLL_AND_CHECK_STATUS) {
1471		uint8_t tmp;
1472
1473		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1474		if (tmp == 0xff || tmp == 0) {
1475			FXP_UNLOCK(sc);
1476			return; /* nothing to do */
1477		}
1478		tmp &= ~statack;
1479		/* ack what we can */
1480		if (tmp != 0)
1481			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1482		statack |= tmp;
1483	}
1484	fxp_intr_body(sc, ifp, statack, count);
1485	FXP_UNLOCK(sc);
1486}
1487#endif /* DEVICE_POLLING */
1488
1489/*
1490 * Process interface interrupts.
1491 */
1492static void
1493fxp_intr(void *xsc)
1494{
1495	struct fxp_softc *sc = xsc;
1496	struct ifnet *ifp = sc->ifp;
1497	uint8_t statack;
1498
1499	FXP_LOCK(sc);
1500	if (sc->suspended) {
1501		FXP_UNLOCK(sc);
1502		return;
1503	}
1504
1505#ifdef DEVICE_POLLING
1506	if (ifp->if_flags & IFF_POLLING) {
1507		FXP_UNLOCK(sc);
1508		return;
1509	}
1510	if ((ifp->if_capenable & IFCAP_POLLING) &&
1511	    ether_poll_register(fxp_poll, ifp)) {
1512		/* disable interrupts */
1513		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1514		FXP_UNLOCK(sc);
1515		fxp_poll(ifp, 0, 1);
1516		return;
1517	}
1518#endif
1519	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1520		/*
1521		 * It should not be possible to have all bits set; the
1522		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1523		 * all bits are set, this may indicate that the card has
1524		 * been physically ejected, so ignore it.
1525		 */
1526		if (statack == 0xff) {
1527			FXP_UNLOCK(sc);
1528			return;
1529		}
1530
1531		/*
1532		 * First ACK all the interrupts in this pass.
1533		 */
1534		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1535		fxp_intr_body(sc, ifp, statack, -1);
1536	}
1537	FXP_UNLOCK(sc);
1538}
1539
1540static void
1541fxp_txeof(struct fxp_softc *sc)
1542{
1543	struct fxp_tx *txp;
1544
1545	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1546	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1547	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1548	    txp = txp->tx_next) {
1549		if (txp->tx_mbuf != NULL) {
1550			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1551			    BUS_DMASYNC_POSTWRITE);
1552			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1553			m_freem(txp->tx_mbuf);
1554			txp->tx_mbuf = NULL;
1555			/* clear this to reset csum offload bits */
1556			txp->tx_cb->tbd[0].tb_addr = 0;
1557		}
1558		sc->tx_queued--;
1559	}
1560	sc->fxp_desc.tx_first = txp;
1561	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1562}
1563
1564static void
1565fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1566    int count)
1567{
1568	struct mbuf *m;
1569	struct fxp_rx *rxp;
1570	struct fxp_rfa *rfa;
1571	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1572	int fxp_rc = 0;
1573
1574	FXP_LOCK_ASSERT(sc, MA_OWNED);
1575	if (rnr)
1576		sc->rnr++;
1577#ifdef DEVICE_POLLING
1578	/* Pick up a deferred RNR condition if `count' ran out last time. */
1579	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1580		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1581		rnr = 1;
1582	}
1583#endif
1584
1585	/*
1586	 * Free any finished transmit mbuf chains.
1587	 *
1588	 * Handle the CNA event likt a CXTNO event. It used to
1589	 * be that this event (control unit not ready) was not
1590	 * encountered, but it is now with the SMPng modifications.
1591	 * The exact sequence of events that occur when the interface
1592	 * is brought up are different now, and if this event
1593	 * goes unhandled, the configuration/rxfilter setup sequence
1594	 * can stall for several seconds. The result is that no
1595	 * packets go out onto the wire for about 5 to 10 seconds
1596	 * after the interface is ifconfig'ed for the first time.
1597	 */
1598	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1599		fxp_txeof(sc);
1600
1601		ifp->if_timer = 0;
1602		if (sc->tx_queued == 0) {
1603			if (sc->need_mcsetup)
1604				fxp_mc_setup(sc);
1605		}
1606		/*
1607		 * Try to start more packets transmitting.
1608		 */
1609		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1610			fxp_start_body(ifp);
1611	}
1612
1613	/*
1614	 * Just return if nothing happened on the receive side.
1615	 */
1616	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1617		return;
1618
1619	/*
1620	 * Process receiver interrupts. If a no-resource (RNR)
1621	 * condition exists, get whatever packets we can and
1622	 * re-start the receiver.
