if_fxp.c revision 147282
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 147282 2005-06-10 23:54:52Z wes $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	u_char eaddr[ETHER_ADDR_LEN];
377	int i, rid, m1, m2, prefer_iomap;
378	int error, s;
379
380	error = 0;
381	sc = device_get_softc(dev);
382	sc->dev = dev;
383	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
384	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385	    MTX_DEF);
386	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
387	    fxp_serial_ifmedia_sts);
388
389	s = splimp();
390
391	/*
392	 * Enable bus mastering.
393	 */
394	pci_enable_busmaster(dev);
395	val = pci_read_config(dev, PCIR_COMMAND, 2);
396
397	/*
398	 * Figure out which we should try first - memory mapping or i/o mapping?
399	 * We default to memory mapping. Then we accept an override from the
400	 * command line. Then we check to see which one is enabled.
401	 */
402	m1 = PCIM_CMD_MEMEN;
403	m2 = PCIM_CMD_PORTEN;
404	prefer_iomap = 0;
405	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
406	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
407		m1 = PCIM_CMD_PORTEN;
408		m2 = PCIM_CMD_MEMEN;
409	}
410
411	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
412	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
413	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
414	if (sc->mem == NULL) {
415		sc->rtp =
416		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
417		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
418		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
419                                            RF_ACTIVE);
420	}
421
422	if (!sc->mem) {
423		error = ENXIO;
424		goto fail;
425        }
426	if (bootverbose) {
427		device_printf(dev, "using %s space register mapping\n",
428		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
429	}
430
431	sc->sc_st = rman_get_bustag(sc->mem);
432	sc->sc_sh = rman_get_bushandle(sc->mem);
433
434	/*
435	 * Allocate our interrupt.
436	 */
437	rid = 0;
438	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439				 RF_SHAREABLE | RF_ACTIVE);
440	if (sc->irq == NULL) {
441		device_printf(dev, "could not map interrupt\n");
442		error = ENXIO;
443		goto fail;
444	}
445
446	/*
447	 * Reset to a stable state.
448	 */
449	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
450	DELAY(10);
451
452	/*
453	 * Find out how large of an SEEPROM we have.
454	 */
455	fxp_autosize_eeprom(sc);
456
457	/*
458	 * Find out the chip revision; lump all 82557 revs together.
459	 */
460	fxp_read_eeprom(sc, &data, 5, 1);
461	if ((data >> 8) == 1)
462		sc->revision = FXP_REV_82557;
463	else
464		sc->revision = pci_get_revid(dev);
465
466	/*
467	 * Determine whether we must use the 503 serial interface.
468	 */
469	fxp_read_eeprom(sc, &data, 6, 1);
470	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
471	    && (data & FXP_PHY_SERIAL_ONLY))
472		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
473
474	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
475	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
476	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
477	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
478	    "FXP driver receive interrupt microcode bundling delay");
479	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
480	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
481	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
482	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
483	    "FXP driver receive interrupt microcode bundle size limit");
484	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
485	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
486	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
487	    "FXP RNR events");
488	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
489	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
490	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
491	    "FXP flow control disabled");
492
493	/*
494	 * Pull in device tunables.
495	 */
496	sc->tunable_int_delay = TUNABLE_INT_DELAY;
497	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
498	sc->tunable_noflow = 1;
499	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
500	    "int_delay", &sc->tunable_int_delay);
501	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
502	    "bundle_max", &sc->tunable_bundle_max);
503	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
504	    "noflow", &sc->tunable_noflow);
505	sc->rnr = 0;
506
507	/*
508	 * Enable workarounds for certain chip revision deficiencies.
509	 *
510	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
511	 * some systems based a normal 82559 design, have a defect where
512	 * the chip can cause a PCI protocol violation if it receives
513	 * a CU_RESUME command when it is entering the IDLE state.  The
514	 * workaround is to disable Dynamic Standby Mode, so the chip never
515	 * deasserts CLKRUN#, and always remains in an active state.
516	 *
517	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
518	 */
519	i = pci_get_device(dev);
520	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
521	    sc->revision >= FXP_REV_82559_A0) {
522		fxp_read_eeprom(sc, &data, 10, 1);
523		if (data & 0x02) {			/* STB enable */
524			uint16_t cksum;
525			int i;
526
527			device_printf(dev,
528			    "Disabling dynamic standby mode in EEPROM\n");
529			data &= ~0x02;
530			fxp_write_eeprom(sc, &data, 10, 1);
531			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
532			cksum = 0;
533			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
534				fxp_read_eeprom(sc, &data, i, 1);
535				cksum += data;
536			}
537			i = (1 << sc->eeprom_size) - 1;
538			cksum = 0xBABA - cksum;
539			fxp_read_eeprom(sc, &data, i, 1);
540			fxp_write_eeprom(sc, &cksum, i, 1);
541			device_printf(dev,
542			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
543			    i, data, cksum);
544#if 1
545			/*
546			 * If the user elects to continue, try the software
547			 * workaround, as it is better than nothing.
548			 */
549			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
550#endif
551		}
552	}
553
554	/*
555	 * If we are not a 82557 chip, we can enable extended features.
556	 */
557	if (sc->revision != FXP_REV_82557) {
558		/*
559		 * If MWI is enabled in the PCI configuration, and there
560		 * is a valid cacheline size (8 or 16 dwords), then tell
561		 * the board to turn on MWI.
562		 */
563		if (val & PCIM_CMD_MWRICEN &&
564		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
565			sc->flags |= FXP_FLAG_MWI_ENABLE;
566
567		/* turn on the extended TxCB feature */
568		sc->flags |= FXP_FLAG_EXT_TXCB;
569
570		/* enable reception of long frames for VLAN */
571		sc->flags |= FXP_FLAG_LONG_PKT_EN;
572	} else {
573		/* a hack to get long VLAN frames on a 82557 */
574		sc->flags |= FXP_FLAG_SAVE_BAD;
575	}
576
577	/*
578	 * Enable use of extended RFDs and TCBs for 82550
579	 * and later chips. Note: we need extended TXCB support
580	 * too, but that's already enabled by the code above.
581	 * Be careful to do this only on the right devices.
582	 */
583	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
584	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
585	    || sc->revision == FXP_REV_82551_10) {
586		sc->rfa_size = sizeof (struct fxp_rfa);
587		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
588		sc->flags |= FXP_FLAG_EXT_RFA;
589	} else {
590		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
591		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
592	}
593
594	/*
595	 * Allocate DMA tags and DMA safe memory.
596	 */
597	sc->maxtxseg = FXP_NTXSEG;
598	if (sc->flags & FXP_FLAG_EXT_RFA)
599		sc->maxtxseg--;
600	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
601	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
602	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
603	    &sc->fxp_mtag);
604	if (error) {
605		device_printf(dev, "could not allocate dma tag\n");
606		goto fail;
607	}
608
609	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
610	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
611	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
612	    &sc->fxp_stag);
613	if (error) {
614		device_printf(dev, "could not allocate dma tag\n");
615		goto fail;
616	}
617
618	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
619	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
620	if (error)
621		goto fail;
622	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
623	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
624	if (error) {
625		device_printf(dev, "could not map the stats buffer\n");
626		goto fail;
627	}
628
629	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
630	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
631	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
632	if (error) {
633		device_printf(dev, "could not allocate dma tag\n");
634		goto fail;
635	}
636
637	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
638	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
639	if (error)
640		goto fail;
641
642	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
643	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
644	    &sc->fxp_desc.cbl_addr, 0);
645	if (error) {
646		device_printf(dev, "could not map DMA memory\n");
647		goto fail;
648	}
649
650	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
651	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
652	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
653	    &sc->mcs_tag);
654	if (error) {
655		device_printf(dev, "could not allocate dma tag\n");
656		goto fail;
657	}
658
659	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
660	    BUS_DMA_NOWAIT, &sc->mcs_map);
661	if (error)
662		goto fail;
663	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
664	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
665	if (error) {
666		device_printf(dev, "can't map the multicast setup command\n");
667		goto fail;
668	}
669
670	/*
671	 * Pre-allocate the TX DMA maps and setup the pointers to
672	 * the TX command blocks.
673	 */
674	txp = sc->fxp_desc.tx_list;
675	tcbp = sc->fxp_desc.cbl_list;
676	for (i = 0; i < FXP_NTXCB; i++) {
677		txp[i].tx_cb = tcbp + i;
678		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
679		if (error) {
680			device_printf(dev, "can't create DMA map for TX\n");
681			goto fail;
682		}
683	}
684	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
685	if (error) {
686		device_printf(dev, "can't create spare DMA map\n");
687		goto fail;
688	}
689
690	/*
691	 * Pre-allocate our receive buffers.
