if_fxp.c revision 147269
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 147269 2005-06-10 20:42:02Z brooks $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	u_char eaddr[ETHER_ADDR_LEN];
377	int i, rid, m1, m2, prefer_iomap;
378	int error, s;
379
380	error = 0;
381	sc = device_get_softc(dev);
382	sc->dev = dev;
383	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
384	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385	    MTX_DEF);
386	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
387	    fxp_serial_ifmedia_sts);
388
389	s = splimp();
390
391	/*
392	 * Enable bus mastering.
393	 */
394	pci_enable_busmaster(dev);
395	val = pci_read_config(dev, PCIR_COMMAND, 2);
396
397	/*
398	 * Figure out which we should try first - memory mapping or i/o mapping?
399	 * We default to memory mapping. Then we accept an override from the
400	 * command line. Then we check to see which one is enabled.
401	 */
402	m1 = PCIM_CMD_MEMEN;
403	m2 = PCIM_CMD_PORTEN;
404	prefer_iomap = 0;
405	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
406	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
407		m1 = PCIM_CMD_PORTEN;
408		m2 = PCIM_CMD_MEMEN;
409	}
410
411	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
412	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
413	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
414	if (sc->mem == NULL) {
415		sc->rtp =
416		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
417		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
418		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
419                                            RF_ACTIVE);
420	}
421
422	if (!sc->mem) {
423		error = ENXIO;
424		goto fail;
425        }
426	if (bootverbose) {
427		device_printf(dev, "using %s space register mapping\n",
428		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
429	}
430
431	sc->sc_st = rman_get_bustag(sc->mem);
432	sc->sc_sh = rman_get_bushandle(sc->mem);
433
434	/*
435	 * Allocate our interrupt.
436	 */
437	rid = 0;
438	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439				 RF_SHAREABLE | RF_ACTIVE);
440	if (sc->irq == NULL) {
441		device_printf(dev, "could not map interrupt\n");
442		error = ENXIO;
443		goto fail;
444	}
445
446	/*
447	 * Reset to a stable state.
448	 */
449	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
450	DELAY(10);
451
452	/*
453	 * Find out how large of an SEEPROM we have.
454	 */
455	fxp_autosize_eeprom(sc);
456
457	/*
458	 * Find out the chip revision; lump all 82557 revs together.
459	 */
460	fxp_read_eeprom(sc, &data, 5, 1);
461	if ((data >> 8) == 1)
462		sc->revision = FXP_REV_82557;
463	else
464		sc->revision = pci_get_revid(dev);
465
466	/*
467	 * Determine whether we must use the 503 serial interface.
468	 */
469	fxp_read_eeprom(sc, &data, 6, 1);
470	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
471	    && (data & FXP_PHY_SERIAL_ONLY))
472		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
473
474	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
475	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
476	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
477	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
478	    "FXP driver receive interrupt microcode bundling delay");
479	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
480	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
481	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
482	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
483	    "FXP driver receive interrupt microcode bundle size limit");
484	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
485	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
486	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
487	    "FXP RNR events");
488	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
489	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
490	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
491	    "FXP flow control disabled");
492
493	/*
494	 * Pull in device tunables.
495	 */
496	sc->tunable_int_delay = TUNABLE_INT_DELAY;
497	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
498	sc->tunable_noflow = 1;
499	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
500	    "int_delay", &sc->tunable_int_delay);
501	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
502	    "bundle_max", &sc->tunable_bundle_max);
503	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
504	    "noflow", &sc->tunable_noflow);
505	sc->rnr = 0;
506
507	/*
508	 * Enable workarounds for certain chip revision deficiencies.
509	 *
510	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
511	 * some systems based a normal 82559 design, have a defect where
512	 * the chip can cause a PCI protocol violation if it receives
513	 * a CU_RESUME command when it is entering the IDLE state.  The
514	 * workaround is to disable Dynamic Standby Mode, so the chip never
515	 * deasserts CLKRUN#, and always remains in an active state.