1623	 *
1624	 * When using polling, we do not process the list to completion,
1625	 * so when we get an RNR interrupt we must defer the restart
1626	 * until we hit the last buffer with the C bit set.
1627	 * If we run out of cycles and rfa_headm has the C bit set,
1628	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1629	 * that the info will be used in the subsequent polling cycle.
1630	 */
1631	for (;;) {
1632		rxp = sc->fxp_desc.rx_head;
1633		m = rxp->rx_mbuf;
1634		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1635		    RFA_ALIGNMENT_FUDGE);
1636		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1637		    BUS_DMASYNC_POSTREAD);
1638
1639#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1640		if (count >= 0 && count-- == 0) {
1641			if (rnr) {
1642				/* Defer RNR processing until the next time. */
1643				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1644				rnr = 0;
1645			}
1646			break;
1647		}
1648#endif /* DEVICE_POLLING */
1649
1650		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1651			break;
1652
1653		/*
1654		 * Advance head forward.
1655		 */
1656		sc->fxp_desc.rx_head = rxp->rx_next;
1657
1658		/*
1659		 * Add a new buffer to the receive chain.
1660		 * If this fails, the old buffer is recycled
1661		 * instead.
1662		 */
1663		fxp_rc = fxp_add_rfabuf(sc, rxp);
1664		if (fxp_rc == 0) {
1665			int total_len;
1666
1667			/*
1668			 * Fetch packet length (the top 2 bits of
1669			 * actual_size are flags set by the controller
1670			 * upon completion), and drop the packet in case
1671			 * of bogus length or CRC errors.
1672			 */
1673			total_len = le16toh(rfa->actual_size) & 0x3fff;
1674			if (total_len < sizeof(struct ether_header) ||
1675			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1676				sc->rfa_size ||
1677			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1678				m_freem(m);
1679				continue;
1680			}
1681
1682                        /* Do IP checksum checking. */
1683			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1684				if (rfa->rfax_csum_sts &
1685				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1686					m->m_pkthdr.csum_flags |=
1687					    CSUM_IP_CHECKED;
1688				if (rfa->rfax_csum_sts &
1689				    FXP_RFDX_CS_IP_CSUM_VALID)
1690					m->m_pkthdr.csum_flags |=
1691					    CSUM_IP_VALID;
1692				if ((rfa->rfax_csum_sts &
1693				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1694				    (rfa->rfax_csum_sts &
1695				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1696					m->m_pkthdr.csum_flags |=
1697					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1698					m->m_pkthdr.csum_data = 0xffff;
1699				}
1700			}
1701
1702			m->m_pkthdr.len = m->m_len = total_len;
1703			m->m_pkthdr.rcvif = ifp;
1704
1705			/*
1706			 * Drop locks before calling if_input() since it
1707			 * may re-enter fxp_start() in the netisr case.
1708			 * This would result in a lock reversal.  Better
1709			 * performance might be obtained by chaining all
1710			 * packets received, dropping the lock, and then
1711			 * calling if_input() on each one.
1712			 */
1713			FXP_UNLOCK(sc);
1714			(*ifp->if_input)(ifp, m);
1715			FXP_LOCK(sc);
1716		} else if (fxp_rc == ENOBUFS) {
1717			rnr = 0;
1718			break;
1719		}
1720	}
1721	if (rnr) {
1722		fxp_scb_wait(sc);
1723		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1724		    sc->fxp_desc.rx_head->rx_addr);
1725		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1726	}
1727}
1728
1729/*
1730 * Update packet in/out/collision statistics. The i82557 doesn't
1731 * allow you to access these counters without doing a fairly
1732 * expensive DMA to get _all_ of the statistics it maintains, so
1733 * we do this operation here only once per second. The statistics
1734 * counters in the kernel are updated from the previous dump-stats
1735 * DMA and then a new dump-stats DMA is started. The on-chip
1736 * counters are zeroed when the DMA completes. If we can't start
1737 * the DMA immediately, we don't wait - we just prepare to read
1738 * them again next time.
1739 */
1740static void
1741fxp_tick(void *xsc)
1742{
1743	struct fxp_softc *sc = xsc;
1744	struct ifnet *ifp = sc->ifp;
1745	struct fxp_stats *sp = sc->fxp_stats;
1746
1747	FXP_LOCK_ASSERT(sc, MA_OWNED);
1748	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1749	ifp->if_opackets += le32toh(sp->tx_good);
1750	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1751	if (sp->rx_good) {
1752		ifp->if_ipackets += le32toh(sp->rx_good);
1753		sc->rx_idle_secs = 0;
1754	} else {
1755		/*
1756		 * Receiver's been idle for another second.