692	 */
693	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
694	for (i = 0; i < FXP_NRFABUFS; i++) {
695		rxp = &sc->fxp_desc.rx_list[i];
696		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
697		if (error) {
698			device_printf(dev, "can't create DMA map for RX\n");
699			goto fail;
700		}
701		if (fxp_add_rfabuf(sc, rxp) != 0) {
702			error = ENOMEM;
703			goto fail;
704		}
705	}
706
707	/*
708	 * Read MAC address.
709	 */
710	fxp_read_eeprom(sc, myea, 0, 3);
711	eaddr[0] = myea[0] & 0xff;
712	eaddr[1] = myea[0] >> 8;
713	eaddr[2] = myea[1] & 0xff;
714	eaddr[3] = myea[1] >> 8;
715	eaddr[4] = myea[2] & 0xff;
716	eaddr[5] = myea[2] >> 8;
717	if (bootverbose) {
718		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
719		    pci_get_vendor(dev), pci_get_device(dev),
720		    pci_get_subvendor(dev), pci_get_subdevice(dev),
721		    pci_get_revid(dev));
722		fxp_read_eeprom(sc, &data, 10, 1);
723		device_printf(dev, "Dynamic Standby mode is %s\n",
724		    data & 0x02 ? "enabled" : "disabled");
725	}
726
727	/*
728	 * If this is only a 10Mbps device, then there is no MII, and
729	 * the PHY will use a serial interface instead.
730	 *
731	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
732	 * doesn't have a programming interface of any sort.  The
733	 * media is sensed automatically based on how the link partner
734	 * is configured.  This is, in essence, manual configuration.
735	 */
736	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
737		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
738		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
739	} else {
740		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
741		    fxp_ifmedia_sts)) {
742	                device_printf(dev, "MII without any PHY!\n");
743			error = ENXIO;
744			goto fail;
745		}
746	}
747
748	ifp = sc->ifp = if_alloc(IFT_ETHER);
749	if (ifp == NULL) {
750		device_printf(dev, "can not if_alloc()\n");
751		error = ENOSPC;
752		goto fail;
753	}
754	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
755	ifp->if_baudrate = 100000000;
756	ifp->if_init = fxp_init;
757	ifp->if_softc = sc;
758	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
759	ifp->if_ioctl = fxp_ioctl;
760	ifp->if_start = fxp_start;
761	ifp->if_watchdog = fxp_watchdog;
762
763	ifp->if_capabilities = ifp->if_capenable = 0;
764
765	/* Enable checksum offload for 82550 or better chips */
766	if (sc->flags & FXP_FLAG_EXT_RFA) {
767		ifp->if_hwassist = FXP_CSUM_FEATURES;
768		ifp->if_capabilities |= IFCAP_HWCSUM;
769		ifp->if_capenable |= IFCAP_HWCSUM;
770	}
771
772#ifdef DEVICE_POLLING
773	/* Inform the world we support polling. */
774	ifp->if_capabilities |= IFCAP_POLLING;
775	ifp->if_capenable |= IFCAP_POLLING;
776#endif
777
778	/*
779	 * Attach the interface.
780	 */
781	ether_ifattach(ifp, eaddr);
782
783	/*
784	 * Tell the upper layer(s) we support long frames.
785	 * Must appear after the call to ether_ifattach() because
786	 * ether_ifattach() sets ifi_hdrlen to the default value.
787	 */
788	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
789	ifp->if_capabilities |= IFCAP_VLAN_MTU;
790	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
791
792	/*
793	 * Let the system queue as many packets as we have available
794	 * TX descriptors.
795	 */
796	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
797	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
798	IFQ_SET_READY(&ifp->if_snd);
799
800	/*
801	 * Hook our interrupt after all initialization is complete.
802	 */
803	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
804			       fxp_intr, sc, &sc->ih);
805	if (error) {
806		device_printf(dev, "could not setup irq\n");
807		ether_ifdetach(sc->ifp);
808		goto fail;
809	}
810
811fail:
812	splx(s);
813	if (error)
814		fxp_release(sc);
815	return (error);
816}
817
818/*
819 * Release all resources.  The softc lock should not be held and the
820 * interrupt should already be torn down.
821 */
822static void
823fxp_release(struct fxp_softc *sc)
824{
825	struct fxp_rx *rxp;
826	struct fxp_tx *txp;
827	int i;
828
829	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
830	KASSERT(sc->ih == NULL,
831	    ("fxp_release() called with intr handle still active"));
832	if (sc->miibus)
833		device_delete_child(sc->dev, sc->miibus);
834	bus_generic_detach(sc->dev);
835	ifmedia_removeall(&sc->sc_media);
836	if (sc->fxp_desc.cbl_list) {
837		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
838		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
839		    sc->cbl_map);
840	}
841	if (sc->fxp_stats) {
842		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
843		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
844	}
845	if (sc->mcsp) {
846		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
847		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
848	}
849	if (sc->irq)
850		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
851	if (sc->mem)
852		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
853	if (sc->fxp_mtag) {
854		for (i = 0; i < FXP_NRFABUFS; i++) {
855			rxp = &sc->fxp_desc.rx_list[i];
856			if (rxp->rx_mbuf != NULL) {
857				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
858				    BUS_DMASYNC_POSTREAD);
859				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
860				m_freem(rxp->rx_mbuf);
861			}
862			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
863		}
864		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
865		for (i = 0; i < FXP_NTXCB; i++) {
866			txp = &sc->fxp_desc.tx_list[i];
867			if (txp->tx_mbuf != NULL) {
868				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
869				    BUS_DMASYNC_POSTWRITE);
870				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
871				m_freem(txp->tx_mbuf);
872			}
873			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
874		}
875		bus_dma_tag_destroy(sc->fxp_mtag);
876	}
877	if (sc->fxp_stag)
878		bus_dma_tag_destroy(sc->fxp_stag);
879	if (sc->cbl_tag)
880		bus_dma_tag_destroy(sc->cbl_tag);
881	if (sc->mcs_tag)
882		bus_dma_tag_destroy(sc->mcs_tag);
883	if (sc->ifp)
884		if_free(sc->ifp);
885
886	mtx_destroy(&sc->sc_mtx);
887}
888
889/*
890 * Detach interface.
891 */
892static int
893fxp_detach(device_t dev)
894{
895	struct fxp_softc *sc = device_get_softc(dev);
896	int s;
897
898	FXP_LOCK(sc);
899	s = splimp();
900
901	sc->suspended = 1;	/* Do same thing as we do for suspend */
902	/*
903	 * Close down routes etc.
904	 */
905	ether_ifdetach(sc->ifp);
906
907	/*
908	 * Stop DMA and drop transmit queue, but disable interrupts first.
909	 */
910	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
911	fxp_stop(sc);
912	FXP_UNLOCK(sc);
913
914	/*
915	 * Unhook interrupt before dropping lock. This is to prevent
916	 * races with fxp_intr().
917	 */
918	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
919	sc->ih = NULL;
920
921	splx(s);
922
923	/* Release our allocated resources. */
924	fxp_release(sc);
925	return (0);
926}
927
928/*
929 * Device shutdown routine. Called at system shutdown after sync. The
930 * main purpose of this routine is to shut off receiver DMA so that
931 * kernel memory doesn't get clobbered during warmboot.
932 */
933static int
934fxp_shutdown(device_t dev)
935{
936	/*
937	 * Make sure that DMA is disabled prior to reboot. Not doing
938	 * do could allow DMA to corrupt kernel memory during the
939	 * reboot before the driver initializes.
940	 */
941	fxp_stop((struct fxp_softc *) device_get_softc(dev));
942	return (0);
943}
944
945/*
946 * Device suspend routine.  Stop the interface and save some PCI
947 * settings in case the BIOS doesn't restore them properly on
948 * resume.
949 */
950static int
951fxp_suspend(device_t dev)
952{
953	struct fxp_softc *sc = device_get_softc(dev);
954	int s;
955
956	FXP_LOCK(sc);
957	s = splimp();
958
959	fxp_stop(sc);
960
961	sc->suspended = 1;
962
963	FXP_UNLOCK(sc);
964	splx(s);
965	return (0);
966}
967
968/*
969 * Device resume routine. re-enable busmastering, and restart the interface if
970 * appropriate.
