if_fxp.c revision 149203
1260684Skaiw/*-
2260684Skaiw * Copyright (c) 1995, David Greenman
3260684Skaiw * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4260684Skaiw * All rights reserved.
5260684Skaiw *
6260684Skaiw * Redistribution and use in source and binary forms, with or without
7260684Skaiw * modification, are permitted provided that the following conditions
8260684Skaiw * are met:
9260684Skaiw * 1. Redistributions of source code must retain the above copyright
10260684Skaiw *    notice unmodified, this list of conditions, and the following
11260684Skaiw *    disclaimer.
12260684Skaiw * 2. Redistributions in binary form must reproduce the above copyright
13260684Skaiw *    notice, this list of conditions and the following disclaimer in the
14260684Skaiw *    documentation and/or other materials provided with the distribution.
15260684Skaiw *
16260684Skaiw * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17260684Skaiw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18260684Skaiw * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19260684Skaiw * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20260684Skaiw * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21260684Skaiw * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22260684Skaiw * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23260684Skaiw * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24260684Skaiw * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25260684Skaiw * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26260684Skaiw * SUCH DAMAGE.
27260684Skaiw *
28260684Skaiw */
29276371Semaste
30260684Skaiw#include <sys/cdefs.h>
31260684Skaiw__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 149203 2005-08-17 17:44:32Z jhb $");
32260684Skaiw
33260684Skaiw/*
34260684Skaiw * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35260684Skaiw */
36260684Skaiw
37260684Skaiw#include <sys/param.h>
38260684Skaiw#include <sys/systm.h>
39260684Skaiw#include <sys/endian.h>
40260684Skaiw#include <sys/mbuf.h>
41260684Skaiw		/* #include <sys/mutex.h> */
42260684Skaiw#include <sys/kernel.h>
43260684Skaiw#include <sys/module.h>
44260684Skaiw#include <sys/socket.h>
45260684Skaiw#include <sys/sysctl.h>
46260684Skaiw
47260684Skaiw#include <net/if.h>
48260684Skaiw#include <net/if_dl.h>
49260684Skaiw#include <net/if_media.h>
50260684Skaiw
51260684Skaiw#include <net/bpf.h>
52260684Skaiw#include <sys/sockio.h>
53260684Skaiw#include <sys/bus.h>
54260684Skaiw#include <machine/bus.h>
55260684Skaiw#include <sys/rman.h>
56260684Skaiw#include <machine/resource.h>
57260684Skaiw
58260684Skaiw#include <net/ethernet.h>
59260684Skaiw#include <net/if_arp.h>
60260684Skaiw
61260684Skaiw#include <machine/clock.h>	/* for DELAY */
62260684Skaiw
63260684Skaiw#include <net/if_types.h>
64260684Skaiw#include <net/if_vlan_var.h>
65260684Skaiw
66260684Skaiw#ifdef FXP_IP_CSUM_WAR
67260684Skaiw#include <netinet/in.h>
68260684Skaiw#include <netinet/in_systm.h>
69260684Skaiw#include <netinet/ip.h>
70260684Skaiw#include <machine/in_cksum.h>
71260684Skaiw#endif
72260684Skaiw
73260684Skaiw#include <dev/pci/pcivar.h>
74260684Skaiw#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75260684Skaiw
76260684Skaiw#include <dev/mii/mii.h>
77260684Skaiw#include <dev/mii/miivar.h>
78260684Skaiw
79260684Skaiw#include <dev/fxp/if_fxpreg.h>
80260684Skaiw#include <dev/fxp/if_fxpvar.h>
81260684Skaiw#include <dev/fxp/rcvbundl.h>
82260684Skaiw
83260684SkaiwMODULE_DEPEND(fxp, pci, 1, 1, 1);
84260684SkaiwMODULE_DEPEND(fxp, ether, 1, 1, 1);
85260684SkaiwMODULE_DEPEND(fxp, miibus, 1, 1, 1);
86260684Skaiw#include "miibus_if.h"
87260684Skaiw
88260684Skaiw/*
89260684Skaiw * NOTE!  On the Alpha, we have an alignment constraint.  The
90260684Skaiw * card DMAs the packet immediately following the RFA.  However,
91260684Skaiw * the first thing in the packet is a 14-byte Ethernet header.
92260684Skaiw * This means that the packet is misaligned.  To compensate,
93260684Skaiw * we actually offset the RFA 2 bytes into the cluster.  This
94260684Skaiw * alignes the packet after the Ethernet header at a 32-bit
95260684Skaiw * boundary.  HOWEVER!  This means that the RFA is misaligned!
96260684Skaiw */
97260684Skaiw#define	RFA_ALIGNMENT_FUDGE	2
98260684Skaiw
99260684Skaiw/*
100260684Skaiw * Set initial transmit threshold at 64 (512 bytes). This is
101260684Skaiw * increased by 64 (512 bytes) at a time, to maximum of 192
102260684Skaiw * (1536 bytes), if an underrun occurs.
103260684Skaiw */
104260684Skaiwstatic int tx_threshold = 64;
105260684Skaiw
106276371Semaste/*
107260684Skaiw * The configuration byte map has several undefined fields which
108260684Skaiw * must be one or must be zero.  Set up a template for these bits
109260684Skaiw * only, (assuming a 82557 chip) leaving the actual configuration
110260684Skaiw * to fxp_init.
111260684Skaiw *
112260684Skaiw * See struct fxp_cb_config for the bit definitions.
113260684Skaiw */
114260684Skaiwstatic u_char fxp_cb_config_template[] = {
115260684Skaiw	0x0, 0x0,		/* cb_status */
116260684Skaiw	0x0, 0x0,		/* cb_command */
117260684Skaiw	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118260684Skaiw	0x0,	/*  0 */
119260684Skaiw	0x0,	/*  1 */
120260684Skaiw	0x0,	/*  2 */
121260684Skaiw	0x0,	/*  3 */
122260684Skaiw	0x0,	/*  4 */
123260684Skaiw	0x0,	/*  5 */
124260684Skaiw	0x32,	/*  6 */
125260684Skaiw	0x0,	/*  7 */
126260684Skaiw	0x0,	/*  8 */
127260684Skaiw	0x0,	/*  9 */
128260684Skaiw	0x6,	/* 10 */
129260684Skaiw	0x0,	/* 11 */
130260684Skaiw	0x0,	/* 12 */
131260684Skaiw	0x0,	/* 13 */
132260684Skaiw	0xf2,	/* 14 */
133260684Skaiw	0x48,	/* 15 */
134260684Skaiw	0x0,	/* 16 */
135260684Skaiw	0x40,	/* 17 */
136260684Skaiw	0xf0,	/* 18 */
137260684Skaiw	0x0,	/* 19 */
138260684Skaiw	0x3f,	/* 20 */
139260684Skaiw	0x5	/* 21 */
140260684Skaiw};
141260684Skaiw
142260684Skaiwstruct fxp_ident {
143260684Skaiw	uint16_t	devid;
144260684Skaiw	int16_t		revid;		/* -1 matches anything */
145260684Skaiw	char 		*name;
146260684Skaiw};
147260684Skaiw
148260684Skaiw/*
149260684Skaiw * Claim various Intel PCI device identifiers for this driver.  The
150260684Skaiw * sub-vendor and sub-device field are extensively used to identify
151260684Skaiw * particular variants, but we don't currently differentiate between
152260684Skaiw * them.
153260684Skaiw */
154260684Skaiwstatic struct fxp_ident fxp_ident_table[] = {
155260684Skaiw    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156260684Skaiw    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157260684Skaiw    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158260684Skaiw    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159260684Skaiw    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160260684Skaiw    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161260684Skaiw    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162260684Skaiw    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163260684Skaiw    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164260684Skaiw    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165260684Skaiw    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166260684Skaiw    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167260684Skaiw    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168260684Skaiw    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169260684Skaiw    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170260684Skaiw    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171260684Skaiw    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172260684Skaiw    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173260684Skaiw    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174260684Skaiw    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175260684Skaiw    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176260684Skaiw    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177260684Skaiw    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178260684Skaiw    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179260684Skaiw    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180260684Skaiw    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181260684Skaiw    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182260684Skaiw    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183260684Skaiw    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184260684Skaiw    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185260684Skaiw    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186260684Skaiw    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187260684Skaiw    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188260684Skaiw    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189260684Skaiw    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190260684Skaiw    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191260684Skaiw    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192260684Skaiw    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193260684Skaiw    { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
194260684Skaiw    { 0,	-1,	NULL },
195260684Skaiw};
196260684Skaiw
197260684Skaiw#ifdef FXP_IP_CSUM_WAR
198260684Skaiw#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
199260684Skaiw#else
200260684Skaiw#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
201260684Skaiw#endif
202260684Skaiw
203260684Skaiwstatic int		fxp_probe(device_t dev);
204260684Skaiwstatic int		fxp_attach(device_t dev);
205260684Skaiwstatic int		fxp_detach(device_t dev);
206260684Skaiwstatic int		fxp_shutdown(device_t dev);
207260684Skaiwstatic int		fxp_suspend(device_t dev);
208260684Skaiwstatic int		fxp_resume(device_t dev);
209260684Skaiw
210260684Skaiwstatic void		fxp_intr(void *xsc);
211260684Skaiwstatic void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
212260684Skaiw			    uint8_t statack, int count);
213260684Skaiwstatic void 		fxp_init(void *xsc);
214260684Skaiwstatic void 		fxp_init_body(struct fxp_softc *sc);
215260684Skaiwstatic void 		fxp_tick(void *xsc);
216260684Skaiwstatic void 		fxp_start(struct ifnet *ifp);
217260684Skaiwstatic void 		fxp_start_body(struct ifnet *ifp);
218260684Skaiwstatic int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
219260684Skaiwstatic void		fxp_stop(struct fxp_softc *sc);
220260684Skaiwstatic void 		fxp_release(struct fxp_softc *sc);
221260684Skaiwstatic int		fxp_ioctl(struct ifnet *ifp, u_long command,
222260684Skaiw			    caddr_t data);
223260684Skaiwstatic void 		fxp_watchdog(struct ifnet *ifp);
224260684Skaiwstatic int		fxp_add_rfabuf(struct fxp_softc *sc,
225260684Skaiw    			    struct fxp_rx *rxp);
226260684Skaiwstatic int		fxp_mc_addrs(struct fxp_softc *sc);
227260684Skaiwstatic void		fxp_mc_setup(struct fxp_softc *sc);
228260684Skaiwstatic uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229260684Skaiw			    int autosize);
230260684Skaiwstatic void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231260684Skaiw			    uint16_t data);
232260684Skaiwstatic void		fxp_autosize_eeprom(struct fxp_softc *sc);
233260684Skaiwstatic void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234260684Skaiw			    int offset, int words);
235260684Skaiwstatic void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236260684Skaiw			    int offset, int words);
237260684Skaiwstatic int		fxp_ifmedia_upd(struct ifnet *ifp);
238260684Skaiwstatic void		fxp_ifmedia_sts(struct ifnet *ifp,
239260684Skaiw			    struct ifmediareq *ifmr);
240260684Skaiwstatic int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241260684Skaiwstatic void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242260684Skaiw			    struct ifmediareq *ifmr);
243260684Skaiwstatic volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244260684Skaiwstatic void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245260684Skaiw			    int value);
246260684Skaiwstatic void		fxp_load_ucode(struct fxp_softc *sc);
247260684Skaiwstatic int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248260684Skaiw			    int low, int high);
249260684Skaiwstatic int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250260684Skaiwstatic int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251260684Skaiwstatic void 		fxp_scb_wait(struct fxp_softc *sc);
252260684Skaiwstatic void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253260684Skaiwstatic void		fxp_dma_wait(struct fxp_softc *sc,
254    			    volatile uint16_t *status, bus_dma_tag_t dmat,
255			    bus_dmamap_t map);
256
257static device_method_t fxp_methods[] = {
258	/* Device interface */
259	DEVMETHOD(device_probe,		fxp_probe),
260	DEVMETHOD(device_attach,	fxp_attach),
261	DEVMETHOD(device_detach,	fxp_detach),
262	DEVMETHOD(device_shutdown,	fxp_shutdown),
263	DEVMETHOD(device_suspend,	fxp_suspend),
264	DEVMETHOD(device_resume,	fxp_resume),
265
266	/* MII interface */
267	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269
270	{ 0, 0 }
271};
272
273static driver_t fxp_driver = {
274	"fxp",
275	fxp_methods,
276	sizeof(struct fxp_softc),
277};
278
279static devclass_t fxp_devclass;
280
281DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284
285/*
286 * Wait for the previous command to be accepted (but not necessarily
287 * completed).