1757		 */
1758		sc->rx_idle_secs++;
1759	}
1760	ifp->if_ierrors +=
1761	    le32toh(sp->rx_crc_errors) +
1762	    le32toh(sp->rx_alignment_errors) +
1763	    le32toh(sp->rx_rnr_errors) +
1764	    le32toh(sp->rx_overrun_errors);
1765	/*
1766	 * If any transmit underruns occured, bump up the transmit
1767	 * threshold by another 512 bytes (64 * 8).
1768	 */
1769	if (sp->tx_underruns) {
1770		ifp->if_oerrors += le32toh(sp->tx_underruns);
1771		if (tx_threshold < 192)
1772			tx_threshold += 64;
1773	}
1774
1775	/*
1776	 * Release any xmit buffers that have completed DMA. This isn't
1777	 * strictly necessary to do here, but it's advantagous for mbufs
1778	 * with external storage to be released in a timely manner rather
1779	 * than being defered for a potentially long time. This limits
1780	 * the delay to a maximum of one second.
1781	 */
1782	fxp_txeof(sc);
1783
1784	/*
1785	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1786	 * then assume the receiver has locked up and attempt to clear
1787	 * the condition by reprogramming the multicast filter. This is
1788	 * a work-around for a bug in the 82557 where the receiver locks
1789	 * up if it gets certain types of garbage in the syncronization
1790	 * bits prior to the packet header. This bug is supposed to only
1791	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1792	 * mode as well (perhaps due to a 10/100 speed transition).
1793	 */
1794	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1795		sc->rx_idle_secs = 0;
1796		fxp_mc_setup(sc);
1797	}
1798	/*
1799	 * If there is no pending command, start another stats
1800	 * dump. Otherwise punt for now.
1801	 */
1802	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1803		/*
1804		 * Start another stats dump.
1805		 */
1806		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1807		    BUS_DMASYNC_PREREAD);
1808		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1809	} else {
1810		/*
1811		 * A previous command is still waiting to be accepted.
1812		 * Just zero our copy of the stats and wait for the
1813		 * next timer event to update them.
1814		 */
1815		sp->tx_good = 0;
1816		sp->tx_underruns = 0;
1817		sp->tx_total_collisions = 0;
1818
1819		sp->rx_good = 0;
1820		sp->rx_crc_errors = 0;
1821		sp->rx_alignment_errors = 0;
1822		sp->rx_rnr_errors = 0;
1823		sp->rx_overrun_errors = 0;
1824	}
1825	if (sc->miibus != NULL)
1826		mii_tick(device_get_softc(sc->miibus));
1827
1828	/*
1829	 * Schedule another timeout one second from now.
1830	 */
1831	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1832}
1833
1834/*
1835 * Stop the interface. Cancels the statistics updater and resets
1836 * the interface.
1837 */
1838static void
1839fxp_stop(struct fxp_softc *sc)
1840{
1841	struct ifnet *ifp = sc->ifp;
1842	struct fxp_tx *txp;
1843	int i;
1844
1845	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1846	ifp->if_timer = 0;
1847
1848#ifdef DEVICE_POLLING
1849	ether_poll_deregister(ifp);
1850#endif
1851	/*
1852	 * Cancel stats updater.
1853	 */
1854	callout_stop(&sc->stat_ch);
1855
1856	/*
1857	 * Issue software reset, which also unloads the microcode.
1858	 */
1859	sc->flags &= ~FXP_FLAG_UCODE;
1860	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1861	DELAY(50);
1862
1863	/*
1864	 * Release any xmit buffers.
1865	 */
1866	txp = sc->fxp_desc.tx_list;
1867	if (txp != NULL) {
1868		for (i = 0; i < FXP_NTXCB; i++) {
1869 			if (txp[i].tx_mbuf != NULL) {
1870				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1871				    BUS_DMASYNC_POSTWRITE);
1872				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1873				m_freem(txp[i].tx_mbuf);
1874				txp[i].tx_mbuf = NULL;
1875				/* clear this to reset csum offload bits */
1876				txp[i].tx_cb->tbd[0].tb_addr = 0;
1877			}
1878		}
1879	}
1880	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1881	sc->tx_queued = 0;
1882}
1883
1884/*
1885 * Watchdog/transmission transmit timeout handler. Called when a
1886 * transmission is started on the interface, but no interrupt is
1887 * received before the timeout. This usually indicates that the
1888 * card has wedged for some reason.