971 */
972static int
973fxp_resume(device_t dev)
974{
975	struct fxp_softc *sc = device_get_softc(dev);
976	struct ifnet *ifp = sc->ifp;
977	uint16_t pci_command;
978	int s;
979
980	FXP_LOCK(sc);
981	s = splimp();
982
983	/* reenable busmastering */
984	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
985	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
986	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
987
988	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
989	DELAY(10);
990
991	/* reinitialize interface if necessary */
992	if (ifp->if_flags & IFF_UP)
993		fxp_init_body(sc);
994
995	sc->suspended = 0;
996
997	FXP_UNLOCK(sc);
998	splx(s);
999	return (0);
1000}
1001
1002static void
1003fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1004{
1005	uint16_t reg;
1006	int x;
1007
1008	/*
1009	 * Shift in data.
1010	 */
1011	for (x = 1 << (length - 1); x; x >>= 1) {
1012		if (data & x)
1013			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1014		else
1015			reg = FXP_EEPROM_EECS;
1016		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1017		DELAY(1);
1018		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1019		DELAY(1);
1020		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1021		DELAY(1);
1022	}
1023}
1024
1025/*
1026 * Read from the serial EEPROM. Basically, you manually shift in
1027 * the read opcode (one bit at a time) and then shift in the address,
1028 * and then you shift out the data (all of this one bit at a time).
1029 * The word size is 16 bits, so you have to provide the address for
1030 * every 16 bits of data.
1031 */
1032static uint16_t
1033fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1034{
1035	uint16_t reg, data;
1036	int x;
1037
1038	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1039	/*
1040	 * Shift in read opcode.
1041	 */
1042	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1043	/*
1044	 * Shift in address.
1045	 */
1046	data = 0;
1047	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1048		if (offset & x)
1049			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1050		else
1051			reg = FXP_EEPROM_EECS;
1052		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1053		DELAY(1);
1054		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1055		DELAY(1);
1056		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1057		DELAY(1);
1058		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1059		data++;
1060		if (autosize && reg == 0) {
1061			sc->eeprom_size = data;
1062			break;
1063		}
1064	}
1065	/*
1066	 * Shift out data.
1067	 */
1068	data = 0;
1069	reg = FXP_EEPROM_EECS;
1070	for (x = 1 << 15; x; x >>= 1) {
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072		DELAY(1);
1073		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1074			data |= x;
1075		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1076		DELAY(1);
1077	}
1078	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1079	DELAY(1);
1080
1081	return (data);
1082}
1083
1084static void
1085fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1086{
1087	int i;
1088
1089	/*
1090	 * Erase/write enable.
1091	 */
1092	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1093	fxp_eeprom_shiftin(sc, 0x4, 3);
1094	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1095	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1096	DELAY(1);
1097	/*
1098	 * Shift in write opcode, address, data.
1099	 */
1100	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1102	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1103	fxp_eeprom_shiftin(sc, data, 16);
1104	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1105	DELAY(1);
1106	/*
1107	 * Wait for EEPROM to finish up.
1108	 */
1109	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1110	DELAY(1);
1111	for (i = 0; i < 1000; i++) {
1112		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1113			break;
1114		DELAY(50);
1115	}
1116	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1117	DELAY(1);
1118	/*
1119	 * Erase/write disable.
1120	 */
1121	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1122	fxp_eeprom_shiftin(sc, 0x4, 3);
1123	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1124	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125	DELAY(1);
1126}
1127
1128/*
1129 * From NetBSD:
1130 *
1131 * Figure out EEPROM size.
1132 *
1133 * 559's can have either 64-word or 256-word EEPROMs, the 558
1134 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1135 * talks about the existance of 16 to 256 word EEPROMs.
1136 *
1137 * The only known sizes are 64 and 256, where the 256 version is used
1138 * by CardBus cards to store CIS information.
1139 *
1140 * The address is shifted in msb-to-lsb, and after the last
1141 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1142 * after which follows the actual data. We try to detect this zero, by
1143 * probing the data-out bit in the EEPROM control register just after
1144 * having shifted in a bit. If the bit is zero, we assume we've
1145 * shifted enough address bits. The data-out should be tri-state,
1146 * before this, which should translate to a logical one.
1147 */
1148static void
1149fxp_autosize_eeprom(struct fxp_softc *sc)
1150{
1151
1152	/* guess maximum size of 256 words */
1153	sc->eeprom_size = 8;
1154
1155	/* autosize */
1156	(void) fxp_eeprom_getword(sc, 0, 1);
1157}
1158
1159static void
1160fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1161{
1162	int i;
1163
1164	for (i = 0; i < words; i++)
1165		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1166}
1167
1168static void
1169fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1170{
1171	int i;
1172
1173	for (i = 0; i < words; i++)
1174		fxp_eeprom_putword(sc, offset + i, data[i]);
1175}
1176
1177/*
1178 * Grab the softc lock and call the real fxp_start_body() routine
1179 */
1180static void
1181fxp_start(struct ifnet *ifp)
1182{
1183	struct fxp_softc *sc = ifp->if_softc;
1184
1185	FXP_LOCK(sc);
1186	fxp_start_body(ifp);
1187	FXP_UNLOCK(sc);
1188}
1189
1190/*
1191 * Start packet transmission on the interface.
1192 * This routine must be called with the softc lock held, and is an
1193 * internal entry point only.
1194 */
1195static void
1196fxp_start_body(struct ifnet *ifp)
1197{
1198	struct fxp_softc *sc = ifp->if_softc;
1199	struct mbuf *mb_head;
1200	int error, txqueued;
1201
1202	FXP_LOCK_ASSERT(sc, MA_OWNED);
1203
1204	/*
1205	 * See if we need to suspend xmit until the multicast filter
1206	 * has been reprogrammed (which can only be done at the head
1207	 * of the command chain).
1208	 */
1209	if (sc->need_mcsetup)
1210		return;
1211
1212	/*
1213	 * We're finished if there is nothing more to add to the list or if
1214	 * we're all filled up with buffers to transmit.
1215	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1216	 *       a NOP command when needed.
1217	 */
1218	txqueued = 0;
1219	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1220	    sc->tx_queued < FXP_NTXCB - 1) {
1221
1222		/*
1223		 * Grab a packet to transmit.
1224		 */
1225		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1226		if (mb_head == NULL)
1227			break;
1228
1229		error = fxp_encap(sc, mb_head);
1230		if (error)
1231			break;
1232		txqueued = 1;
1233	}
1234	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1235
1236	/*
1237	 * We're finished. If we added to the list, issue a RESUME to get DMA
1238	 * going again if suspended.
1239	 */
1240	if (txqueued) {
1241		fxp_scb_wait(sc);
1242		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1243	}
1244}
1245
1246static int
1247fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1248{
1249	struct ifnet *ifp;
1250	struct mbuf *m;
1251	struct fxp_tx *txp;
1252	struct fxp_cb_tx *cbp;
1253	bus_dma_segment_t segs[FXP_NTXSEG];
1254	int chainlen, error, i, nseg;
1255
1256	FXP_LOCK_ASSERT(sc, MA_OWNED);
1257	ifp = sc->ifp;
1258
1259	/*
1260	 * Get pointer to next available tx desc.
1261	 */
1262	txp = sc->fxp_desc.tx_last->tx_next;
1263
1264	/*
1265	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1266	 * Ethernet Controller Family Open Source Software
1267	 * Developer Manual says:
1268	 *   Using software parsing is only allowed with legal
1269	 *   TCP/IP or UDP/IP packets.
1270	 *   ...
1271	 *   For all other datagrams, hardware parsing must
1272	 *   be used.
1273	 * Software parsing appears to truncate ICMP and
1274	 * fragmented UDP packets that contain one to three
1275	 * bytes in the second (and final) mbuf of the packet.
1276	 */
1277	if (sc->flags & FXP_FLAG_EXT_RFA)
1278		txp->tx_cb->ipcb_ip_activation_high =
1279		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1280
1281	/*
1282	 * Deal with TCP/IP checksum offload. Note that
1283	 * in order for TCP checksum offload to work,
1284	 * the pseudo header checksum must have already
1285	 * been computed and stored in the checksum field
1286	 * in the TCP header. The stack should have
1287	 * already done this for us.