516	 *
517	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
518	 */
519	i = pci_get_device(dev);
520	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
521	    sc->revision >= FXP_REV_82559_A0) {
522		fxp_read_eeprom(sc, &data, 10, 1);
523		if (data & 0x02) {			/* STB enable */
524			uint16_t cksum;
525			int i;
526
527			device_printf(dev,
528			    "Disabling dynamic standby mode in EEPROM\n");
529			data &= ~0x02;
530			fxp_write_eeprom(sc, &data, 10, 1);
531			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
532			cksum = 0;
533			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
534				fxp_read_eeprom(sc, &data, i, 1);
535				cksum += data;
536			}
537			i = (1 << sc->eeprom_size) - 1;
538			cksum = 0xBABA - cksum;
539			fxp_read_eeprom(sc, &data, i, 1);
540			fxp_write_eeprom(sc, &cksum, i, 1);
541			device_printf(dev,
542			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
543			    i, data, cksum);
544#if 1
545			/*
546			 * If the user elects to continue, try the software
547			 * workaround, as it is better than nothing.
548			 */
549			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
550#endif
551		}
552	}
553
554	/*
555	 * If we are not a 82557 chip, we can enable extended features.
556	 */
557	if (sc->revision != FXP_REV_82557) {
558		/*
559		 * If MWI is enabled in the PCI configuration, and there
560		 * is a valid cacheline size (8 or 16 dwords), then tell
561		 * the board to turn on MWI.
562		 */
563		if (val & PCIM_CMD_MWRICEN &&
564		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
565			sc->flags |= FXP_FLAG_MWI_ENABLE;
566
567		/* turn on the extended TxCB feature */
568		sc->flags |= FXP_FLAG_EXT_TXCB;
569
570		/* enable reception of long frames for VLAN */
571		sc->flags |= FXP_FLAG_LONG_PKT_EN;
572	} else {
573		/* a hack to get long VLAN frames on a 82557 */
574		sc->flags |= FXP_FLAG_SAVE_BAD;
575	}
576
577	/*
578	 * Enable use of extended RFDs and TCBs for 82550
579	 * and later chips. Note: we need extended TXCB support
580	 * too, but that's already enabled by the code above.
581	 * Be careful to do this only on the right devices.
582	 */
583	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
584	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
585	    || sc->revision == FXP_REV_82551_10) {
586		sc->rfa_size = sizeof (struct fxp_rfa);
587		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
588		sc->flags |= FXP_FLAG_EXT_RFA;
589	} else {
590		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
591		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
592	}
593
594	/*
595	 * Allocate DMA tags and DMA safe memory.
596	 */
597	sc->maxtxseg = FXP_NTXSEG;
598	if (sc->flags & FXP_FLAG_EXT_RFA)
599		sc->maxtxseg--;
600	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
601	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
602	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
603	    &sc->fxp_mtag);
604	if (error) {
605		device_printf(dev, "could not allocate dma tag\n");
606		goto fail;
607	}
608
609	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
610	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
611	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
612	    &sc->fxp_stag);
613	if (error) {
614		device_printf(dev, "could not allocate dma tag\n");
615		goto fail;
616	}
617
618	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
619	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
620	if (error)
621		goto fail;
622	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
623	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
624	if (error) {
625		device_printf(dev, "could not map the stats buffer\n");
626		goto fail;
627	}
628
629	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
630	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
631	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
632	if (error) {
633		device_printf(dev, "could not allocate dma tag\n");
634		goto fail;
635	}
636
637	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
638	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
639	if (error)
640		goto fail;
641
642	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
643	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
644	    &sc->fxp_desc.cbl_addr, 0);
645	if (error) {
646		device_printf(dev, "could not map DMA memory\n");
647		goto fail;
648	}
649
650	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
651	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
652	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
653	    &sc->mcs_tag);
654	if (error) {
655		device_printf(dev, "could not allocate dma tag\n");
656		goto fail;
657	}
658
659	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
660	    BUS_DMA_NOWAIT, &sc->mcs_map);
661	if (error)
662		goto fail;
663	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
664	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
665	if (error) {
666		device_printf(dev, "can't map the multicast setup command\n");
667		goto fail;
668	}
669
670	/*
671	 * Pre-allocate the TX DMA maps and setup the pointers to
672	 * the TX command blocks.
673	 */
674	txp = sc->fxp_desc.tx_list;
675	tcbp = sc->fxp_desc.cbl_list;
676	for (i = 0; i < FXP_NTXCB; i++) {
677		txp[i].tx_cb = tcbp + i;
678		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
679		if (error) {
680			device_printf(dev, "can't create DMA map for TX\n");
681			goto fail;
682		}
683	}
684	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
685	if (error) {
686		device_printf(dev, "can't create spare DMA map\n");
687		goto fail;
688	}
689
690	/*
691	 * Pre-allocate our receive buffers.