1889 */
1890static void
1891fxp_watchdog(struct ifnet *ifp)
1892{
1893	struct fxp_softc *sc = ifp->if_softc;
1894
1895	FXP_LOCK(sc);
1896	device_printf(sc->dev, "device timeout\n");
1897	ifp->if_oerrors++;
1898
1899	fxp_init_body(sc);
1900	FXP_UNLOCK(sc);
1901}
1902
1903/*
1904 * Acquire locks and then call the real initialization function.  This
1905 * is necessary because ether_ioctl() calls if_init() and this would
1906 * result in mutex recursion if the mutex was held.
1907 */
1908static void
1909fxp_init(void *xsc)
1910{
1911	struct fxp_softc *sc = xsc;
1912
1913	FXP_LOCK(sc);
1914	fxp_init_body(sc);
1915	FXP_UNLOCK(sc);
1916}
1917
1918/*
1919 * Perform device initialization. This routine must be called with the
1920 * softc lock held.
1921 */
1922static void
1923fxp_init_body(struct fxp_softc *sc)
1924{
1925	struct ifnet *ifp = sc->ifp;
1926	struct fxp_cb_config *cbp;
1927	struct fxp_cb_ias *cb_ias;
1928	struct fxp_cb_tx *tcbp;
1929	struct fxp_tx *txp;
1930	struct fxp_cb_mcs *mcsp;
1931	int i, prm;
1932
1933	FXP_LOCK_ASSERT(sc, MA_OWNED);
1934	/*
1935	 * Cancel any pending I/O
1936	 */
1937	fxp_stop(sc);
1938
1939	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1940
1941	/*
1942	 * Initialize base of CBL and RFA memory. Loading with zero
1943	 * sets it up for regular linear addressing.
1944	 */
1945	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1946	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1947
1948	fxp_scb_wait(sc);
1949	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1950
1951	/*
1952	 * Initialize base of dump-stats buffer.
1953	 */
1954	fxp_scb_wait(sc);
1955	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1956	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1957	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1958
1959	/*
1960	 * Attempt to load microcode if requested.
1961	 */
1962	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1963		fxp_load_ucode(sc);
1964
1965	/*
1966	 * Initialize the multicast address list.
1967	 */
1968	if (fxp_mc_addrs(sc)) {
1969		mcsp = sc->mcsp;
1970		mcsp->cb_status = 0;
1971		mcsp->cb_command =
1972		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1973		mcsp->link_addr = 0xffffffff;
1974		/*
1975	 	 * Start the multicast setup command.
1976		 */
1977		fxp_scb_wait(sc);
1978		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1979		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1980		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1981		/* ...and wait for it to complete. */
1982		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1983		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1984		    BUS_DMASYNC_POSTWRITE);
1985	}
1986
1987	/*
1988	 * We temporarily use memory that contains the TxCB list to
1989	 * construct the config CB. The TxCB list memory is rebuilt
1990	 * later.
1991	 */
1992	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1993
1994	/*
1995	 * This bcopy is kind of disgusting, but there are a bunch of must be
1996	 * zero and must be one bits in this structure and this is the easiest
1997	 * way to initialize them all to proper values.
1998	 */
1999	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2000
2001	cbp->cb_status =	0;
2002	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2003	    FXP_CB_COMMAND_EL);
2004	cbp->link_addr =	0xffffffff;	/* (no) next command */
2005	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2006	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2007	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2008	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2009	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2010	cbp->type_enable =	0;	/* actually reserved */
2011	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2012	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2013	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2014	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2015	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2016	cbp->late_scb =		0;	/* (don't) defer SCB update */
2017	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2018	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2019	cbp->ci_int =		1;	/* interrupt on CU idle */
2020	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2021	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2022	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2023	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2024	cbp->disc_short_rx =	!prm;	/* discard short packets */
2025	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2026	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2027	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2028	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2029	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2030	cbp->csma_dis =		0;	/* (don't) disable link */
2031	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2032	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2033	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2034	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2035	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2036	cbp->nsai =		1;	/* (don't) disable source addr insert */
2037	cbp->preamble_length =	2;	/* (7 byte) preamble */
2038	cbp->loopback =		0;	/* (don't) loopback */
2039	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2040	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2041	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2042	cbp->promiscuous =	prm;	/* promiscuous mode */
2043	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2044	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2045	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2046	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2047	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2048
2049	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2050	cbp->padding =		1;	/* (do) pad short tx packets */
2051	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2052	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2053	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2054	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2055					/* must set wake_en in PMCSR also */
2056	cbp->force_fdx =	0;	/* (don't) force full duplex */
2057	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2058	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2059	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2060	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2061
2062	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2063		/*
2064		 * The 82557 has no hardware flow control, the values
2065		 * below are the defaults for the chip.