1288	 */
1289	if (m_head->m_pkthdr.csum_flags) {
1290		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1291			txp->tx_cb->ipcb_ip_schedule =
1292			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1293			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1294				txp->tx_cb->ipcb_ip_schedule |=
1295				    FXP_IPCB_TCP_PACKET;
1296		}
1297
1298#ifdef FXP_IP_CSUM_WAR
1299		/*
1300		 * XXX The 82550 chip appears to have trouble
1301		 * dealing with IP header checksums in very small
1302		 * datagrams, namely fragments from 1 to 3 bytes
1303		 * in size. For example, say you want to transmit
1304		 * a UDP packet of 1473 bytes. The packet will be
1305		 * fragmented over two IP datagrams, the latter
1306		 * containing only one byte of data. The 82550 will
1307		 * botch the header checksum on the 1-byte fragment.
1308		 * As long as the datagram contains 4 or more bytes
1309		 * of data, you're ok.
1310		 *
1311                 * The following code attempts to work around this
1312		 * problem: if the datagram is less than 38 bytes
1313		 * in size (14 bytes ether header, 20 bytes IP header,
1314		 * plus 4 bytes of data), we punt and compute the IP
1315		 * header checksum by hand. This workaround doesn't
1316		 * work very well, however, since it can be fooled
1317		 * by things like VLAN tags and IP options that make
1318		 * the header sizes/offsets vary.
1319		 */
1320
1321		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1322			if (m_head->m_pkthdr.len < 38) {
1323				struct ip *ip;
1324				m_head->m_data += ETHER_HDR_LEN;
1325				ip = mtod(mb_head, struct ip *);
1326				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1327				m_head->m_data -= ETHER_HDR_LEN;
1328			} else {
1329				txp->tx_cb->ipcb_ip_activation_high =
1330				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1331				txp->tx_cb->ipcb_ip_schedule |=
1332				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1333			}
1334		}
1335#endif
1336	}
1337
1338	chainlen = 0;
1339	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1340		chainlen++;
1341	if (chainlen > sc->maxtxseg) {
1342		struct mbuf *mn;
1343
1344		/*
1345		 * We ran out of segments. We have to recopy this
1346		 * mbuf chain first. Bail out if we can't get the
1347		 * new buffers.
1348		 */
1349		mn = m_defrag(m_head, M_DONTWAIT);
1350		if (mn == NULL) {
1351			m_freem(m_head);
1352			return (-1);
1353		} else {
1354			m_head = mn;
1355		}
1356	}
1357
1358	/*
1359	 * Go through each of the mbufs in the chain and initialize
1360	 * the transmit buffer descriptors with the physical address
1361	 * and size of the mbuf.
1362	 */
1363	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1364	    m_head, segs, &nseg, 0);
1365	if (error) {
1366		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1367		m_freem(m_head);
1368		return (-1);
1369	}
1370
1371	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1372
1373	cbp = txp->tx_cb;
1374	for (i = 0; i < nseg; i++) {
1375		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1376		/*
1377		 * If this is an 82550/82551, then we're using extended
1378		 * TxCBs _and_ we're using checksum offload. This means
1379		 * that the TxCB is really an IPCB. One major difference
1380		 * between the two is that with plain extended TxCBs,
1381		 * the bottom half of the TxCB contains two entries from
1382		 * the TBD array, whereas IPCBs contain just one entry:
1383		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1384		 * checksum offload control bits. So to make things work
1385		 * right, we have to start filling in the TBD array
1386		 * starting from a different place depending on whether
1387		 * the chip is an 82550/82551 or not.
1388		 */
1389		if (sc->flags & FXP_FLAG_EXT_RFA) {
1390			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1391			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1392		} else {
1393			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1394			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1395		}
1396	}
1397	cbp->tbd_number = nseg;
1398
1399	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1400	txp->tx_mbuf = m_head;
1401	txp->tx_cb->cb_status = 0;
1402	txp->tx_cb->byte_count = 0;
1403	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1404		txp->tx_cb->cb_command =
1405		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1406		    FXP_CB_COMMAND_S);
1407	} else {
1408		txp->tx_cb->cb_command =
1409		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1410		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1411		/*
1412		 * Set a 5 second timer just in case we don't hear
1413		 * from the card again.
1414		 */
1415		ifp->if_timer = 5;
1416	}
1417	txp->tx_cb->tx_threshold = tx_threshold;
1418
1419	/*
1420	 * Advance the end of list forward.
1421	 */
1422
1423#ifdef __alpha__
1424	/*
1425	 * On platforms which can't access memory in 16-bit
1426	 * granularities, we must prevent the card from DMA'ing
1427	 * up the status while we update the command field.
1428	 * This could cause us to overwrite the completion status.
1429	 * XXX This is probably bogus and we're _not_ looking
1430	 * for atomicity here.
1431	 */
1432	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1433	    htole16(FXP_CB_COMMAND_S));
1434#else
1435	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1436#endif /*__alpha__*/
1437	sc->fxp_desc.tx_last = txp;
1438
1439	/*
1440	 * Advance the beginning of the list forward if there are
1441	 * no other packets queued (when nothing is queued, tx_first
1442	 * sits on the last TxCB that was sent out).
1443	 */
1444	if (sc->tx_queued == 0)
1445		sc->fxp_desc.tx_first = txp;
1446
1447	sc->tx_queued++;
1448
1449	/*
1450	 * Pass packet to bpf if there is a listener.
1451	 */
1452	BPF_MTAP(ifp, m_head);
1453	return (0);
1454}
1455
1456#ifdef DEVICE_POLLING
1457static poll_handler_t fxp_poll;
1458
1459static void
1460fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1461{
1462	struct fxp_softc *sc = ifp->if_softc;
1463	uint8_t statack;
1464
1465	FXP_LOCK(sc);
1466	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1467		ether_poll_deregister(ifp);
1468		cmd = POLL_DEREGISTER;
1469	}
1470	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1471		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1472		FXP_UNLOCK(sc);
1473		return;
1474	}
1475	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1476	    FXP_SCB_STATACK_FR;
1477	if (cmd == POLL_AND_CHECK_STATUS) {
1478		uint8_t tmp;
1479
1480		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1481		if (tmp == 0xff || tmp == 0) {
1482			FXP_UNLOCK(sc);
1483			return; /* nothing to do */
1484		}
1485		tmp &= ~statack;
1486		/* ack what we can */
1487		if (tmp != 0)
1488			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1489		statack |= tmp;
1490	}
1491	fxp_intr_body(sc, ifp, statack, count);
1492	FXP_UNLOCK(sc);
1493}
1494#endif /* DEVICE_POLLING */
1495
1496/*
1497 * Process interface interrupts.
1498 */
1499static void
1500fxp_intr(void *xsc)
1501{
1502	struct fxp_softc *sc = xsc;
1503	struct ifnet *ifp = sc->ifp;
1504	uint8_t statack;
1505
1506	FXP_LOCK(sc);
1507	if (sc->suspended) {
1508		FXP_UNLOCK(sc);
1509		return;
1510	}
1511
1512#ifdef DEVICE_POLLING
1513	if (ifp->if_flags & IFF_POLLING) {
1514		FXP_UNLOCK(sc);
1515		return;
1516	}
1517	if ((ifp->if_capenable & IFCAP_POLLING) &&
1518	    ether_poll_register(fxp_poll, ifp)) {
1519		/* disable interrupts */
1520		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1521		FXP_UNLOCK(sc);
1522		fxp_poll(ifp, 0, 1);
1523		return;
1524	}
1525#endif
1526	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1527		/*
1528		 * It should not be possible to have all bits set; the
1529		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1530		 * all bits are set, this may indicate that the card has
1531		 * been physically ejected, so ignore it.
1532		 */
1533		if (statack == 0xff) {
1534			FXP_UNLOCK(sc);
1535			return;
1536		}
1537
1538		/*
1539		 * First ACK all the interrupts in this pass.