288 */
289static void
290fxp_scb_wait(struct fxp_softc *sc)
291{
292	int i = 10000;
293
294	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
295		DELAY(2);
296	if (i == 0)
297		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
298		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
299		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
300		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
301		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
302}
303
304static void
305fxp_scb_cmd(struct fxp_softc *sc, int cmd)
306{
307
308	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
309		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
310		fxp_scb_wait(sc);
311	}
312	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
313}
314
315static void
316fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
317    bus_dma_tag_t dmat, bus_dmamap_t map)
318{
319	int i = 10000;
320
321	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
322	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
323		DELAY(2);
324		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
325	}
326	if (i == 0)
327		device_printf(sc->dev, "DMA timeout\n");
328}
329
330/*
331 * Return identification string if this device is ours.
332 */
333static int
334fxp_probe(device_t dev)
335{
336	uint16_t devid;
337	uint8_t revid;
338	struct fxp_ident *ident;
339
340	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
341		devid = pci_get_device(dev);
342		revid = pci_get_revid(dev);
343		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
344			if (ident->devid == devid &&
345			    (ident->revid == revid || ident->revid == -1)) {
346				device_set_desc(dev, ident->name);
347				return (BUS_PROBE_DEFAULT);
348			}
349		}
350	}
351	return (ENXIO);
352}
353
354static void
355fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
356{
357	uint32_t *addr;
358
359	if (error)
360		return;
361
362	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
363	addr = arg;
364	*addr = segs->ds_addr;
365}
366
367static int
368fxp_attach(device_t dev)
369{
370	struct fxp_softc *sc;
371	struct fxp_cb_tx *tcbp;
372	struct fxp_tx *txp;
373	struct fxp_rx *rxp;
374	struct ifnet *ifp;
375	uint32_t val;
376	uint16_t data, myea[ETHER_ADDR_LEN / 2];
377	u_char eaddr[ETHER_ADDR_LEN];
378	int i, rid, m1, m2, prefer_iomap;
379	int error;
380
381	error = 0;
382	sc = device_get_softc(dev);
383	sc->dev = dev;
384	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385	    MTX_DEF);
386	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
387	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
388	    fxp_serial_ifmedia_sts);
389
390	ifp = sc->ifp = if_alloc(IFT_ETHER);
391	if (ifp == NULL) {
392		device_printf(dev, "can not if_alloc()\n");
393		error = ENOSPC;
394		goto fail;
395	}
396
397	/*
398	 * Enable bus mastering.
399	 */
400	pci_enable_busmaster(dev);
401	val = pci_read_config(dev, PCIR_COMMAND, 2);
402
403	/*
404	 * Figure out which we should try first - memory mapping or i/o mapping?
405	 * We default to memory mapping. Then we accept an override from the
406	 * command line. Then we check to see which one is enabled.
407	 */
408	m1 = PCIM_CMD_MEMEN;
409	m2 = PCIM_CMD_PORTEN;
410	prefer_iomap = 0;
411	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
412	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
413		m1 = PCIM_CMD_PORTEN;
414		m2 = PCIM_CMD_MEMEN;
415	}
416
417	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
418	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
419	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
420	if (sc->mem == NULL) {
421		sc->rtp =
422		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
423		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
424		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
425                                            RF_ACTIVE);
426	}
427
428	if (!sc->mem) {
429		error = ENXIO;
430		goto fail;
431        }
432	if (bootverbose) {
433		device_printf(dev, "using %s space register mapping\n",
434		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
435	}
436
437	sc->sc_st = rman_get_bustag(sc->mem);
438	sc->sc_sh = rman_get_bushandle(sc->mem);
439
440	/*
441	 * Allocate our interrupt.
442	 */
443	rid = 0;
444	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
445				 RF_SHAREABLE | RF_ACTIVE);
446	if (sc->irq == NULL) {
447		device_printf(dev, "could not map interrupt\n");
448		error = ENXIO;
449		goto fail;
450	}
451
452	/*
453	 * Reset to a stable state.
454	 */
455	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
456	DELAY(10);
457
458	/*
459	 * Find out how large of an SEEPROM we have.
460	 */
461	fxp_autosize_eeprom(sc);
462
463	/*
464	 * Find out the chip revision; lump all 82557 revs together.
465	 */
466	fxp_read_eeprom(sc, &data, 5, 1);
467	if ((data >> 8) == 1)
468		sc->revision = FXP_REV_82557;
469	else
470		sc->revision = pci_get_revid(dev);
471
472	/*
473	 * Determine whether we must use the 503 serial interface.
474	 */
475	fxp_read_eeprom(sc, &data, 6, 1);
476	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
477	    && (data & FXP_PHY_SERIAL_ONLY))
478		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
479
480	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
482	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
483	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
484	    "FXP driver receive interrupt microcode bundling delay");
485	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
486	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
487	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
488	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
489	    "FXP driver receive interrupt microcode bundle size limit");
490	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
491	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
492	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
493	    "FXP RNR events");
494	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
495	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
496	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
497	    "FXP flow control disabled");
498
499	/*
500	 * Pull in device tunables.
501	 */
502	sc->tunable_int_delay = TUNABLE_INT_DELAY;
503	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
504	sc->tunable_noflow = 1;
505	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
506	    "int_delay", &sc->tunable_int_delay);
507	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
508	    "bundle_max", &sc->tunable_bundle_max);
509	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
510	    "noflow", &sc->tunable_noflow);
511	sc->rnr = 0;
512
513	/*
514	 * Enable workarounds for certain chip revision deficiencies.
515	 *
516	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
517	 * some systems based a normal 82559 design, have a defect where
518	 * the chip can cause a PCI protocol violation if it receives
519	 * a CU_RESUME command when it is entering the IDLE state.  The
520	 * workaround is to disable Dynamic Standby Mode, so the chip never
521	 * deasserts CLKRUN#, and always remains in an active state.
522	 *
523	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
524	 */
525	i = pci_get_device(dev);
526	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
527	    sc->revision >= FXP_REV_82559_A0) {
528		fxp_read_eeprom(sc, &data, 10, 1);
529		if (data & 0x02) {			/* STB enable */
530			uint16_t cksum;
531			int i;
532
533			device_printf(dev,
534			    "Disabling dynamic standby mode in EEPROM\n");
535			data &= ~0x02;
536			fxp_write_eeprom(sc, &data, 10, 1);
537			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
538			cksum = 0;
539			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
540				fxp_read_eeprom(sc, &data, i, 1);
541				cksum += data;
542			}
543			i = (1 << sc->eeprom_size) - 1;
544			cksum = 0xBABA - cksum;
545			fxp_read_eeprom(sc, &data, i, 1);
546			fxp_write_eeprom(sc, &cksum, i, 1);
547			device_printf(dev,
548			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
549			    i, data, cksum);
550#if 1
551			/*
552			 * If the user elects to continue, try the software
553			 * workaround, as it is better than nothing.
554			 */
555			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
556#endif
557		}
558	}
559
560	/*
561	 * If we are not a 82557 chip, we can enable extended features.
562	 */
563	if (sc->revision != FXP_REV_82557) {
564		/*
565		 * If MWI is enabled in the PCI configuration, and there
566		 * is a valid cacheline size (8 or 16 dwords), then tell
567		 * the board to turn on MWI.