2066		 */
2067		cbp->fc_delay_lsb =	0;
2068		cbp->fc_delay_msb =	0x40;
2069		cbp->pri_fc_thresh =	3;
2070		cbp->tx_fc_dis =	0;
2071		cbp->rx_fc_restop =	0;
2072		cbp->rx_fc_restart =	0;
2073		cbp->fc_filter =	0;
2074		cbp->pri_fc_loc =	1;
2075	} else {
2076		cbp->fc_delay_lsb =	0x1f;
2077		cbp->fc_delay_msb =	0x01;
2078		cbp->pri_fc_thresh =	3;
2079		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2080		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2081		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2082		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2083		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2084	}
2085
2086	/*
2087	 * Start the config command/DMA.
2088	 */
2089	fxp_scb_wait(sc);
2090	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2091	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2092	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2093	/* ...and wait for it to complete. */
2094	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2095	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2096
2097	/*
2098	 * Now initialize the station address. Temporarily use the TxCB
2099	 * memory area like we did above for the config CB.
2100	 */
2101	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2102	cb_ias->cb_status = 0;
2103	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2104	cb_ias->link_addr = 0xffffffff;
2105	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2106	    sizeof(IFP2ENADDR(sc->ifp)));
2107
2108	/*
2109	 * Start the IAS (Individual Address Setup) command/DMA.
2110	 */
2111	fxp_scb_wait(sc);
2112	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2113	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2114	/* ...and wait for it to complete. */
2115	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2116	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2117
2118	/*
2119	 * Initialize transmit control block (TxCB) list.
2120	 */
2121	txp = sc->fxp_desc.tx_list;
2122	tcbp = sc->fxp_desc.cbl_list;
2123	bzero(tcbp, FXP_TXCB_SZ);
2124	for (i = 0; i < FXP_NTXCB; i++) {
2125		txp[i].tx_mbuf = NULL;
2126		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2127		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2128		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2129		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2130		if (sc->flags & FXP_FLAG_EXT_TXCB)
2131			tcbp[i].tbd_array_addr =
2132			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2133		else
2134			tcbp[i].tbd_array_addr =
2135			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2136		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2137	}
2138	/*
2139	 * Set the suspend flag on the first TxCB and start the control
2140	 * unit. It will execute the NOP and then suspend.
2141	 */
2142	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2143	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2144	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2145	sc->tx_queued = 1;
2146
2147	fxp_scb_wait(sc);
2148	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2149
2150	/*
2151	 * Initialize receiver buffer area - RFA.
2152	 */
2153	fxp_scb_wait(sc);
2154	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2155	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2156
2157	/*
2158	 * Set current media.
2159	 */
2160	if (sc->miibus != NULL)
2161		mii_mediachg(device_get_softc(sc->miibus));
2162
2163	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2164	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2165
2166	/*
2167	 * Enable interrupts.
2168	 */
2169#ifdef DEVICE_POLLING
2170	/*
2171	 * ... but only do that if we are not polling. And because (presumably)
2172	 * the default is interrupts on, we need to disable them explicitly!
2173	 */
2174	if ( ifp->if_flags & IFF_POLLING )
2175		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2176	else
2177#endif /* DEVICE_POLLING */
2178	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2179
2180	/*
2181	 * Start stats updater.
2182	 */
2183	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2184}
2185
2186static int
2187fxp_serial_ifmedia_upd(struct ifnet *ifp)
2188{
2189
2190	return (0);
2191}
2192
2193static void
2194fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2195{
2196
2197	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2198}
2199
2200/*
2201 * Change media according to request.
2202 */
2203static int
2204fxp_ifmedia_upd(struct ifnet *ifp)
2205{
2206	struct fxp_softc *sc = ifp->if_softc;
2207	struct mii_data *mii;
2208
2209	mii = device_get_softc(sc->miibus);
2210	FXP_LOCK(sc);
2211	mii_mediachg(mii);
2212	FXP_UNLOCK(sc);
2213	return (0);
2214}
2215
2216/*
2217 * Notify the world which media we're using.