692	 */
693	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
694	for (i = 0; i < FXP_NRFABUFS; i++) {
695		rxp = &sc->fxp_desc.rx_list[i];
696		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
697		if (error) {
698			device_printf(dev, "can't create DMA map for RX\n");
699			goto fail;
700		}
701		if (fxp_add_rfabuf(sc, rxp) != 0) {
702			error = ENOMEM;
703			goto fail;
704		}
705	}
706
707	/*
708	 * Read MAC address.
709	 */
710	fxp_read_eeprom(sc, myea, 0, 3);
711	eaddr[0] = myea[0] & 0xff;
712	eaddr[1] = myea[0] >> 8;
713	eaddr[2] = myea[1] & 0xff;
714	eaddr[3] = myea[1] >> 8;
715	eaddr[4] = myea[2] & 0xff;
716	eaddr[5] = myea[2] >> 8;
717	if (bootverbose) {
718		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
719		    pci_get_vendor(dev), pci_get_device(dev),
720		    pci_get_subvendor(dev), pci_get_subdevice(dev),
721		    pci_get_revid(dev));
722		fxp_read_eeprom(sc, &data, 10, 1);
723		device_printf(dev, "Dynamic Standby mode is %s\n",
724		    data & 0x02 ? "enabled" : "disabled");
725	}
726
727	/*
728	 * If this is only a 10Mbps device, then there is no MII, and
729	 * the PHY will use a serial interface instead.
730	 *
731	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
732	 * doesn't have a programming interface of any sort.  The
733	 * media is sensed automatically based on how the link partner
734	 * is configured.  This is, in essence, manual configuration.
735	 */
736	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
737		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
738		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
739	} else {
740		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
741		    fxp_ifmedia_sts)) {
742	                device_printf(dev, "MII without any PHY!\n");
743			error = ENXIO;
744			goto fail;
745		}
746	}
747
748	ifp = sc->ifp = if_alloc(IFT_ETHER);
749	if (ifp == NULL) {
750		device_printf(dev, "can not if_alloc()\n");
751		error = ENOSPC;
752		goto fail;
753	}
754	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
755	ifp->if_baudrate = 100000000;
756	ifp->if_init = fxp_init;
757	ifp->if_softc = sc;
758	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
759	ifp->if_ioctl = fxp_ioctl;
760	ifp->if_start = fxp_start;
761	ifp->if_watchdog = fxp_watchdog;
762
763	ifp->if_capabilities = ifp->if_capenable = 0;
764
765	/* Enable checksum offload for 82550 or better chips */
766	if (sc->flags & FXP_FLAG_EXT_RFA) {
767		ifp->if_hwassist = FXP_CSUM_FEATURES;
768		ifp->if_capabilities |= IFCAP_HWCSUM;
769		ifp->if_capenable |= IFCAP_HWCSUM;
770	}
771
772#ifdef DEVICE_POLLING
773	/* Inform the world we support polling. */
774	ifp->if_capabilities |= IFCAP_POLLING;
775	ifp->if_capenable |= IFCAP_POLLING;
776#endif
777
778	/*
779	 * Attach the interface.
780	 */
781	ether_ifattach(ifp, eaddr);
782
783	/*
784	 * Tell the upper layer(s) we support long frames.
785	 * Must appear after the call to ether_ifattach() because
786	 * ether_ifattach() sets ifi_hdrlen to the default value.
787	 */
788	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
789	ifp->if_capabilities |= IFCAP_VLAN_MTU;
790	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
791
792	/*
793	 * Let the system queue as many packets as we have available
794	 * TX descriptors.
795	 */
796	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
797	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
798	IFQ_SET_READY(&ifp->if_snd);
799
800	/*
801	 * Hook our interrupt after all initialization is complete.
802	 */
803	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
804			       fxp_intr, sc, &sc->ih);
805	if (error) {
806		device_printf(dev, "could not setup irq\n");
807		ether_ifdetach(sc->ifp);
808		goto fail;
809	}
810
811fail:
812	splx(s);
813	if (error)
814		fxp_release(sc);
815	return (error);
816}
817
818/*
819 * Release all resources.  The softc lock should not be held and the
820 * interrupt should already be torn down.