568		 */
569		if (val & PCIM_CMD_MWRICEN &&
570		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
571			sc->flags |= FXP_FLAG_MWI_ENABLE;
572
573		/* turn on the extended TxCB feature */
574		sc->flags |= FXP_FLAG_EXT_TXCB;
575
576		/* enable reception of long frames for VLAN */
577		sc->flags |= FXP_FLAG_LONG_PKT_EN;
578	} else {
579		/* a hack to get long VLAN frames on a 82557 */
580		sc->flags |= FXP_FLAG_SAVE_BAD;
581	}
582
583	/*
584	 * Enable use of extended RFDs and TCBs for 82550
585	 * and later chips. Note: we need extended TXCB support
586	 * too, but that's already enabled by the code above.
587	 * Be careful to do this only on the right devices.
588	 */
589	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
590	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
591	    || sc->revision == FXP_REV_82551_10) {
592		sc->rfa_size = sizeof (struct fxp_rfa);
593		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
594		sc->flags |= FXP_FLAG_EXT_RFA;
595	} else {
596		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
597		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
598	}
599
600	/*
601	 * Allocate DMA tags and DMA safe memory.
602	 */
603	sc->maxtxseg = FXP_NTXSEG;
604	if (sc->flags & FXP_FLAG_EXT_RFA)
605		sc->maxtxseg--;
606	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
607	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
608	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
609	    &sc->fxp_mtag);
610	if (error) {
611		device_printf(dev, "could not allocate dma tag\n");
612		goto fail;
613	}
614
615	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
616	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
617	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
618	    &sc->fxp_stag);
619	if (error) {
620		device_printf(dev, "could not allocate dma tag\n");
621		goto fail;
622	}
623
624	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
625	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
626	if (error)
627		goto fail;
628	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
629	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
630	if (error) {
631		device_printf(dev, "could not map the stats buffer\n");
632		goto fail;
633	}
634
635	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
636	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
637	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
638	if (error) {
639		device_printf(dev, "could not allocate dma tag\n");
640		goto fail;
641	}
642
643	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
644	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
645	if (error)
646		goto fail;
647
648	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
649	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
650	    &sc->fxp_desc.cbl_addr, 0);
651	if (error) {
652		device_printf(dev, "could not map DMA memory\n");
653		goto fail;
654	}
655
656	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
657	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
658	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
659	    &sc->mcs_tag);
660	if (error) {
661		device_printf(dev, "could not allocate dma tag\n");
662		goto fail;
663	}
664
665	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
666	    BUS_DMA_NOWAIT, &sc->mcs_map);
667	if (error)
668		goto fail;
669	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
670	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
671	if (error) {
672		device_printf(dev, "can't map the multicast setup command\n");
673		goto fail;
674	}
675
676	/*
677	 * Pre-allocate the TX DMA maps and setup the pointers to
678	 * the TX command blocks.
679	 */
680	txp = sc->fxp_desc.tx_list;
681	tcbp = sc->fxp_desc.cbl_list;
682	for (i = 0; i < FXP_NTXCB; i++) {
683		txp[i].tx_cb = tcbp + i;
684		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
685		if (error) {
686			device_printf(dev, "can't create DMA map for TX\n");
687			goto fail;
688		}
689	}
690	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
691	if (error) {
692		device_printf(dev, "can't create spare DMA map\n");
693		goto fail;
694	}
695
696	/*
697	 * Pre-allocate our receive buffers.
698	 */
699	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
700	for (i = 0; i < FXP_NRFABUFS; i++) {
701		rxp = &sc->fxp_desc.rx_list[i];
702		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
703		if (error) {
704			device_printf(dev, "can't create DMA map for RX\n");
705			goto fail;
706		}
707		if (fxp_add_rfabuf(sc, rxp) != 0) {
708			error = ENOMEM;
709			goto fail;
710		}
711	}
712
713	/*
714	 * Read MAC address.
715	 */
716	fxp_read_eeprom(sc, myea, 0, 3);
717	eaddr[0] = myea[0] & 0xff;
718	eaddr[1] = myea[0] >> 8;
719	eaddr[2] = myea[1] & 0xff;
720	eaddr[3] = myea[1] >> 8;
721	eaddr[4] = myea[2] & 0xff;
722	eaddr[5] = myea[2] >> 8;
723	if (bootverbose) {
724		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
725		    pci_get_vendor(dev), pci_get_device(dev),
726		    pci_get_subvendor(dev), pci_get_subdevice(dev),
727		    pci_get_revid(dev));
728		fxp_read_eeprom(sc, &data, 10, 1);
729		device_printf(dev, "Dynamic Standby mode is %s\n",
730		    data & 0x02 ? "enabled" : "disabled");
731	}
732
733	/*
734	 * If this is only a 10Mbps device, then there is no MII, and
735	 * the PHY will use a serial interface instead.
736	 *
737	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
738	 * doesn't have a programming interface of any sort.  The
739	 * media is sensed automatically based on how the link partner
740	 * is configured.  This is, in essence, manual configuration.
741	 */
742	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
743		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
744		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
745	} else {
746		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
747		    fxp_ifmedia_sts)) {
748	                device_printf(dev, "MII without any PHY!\n");
749			error = ENXIO;
750			goto fail;
751		}
752	}
753
754	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
755	ifp->if_baudrate = 100000000;
756	ifp->if_init = fxp_init;
757	ifp->if_softc = sc;
758	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
759	ifp->if_ioctl = fxp_ioctl;
760	ifp->if_start = fxp_start;
761	ifp->if_watchdog = fxp_watchdog;
762
763	ifp->if_capabilities = ifp->if_capenable = 0;
764
765	/* Enable checksum offload for 82550 or better chips */
766	if (sc->flags & FXP_FLAG_EXT_RFA) {
767		ifp->if_hwassist = FXP_CSUM_FEATURES;
768		ifp->if_capabilities |= IFCAP_HWCSUM;
769		ifp->if_capenable |= IFCAP_HWCSUM;
770	}
771
772#ifdef DEVICE_POLLING
773	/* Inform the world we support polling. */
774	ifp->if_capabilities |= IFCAP_POLLING;
775	ifp->if_capenable |= IFCAP_POLLING;
776#endif
777
778	/*
779	 * Attach the interface.
780	 */
781	ether_ifattach(ifp, eaddr);
782
783	/*
784	 * Tell the upper layer(s) we support long frames.
785	 * Must appear after the call to ether_ifattach() because
786	 * ether_ifattach() sets ifi_hdrlen to the default value.
787	 */
788	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
789	ifp->if_capabilities |= IFCAP_VLAN_MTU;
790	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
791
792	/*
793	 * Let the system queue as many packets as we have available
794	 * TX descriptors.
795	 */
796	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
797	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
798	IFQ_SET_READY(&ifp->if_snd);
799
800	/*
801	 * Hook our interrupt after all initialization is complete.
802	 */
803	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
804			       fxp_intr, sc, &sc->ih);
805	if (error) {
806		device_printf(dev, "could not setup irq\n");
807		ether_ifdetach(sc->ifp);
808		goto fail;
809	}
810
811fail:
812	if (error)
813		fxp_release(sc);
814	return (error);
815}
816
817/*
818 * Release all resources.  The softc lock should not be held and the
819 * interrupt should already be torn down.
820 */
821static void
822fxp_release(struct fxp_softc *sc)
823{
824	struct fxp_rx *rxp;
825	struct fxp_tx *txp;
826	int i;
827
828	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
829	KASSERT(sc->ih == NULL,
830	    ("fxp_release() called with intr handle still active"));
831	if (sc->miibus)
832		device_delete_child(sc->dev, sc->miibus);
833	bus_generic_detach(sc->dev);
834	ifmedia_removeall(&sc->sc_media);
835	if (sc->fxp_desc.cbl_list) {
836		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
837		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
838		    sc->cbl_map);
839	}
840	if (sc->fxp_stats) {
841		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
842		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
843	}
844	if (sc->mcsp) {
845		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
846		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
847	}
848	if (sc->irq)
849		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
850	if (sc->mem)
851		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
852	if (sc->fxp_mtag) {
853		for (i = 0; i < FXP_NRFABUFS; i++) {
854			rxp = &sc->fxp_desc.rx_list[i];
855			if (rxp->rx_mbuf != NULL) {
856				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
857				    BUS_DMASYNC_POSTREAD);
858				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
859				m_freem(rxp->rx_mbuf);
860			}
861			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
862		}
863		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
864		for (i = 0; i < FXP_NTXCB; i++) {
865			txp = &sc->fxp_desc.tx_list[i];
866			if (txp->tx_mbuf != NULL) {
867				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
868				    BUS_DMASYNC_POSTWRITE);
869				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
870				m_freem(txp->tx_mbuf);
871			}
872			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
873		}
874		bus_dma_tag_destroy(sc->fxp_mtag);
875	}
876	if (sc->fxp_stag)
877		bus_dma_tag_destroy(sc->fxp_stag);
878	if (sc->cbl_tag)
879		bus_dma_tag_destroy(sc->cbl_tag);
880	if (sc->mcs_tag)
881		bus_dma_tag_destroy(sc->mcs_tag);
882	if (sc->ifp)
883		if_free(sc->ifp);
884
885	mtx_destroy(&sc->sc_mtx);
886}
887
888/*
889 * Detach interface.
890 */
891static int
892fxp_detach(device_t dev)
893{
894	struct fxp_softc *sc = device_get_softc(dev);
895
896	FXP_LOCK(sc);
897	sc->suspended = 1;	/* Do same thing as we do for suspend */
898	/*
899	 * Stop DMA and drop transmit queue, but disable interrupts first.
900	 */
901	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
902	fxp_stop(sc);
903	FXP_UNLOCK(sc);
904	callout_drain(&sc->stat_ch);
905
906	/*
907	 * Close down routes etc.
908	 */
909	ether_ifdetach(sc->ifp);
910
911	/*
912	 * Unhook interrupt before dropping lock. This is to prevent
913	 * races with fxp_intr().
914	 */
915	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
916	sc->ih = NULL;
917
918	/* Release our allocated resources. */
919	fxp_release(sc);
920	return (0);
921}
922
923/*
924 * Device shutdown routine. Called at system shutdown after sync. The
925 * main purpose of this routine is to shut off receiver DMA so that
926 * kernel memory doesn't get clobbered during warmboot.
927 */
928static int
929fxp_shutdown(device_t dev)
930{
931	struct fxp_softc *sc = device_get_softc(dev);
932
933	/*
934	 * Make sure that DMA is disabled prior to reboot. Not doing
935	 * do could allow DMA to corrupt kernel memory during the
936	 * reboot before the driver initializes.