2218 */
2219static void
2220fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2221{
2222	struct fxp_softc *sc = ifp->if_softc;
2223	struct mii_data *mii;
2224
2225	mii = device_get_softc(sc->miibus);
2226	FXP_LOCK(sc);
2227	mii_pollstat(mii);
2228	ifmr->ifm_active = mii->mii_media_active;
2229	ifmr->ifm_status = mii->mii_media_status;
2230
2231	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2232		sc->cu_resume_bug = 1;
2233	else
2234		sc->cu_resume_bug = 0;
2235	FXP_UNLOCK(sc);
2236}
2237
2238/*
2239 * Add a buffer to the end of the RFA buffer list.
2240 * Return 0 if successful, 1 for failure. A failure results in
2241 * adding the 'oldm' (if non-NULL) on to the end of the list -
2242 * tossing out its old contents and recycling it.
2243 * The RFA struct is stuck at the beginning of mbuf cluster and the
2244 * data pointer is fixed up to point just past it.
2245 */
2246static int
2247fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2248{
2249	struct mbuf *m;
2250	struct fxp_rfa *rfa, *p_rfa;
2251	struct fxp_rx *p_rx;
2252	bus_dmamap_t tmp_map;
2253	int error;
2254
2255	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2256	if (m == NULL)
2257		return (ENOBUFS);
2258
2259	/*
2260	 * Move the data pointer up so that the incoming data packet
2261	 * will be 32-bit aligned.
2262	 */
2263	m->m_data += RFA_ALIGNMENT_FUDGE;
2264
2265	/*
2266	 * Get a pointer to the base of the mbuf cluster and move
2267	 * data start past it.
2268	 */
2269	rfa = mtod(m, struct fxp_rfa *);
2270	m->m_data += sc->rfa_size;
2271	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2272
2273	rfa->rfa_status = 0;
2274	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2275	rfa->actual_size = 0;
2276
2277	/*
2278	 * Initialize the rest of the RFA.  Note that since the RFA
2279	 * is misaligned, we cannot store values directly.  We're thus
2280	 * using the le32enc() function which handles endianness and
2281	 * is also alignment-safe.
2282	 */
2283	le32enc(&rfa->link_addr, 0xffffffff);
2284	le32enc(&rfa->rbd_addr, 0xffffffff);
2285
2286	/* Map the RFA into DMA memory. */
2287	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2288	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2289	    &rxp->rx_addr, 0);
2290	if (error) {
2291		m_freem(m);
2292		return (error);
2293	}
2294
2295	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2296	tmp_map = sc->spare_map;
2297	sc->spare_map = rxp->rx_map;
2298	rxp->rx_map = tmp_map;
2299	rxp->rx_mbuf = m;
2300
2301	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2302	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2303
2304	/*
2305	 * If there are other buffers already on the list, attach this
2306	 * one to the end by fixing up the tail to point to this one.
2307	 */
2308	if (sc->fxp_desc.rx_head != NULL) {
2309		p_rx = sc->fxp_desc.rx_tail;
2310		p_rfa = (struct fxp_rfa *)
2311		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2312		p_rx->rx_next = rxp;
2313		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2314		p_rfa->rfa_control = 0;
2315		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2316		    BUS_DMASYNC_PREWRITE);
2317	} else {
2318		rxp->rx_next = NULL;
2319		sc->fxp_desc.rx_head = rxp;
2320	}
2321	sc->fxp_desc.rx_tail = rxp;
2322	return (0);
2323}
2324
2325static volatile int
2326fxp_miibus_readreg(device_t dev, int phy, int reg)
2327{
2328	struct fxp_softc *sc = device_get_softc(dev);
2329	int count = 10000;
2330	int value;
2331
2332	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2333	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2334
2335	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2336	    && count--)
2337		DELAY(10);
2338
2339	if (count <= 0)
2340		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2341
2342	return (value & 0xffff);
2343}
2344
2345static void
2346fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2347{
2348	struct fxp_softc *sc = device_get_softc(dev);
2349	int count = 10000;
2350
2351	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2352	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2353	    (value & 0xffff));
2354
2355	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2356	    count--)
2357		DELAY(10);
2358
2359	if (count <= 0)
2360		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2361}
2362
2363static int
2364fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2365{
2366	struct fxp_softc *sc = ifp->if_softc;
2367	struct ifreq *ifr = (struct ifreq *)data;
2368	struct mii_data *mii;
2369	int flag, mask, error = 0;
2370
2371	switch (command) {
2372	case SIOCSIFFLAGS:
2373		FXP_LOCK(sc);
2374		if (ifp->if_flags & IFF_ALLMULTI)
2375			sc->flags |= FXP_FLAG_ALL_MCAST;
2376		else
2377			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2378
2379		/*
2380		 * If interface is marked up and not running, then start it.
2381		 * If it is marked down and running, stop it.