821 */
822static void
823fxp_release(struct fxp_softc *sc)
824{
825	struct fxp_rx *rxp;
826	struct fxp_tx *txp;
827	int i;
828
829	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
830	KASSERT(sc->ih == NULL,
831	    ("fxp_release() called with intr handle still active"));
832	if (sc->miibus)
833		device_delete_child(sc->dev, sc->miibus);
834	bus_generic_detach(sc->dev);
835	ifmedia_removeall(&sc->sc_media);
836	if (sc->fxp_desc.cbl_list) {
837		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
838		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
839		    sc->cbl_map);
840	}
841	if (sc->fxp_stats) {
842		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
843		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
844	}
845	if (sc->mcsp) {
846		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
847		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
848	}
849	if (sc->irq)
850		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
851	if (sc->mem)
852		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
853	if (sc->fxp_mtag) {
854		for (i = 0; i < FXP_NRFABUFS; i++) {
855			rxp = &sc->fxp_desc.rx_list[i];
856			if (rxp->rx_mbuf != NULL) {
857				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
858				    BUS_DMASYNC_POSTREAD);
859				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
860				m_freem(rxp->rx_mbuf);
861			}
862			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
863		}
864		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
865		for (i = 0; i < FXP_NTXCB; i++) {
866			txp = &sc->fxp_desc.tx_list[i];
867			if (txp->tx_mbuf != NULL) {
868				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
869				    BUS_DMASYNC_POSTWRITE);
870				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
871				m_freem(txp->tx_mbuf);
872			}
873			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
874		}
875		bus_dma_tag_destroy(sc->fxp_mtag);
876	}
877	if (sc->fxp_stag)
878		bus_dma_tag_destroy(sc->fxp_stag);
879	if (sc->cbl_tag)
880		bus_dma_tag_destroy(sc->cbl_tag);
881	if (sc->mcs_tag)
882		bus_dma_tag_destroy(sc->mcs_tag);
883	if (sc->ifp)
884		if_free(sc->ifp);
885
886	mtx_destroy(&sc->sc_mtx);
887}
888
889/*
890 * Detach interface.
891 */
892static int
893fxp_detach(device_t dev)
894{
895	struct fxp_softc *sc = device_get_softc(dev);
896	int s;
897
898	FXP_LOCK(sc);
899	s = splimp();
900
901	sc->suspended = 1;	/* Do same thing as we do for suspend */
902	/*
903	 * Close down routes etc.
904	 */
905	ether_ifdetach(sc->ifp);
906
907	/*
908	 * Stop DMA and drop transmit queue, but disable interrupts first.
909	 */
910	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
911	fxp_stop(sc);
912	FXP_UNLOCK(sc);
913
914	/*
915	 * Unhook interrupt before dropping lock. This is to prevent
916	 * races with fxp_intr().
917	 */
918	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
919	sc->ih = NULL;
920
921	splx(s);
922
923	/* Release our allocated resources. */
924	fxp_release(sc);
925	return (0);
926}
927
928/*
929 * Device shutdown routine. Called at system shutdown after sync. The
930 * main purpose of this routine is to shut off receiver DMA so that
931 * kernel memory doesn't get clobbered during warmboot.
932 */
933static int
934fxp_shutdown(device_t dev)
935{
936	/*
937	 * Make sure that DMA is disabled prior to reboot. Not doing
938	 * do could allow DMA to corrupt kernel memory during the
939	 * reboot before the driver initializes.
940	 */
941	fxp_stop((struct fxp_softc *) device_get_softc(dev));
942	return (0);
943}
944
945/*
946 * Device suspend routine.  Stop the interface and save some PCI
947 * settings in case the BIOS doesn't restore them properly on
948 * resume.
949 */
950static int
951fxp_suspend(device_t dev)
952{
953	struct fxp_softc *sc = device_get_softc(dev);
954	int s;
955
956	FXP_LOCK(sc);
957	s = splimp();
958
959	fxp_stop(sc);
960
961	sc->suspended = 1;
962
963	FXP_UNLOCK(sc);
964	splx(s);
965	return (0);
966}
967
968/*
969 * Device resume routine. re-enable busmastering, and restart the interface if
970 * appropriate.
971 */
972static int
973fxp_resume(device_t dev)
974{
975	struct fxp_softc *sc = device_get_softc(dev);
976	struct ifnet *ifp = sc->ifp;
977	uint16_t pci_command;
978	int s;
979
980	FXP_LOCK(sc);
981	s = splimp();
982
983	/* reenable busmastering */
984	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
985	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
986	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
987
988	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
989	DELAY(10);
990
991	/* reinitialize interface if necessary */
992	if (ifp->if_flags & IFF_UP)
993		fxp_init_body(sc);
994
995	sc->suspended = 0;
996
997	FXP_UNLOCK(sc);
998	splx(s);
999	return (0);
1000}
1001
1002static void
1003fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1004{
1005	uint16_t reg;
1006	int x;
1007
1008	/*
1009	 * Shift in data.