937	 */
938	FXP_LOCK(sc);
939	fxp_stop(sc);
940	FXP_UNLOCK(sc);
941	return (0);
942}
943
944/*
945 * Device suspend routine.  Stop the interface and save some PCI
946 * settings in case the BIOS doesn't restore them properly on
947 * resume.
948 */
949static int
950fxp_suspend(device_t dev)
951{
952	struct fxp_softc *sc = device_get_softc(dev);
953
954	FXP_LOCK(sc);
955
956	fxp_stop(sc);
957
958	sc->suspended = 1;
959
960	FXP_UNLOCK(sc);
961	return (0);
962}
963
964/*
965 * Device resume routine. re-enable busmastering, and restart the interface if
966 * appropriate.
967 */
968static int
969fxp_resume(device_t dev)
970{
971	struct fxp_softc *sc = device_get_softc(dev);
972	struct ifnet *ifp = sc->ifp;
973
974	FXP_LOCK(sc);
975
976	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
977	DELAY(10);
978
979	/* reinitialize interface if necessary */
980	if (ifp->if_flags & IFF_UP)
981		fxp_init_body(sc);
982
983	sc->suspended = 0;
984
985	FXP_UNLOCK(sc);
986	return (0);
987}
988
989static void
990fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
991{
992	uint16_t reg;
993	int x;
994
995	/*
996	 * Shift in data.
997	 */
998	for (x = 1 << (length - 1); x; x >>= 1) {
999		if (data & x)
1000			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1001		else
1002			reg = FXP_EEPROM_EECS;
1003		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1004		DELAY(1);
1005		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1006		DELAY(1);
1007		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1008		DELAY(1);
1009	}
1010}
1011
1012/*
1013 * Read from the serial EEPROM. Basically, you manually shift in
1014 * the read opcode (one bit at a time) and then shift in the address,
1015 * and then you shift out the data (all of this one bit at a time).
1016 * The word size is 16 bits, so you have to provide the address for
1017 * every 16 bits of data.
1018 */
1019static uint16_t
1020fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1021{
1022	uint16_t reg, data;
1023	int x;
1024
1025	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1026	/*
1027	 * Shift in read opcode.
1028	 */
1029	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1030	/*
1031	 * Shift in address.
1032	 */
1033	data = 0;
1034	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1035		if (offset & x)
1036			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1037		else
1038			reg = FXP_EEPROM_EECS;
1039		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1040		DELAY(1);
1041		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1042		DELAY(1);
1043		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1044		DELAY(1);
1045		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1046		data++;
1047		if (autosize && reg == 0) {
1048			sc->eeprom_size = data;
1049			break;
1050		}
1051	}
1052	/*
1053	 * Shift out data.
1054	 */
1055	data = 0;
1056	reg = FXP_EEPROM_EECS;
1057	for (x = 1 << 15; x; x >>= 1) {
1058		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1059		DELAY(1);
1060		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1061			data |= x;
1062		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1063		DELAY(1);
1064	}
1065	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1066	DELAY(1);
1067
1068	return (data);
1069}
1070
1071static void
1072fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1073{
1074	int i;
1075
1076	/*
1077	 * Erase/write enable.
1078	 */
1079	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1080	fxp_eeprom_shiftin(sc, 0x4, 3);
1081	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1082	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1083	DELAY(1);
1084	/*
1085	 * Shift in write opcode, address, data.
1086	 */
1087	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1088	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1089	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1090	fxp_eeprom_shiftin(sc, data, 16);
1091	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1092	DELAY(1);
1093	/*
1094	 * Wait for EEPROM to finish up.
1095	 */
1096	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1097	DELAY(1);
1098	for (i = 0; i < 1000; i++) {
1099		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1100			break;
1101		DELAY(50);
1102	}
1103	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1104	DELAY(1);
1105	/*
1106	 * Erase/write disable.
1107	 */
1108	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1109	fxp_eeprom_shiftin(sc, 0x4, 3);
1110	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1111	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112	DELAY(1);
1113}
1114
1115/*
1116 * From NetBSD:
1117 *
1118 * Figure out EEPROM size.
1119 *
1120 * 559's can have either 64-word or 256-word EEPROMs, the 558
1121 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1122 * talks about the existance of 16 to 256 word EEPROMs.
1123 *
1124 * The only known sizes are 64 and 256, where the 256 version is used
1125 * by CardBus cards to store CIS information.
1126 *
1127 * The address is shifted in msb-to-lsb, and after the last
1128 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1129 * after which follows the actual data. We try to detect this zero, by
1130 * probing the data-out bit in the EEPROM control register just after
1131 * having shifted in a bit. If the bit is zero, we assume we've
1132 * shifted enough address bits. The data-out should be tri-state,
1133 * before this, which should translate to a logical one.
1134 */
1135static void
1136fxp_autosize_eeprom(struct fxp_softc *sc)
1137{
1138
1139	/* guess maximum size of 256 words */
1140	sc->eeprom_size = 8;
1141
1142	/* autosize */
1143	(void) fxp_eeprom_getword(sc, 0, 1);
1144}
1145
1146static void
1147fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1148{
1149	int i;
1150
1151	for (i = 0; i < words; i++)
1152		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1153}
1154
1155static void
1156fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1157{
1158	int i;
1159
1160	for (i = 0; i < words; i++)
1161		fxp_eeprom_putword(sc, offset + i, data[i]);
1162}
1163
1164/*
1165 * Grab the softc lock and call the real fxp_start_body() routine
1166 */
1167static void
1168fxp_start(struct ifnet *ifp)
1169{
1170	struct fxp_softc *sc = ifp->if_softc;
1171
1172	FXP_LOCK(sc);
1173	fxp_start_body(ifp);
1174	FXP_UNLOCK(sc);
1175}
1176
1177/*
1178 * Start packet transmission on the interface.
1179 * This routine must be called with the softc lock held, and is an
1180 * internal entry point only.
1181 */
1182static void
1183fxp_start_body(struct ifnet *ifp)
1184{
1185	struct fxp_softc *sc = ifp->if_softc;
1186	struct mbuf *mb_head;
1187	int error, txqueued;
1188
1189	FXP_LOCK_ASSERT(sc, MA_OWNED);
1190
1191	/*
1192	 * See if we need to suspend xmit until the multicast filter
1193	 * has been reprogrammed (which can only be done at the head
1194	 * of the command chain).
1195	 */
1196	if (sc->need_mcsetup)
1197		return;
1198
1199	/*
1200	 * We're finished if there is nothing more to add to the list or if
1201	 * we're all filled up with buffers to transmit.
1202	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1203	 *       a NOP command when needed.
1204	 */
1205	txqueued = 0;
1206	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1207	    sc->tx_queued < FXP_NTXCB - 1) {
1208
1209		/*
1210		 * Grab a packet to transmit.
1211		 */
1212		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1213		if (mb_head == NULL)
1214			break;
1215
1216		error = fxp_encap(sc, mb_head);
1217		if (error)
1218			break;
1219		txqueued = 1;
1220	}
1221	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1222
1223	/*
1224	 * We're finished. If we added to the list, issue a RESUME to get DMA
1225	 * going again if suspended.
1226	 */
1227	if (txqueued) {
1228		fxp_scb_wait(sc);
1229		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1230	}
1231}
1232
1233static int
1234fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1235{
1236	struct ifnet *ifp;
1237	struct mbuf *m;
1238	struct fxp_tx *txp;
1239	struct fxp_cb_tx *cbp;
1240	bus_dma_segment_t segs[FXP_NTXSEG];
1241	int chainlen, error, i, nseg;
1242
1243	FXP_LOCK_ASSERT(sc, MA_OWNED);
1244	ifp = sc->ifp;
1245
1246	/*
1247	 * Get pointer to next available tx desc.
1248	 */
1249	txp = sc->fxp_desc.tx_last->tx_next;
1250
1251	/*
1252	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1253	 * Ethernet Controller Family Open Source Software
1254	 * Developer Manual says:
1255	 *   Using software parsing is only allowed with legal
1256	 *   TCP/IP or UDP/IP packets.
1257	 *   ...
1258	 *   For all other datagrams, hardware parsing must
1259	 *   be used.
1260	 * Software parsing appears to truncate ICMP and
1261	 * fragmented UDP packets that contain one to three
1262	 * bytes in the second (and final) mbuf of the packet.
1263	 */
1264	if (sc->flags & FXP_FLAG_EXT_RFA)
1265		txp->tx_cb->ipcb_ip_activation_high =
1266		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1267
1268	/*
1269	 * Deal with TCP/IP checksum offload. Note that
1270	 * in order for TCP checksum offload to work,
1271	 * the pseudo header checksum must have already
1272	 * been computed and stored in the checksum field
1273	 * in the TCP header. The stack should have
1274	 * already done this for us.
1275	 */
1276	if (m_head->m_pkthdr.csum_flags) {
1277		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1278			txp->tx_cb->ipcb_ip_schedule =
1279			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1280			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1281				txp->tx_cb->ipcb_ip_schedule |=
1282				    FXP_IPCB_TCP_PACKET;
1283		}
1284
1285#ifdef FXP_IP_CSUM_WAR
1286		/*
1287		 * XXX The 82550 chip appears to have trouble
1288		 * dealing with IP header checksums in very small
1289		 * datagrams, namely fragments from 1 to 3 bytes
1290		 * in size. For example, say you want to transmit
1291		 * a UDP packet of 1473 bytes. The packet will be
1292		 * fragmented over two IP datagrams, the latter
1293		 * containing only one byte of data. The 82550 will
1294		 * botch the header checksum on the 1-byte fragment.
1295		 * As long as the datagram contains 4 or more bytes
1296		 * of data, you're ok.
1297		 *
1298                 * The following code attempts to work around this
1299		 * problem: if the datagram is less than 38 bytes
1300		 * in size (14 bytes ether header, 20 bytes IP header,
1301		 * plus 4 bytes of data), we punt and compute the IP
1302		 * header checksum by hand. This workaround doesn't
1303		 * work very well, however, since it can be fooled
1304		 * by things like VLAN tags and IP options that make
1305		 * the header sizes/offsets vary.