1540		 */
1541		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1542		fxp_intr_body(sc, ifp, statack, -1);
1543	}
1544	FXP_UNLOCK(sc);
1545}
1546
1547static void
1548fxp_txeof(struct fxp_softc *sc)
1549{
1550	struct fxp_tx *txp;
1551
1552	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1553	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1554	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1555	    txp = txp->tx_next) {
1556		if (txp->tx_mbuf != NULL) {
1557			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1558			    BUS_DMASYNC_POSTWRITE);
1559			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1560			m_freem(txp->tx_mbuf);
1561			txp->tx_mbuf = NULL;
1562			/* clear this to reset csum offload bits */
1563			txp->tx_cb->tbd[0].tb_addr = 0;
1564		}
1565		sc->tx_queued--;
1566	}
1567	sc->fxp_desc.tx_first = txp;
1568	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1569}
1570
1571static void
1572fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1573    int count)
1574{
1575	struct mbuf *m;
1576	struct fxp_rx *rxp;
1577	struct fxp_rfa *rfa;
1578	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1579	int fxp_rc = 0;
1580
1581	FXP_LOCK_ASSERT(sc, MA_OWNED);
1582	if (rnr)
1583		sc->rnr++;
1584#ifdef DEVICE_POLLING
1585	/* Pick up a deferred RNR condition if `count' ran out last time. */
1586	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1587		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1588		rnr = 1;
1589	}
1590#endif
1591
1592	/*
1593	 * Free any finished transmit mbuf chains.
1594	 *
1595	 * Handle the CNA event likt a CXTNO event. It used to
1596	 * be that this event (control unit not ready) was not
1597	 * encountered, but it is now with the SMPng modifications.
1598	 * The exact sequence of events that occur when the interface
1599	 * is brought up are different now, and if this event
1600	 * goes unhandled, the configuration/rxfilter setup sequence
1601	 * can stall for several seconds. The result is that no
1602	 * packets go out onto the wire for about 5 to 10 seconds
1603	 * after the interface is ifconfig'ed for the first time.
1604	 */
1605	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1606		fxp_txeof(sc);
1607
1608		ifp->if_timer = 0;
1609		if (sc->tx_queued == 0) {
1610			if (sc->need_mcsetup)
1611				fxp_mc_setup(sc);
1612		}
1613		/*
1614		 * Try to start more packets transmitting.
1615		 */
1616		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1617			fxp_start_body(ifp);
1618	}
1619
1620	/*
1621	 * Just return if nothing happened on the receive side.
1622	 */
1623	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1624		return;
1625
1626	/*
1627	 * Process receiver interrupts. If a no-resource (RNR)
1628	 * condition exists, get whatever packets we can and
1629	 * re-start the receiver.
1630	 *
1631	 * When using polling, we do not process the list to completion,
1632	 * so when we get an RNR interrupt we must defer the restart
1633	 * until we hit the last buffer with the C bit set.
1634	 * If we run out of cycles and rfa_headm has the C bit set,
1635	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1636	 * that the info will be used in the subsequent polling cycle.
1637	 */
1638	for (;;) {
1639		rxp = sc->fxp_desc.rx_head;
1640		m = rxp->rx_mbuf;
1641		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1642		    RFA_ALIGNMENT_FUDGE);
1643		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1644		    BUS_DMASYNC_POSTREAD);
1645
1646#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1647		if (count >= 0 && count-- == 0) {
1648			if (rnr) {
1649				/* Defer RNR processing until the next time. */
1650				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1651				rnr = 0;
1652			}
1653			break;
1654		}
1655#endif /* DEVICE_POLLING */
1656
1657		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1658			break;
1659
1660		/*
1661		 * Advance head forward.
1662		 */
1663		sc->fxp_desc.rx_head = rxp->rx_next;
1664
1665		/*
1666		 * Add a new buffer to the receive chain.
1667		 * If this fails, the old buffer is recycled
1668		 * instead.
1669		 */
1670		fxp_rc = fxp_add_rfabuf(sc, rxp);
1671		if (fxp_rc == 0) {
1672			int total_len;
1673
1674			/*
1675			 * Fetch packet length (the top 2 bits of
1676			 * actual_size are flags set by the controller
1677			 * upon completion), and drop the packet in case
1678			 * of bogus length or CRC errors.
1679			 */
1680			total_len = le16toh(rfa->actual_size) & 0x3fff;
1681			if (total_len < sizeof(struct ether_header) ||
1682			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1683				sc->rfa_size ||
1684			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1685				m_freem(m);
1686				continue;
1687			}
1688
1689                        /* Do IP checksum checking. */
1690			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1691				if (rfa->rfax_csum_sts &
1692				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1693					m->m_pkthdr.csum_flags |=
1694					    CSUM_IP_CHECKED;
1695				if (rfa->rfax_csum_sts &
1696				    FXP_RFDX_CS_IP_CSUM_VALID)
1697					m->m_pkthdr.csum_flags |=
1698					    CSUM_IP_VALID;
1699				if ((rfa->rfax_csum_sts &
1700				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1701				    (rfa->rfax_csum_sts &
1702				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1703					m->m_pkthdr.csum_flags |=
1704					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1705					m->m_pkthdr.csum_data = 0xffff;
1706				}
1707			}
1708
1709			m->m_pkthdr.len = m->m_len = total_len;
1710			m->m_pkthdr.rcvif = ifp;
1711
1712			/*
1713			 * Drop locks before calling if_input() since it
1714			 * may re-enter fxp_start() in the netisr case.
1715			 * This would result in a lock reversal.  Better
1716			 * performance might be obtained by chaining all
1717			 * packets received, dropping the lock, and then
1718			 * calling if_input() on each one.
1719			 */
1720			FXP_UNLOCK(sc);
1721			(*ifp->if_input)(ifp, m);
1722			FXP_LOCK(sc);
1723		} else if (fxp_rc == ENOBUFS) {
1724			rnr = 0;
1725			break;
1726		}
1727	}
1728	if (rnr) {
1729		fxp_scb_wait(sc);
1730		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1731		    sc->fxp_desc.rx_head->rx_addr);
1732		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1733	}
1734}
1735
1736/*
1737 * Update packet in/out/collision statistics. The i82557 doesn't
1738 * allow you to access these counters without doing a fairly
1739 * expensive DMA to get _all_ of the statistics it maintains, so
1740 * we do this operation here only once per second. The statistics
1741 * counters in the kernel are updated from the previous dump-stats
1742 * DMA and then a new dump-stats DMA is started. The on-chip
1743 * counters are zeroed when the DMA completes. If we can't start
1744 * the DMA immediately, we don't wait - we just prepare to read
1745 * them again next time.
1746 */
1747static void
1748fxp_tick(void *xsc)
1749{
1750	struct fxp_softc *sc = xsc;
1751	struct ifnet *ifp = sc->ifp;
1752	struct fxp_stats *sp = sc->fxp_stats;
1753	int s;
1754
1755	FXP_LOCK(sc);
1756	s = splimp();
1757	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1758	ifp->if_opackets += le32toh(sp->tx_good);
1759	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1760	if (sp->rx_good) {
1761		ifp->if_ipackets += le32toh(sp->rx_good);
1762		sc->rx_idle_secs = 0;
1763	} else {
1764		/*
1765		 * Receiver's been idle for another second.
1766		 */
1767		sc->rx_idle_secs++;
1768	}
1769	ifp->if_ierrors +=
1770	    le32toh(sp->rx_crc_errors) +
1771	    le32toh(sp->rx_alignment_errors) +
1772	    le32toh(sp->rx_rnr_errors) +
1773	    le32toh(sp->rx_overrun_errors);
1774	/*
1775	 * If any transmit underruns occured, bump up the transmit
1776	 * threshold by another 512 bytes (64 * 8).
1777	 */
1778	if (sp->tx_underruns) {
1779		ifp->if_oerrors += le32toh(sp->tx_underruns);
1780		if (tx_threshold < 192)
1781			tx_threshold += 64;
1782	}
1783
1784	/*
1785	 * Release any xmit buffers that have completed DMA. This isn't
1786	 * strictly necessary to do here, but it's advantagous for mbufs
1787	 * with external storage to be released in a timely manner rather
1788	 * than being defered for a potentially long time. This limits
1789	 * the delay to a maximum of one second.
1790	 */
1791	fxp_txeof(sc);
1792
1793	/*
1794	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1795	 * then assume the receiver has locked up and attempt to clear
1796	 * the condition by reprogramming the multicast filter. This is
1797	 * a work-around for a bug in the 82557 where the receiver locks
1798	 * up if it gets certain types of garbage in the syncronization
1799	 * bits prior to the packet header. This bug is supposed to only
1800	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1801	 * mode as well (perhaps due to a 10/100 speed transition).
1802	 */
1803	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1804		sc->rx_idle_secs = 0;
1805		fxp_mc_setup(sc);
1806	}
1807	/*
1808	 * If there is no pending command, start another stats
1809	 * dump. Otherwise punt for now.
1810	 */
1811	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1812		/*
1813		 * Start another stats dump.