2382		 * XXX If it's up then re-initialize it. This is so flags
2383		 * such as IFF_PROMISC are handled.
2384		 */
2385		if (ifp->if_flags & IFF_UP) {
2386			fxp_init_body(sc);
2387		} else {
2388			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2389				fxp_stop(sc);
2390		}
2391		FXP_UNLOCK(sc);
2392		break;
2393
2394	case SIOCADDMULTI:
2395	case SIOCDELMULTI:
2396		FXP_LOCK(sc);
2397		if (ifp->if_flags & IFF_ALLMULTI)
2398			sc->flags |= FXP_FLAG_ALL_MCAST;
2399		else
2400			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2401		/*
2402		 * Multicast list has changed; set the hardware filter
2403		 * accordingly.
2404		 */
2405		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2406			fxp_mc_setup(sc);
2407		/*
2408		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2409		 * again rather than else {}.
2410		 */
2411		if (sc->flags & FXP_FLAG_ALL_MCAST)
2412			fxp_init_body(sc);
2413		FXP_UNLOCK(sc);
2414		error = 0;
2415		break;
2416
2417	case SIOCSIFMEDIA:
2418	case SIOCGIFMEDIA:
2419		if (sc->miibus != NULL) {
2420			mii = device_get_softc(sc->miibus);
2421                        error = ifmedia_ioctl(ifp, ifr,
2422                            &mii->mii_media, command);
2423		} else {
2424                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2425		}
2426		break;
2427
2428	case SIOCSIFCAP:
2429		FXP_LOCK(sc);
2430		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2431		if (mask & IFCAP_POLLING)
2432			ifp->if_capenable ^= IFCAP_POLLING;
2433		if (mask & IFCAP_VLAN_MTU) {
2434			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2435			if (sc->revision != FXP_REV_82557)
2436				flag = FXP_FLAG_LONG_PKT_EN;
2437			else /* a hack to get long frames on the old chip */
2438				flag = FXP_FLAG_SAVE_BAD;
2439			sc->flags ^= flag;
2440			if (ifp->if_flags & IFF_UP)
2441				fxp_init_body(sc);
2442		}
2443		FXP_UNLOCK(sc);
2444		break;
2445
2446	default:
2447		error = ether_ioctl(ifp, command, data);
2448	}
2449	return (error);
2450}
2451
2452/*
2453 * Fill in the multicast address list and return number of entries.
2454 */
2455static int
2456fxp_mc_addrs(struct fxp_softc *sc)
2457{
2458	struct fxp_cb_mcs *mcsp = sc->mcsp;
2459	struct ifnet *ifp = sc->ifp;
2460	struct ifmultiaddr *ifma;
2461	int nmcasts;
2462
2463	nmcasts = 0;
2464	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2465		IF_ADDR_LOCK(ifp);
2466		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2467			if (ifma->ifma_addr->sa_family != AF_LINK)
2468				continue;
2469			if (nmcasts >= MAXMCADDR) {
2470				sc->flags |= FXP_FLAG_ALL_MCAST;
2471				nmcasts = 0;
2472				break;
2473			}
2474			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2475			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2476			nmcasts++;
2477		}
2478		IF_ADDR_UNLOCK(ifp);
2479	}
2480	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2481	return (nmcasts);
2482}
2483
2484/*
2485 * Program the multicast filter.
2486 *
2487 * We have an artificial restriction that the multicast setup command
2488 * must be the first command in the chain, so we take steps to ensure
2489 * this. By requiring this, it allows us to keep up the performance of
2490 * the pre-initialized command ring (esp. link pointers) by not actually
2491 * inserting the mcsetup command in the ring - i.e. its link pointer
2492 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2493 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2494 * lead into the regular TxCB ring when it completes.
2495 *
2496 * This function must be called at splimp.
2497 */
2498static void
2499fxp_mc_setup(struct fxp_softc *sc)
2500{
2501	struct fxp_cb_mcs *mcsp = sc->mcsp;
2502	struct ifnet *ifp = sc->ifp;
2503	struct fxp_tx *txp;
2504	int count;
2505
2506	FXP_LOCK_ASSERT(sc, MA_OWNED);
2507	/*
2508	 * If there are queued commands, we must wait until they are all
2509	 * completed. If we are already waiting, then add a NOP command
2510	 * with interrupt option so that we're notified when all commands
2511	 * have been completed - fxp_start() ensures that no additional
2512	 * TX commands will be added when need_mcsetup is true.
2513	 */
2514	if (sc->tx_queued) {
2515		/*
2516		 * need_mcsetup will be true if we are already waiting for the
2517		 * NOP command to be completed (see below). In this case, bail.