1306		 */
1307
1308		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1309			if (m_head->m_pkthdr.len < 38) {
1310				struct ip *ip;
1311				m_head->m_data += ETHER_HDR_LEN;
1312				ip = mtod(mb_head, struct ip *);
1313				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1314				m_head->m_data -= ETHER_HDR_LEN;
1315			} else {
1316				txp->tx_cb->ipcb_ip_activation_high =
1317				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1318				txp->tx_cb->ipcb_ip_schedule |=
1319				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1320			}
1321		}
1322#endif
1323	}
1324
1325	chainlen = 0;
1326	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1327		chainlen++;
1328	if (chainlen > sc->maxtxseg) {
1329		struct mbuf *mn;
1330
1331		/*
1332		 * We ran out of segments. We have to recopy this
1333		 * mbuf chain first. Bail out if we can't get the
1334		 * new buffers.
1335		 */
1336		mn = m_defrag(m_head, M_DONTWAIT);
1337		if (mn == NULL) {
1338			m_freem(m_head);
1339			return (-1);
1340		} else {
1341			m_head = mn;
1342		}
1343	}
1344
1345	/*
1346	 * Go through each of the mbufs in the chain and initialize
1347	 * the transmit buffer descriptors with the physical address
1348	 * and size of the mbuf.
1349	 */
1350	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1351	    m_head, segs, &nseg, 0);
1352	if (error) {
1353		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1354		m_freem(m_head);
1355		return (-1);
1356	}
1357
1358	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1359
1360	cbp = txp->tx_cb;
1361	for (i = 0; i < nseg; i++) {
1362		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1363		/*
1364		 * If this is an 82550/82551, then we're using extended
1365		 * TxCBs _and_ we're using checksum offload. This means
1366		 * that the TxCB is really an IPCB. One major difference
1367		 * between the two is that with plain extended TxCBs,
1368		 * the bottom half of the TxCB contains two entries from
1369		 * the TBD array, whereas IPCBs contain just one entry:
1370		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1371		 * checksum offload control bits. So to make things work
1372		 * right, we have to start filling in the TBD array
1373		 * starting from a different place depending on whether
1374		 * the chip is an 82550/82551 or not.
1375		 */
1376		if (sc->flags & FXP_FLAG_EXT_RFA) {
1377			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1378			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1379		} else {
1380			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1381			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1382		}
1383	}
1384	cbp->tbd_number = nseg;
1385
1386	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1387	txp->tx_mbuf = m_head;
1388	txp->tx_cb->cb_status = 0;
1389	txp->tx_cb->byte_count = 0;
1390	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1391		txp->tx_cb->cb_command =
1392		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1393		    FXP_CB_COMMAND_S);
1394	} else {
1395		txp->tx_cb->cb_command =
1396		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1397		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1398		/*
1399		 * Set a 5 second timer just in case we don't hear
1400		 * from the card again.
1401		 */
1402		ifp->if_timer = 5;
1403	}
1404	txp->tx_cb->tx_threshold = tx_threshold;
1405
1406	/*
1407	 * Advance the end of list forward.
1408	 */
1409
1410#ifdef __alpha__
1411	/*
1412	 * On platforms which can't access memory in 16-bit
1413	 * granularities, we must prevent the card from DMA'ing
1414	 * up the status while we update the command field.
1415	 * This could cause us to overwrite the completion status.
1416	 * XXX This is probably bogus and we're _not_ looking
1417	 * for atomicity here.
1418	 */
1419	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1420	    htole16(FXP_CB_COMMAND_S));
1421#else
1422	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1423#endif /*__alpha__*/
1424	sc->fxp_desc.tx_last = txp;
1425
1426	/*
1427	 * Advance the beginning of the list forward if there are
1428	 * no other packets queued (when nothing is queued, tx_first
1429	 * sits on the last TxCB that was sent out).
1430	 */
1431	if (sc->tx_queued == 0)
1432		sc->fxp_desc.tx_first = txp;
1433
1434	sc->tx_queued++;
1435
1436	/*
1437	 * Pass packet to bpf if there is a listener.
1438	 */
1439	BPF_MTAP(ifp, m_head);
1440	return (0);
1441}
1442
1443#ifdef DEVICE_POLLING
1444static poll_handler_t fxp_poll;
1445
1446static void
1447fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1448{
1449	struct fxp_softc *sc = ifp->if_softc;
1450	uint8_t statack;
1451
1452	FXP_LOCK(sc);
1453	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1454		ether_poll_deregister(ifp);
1455		cmd = POLL_DEREGISTER;
1456	}
1457	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1458		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1459		FXP_UNLOCK(sc);
1460		return;
1461	}
1462	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1463	    FXP_SCB_STATACK_FR;
1464	if (cmd == POLL_AND_CHECK_STATUS) {
1465		uint8_t tmp;
1466
1467		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1468		if (tmp == 0xff || tmp == 0) {
1469			FXP_UNLOCK(sc);
1470			return; /* nothing to do */
1471		}
1472		tmp &= ~statack;
1473		/* ack what we can */
1474		if (tmp != 0)
1475			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1476		statack |= tmp;
1477	}
1478	fxp_intr_body(sc, ifp, statack, count);
1479	FXP_UNLOCK(sc);
1480}
1481#endif /* DEVICE_POLLING */
1482
1483/*
1484 * Process interface interrupts.
1485 */
1486static void
1487fxp_intr(void *xsc)
1488{
1489	struct fxp_softc *sc = xsc;
1490	struct ifnet *ifp = sc->ifp;
1491	uint8_t statack;
1492
1493	FXP_LOCK(sc);
1494	if (sc->suspended) {
1495		FXP_UNLOCK(sc);
1496		return;
1497	}
1498
1499#ifdef DEVICE_POLLING
1500	if (ifp->if_flags & IFF_POLLING) {
1501		FXP_UNLOCK(sc);
1502		return;
1503	}
1504	if ((ifp->if_capenable & IFCAP_POLLING) &&
1505	    ether_poll_register(fxp_poll, ifp)) {
1506		/* disable interrupts */
1507		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1508		FXP_UNLOCK(sc);
1509		fxp_poll(ifp, 0, 1);
1510		return;
1511	}
1512#endif
1513	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1514		/*
1515		 * It should not be possible to have all bits set; the
1516		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1517		 * all bits are set, this may indicate that the card has
1518		 * been physically ejected, so ignore it.
1519		 */
1520		if (statack == 0xff) {
1521			FXP_UNLOCK(sc);
1522			return;
1523		}
1524
1525		/*
1526		 * First ACK all the interrupts in this pass.
1527		 */
1528		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1529		fxp_intr_body(sc, ifp, statack, -1);
1530	}
1531	FXP_UNLOCK(sc);
1532}
1533
1534static void
1535fxp_txeof(struct fxp_softc *sc)
1536{
1537	struct fxp_tx *txp;
1538
1539	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1540	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1541	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1542	    txp = txp->tx_next) {
1543		if (txp->tx_mbuf != NULL) {
1544			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1545			    BUS_DMASYNC_POSTWRITE);
1546			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1547			m_freem(txp->tx_mbuf);
1548			txp->tx_mbuf = NULL;
1549			/* clear this to reset csum offload bits */
1550			txp->tx_cb->tbd[0].tb_addr = 0;
1551		}
1552		sc->tx_queued--;
1553	}
1554	sc->fxp_desc.tx_first = txp;
1555	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1556}
1557
1558static void
1559fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1560    int count)
1561{
1562	struct mbuf *m;
1563	struct fxp_rx *rxp;
1564	struct fxp_rfa *rfa;
1565	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1566	int fxp_rc = 0;
1567
1568	FXP_LOCK_ASSERT(sc, MA_OWNED);
1569	if (rnr)
1570		sc->rnr++;
1571#ifdef DEVICE_POLLING
1572	/* Pick up a deferred RNR condition if `count' ran out last time. */
1573	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1574		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1575		rnr = 1;
1576	}
1577#endif
1578
1579	/*
1580	 * Free any finished transmit mbuf chains.
1581	 *
1582	 * Handle the CNA event likt a CXTNO event. It used to
1583	 * be that this event (control unit not ready) was not
1584	 * encountered, but it is now with the SMPng modifications.
1585	 * The exact sequence of events that occur when the interface
1586	 * is brought up are different now, and if this event
1587	 * goes unhandled, the configuration/rxfilter setup sequence
1588	 * can stall for several seconds. The result is that no
1589	 * packets go out onto the wire for about 5 to 10 seconds
1590	 * after the interface is ifconfig'ed for the first time.
1591	 */
1592	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1593		fxp_txeof(sc);
1594
1595		ifp->if_timer = 0;
1596		if (sc->tx_queued == 0) {
1597			if (sc->need_mcsetup)
1598				fxp_mc_setup(sc);
1599		}
1600		/*
1601		 * Try to start more packets transmitting.
1602		 */
1603		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1604			fxp_start_body(ifp);
1605	}
1606
1607	/*
1608	 * Just return if nothing happened on the receive side.
1609	 */
1610	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1611		return;
1612
1613	/*
1614	 * Process receiver interrupts. If a no-resource (RNR)
1615	 * condition exists, get whatever packets we can and
1616	 * re-start the receiver.
1617	 *
1618	 * When using polling, we do not process the list to completion,
1619	 * so when we get an RNR interrupt we must defer the restart
1620	 * until we hit the last buffer with the C bit set.
1621	 * If we run out of cycles and rfa_headm has the C bit set,
1622	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1623	 * that the info will be used in the subsequent polling cycle.
1624	 */
1625	for (;;) {
1626		rxp = sc->fxp_desc.rx_head;
1627		m = rxp->rx_mbuf;
1628		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1629		    RFA_ALIGNMENT_FUDGE);
1630		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1631		    BUS_DMASYNC_POSTREAD);
1632
1633#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1634		if (count >= 0 && count-- == 0) {
1635			if (rnr) {
1636				/* Defer RNR processing until the next time. */
1637				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1638				rnr = 0;
1639			}
1640			break;
1641		}
1642#endif /* DEVICE_POLLING */
1643
1644		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1645			break;
1646
1647		/*
1648		 * Advance head forward.