1814		 */
1815		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1816		    BUS_DMASYNC_PREREAD);
1817		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1818	} else {
1819		/*
1820		 * A previous command is still waiting to be accepted.
1821		 * Just zero our copy of the stats and wait for the
1822		 * next timer event to update them.
1823		 */
1824		sp->tx_good = 0;
1825		sp->tx_underruns = 0;
1826		sp->tx_total_collisions = 0;
1827
1828		sp->rx_good = 0;
1829		sp->rx_crc_errors = 0;
1830		sp->rx_alignment_errors = 0;
1831		sp->rx_rnr_errors = 0;
1832		sp->rx_overrun_errors = 0;
1833	}
1834	if (sc->miibus != NULL)
1835		mii_tick(device_get_softc(sc->miibus));
1836
1837	/*
1838	 * Schedule another timeout one second from now.
1839	 */
1840	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1841	FXP_UNLOCK(sc);
1842	splx(s);
1843}
1844
1845/*
1846 * Stop the interface. Cancels the statistics updater and resets
1847 * the interface.
1848 */
1849static void
1850fxp_stop(struct fxp_softc *sc)
1851{
1852	struct ifnet *ifp = sc->ifp;
1853	struct fxp_tx *txp;
1854	int i;
1855
1856	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1857	ifp->if_timer = 0;
1858
1859#ifdef DEVICE_POLLING
1860	ether_poll_deregister(ifp);
1861#endif
1862	/*
1863	 * Cancel stats updater.
1864	 */
1865	callout_stop(&sc->stat_ch);
1866
1867	/*
1868	 * Issue software reset, which also unloads the microcode.
1869	 */
1870	sc->flags &= ~FXP_FLAG_UCODE;
1871	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1872	DELAY(50);
1873
1874	/*
1875	 * Release any xmit buffers.
1876	 */
1877	txp = sc->fxp_desc.tx_list;
1878	if (txp != NULL) {
1879		for (i = 0; i < FXP_NTXCB; i++) {
1880 			if (txp[i].tx_mbuf != NULL) {
1881				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1882				    BUS_DMASYNC_POSTWRITE);
1883				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1884				m_freem(txp[i].tx_mbuf);
1885				txp[i].tx_mbuf = NULL;
1886				/* clear this to reset csum offload bits */
1887				txp[i].tx_cb->tbd[0].tb_addr = 0;
1888			}
1889		}
1890	}
1891	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1892	sc->tx_queued = 0;
1893}
1894
1895/*
1896 * Watchdog/transmission transmit timeout handler. Called when a
1897 * transmission is started on the interface, but no interrupt is
1898 * received before the timeout. This usually indicates that the
1899 * card has wedged for some reason.
1900 */
1901static void
1902fxp_watchdog(struct ifnet *ifp)
1903{
1904	struct fxp_softc *sc = ifp->if_softc;
1905
1906	FXP_LOCK(sc);
1907	device_printf(sc->dev, "device timeout\n");
1908	ifp->if_oerrors++;
1909
1910	fxp_init_body(sc);
1911	FXP_UNLOCK(sc);
1912}
1913
1914/*
1915 * Acquire locks and then call the real initialization function.  This
1916 * is necessary because ether_ioctl() calls if_init() and this would
1917 * result in mutex recursion if the mutex was held.
1918 */
1919static void
1920fxp_init(void *xsc)
1921{
1922	struct fxp_softc *sc = xsc;
1923
1924	FXP_LOCK(sc);
1925	fxp_init_body(sc);
1926	FXP_UNLOCK(sc);
1927}
1928
1929/*
1930 * Perform device initialization. This routine must be called with the
1931 * softc lock held.
1932 */
1933static void
1934fxp_init_body(struct fxp_softc *sc)
1935{
1936	struct ifnet *ifp = sc->ifp;
1937	struct fxp_cb_config *cbp;
1938	struct fxp_cb_ias *cb_ias;
1939	struct fxp_cb_tx *tcbp;
1940	struct fxp_tx *txp;
1941	struct fxp_cb_mcs *mcsp;
1942	int i, prm, s;
1943
1944	FXP_LOCK_ASSERT(sc, MA_OWNED);
1945	s = splimp();
1946	/*
1947	 * Cancel any pending I/O
1948	 */
1949	fxp_stop(sc);
1950
1951	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1952
1953	/*
1954	 * Initialize base of CBL and RFA memory. Loading with zero
1955	 * sets it up for regular linear addressing.
1956	 */
1957	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1958	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1959
1960	fxp_scb_wait(sc);
1961	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1962
1963	/*
1964	 * Initialize base of dump-stats buffer.
1965	 */
1966	fxp_scb_wait(sc);
1967	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1968	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1969	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1970
1971	/*
1972	 * Attempt to load microcode if requested.
1973	 */
1974	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1975		fxp_load_ucode(sc);
1976
1977	/*
1978	 * Initialize the multicast address list.
1979	 */
1980	if (fxp_mc_addrs(sc)) {
1981		mcsp = sc->mcsp;
1982		mcsp->cb_status = 0;
1983		mcsp->cb_command =
1984		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1985		mcsp->link_addr = 0xffffffff;
1986		/*
1987	 	 * Start the multicast setup command.
1988		 */
1989		fxp_scb_wait(sc);
1990		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1991		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1992		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1993		/* ...and wait for it to complete. */
1994		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1995		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1996		    BUS_DMASYNC_POSTWRITE);
1997	}
1998
1999	/*
2000	 * We temporarily use memory that contains the TxCB list to
2001	 * construct the config CB. The TxCB list memory is rebuilt
2002	 * later.
2003	 */
2004	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2005
2006	/*
2007	 * This bcopy is kind of disgusting, but there are a bunch of must be
2008	 * zero and must be one bits in this structure and this is the easiest
2009	 * way to initialize them all to proper values.
2010	 */
2011	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2012
2013	cbp->cb_status =	0;
2014	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2015	    FXP_CB_COMMAND_EL);
2016	cbp->link_addr =	0xffffffff;	/* (no) next command */
2017	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2018	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2019	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2020	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2021	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2022	cbp->type_enable =	0;	/* actually reserved */
2023	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2024	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2025	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2026	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2027	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2028	cbp->late_scb =		0;	/* (don't) defer SCB update */
2029	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2030	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2031	cbp->ci_int =		1;	/* interrupt on CU idle */
2032	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2033	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2034	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2035	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2036	cbp->disc_short_rx =	!prm;	/* discard short packets */
2037	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2038	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2039	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2040	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2041	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2042	cbp->csma_dis =		0;	/* (don't) disable link */
2043	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2044	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2045	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2046	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2047	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2048	cbp->nsai =		1;	/* (don't) disable source addr insert */
2049	cbp->preamble_length =	2;	/* (7 byte) preamble */
2050	cbp->loopback =		0;	/* (don't) loopback */
2051	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2052	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2053	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2054	cbp->promiscuous =	prm;	/* promiscuous mode */
2055	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2056	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2057	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2058	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2059	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2060
2061	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2062	cbp->padding =		1;	/* (do) pad short tx packets */
2063	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2064	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2065	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2066	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2067					/* must set wake_en in PMCSR also */
2068	cbp->force_fdx =	0;	/* (don't) force full duplex */
2069	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2070	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2071	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2072	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2073
2074	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2075		/*
2076		 * The 82557 has no hardware flow control, the values
2077		 * below are the defaults for the chip.
2078		 */
2079		cbp->fc_delay_lsb =	0;
2080		cbp->fc_delay_msb =	0x40;
2081		cbp->pri_fc_thresh =	3;
2082		cbp->tx_fc_dis =	0;
2083		cbp->rx_fc_restop =	0;
2084		cbp->rx_fc_restart =	0;
2085		cbp->fc_filter =	0;
2086		cbp->pri_fc_loc =	1;
2087	} else {
2088		cbp->fc_delay_lsb =	0x1f;
2089		cbp->fc_delay_msb =	0x01;
2090		cbp->pri_fc_thresh =	3;
2091		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2092		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2093		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2094		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2095		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2096	}
2097
2098	/*
2099	 * Start the config command/DMA.
2100	 */
2101	fxp_scb_wait(sc);
2102	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2103	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2104	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2105	/* ...and wait for it to complete. */
2106	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2107	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2108
2109	/*
2110	 * Now initialize the station address. Temporarily use the TxCB
2111	 * memory area like we did above for the config CB.