2518		 */
2519		if (sc->need_mcsetup)
2520			return;
2521		sc->need_mcsetup = 1;
2522
2523		/*
2524		 * Add a NOP command with interrupt so that we are notified
2525		 * when all TX commands have been processed.
2526		 */
2527		txp = sc->fxp_desc.tx_last->tx_next;
2528		txp->tx_mbuf = NULL;
2529		txp->tx_cb->cb_status = 0;
2530		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2531		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2532		/*
2533		 * Advance the end of list forward.
2534		 */
2535		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2536		    htole16(~FXP_CB_COMMAND_S);
2537		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2538		sc->fxp_desc.tx_last = txp;
2539		sc->tx_queued++;
2540		/*
2541		 * Issue a resume in case the CU has just suspended.
2542		 */
2543		fxp_scb_wait(sc);
2544		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2545		/*
2546		 * Set a 5 second timer just in case we don't hear from the
2547		 * card again.
2548		 */
2549		ifp->if_timer = 5;
2550
2551		return;
2552	}
2553	sc->need_mcsetup = 0;
2554
2555	/*
2556	 * Initialize multicast setup descriptor.
2557	 */
2558	mcsp->cb_status = 0;
2559	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2560	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2561	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2562	txp = &sc->fxp_desc.mcs_tx;
2563	txp->tx_mbuf = NULL;
2564	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2565	txp->tx_next = sc->fxp_desc.tx_list;
2566	(void) fxp_mc_addrs(sc);
2567	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2568	sc->tx_queued = 1;
2569
2570	/*
2571	 * Wait until command unit is not active. This should never
2572	 * be the case when nothing is queued, but make sure anyway.
2573	 */
2574	count = 100;
2575	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2576	    FXP_SCB_CUS_ACTIVE && --count)
2577		DELAY(10);
2578	if (count == 0) {
2579		device_printf(sc->dev, "command queue timeout\n");
2580		return;
2581	}
2582
2583	/*
2584	 * Start the multicast setup command.
2585	 */
2586	fxp_scb_wait(sc);
2587	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2588	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2589	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2590
2591	ifp->if_timer = 2;
2592	return;
2593}
2594
2595static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2596static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2597static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2598static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2599static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2600static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2601static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2602
2603#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2604
2605struct ucode {
2606	uint32_t	revision;
2607	uint32_t	*ucode;
2608	int		length;
2609	u_short		int_delay_offset;
2610	u_short		bundle_max_offset;
2611} ucode_table[] = {
2612	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2613	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2614	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2615	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2616	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2617	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2618	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2619	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2620	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2621	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2622	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2623	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2624	{ 0, NULL, 0, 0, 0 }
2625};
2626
2627static void
2628fxp_load_ucode(struct fxp_softc *sc)
2629{
2630	struct ucode *uc;
2631	struct fxp_cb_ucode *cbp;
2632	int i;
2633
2634	for (uc = ucode_table; uc->ucode != NULL; uc++)
2635		if (sc->revision == uc->revision)
2636			break;
2637	if (uc->ucode == NULL)
2638		return;
2639	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2640	cbp->cb_status = 0;
2641	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2642	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2643	for (i = 0; i < uc->length; i++)
2644		cbp->ucode[i] = htole32(uc->ucode[i]);
2645	if (uc->int_delay_offset)
2646		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2647		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2648	if (uc->bundle_max_offset)
2649		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2650		    htole16(sc->tunable_bundle_max);
2651	/*
2652	 * Download the ucode to the chip.
2653	 */
2654	fxp_scb_wait(sc);
2655	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2656	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2657	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2658	/* ...and wait for it to complete. */
2659	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2660	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2661	device_printf(sc->dev,
2662	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2663	    sc->tunable_int_delay,
2664	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2665	sc->flags |= FXP_FLAG_UCODE;
2666}
2667
2668static int
2669sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2670{
2671	int error, value;
2672
2673	value = *(int *)arg1;
2674	error = sysctl_handle_int(oidp, &value, 0, req);
2675	if (error || !req->newptr)
2676		return (error);
2677	if (value < low || value > high)
2678		return (EINVAL);
2679	*(int *)arg1 = value;
2680	return (0);
2681}
2682
2683/*
2684 * Interrupt delay is expressed in microseconds, a multiplier is used
2685 * to convert this to the appropriate clock ticks before using.
2686 */
2687static int
2688sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2689{
2690	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2691}
2692
2693static int
2694sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2695{
2696	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2697}
2698