1649		 */
1650		sc->fxp_desc.rx_head = rxp->rx_next;
1651
1652		/*
1653		 * Add a new buffer to the receive chain.
1654		 * If this fails, the old buffer is recycled
1655		 * instead.
1656		 */
1657		fxp_rc = fxp_add_rfabuf(sc, rxp);
1658		if (fxp_rc == 0) {
1659			int total_len;
1660
1661			/*
1662			 * Fetch packet length (the top 2 bits of
1663			 * actual_size are flags set by the controller
1664			 * upon completion), and drop the packet in case
1665			 * of bogus length or CRC errors.
1666			 */
1667			total_len = le16toh(rfa->actual_size) & 0x3fff;
1668			if (total_len < sizeof(struct ether_header) ||
1669			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1670				sc->rfa_size ||
1671			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1672				m_freem(m);
1673				continue;
1674			}
1675
1676                        /* Do IP checksum checking. */
1677			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1678				if (rfa->rfax_csum_sts &
1679				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1680					m->m_pkthdr.csum_flags |=
1681					    CSUM_IP_CHECKED;
1682				if (rfa->rfax_csum_sts &
1683				    FXP_RFDX_CS_IP_CSUM_VALID)
1684					m->m_pkthdr.csum_flags |=
1685					    CSUM_IP_VALID;
1686				if ((rfa->rfax_csum_sts &
1687				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1688				    (rfa->rfax_csum_sts &
1689				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1690					m->m_pkthdr.csum_flags |=
1691					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1692					m->m_pkthdr.csum_data = 0xffff;
1693				}
1694			}
1695
1696			m->m_pkthdr.len = m->m_len = total_len;
1697			m->m_pkthdr.rcvif = ifp;
1698
1699			/*
1700			 * Drop locks before calling if_input() since it
1701			 * may re-enter fxp_start() in the netisr case.
1702			 * This would result in a lock reversal.  Better
1703			 * performance might be obtained by chaining all
1704			 * packets received, dropping the lock, and then
1705			 * calling if_input() on each one.
1706			 */
1707			FXP_UNLOCK(sc);
1708			(*ifp->if_input)(ifp, m);
1709			FXP_LOCK(sc);
1710		} else if (fxp_rc == ENOBUFS) {
1711			rnr = 0;
1712			break;
1713		}
1714	}
1715	if (rnr) {
1716		fxp_scb_wait(sc);
1717		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1718		    sc->fxp_desc.rx_head->rx_addr);
1719		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1720	}
1721}
1722
1723/*
1724 * Update packet in/out/collision statistics. The i82557 doesn't
1725 * allow you to access these counters without doing a fairly
1726 * expensive DMA to get _all_ of the statistics it maintains, so
1727 * we do this operation here only once per second. The statistics
1728 * counters in the kernel are updated from the previous dump-stats
1729 * DMA and then a new dump-stats DMA is started. The on-chip
1730 * counters are zeroed when the DMA completes. If we can't start
1731 * the DMA immediately, we don't wait - we just prepare to read
1732 * them again next time.
1733 */
1734static void
1735fxp_tick(void *xsc)
1736{
1737	struct fxp_softc *sc = xsc;
1738	struct ifnet *ifp = sc->ifp;
1739	struct fxp_stats *sp = sc->fxp_stats;
1740
1741	FXP_LOCK_ASSERT(sc, MA_OWNED);
1742	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1743	ifp->if_opackets += le32toh(sp->tx_good);
1744	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1745	if (sp->rx_good) {
1746		ifp->if_ipackets += le32toh(sp->rx_good);
1747		sc->rx_idle_secs = 0;
1748	} else {
1749		/*
1750		 * Receiver's been idle for another second.
1751		 */
1752		sc->rx_idle_secs++;
1753	}
1754	ifp->if_ierrors +=
1755	    le32toh(sp->rx_crc_errors) +
1756	    le32toh(sp->rx_alignment_errors) +
1757	    le32toh(sp->rx_rnr_errors) +
1758	    le32toh(sp->rx_overrun_errors);
1759	/*
1760	 * If any transmit underruns occured, bump up the transmit
1761	 * threshold by another 512 bytes (64 * 8).
1762	 */
1763	if (sp->tx_underruns) {
1764		ifp->if_oerrors += le32toh(sp->tx_underruns);
1765		if (tx_threshold < 192)
1766			tx_threshold += 64;
1767	}
1768
1769	/*
1770	 * Release any xmit buffers that have completed DMA. This isn't
1771	 * strictly necessary to do here, but it's advantagous for mbufs
1772	 * with external storage to be released in a timely manner rather
1773	 * than being defered for a potentially long time. This limits
1774	 * the delay to a maximum of one second.
1775	 */
1776	fxp_txeof(sc);
1777
1778	/*
1779	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1780	 * then assume the receiver has locked up and attempt to clear
1781	 * the condition by reprogramming the multicast filter. This is
1782	 * a work-around for a bug in the 82557 where the receiver locks
1783	 * up if it gets certain types of garbage in the syncronization
1784	 * bits prior to the packet header. This bug is supposed to only
1785	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1786	 * mode as well (perhaps due to a 10/100 speed transition).
1787	 */
1788	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1789		sc->rx_idle_secs = 0;
1790		fxp_mc_setup(sc);
1791	}
1792	/*
1793	 * If there is no pending command, start another stats
1794	 * dump. Otherwise punt for now.
1795	 */
1796	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1797		/*
1798		 * Start another stats dump.
1799		 */
1800		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1801		    BUS_DMASYNC_PREREAD);
1802		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1803	} else {
1804		/*
1805		 * A previous command is still waiting to be accepted.
1806		 * Just zero our copy of the stats and wait for the
1807		 * next timer event to update them.
1808		 */
1809		sp->tx_good = 0;
1810		sp->tx_underruns = 0;
1811		sp->tx_total_collisions = 0;
1812
1813		sp->rx_good = 0;
1814		sp->rx_crc_errors = 0;
1815		sp->rx_alignment_errors = 0;
1816		sp->rx_rnr_errors = 0;
1817		sp->rx_overrun_errors = 0;
1818	}
1819	if (sc->miibus != NULL)
1820		mii_tick(device_get_softc(sc->miibus));
1821
1822	/*
1823	 * Schedule another timeout one second from now.
1824	 */
1825	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1826}
1827
1828/*
1829 * Stop the interface. Cancels the statistics updater and resets
1830 * the interface.
1831 */
1832static void
1833fxp_stop(struct fxp_softc *sc)
1834{
1835	struct ifnet *ifp = sc->ifp;
1836	struct fxp_tx *txp;
1837	int i;
1838
1839	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1840	ifp->if_timer = 0;
1841
1842#ifdef DEVICE_POLLING
1843	ether_poll_deregister(ifp);
1844#endif
1845	/*
1846	 * Cancel stats updater.
1847	 */
1848	callout_stop(&sc->stat_ch);
1849
1850	/*
1851	 * Issue software reset, which also unloads the microcode.
1852	 */
1853	sc->flags &= ~FXP_FLAG_UCODE;
1854	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1855	DELAY(50);
1856
1857	/*
1858	 * Release any xmit buffers.
1859	 */
1860	txp = sc->fxp_desc.tx_list;
1861	if (txp != NULL) {
1862		for (i = 0; i < FXP_NTXCB; i++) {
1863 			if (txp[i].tx_mbuf != NULL) {
1864				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1865				    BUS_DMASYNC_POSTWRITE);
1866				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1867				m_freem(txp[i].tx_mbuf);
1868				txp[i].tx_mbuf = NULL;
1869				/* clear this to reset csum offload bits */
1870				txp[i].tx_cb->tbd[0].tb_addr = 0;
1871			}
1872		}
1873	}
1874	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1875	sc->tx_queued = 0;
1876}
1877
1878/*
1879 * Watchdog/transmission transmit timeout handler. Called when a
1880 * transmission is started on the interface, but no interrupt is
1881 * received before the timeout. This usually indicates that the
1882 * card has wedged for some reason.
1883 */
1884static void
1885fxp_watchdog(struct ifnet *ifp)
1886{
1887	struct fxp_softc *sc = ifp->if_softc;
1888
1889	FXP_LOCK(sc);
1890	device_printf(sc->dev, "device timeout\n");
1891	ifp->if_oerrors++;
1892
1893	fxp_init_body(sc);
1894	FXP_UNLOCK(sc);
1895}
1896
1897/*
1898 * Acquire locks and then call the real initialization function.  This
1899 * is necessary because ether_ioctl() calls if_init() and this would
1900 * result in mutex recursion if the mutex was held.
1901 */
1902static void
1903fxp_init(void *xsc)
1904{
1905	struct fxp_softc *sc = xsc;
1906
1907	FXP_LOCK(sc);
1908	fxp_init_body(sc);
1909	FXP_UNLOCK(sc);
1910}
1911
1912/*
1913 * Perform device initialization. This routine must be called with the
1914 * softc lock held.
1915 */
1916static void
1917fxp_init_body(struct fxp_softc *sc)
1918{
1919	struct ifnet *ifp = sc->ifp;
1920	struct fxp_cb_config *cbp;
1921	struct fxp_cb_ias *cb_ias;
1922	struct fxp_cb_tx *tcbp;
1923	struct fxp_tx *txp;
1924	struct fxp_cb_mcs *mcsp;
1925	int i, prm;
1926
1927	FXP_LOCK_ASSERT(sc, MA_OWNED);
1928	/*
1929	 * Cancel any pending I/O
1930	 */
1931	fxp_stop(sc);
1932
1933	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1934
1935	/*
1936	 * Initialize base of CBL and RFA memory. Loading with zero
1937	 * sets it up for regular linear addressing.
1938	 */
1939	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1940	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1941
1942	fxp_scb_wait(sc);
1943	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1944
1945	/*
1946	 * Initialize base of dump-stats buffer.
1947	 */
1948	fxp_scb_wait(sc);
1949	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1950	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1951	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1952
1953	/*
1954	 * Attempt to load microcode if requested.