2112	 */
2113	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2114	cb_ias->cb_status = 0;
2115	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2116	cb_ias->link_addr = 0xffffffff;
2117	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2118	    sizeof(IFP2ENADDR(sc->ifp)));
2119
2120	/*
2121	 * Start the IAS (Individual Address Setup) command/DMA.
2122	 */
2123	fxp_scb_wait(sc);
2124	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2125	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2126	/* ...and wait for it to complete. */
2127	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2128	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2129
2130	/*
2131	 * Initialize transmit control block (TxCB) list.
2132	 */
2133	txp = sc->fxp_desc.tx_list;
2134	tcbp = sc->fxp_desc.cbl_list;
2135	bzero(tcbp, FXP_TXCB_SZ);
2136	for (i = 0; i < FXP_NTXCB; i++) {
2137		txp[i].tx_mbuf = NULL;
2138		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2139		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2140		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2141		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2142		if (sc->flags & FXP_FLAG_EXT_TXCB)
2143			tcbp[i].tbd_array_addr =
2144			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2145		else
2146			tcbp[i].tbd_array_addr =
2147			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2148		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2149	}
2150	/*
2151	 * Set the suspend flag on the first TxCB and start the control
2152	 * unit. It will execute the NOP and then suspend.
2153	 */
2154	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2155	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2156	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2157	sc->tx_queued = 1;
2158
2159	fxp_scb_wait(sc);
2160	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2161
2162	/*
2163	 * Initialize receiver buffer area - RFA.
2164	 */
2165	fxp_scb_wait(sc);
2166	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2167	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2168
2169	/*
2170	 * Set current media.
2171	 */
2172	if (sc->miibus != NULL)
2173		mii_mediachg(device_get_softc(sc->miibus));
2174
2175	ifp->if_flags |= IFF_RUNNING;
2176	ifp->if_flags &= ~IFF_OACTIVE;
2177
2178	/*
2179	 * Enable interrupts.
2180	 */
2181#ifdef DEVICE_POLLING
2182	/*
2183	 * ... but only do that if we are not polling. And because (presumably)
2184	 * the default is interrupts on, we need to disable them explicitly!
2185	 */
2186	if ( ifp->if_flags & IFF_POLLING )
2187		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2188	else
2189#endif /* DEVICE_POLLING */
2190	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2191
2192	/*
2193	 * Start stats updater.
2194	 */
2195	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2196	splx(s);
2197}
2198
2199static int
2200fxp_serial_ifmedia_upd(struct ifnet *ifp)
2201{
2202
2203	return (0);
2204}
2205
2206static void
2207fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2208{
2209
2210	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2211}
2212
2213/*
2214 * Change media according to request.
2215 */
2216static int
2217fxp_ifmedia_upd(struct ifnet *ifp)
2218{
2219	struct fxp_softc *sc = ifp->if_softc;
2220	struct mii_data *mii;
2221
2222	mii = device_get_softc(sc->miibus);
2223	mii_mediachg(mii);
2224	return (0);
2225}
2226
2227/*
2228 * Notify the world which media we're using.
2229 */
2230static void
2231fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2232{
2233	struct fxp_softc *sc = ifp->if_softc;
2234	struct mii_data *mii;
2235
2236	mii = device_get_softc(sc->miibus);
2237	mii_pollstat(mii);
2238	ifmr->ifm_active = mii->mii_media_active;
2239	ifmr->ifm_status = mii->mii_media_status;
2240
2241	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2242		sc->cu_resume_bug = 1;
2243	else
2244		sc->cu_resume_bug = 0;
2245}
2246
2247/*
2248 * Add a buffer to the end of the RFA buffer list.
2249 * Return 0 if successful, 1 for failure. A failure results in
2250 * adding the 'oldm' (if non-NULL) on to the end of the list -
2251 * tossing out its old contents and recycling it.
2252 * The RFA struct is stuck at the beginning of mbuf cluster and the
2253 * data pointer is fixed up to point just past it.
2254 */
2255static int
2256fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2257{
2258	struct mbuf *m;
2259	struct fxp_rfa *rfa, *p_rfa;
2260	struct fxp_rx *p_rx;
2261	bus_dmamap_t tmp_map;
2262	int error;
2263
2264	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2265	if (m == NULL)
2266		return (ENOBUFS);
2267
2268	/*
2269	 * Move the data pointer up so that the incoming data packet
2270	 * will be 32-bit aligned.
2271	 */
2272	m->m_data += RFA_ALIGNMENT_FUDGE;
2273
2274	/*
2275	 * Get a pointer to the base of the mbuf cluster and move
2276	 * data start past it.
2277	 */
2278	rfa = mtod(m, struct fxp_rfa *);
2279	m->m_data += sc->rfa_size;
2280	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2281
2282	rfa->rfa_status = 0;
2283	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2284	rfa->actual_size = 0;
2285
2286	/*
2287	 * Initialize the rest of the RFA.  Note that since the RFA
2288	 * is misaligned, we cannot store values directly.  We're thus
2289	 * using the le32enc() function which handles endianness and
2290	 * is also alignment-safe.
2291	 */
2292	le32enc(&rfa->link_addr, 0xffffffff);
2293	le32enc(&rfa->rbd_addr, 0xffffffff);
2294
2295	/* Map the RFA into DMA memory. */
2296	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2297	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2298	    &rxp->rx_addr, 0);
2299	if (error) {
2300		m_freem(m);
2301		return (error);
2302	}
2303
2304	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2305	tmp_map = sc->spare_map;
2306	sc->spare_map = rxp->rx_map;
2307	rxp->rx_map = tmp_map;
2308	rxp->rx_mbuf = m;
2309
2310	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2311	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2312
2313	/*
2314	 * If there are other buffers already on the list, attach this
2315	 * one to the end by fixing up the tail to point to this one.
2316	 */
2317	if (sc->fxp_desc.rx_head != NULL) {
2318		p_rx = sc->fxp_desc.rx_tail;
2319		p_rfa = (struct fxp_rfa *)
2320		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2321		p_rx->rx_next = rxp;
2322		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2323		p_rfa->rfa_control = 0;
2324		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2325		    BUS_DMASYNC_PREWRITE);
2326	} else {
2327		rxp->rx_next = NULL;
2328		sc->fxp_desc.rx_head = rxp;
2329	}
2330	sc->fxp_desc.rx_tail = rxp;
2331	return (0);
2332}
2333
2334static volatile int
2335fxp_miibus_readreg(device_t dev, int phy, int reg)
2336{
2337	struct fxp_softc *sc = device_get_softc(dev);
2338	int count = 10000;
2339	int value;
2340
2341	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2342	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2343
2344	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2345	    && count--)
2346		DELAY(10);
2347
2348	if (count <= 0)
2349		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2350
2351	return (value & 0xffff);
2352}
2353
2354static void
2355fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2356{
2357	struct fxp_softc *sc = device_get_softc(dev);
2358	int count = 10000;
2359
2360	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2361	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2362	    (value & 0xffff));
2363
2364	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2365	    count--)
2366		DELAY(10);
2367
2368	if (count <= 0)
2369		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2370}
2371
2372static int
2373fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2374{
2375	struct fxp_softc *sc = ifp->if_softc;
2376	struct ifreq *ifr = (struct ifreq *)data;
2377	struct mii_data *mii;
2378	int flag, mask, s, error = 0;
2379
2380	/*
2381	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2382	 * that by saying we're busy if the lock is already held.
2383	 */
2384	if (FXP_LOCKED(sc))
2385		return (EBUSY);
2386
2387	FXP_LOCK(sc);
2388	s = splimp();
2389
2390	switch (command) {
2391	case SIOCSIFFLAGS:
2392		if (ifp->if_flags & IFF_ALLMULTI)
2393			sc->flags |= FXP_FLAG_ALL_MCAST;
2394		else
2395			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2396
2397		/*
2398		 * If interface is marked up and not running, then start it.
2399		 * If it is marked down and running, stop it.
2400		 * XXX If it's up then re-initialize it. This is so flags
2401		 * such as IFF_PROMISC are handled.
2402		 */
2403		if (ifp->if_flags & IFF_UP) {
2404			fxp_init_body(sc);
2405		} else {
2406			if (ifp->if_flags & IFF_RUNNING)
2407				fxp_stop(sc);
2408		}
2409		break;
2410
2411	case SIOCADDMULTI:
2412	case SIOCDELMULTI:
2413		if (ifp->if_flags & IFF_ALLMULTI)
2414			sc->flags |= FXP_FLAG_ALL_MCAST;
2415		else
2416			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2417		/*
2418		 * Multicast list has changed; set the hardware filter
2419		 * accordingly.