1955	 */
1956	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1957		fxp_load_ucode(sc);
1958
1959	/*
1960	 * Initialize the multicast address list.
1961	 */
1962	if (fxp_mc_addrs(sc)) {
1963		mcsp = sc->mcsp;
1964		mcsp->cb_status = 0;
1965		mcsp->cb_command =
1966		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1967		mcsp->link_addr = 0xffffffff;
1968		/*
1969	 	 * Start the multicast setup command.
1970		 */
1971		fxp_scb_wait(sc);
1972		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1973		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1974		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1975		/* ...and wait for it to complete. */
1976		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1977		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1978		    BUS_DMASYNC_POSTWRITE);
1979	}
1980
1981	/*
1982	 * We temporarily use memory that contains the TxCB list to
1983	 * construct the config CB. The TxCB list memory is rebuilt
1984	 * later.
1985	 */
1986	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1987
1988	/*
1989	 * This bcopy is kind of disgusting, but there are a bunch of must be
1990	 * zero and must be one bits in this structure and this is the easiest
1991	 * way to initialize them all to proper values.
1992	 */
1993	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1994
1995	cbp->cb_status =	0;
1996	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1997	    FXP_CB_COMMAND_EL);
1998	cbp->link_addr =	0xffffffff;	/* (no) next command */
1999	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2000	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2001	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2002	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2003	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2004	cbp->type_enable =	0;	/* actually reserved */
2005	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2006	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2007	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2008	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2009	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2010	cbp->late_scb =		0;	/* (don't) defer SCB update */
2011	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2012	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2013	cbp->ci_int =		1;	/* interrupt on CU idle */
2014	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2015	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2016	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2017	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2018	cbp->disc_short_rx =	!prm;	/* discard short packets */
2019	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2020	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2021	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2022	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2023	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2024	cbp->csma_dis =		0;	/* (don't) disable link */
2025	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2026	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2027	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2028	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2029	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2030	cbp->nsai =		1;	/* (don't) disable source addr insert */
2031	cbp->preamble_length =	2;	/* (7 byte) preamble */
2032	cbp->loopback =		0;	/* (don't) loopback */
2033	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2034	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2035	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2036	cbp->promiscuous =	prm;	/* promiscuous mode */
2037	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2038	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2039	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2040	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2041	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2042
2043	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2044	cbp->padding =		1;	/* (do) pad short tx packets */
2045	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2046	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2047	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2048	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2049					/* must set wake_en in PMCSR also */
2050	cbp->force_fdx =	0;	/* (don't) force full duplex */
2051	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2052	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2053	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2054	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2055
2056	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2057		/*
2058		 * The 82557 has no hardware flow control, the values
2059		 * below are the defaults for the chip.
2060		 */
2061		cbp->fc_delay_lsb =	0;
2062		cbp->fc_delay_msb =	0x40;
2063		cbp->pri_fc_thresh =	3;
2064		cbp->tx_fc_dis =	0;
2065		cbp->rx_fc_restop =	0;
2066		cbp->rx_fc_restart =	0;
2067		cbp->fc_filter =	0;
2068		cbp->pri_fc_loc =	1;
2069	} else {
2070		cbp->fc_delay_lsb =	0x1f;
2071		cbp->fc_delay_msb =	0x01;
2072		cbp->pri_fc_thresh =	3;
2073		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2074		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2075		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2076		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2077		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2078	}
2079
2080	/*
2081	 * Start the config command/DMA.
2082	 */
2083	fxp_scb_wait(sc);
2084	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2085	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2086	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2087	/* ...and wait for it to complete. */
2088	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2089	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2090
2091	/*
2092	 * Now initialize the station address. Temporarily use the TxCB
2093	 * memory area like we did above for the config CB.
2094	 */
2095	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2096	cb_ias->cb_status = 0;
2097	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2098	cb_ias->link_addr = 0xffffffff;
2099	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2100	    sizeof(IFP2ENADDR(sc->ifp)));
2101
2102	/*
2103	 * Start the IAS (Individual Address Setup) command/DMA.
2104	 */
2105	fxp_scb_wait(sc);
2106	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2107	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2108	/* ...and wait for it to complete. */
2109	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2110	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2111
2112	/*
2113	 * Initialize transmit control block (TxCB) list.
2114	 */
2115	txp = sc->fxp_desc.tx_list;
2116	tcbp = sc->fxp_desc.cbl_list;
2117	bzero(tcbp, FXP_TXCB_SZ);
2118	for (i = 0; i < FXP_NTXCB; i++) {
2119		txp[i].tx_mbuf = NULL;
2120		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2121		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2122		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2123		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2124		if (sc->flags & FXP_FLAG_EXT_TXCB)
2125			tcbp[i].tbd_array_addr =
2126			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2127		else
2128			tcbp[i].tbd_array_addr =
2129			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2130		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2131	}
2132	/*
2133	 * Set the suspend flag on the first TxCB and start the control
2134	 * unit. It will execute the NOP and then suspend.
2135	 */
2136	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2137	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2138	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2139	sc->tx_queued = 1;
2140
2141	fxp_scb_wait(sc);
2142	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2143
2144	/*
2145	 * Initialize receiver buffer area - RFA.
2146	 */
2147	fxp_scb_wait(sc);
2148	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2149	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2150
2151	/*
2152	 * Set current media.
2153	 */
2154	if (sc->miibus != NULL)
2155		mii_mediachg(device_get_softc(sc->miibus));
2156
2157	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2158	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2159
2160	/*
2161	 * Enable interrupts.
2162	 */
2163#ifdef DEVICE_POLLING
2164	/*
2165	 * ... but only do that if we are not polling. And because (presumably)
2166	 * the default is interrupts on, we need to disable them explicitly!
2167	 */
2168	if ( ifp->if_flags & IFF_POLLING )
2169		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2170	else
2171#endif /* DEVICE_POLLING */
2172	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2173
2174	/*
2175	 * Start stats updater.
2176	 */
2177	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2178}
2179
2180static int
2181fxp_serial_ifmedia_upd(struct ifnet *ifp)
2182{
2183
2184	return (0);
2185}
2186
2187static void
2188fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2189{
2190
2191	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2192}
2193
2194/*
2195 * Change media according to request.
2196 */
2197static int
2198fxp_ifmedia_upd(struct ifnet *ifp)
2199{
2200	struct fxp_softc *sc = ifp->if_softc;
2201	struct mii_data *mii;
2202
2203	mii = device_get_softc(sc->miibus);
2204	FXP_LOCK(sc);
2205	mii_mediachg(mii);
2206	FXP_UNLOCK(sc);
2207	return (0);
2208}
2209
2210/*
2211 * Notify the world which media we're using.
2212 */
2213static void
2214fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2215{
2216	struct fxp_softc *sc = ifp->if_softc;
2217	struct mii_data *mii;
2218
2219	mii = device_get_softc(sc->miibus);
2220	FXP_LOCK(sc);
2221	mii_pollstat(mii);
2222	ifmr->ifm_active = mii->mii_media_active;
2223	ifmr->ifm_status = mii->mii_media_status;
2224
2225	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2226		sc->cu_resume_bug = 1;
2227	else
2228		sc->cu_resume_bug = 0;
2229	FXP_UNLOCK(sc);
2230}
2231
2232/*
2233 * Add a buffer to the end of the RFA buffer list.
2234 * Return 0 if successful, 1 for failure. A failure results in
2235 * adding the 'oldm' (if non-NULL) on to the end of the list -
2236 * tossing out its old contents and recycling it.
2237 * The RFA struct is stuck at the beginning of mbuf cluster and the
2238 * data pointer is fixed up to point just past it.
2239 */
2240static int
2241fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2242{
2243	struct mbuf *m;
2244	struct fxp_rfa *rfa, *p_rfa;
2245	struct fxp_rx *p_rx;
2246	bus_dmamap_t tmp_map;
2247	int error;
2248
2249	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2250	if (m == NULL)
2251		return (ENOBUFS);
2252
2253	/*
2254	 * Move the data pointer up so that the incoming data packet
2255	 * will be 32-bit aligned.
2256	 */
2257	m->m_data += RFA_ALIGNMENT_FUDGE;
2258
2259	/*
2260	 * Get a pointer to the base of the mbuf cluster and move
2261	 * data start past it.
2262	 */
2263	rfa = mtod(m, struct fxp_rfa *);
2264	m->m_data += sc->rfa_size;
2265	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2266
2267	rfa->rfa_status = 0;
2268	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2269	rfa->actual_size = 0;
2270
2271	/*
2272	 * Initialize the rest of the RFA.  Note that since the RFA
2273	 * is misaligned, we cannot store values directly.  We're thus
2274	 * using the le32enc() function which handles endianness and
2275	 * is also alignment-safe.
2276	 */
2277	le32enc(&rfa->link_addr, 0xffffffff);
2278	le32enc(&rfa->rbd_addr, 0xffffffff);
2279
2280	/* Map the RFA into DMA memory. */
2281	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2282	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2283	    &rxp->rx_addr, 0);
2284	if (error) {
2285		m_freem(m);
2286		return (error);
2287	}
2288
2289	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2290	tmp_map = sc->spare_map;
2291	sc->spare_map = rxp->rx_map;
2292	rxp->rx_map = tmp_map;
2293	rxp->rx_mbuf = m;
2294
2295	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2296	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2297
2298	/*
2299	 * If there are other buffers already on the list, attach this
2300	 * one to the end by fixing up the tail to point to this one.
2301	 */
2302	if (sc->fxp_desc.rx_head != NULL) {
2303		p_rx = sc->fxp_desc.rx_tail;
2304		p_rfa = (struct fxp_rfa *)
2305		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2306		p_rx->rx_next = rxp;
2307		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2308		p_rfa->rfa_control = 0;
2309		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2310		    BUS_DMASYNC_PREWRITE);
2311	} else {
2312		rxp->rx_next = NULL;
2313		sc->fxp_desc.rx_head = rxp;
2314	}
2315	sc->fxp_desc.rx_tail = rxp;
2316	return (0);
2317}
2318
2319static volatile int
2320fxp_miibus_readreg(device_t dev, int phy, int reg)
2321{
2322	struct fxp_softc *sc = device_get_softc(dev);
2323	int count = 10000;
2324	int value;
2325
2326	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2327	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2328
2329	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2330	    && count--)
2331		DELAY(10);
2332
2333	if (count <= 0)
2334		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2335
2336	return (value & 0xffff);
2337}
2338
2339static void
2340fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2341{
2342	struct fxp_softc *sc = device_get_softc(dev);
2343	int count = 10000;
2344
2345	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2346	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2347	    (value & 0xffff));
2348
2349	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2350	    count--)
2351		DELAY(10);
2352
2353	if (count <= 0)
2354		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2355}
2356
2357static int
2358fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2359{
2360	struct fxp_softc *sc = ifp->if_softc;
2361	struct ifreq *ifr = (struct ifreq *)data;
2362	struct mii_data *mii;
2363	int flag, mask, error = 0;
2364
2365	switch (command) {
2366	case SIOCSIFFLAGS:
2367		FXP_LOCK(sc);
2368		if (ifp->if_flags & IFF_ALLMULTI)
2369			sc->flags |= FXP_FLAG_ALL_MCAST;
2370		else
2371			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2372
2373		/*
2374		 * If interface is marked up and not running, then start it.
2375		 * If it is marked down and running, stop it.
2376		 * XXX If it's up then re-initialize it. This is so flags
2377		 * such as IFF_PROMISC are handled.
2378		 */
2379		if (ifp->if_flags & IFF_UP) {
2380			fxp_init_body(sc);
2381		} else {
2382			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2383				fxp_stop(sc);
2384		}
2385		FXP_UNLOCK(sc);
2386		break;
2387
2388	case SIOCADDMULTI:
2389	case SIOCDELMULTI:
2390		FXP_LOCK(sc);
2391		if (ifp->if_flags & IFF_ALLMULTI)
2392			sc->flags |= FXP_FLAG_ALL_MCAST;
2393		else
2394			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2395		/*
2396		 * Multicast list has changed; set the hardware filter
2397		 * accordingly.
2398		 */
2399		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2400			fxp_mc_setup(sc);
2401		/*
2402		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2403		 * again rather than else {}.
2404		 */
2405		if (sc->flags & FXP_FLAG_ALL_MCAST)
2406			fxp_init_body(sc);
2407		FXP_UNLOCK(sc);
2408		error = 0;
2409		break;
2410
2411	case SIOCSIFMEDIA:
2412	case SIOCGIFMEDIA:
2413		if (sc->miibus != NULL) {
2414			mii = device_get_softc(sc->miibus);
2415                        error = ifmedia_ioctl(ifp, ifr,
2416                            &mii->mii_media, command);
2417		} else {
2418                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2419		}
2420		break;
2421
2422	case SIOCSIFCAP:
2423		FXP_LOCK(sc);
2424		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2425		if (mask & IFCAP_POLLING)
2426			ifp->if_capenable ^= IFCAP_POLLING;
2427		if (mask & IFCAP_VLAN_MTU) {
2428			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2429			if (sc->revision != FXP_REV_82557)
2430				flag = FXP_FLAG_LONG_PKT_EN;
2431			else /* a hack to get long frames on the old chip */
2432				flag = FXP_FLAG_SAVE_BAD;
2433			sc->flags ^= flag;
2434			if (ifp->if_flags & IFF_UP)
2435				fxp_init_body(sc);
2436		}
2437		FXP_UNLOCK(sc);
2438		break;
2439
2440	default:
2441		error = ether_ioctl(ifp, command, data);
2442	}
2443	return (error);
2444}
2445
2446/*
2447 * Fill in the multicast address list and return number of entries.
2448 */
2449static int
2450fxp_mc_addrs(struct fxp_softc *sc)
2451{
2452	struct fxp_cb_mcs *mcsp = sc->mcsp;
2453	struct ifnet *ifp = sc->ifp;
2454	struct ifmultiaddr *ifma;
2455	int nmcasts;
2456
2457	nmcasts = 0;
2458	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2459		IF_ADDR_LOCK(ifp);
2460		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2461			if (ifma->ifma_addr->sa_family != AF_LINK)
2462				continue;
2463			if (nmcasts >= MAXMCADDR) {
2464				sc->flags |= FXP_FLAG_ALL_MCAST;
2465				nmcasts = 0;
2466				break;
2467			}
2468			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2469			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2470			nmcasts++;
2471		}
2472		IF_ADDR_UNLOCK(ifp);
2473	}
2474	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2475	return (nmcasts);
2476}
2477
2478/*
2479 * Program the multicast filter.
2480 *
2481 * We have an artificial restriction that the multicast setup command
2482 * must be the first command in the chain, so we take steps to ensure
2483 * this. By requiring this, it allows us to keep up the performance of
2484 * the pre-initialized command ring (esp. link pointers) by not actually
2485 * inserting the mcsetup command in the ring - i.e. its link pointer
2486 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2487 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2488 * lead into the regular TxCB ring when it completes.
2489 *
2490 * This function must be called at splimp.
2491 */
2492static void
2493fxp_mc_setup(struct fxp_softc *sc)
2494{
2495	struct fxp_cb_mcs *mcsp = sc->mcsp;
2496	struct ifnet *ifp = sc->ifp;
2497	struct fxp_tx *txp;
2498	int count;
2499
2500	FXP_LOCK_ASSERT(sc, MA_OWNED);
2501	/*
2502	 * If there are queued commands, we must wait until they are all
2503	 * completed. If we are already waiting, then add a NOP command
2504	 * with interrupt option so that we're notified when all commands
2505	 * have been completed - fxp_start() ensures that no additional
2506	 * TX commands will be added when need_mcsetup is true.
2507	 */
2508	if (sc->tx_queued) {
2509		/*
2510		 * need_mcsetup will be true if we are already waiting for the
2511		 * NOP command to be completed (see below). In this case, bail.
2512		 */
2513		if (sc->need_mcsetup)
2514			return;
2515		sc->need_mcsetup = 1;
2516
2517		/*
2518		 * Add a NOP command with interrupt so that we are notified
2519		 * when all TX commands have been processed.
2520		 */
2521		txp = sc->fxp_desc.tx_last->tx_next;
2522		txp->tx_mbuf = NULL;
2523		txp->tx_cb->cb_status = 0;
2524		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2525		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2526		/*
2527		 * Advance the end of list forward.
2528		 */
2529		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2530		    htole16(~FXP_CB_COMMAND_S);
2531		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2532		sc->fxp_desc.tx_last = txp;
2533		sc->tx_queued++;
2534		/*
2535		 * Issue a resume in case the CU has just suspended.
2536		 */
2537		fxp_scb_wait(sc);
2538		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2539		/*
2540		 * Set a 5 second timer just in case we don't hear from the
2541		 * card again.
2542		 */
2543		ifp->if_timer = 5;
2544
2545		return;
2546	}
2547	sc->need_mcsetup = 0;
2548
2549	/*
2550	 * Initialize multicast setup descriptor.
2551	 */
2552	mcsp->cb_status = 0;
2553	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2554	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2555	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2556	txp = &sc->fxp_desc.mcs_tx;
2557	txp->tx_mbuf = NULL;
2558	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2559	txp->tx_next = sc->fxp_desc.tx_list;
2560	(void) fxp_mc_addrs(sc);
2561	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2562	sc->tx_queued = 1;
2563
2564	/*
2565	 * Wait until command unit is not active. This should never
2566	 * be the case when nothing is queued, but make sure anyway.
2567	 */
2568	count = 100;
2569	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2570	    FXP_SCB_CUS_ACTIVE && --count)
2571		DELAY(10);
2572	if (count == 0) {
2573		device_printf(sc->dev, "command queue timeout\n");
2574		return;
2575	}
2576
2577	/*
2578	 * Start the multicast setup command.
2579	 */
2580	fxp_scb_wait(sc);
2581	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2582	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2583	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2584
2585	ifp->if_timer = 2;
2586	return;
2587}
2588
2589static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2590static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2591static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2592static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2593static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2594static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2595static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2596
2597#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2598
2599struct ucode {
2600	uint32_t	revision;
2601	uint32_t	*ucode;
2602	int		length;
2603	u_short		int_delay_offset;
2604	u_short		bundle_max_offset;
2605} ucode_table[] = {
2606	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2607	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2608	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2609	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2610	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2611	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2612	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2613	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2614	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2615	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2616	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2617	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2618	{ 0, NULL, 0, 0, 0 }
2619};
2620
2621static void
2622fxp_load_ucode(struct fxp_softc *sc)
2623{
2624	struct ucode *uc;
2625	struct fxp_cb_ucode *cbp;
2626	int i;
2627
2628	for (uc = ucode_table; uc->ucode != NULL; uc++)
2629		if (sc->revision == uc->revision)
2630			break;
2631	if (uc->ucode == NULL)
2632		return;
2633	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2634	cbp->cb_status = 0;
2635	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2636	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2637	for (i = 0; i < uc->length; i++)
2638		cbp->ucode[i] = htole32(uc->ucode[i]);
2639	if (uc->int_delay_offset)
2640		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2641		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2642	if (uc->bundle_max_offset)
2643		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2644		    htole16(sc->tunable_bundle_max);
2645	/*
2646	 * Download the ucode to the chip.
2647	 */
2648	fxp_scb_wait(sc);
2649	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2650	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2651	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2652	/* ...and wait for it to complete. */
2653	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2654	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2655	device_printf(sc->dev,
2656	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2657	    sc->tunable_int_delay,
2658	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2659	sc->flags |= FXP_FLAG_UCODE;
2660}
2661
2662static int
2663sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2664{
2665	int error, value;
2666
2667	value = *(int *)arg1;
2668	error = sysctl_handle_int(oidp, &value, 0, req);
2669	if (error || !req->newptr)
2670		return (error);
2671	if (value < low || value > high)
2672		return (EINVAL);
2673	*(int *)arg1 = value;
2674	return (0);
2675}
2676
2677/*
2678 * Interrupt delay is expressed in microseconds, a multiplier is used
2679 * to convert this to the appropriate clock ticks before using.
2680 */
2681static int
2682sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2683{
2684	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2685}
2686
2687static int
2688sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2689{
2690	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2691}
2692