2420		 */
2421		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2422			fxp_mc_setup(sc);
2423		/*
2424		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2425		 * again rather than else {}.
2426		 */
2427		if (sc->flags & FXP_FLAG_ALL_MCAST)
2428			fxp_init_body(sc);
2429		error = 0;
2430		break;
2431
2432	case SIOCSIFMEDIA:
2433	case SIOCGIFMEDIA:
2434		if (sc->miibus != NULL) {
2435			mii = device_get_softc(sc->miibus);
2436                        error = ifmedia_ioctl(ifp, ifr,
2437                            &mii->mii_media, command);
2438		} else {
2439                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2440		}
2441		break;
2442
2443	case SIOCSIFCAP:
2444		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2445		if (mask & IFCAP_POLLING)
2446			ifp->if_capenable ^= IFCAP_POLLING;
2447		if (mask & IFCAP_VLAN_MTU) {
2448			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2449			if (sc->revision != FXP_REV_82557)
2450				flag = FXP_FLAG_LONG_PKT_EN;
2451			else /* a hack to get long frames on the old chip */
2452				flag = FXP_FLAG_SAVE_BAD;
2453			sc->flags ^= flag;
2454			if (ifp->if_flags & IFF_UP)
2455				fxp_init_body(sc);
2456		}
2457		break;
2458
2459	default:
2460		/*
2461		 * ether_ioctl() will eventually call fxp_start() which
2462		 * will result in mutex recursion so drop it first.
2463		 */
2464		FXP_UNLOCK(sc);
2465		error = ether_ioctl(ifp, command, data);
2466	}
2467	if (FXP_LOCKED(sc))
2468		FXP_UNLOCK(sc);
2469	splx(s);
2470	return (error);
2471}
2472
2473/*
2474 * Fill in the multicast address list and return number of entries.
2475 */
2476static int
2477fxp_mc_addrs(struct fxp_softc *sc)
2478{
2479	struct fxp_cb_mcs *mcsp = sc->mcsp;
2480	struct ifnet *ifp = sc->ifp;
2481	struct ifmultiaddr *ifma;
2482	int nmcasts;
2483
2484	nmcasts = 0;
2485	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2486#if __FreeBSD_version < 500000
2487		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2488#else
2489		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2490#endif
2491			if (ifma->ifma_addr->sa_family != AF_LINK)
2492				continue;
2493			if (nmcasts >= MAXMCADDR) {
2494				sc->flags |= FXP_FLAG_ALL_MCAST;
2495				nmcasts = 0;
2496				break;
2497			}
2498			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2499			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2500			nmcasts++;
2501		}
2502	}
2503	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2504	return (nmcasts);
2505}
2506
2507/*
2508 * Program the multicast filter.
2509 *
2510 * We have an artificial restriction that the multicast setup command
2511 * must be the first command in the chain, so we take steps to ensure
2512 * this. By requiring this, it allows us to keep up the performance of
2513 * the pre-initialized command ring (esp. link pointers) by not actually
2514 * inserting the mcsetup command in the ring - i.e. its link pointer
2515 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2516 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2517 * lead into the regular TxCB ring when it completes.
2518 *
2519 * This function must be called at splimp.
2520 */
2521static void
2522fxp_mc_setup(struct fxp_softc *sc)
2523{
2524	struct fxp_cb_mcs *mcsp = sc->mcsp;
2525	struct ifnet *ifp = sc->ifp;
2526	struct fxp_tx *txp;
2527	int count;
2528
2529	FXP_LOCK_ASSERT(sc, MA_OWNED);
2530	/*
2531	 * If there are queued commands, we must wait until they are all
2532	 * completed. If we are already waiting, then add a NOP command
2533	 * with interrupt option so that we're notified when all commands
2534	 * have been completed - fxp_start() ensures that no additional
2535	 * TX commands will be added when need_mcsetup is true.
2536	 */
2537	if (sc->tx_queued) {
2538		/*
2539		 * need_mcsetup will be true if we are already waiting for the
2540		 * NOP command to be completed (see below). In this case, bail.
2541		 */
2542		if (sc->need_mcsetup)
2543			return;
2544		sc->need_mcsetup = 1;
2545
2546		/*
2547		 * Add a NOP command with interrupt so that we are notified
2548		 * when all TX commands have been processed.
2549		 */
2550		txp = sc->fxp_desc.tx_last->tx_next;
2551		txp->tx_mbuf = NULL;
2552		txp->tx_cb->cb_status = 0;
2553		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2554		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2555		/*
2556		 * Advance the end of list forward.
2557		 */
2558		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2559		    htole16(~FXP_CB_COMMAND_S);
2560		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2561		sc->fxp_desc.tx_last = txp;
2562		sc->tx_queued++;
2563		/*
2564		 * Issue a resume in case the CU has just suspended.
2565		 */
2566		fxp_scb_wait(sc);
2567		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2568		/*
2569		 * Set a 5 second timer just in case we don't hear from the
2570		 * card again.
2571		 */
2572		ifp->if_timer = 5;
2573
2574		return;
2575	}
2576	sc->need_mcsetup = 0;
2577
2578	/*
2579	 * Initialize multicast setup descriptor.
2580	 */
2581	mcsp->cb_status = 0;
2582	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2583	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2584	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2585	txp = &sc->fxp_desc.mcs_tx;
2586	txp->tx_mbuf = NULL;
2587	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2588	txp->tx_next = sc->fxp_desc.tx_list;
2589	(void) fxp_mc_addrs(sc);
2590	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2591	sc->tx_queued = 1;
2592
2593	/*
2594	 * Wait until command unit is not active. This should never
2595	 * be the case when nothing is queued, but make sure anyway.
2596	 */
2597	count = 100;
2598	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2599	    FXP_SCB_CUS_ACTIVE && --count)
2600		DELAY(10);
2601	if (count == 0) {
2602		device_printf(sc->dev, "command queue timeout\n");
2603		return;
2604	}
2605
2606	/*
2607	 * Start the multicast setup command.
2608	 */
2609	fxp_scb_wait(sc);
2610	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2611	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2612	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2613
2614	ifp->if_timer = 2;
2615	return;
2616}
2617
2618static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2619static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2620static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2621static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2622static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2623static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2624static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2625
2626#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2627
2628struct ucode {
2629	uint32_t	revision;
2630	uint32_t	*ucode;
2631	int		length;
2632	u_short		int_delay_offset;
2633	u_short		bundle_max_offset;
2634} ucode_table[] = {
2635	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2636	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2637	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2638	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2639	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2640	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2641	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2642	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2643	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2644	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2645	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2646	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2647	{ 0, NULL, 0, 0, 0 }
2648};
2649
2650static void
2651fxp_load_ucode(struct fxp_softc *sc)
2652{
2653	struct ucode *uc;
2654	struct fxp_cb_ucode *cbp;
2655	int i;
2656
2657	for (uc = ucode_table; uc->ucode != NULL; uc++)
2658		if (sc->revision == uc->revision)
2659			break;
2660	if (uc->ucode == NULL)
2661		return;
2662	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2663	cbp->cb_status = 0;
2664	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2665	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2666	for (i = 0; i < uc->length; i++)
2667		cbp->ucode[i] = htole32(uc->ucode[i]);
2668	if (uc->int_delay_offset)
2669		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2670		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2671	if (uc->bundle_max_offset)
2672		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2673		    htole16(sc->tunable_bundle_max);
2674	/*
2675	 * Download the ucode to the chip.
2676	 */
2677	fxp_scb_wait(sc);
2678	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2679	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2680	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2681	/* ...and wait for it to complete. */
2682	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2683	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2684	device_printf(sc->dev,
2685	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2686	    sc->tunable_int_delay,
2687	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2688	sc->flags |= FXP_FLAG_UCODE;
2689}
2690
2691static int
2692sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2693{
2694	int error, value;
2695
2696	value = *(int *)arg1;
2697	error = sysctl_handle_int(oidp, &value, 0, req);
2698	if (error || !req->newptr)
2699		return (error);
2700	if (value < low || value > high)
2701		return (EINVAL);
2702	*(int *)arg1 = value;
2703	return (0);
2704}
2705
2706/*
2707 * Interrupt delay is expressed in microseconds, a multiplier is used
2708 * to convert this to the appropriate clock ticks before using.
2709 */
2710static int
2711sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2712{
2713	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2714}
2715
2716static int
2717sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2718{
2719	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2720}
2721