1010	 */
1011	for (x = 1 << (length - 1); x; x >>= 1) {
1012		if (data & x)
1013			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1014		else
1015			reg = FXP_EEPROM_EECS;
1016		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1017		DELAY(1);
1018		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1019		DELAY(1);
1020		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1021		DELAY(1);
1022	}
1023}
1024
1025/*
1026 * Read from the serial EEPROM. Basically, you manually shift in
1027 * the read opcode (one bit at a time) and then shift in the address,
1028 * and then you shift out the data (all of this one bit at a time).
1029 * The word size is 16 bits, so you have to provide the address for
1030 * every 16 bits of data.
1031 */
1032static uint16_t
1033fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1034{
1035	uint16_t reg, data;
1036	int x;
1037
1038	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1039	/*
1040	 * Shift in read opcode.
1041	 */
1042	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1043	/*
1044	 * Shift in address.
1045	 */
1046	data = 0;
1047	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1048		if (offset & x)
1049			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1050		else
1051			reg = FXP_EEPROM_EECS;
1052		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1053		DELAY(1);
1054		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1055		DELAY(1);
1056		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1057		DELAY(1);
1058		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1059		data++;
1060		if (autosize && reg == 0) {
1061			sc->eeprom_size = data;
1062			break;
1063		}
1064	}
1065	/*
1066	 * Shift out data.
1067	 */
1068	data = 0;
1069	reg = FXP_EEPROM_EECS;
1070	for (x = 1 << 15; x; x >>= 1) {
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072		DELAY(1);
1073		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1074			data |= x;
1075		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1076		DELAY(1);
1077	}
1078	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1079	DELAY(1);
1080
1081	return (data);
1082}
1083
1084static void
1085fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1086{
1087	int i;
1088
1089	/*
1090	 * Erase/write enable.
1091	 */
1092	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1093	fxp_eeprom_shiftin(sc, 0x4, 3);
1094	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1095	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1096	DELAY(1);
1097	/*
1098	 * Shift in write opcode, address, data.
1099	 */
1100	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1102	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1103	fxp_eeprom_shiftin(sc, data, 16);
1104	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1105	DELAY(1);
1106	/*
1107	 * Wait for EEPROM to finish up.
1108	 */
1109	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1110	DELAY(1);
1111	for (i = 0; i < 1000; i++) {
1112		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1113			break;
1114		DELAY(50);
1115	}
1116	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1117	DELAY(1);
1118	/*
1119	 * Erase/write disable.
1120	 */
1121	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1122	fxp_eeprom_shiftin(sc, 0x4, 3);
1123	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1124	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125	DELAY(1);
1126}
1127
1128/*
1129 * From NetBSD:
1130 *
1131 * Figure out EEPROM size.
1132 *
1133 * 559's can have either 64-word or 256-word EEPROMs, the 558
1134 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1135 * talks about the existance of 16 to 256 word EEPROMs.
1136 *
1137 * The only known sizes are 64 and 256, where the 256 version is used
1138 * by CardBus cards to store CIS information.
1139 *
1140 * The address is shifted in msb-to-lsb, and after the last
1141 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1142 * after which follows the actual data. We try to detect this zero, by
1143 * probing the data-out bit in the EEPROM control register just after
1144 * having shifted in a bit. If the bit is zero, we assume we've
1145 * shifted enough address bits. The data-out should be tri-state,
1146 * before this, which should translate to a logical one.
1147 */
1148static void
1149fxp_autosize_eeprom(struct fxp_softc *sc)
1150{
1151
1152	/* guess maximum size of 256 words */
1153	sc->eeprom_size = 8;
1154
1155	/* autosize */
1156	(void) fxp_eeprom_getword(sc, 0, 1);
1157}
1158
1159static void
1160fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1161{
1162	int i;
1163
1164	for (i = 0; i < words; i++)
1165		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1166}
1167
1168static void
1169fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1170{
1171	int i;
1172
1173	for (i = 0; i < words; i++)
1174		fxp_eeprom_putword(sc, offset + i, data[i]);
1175}
1176
1177/*
1178 * Grab the softc lock and call the real fxp_start_body() routine
1179 */
1180static void
1181fxp_start(struct ifnet *ifp)
1182{
1183	struct fxp_softc *sc = ifp->if_softc;
1184
1185	FXP_LOCK(sc);
1186	fxp_start_body(ifp);
1187	FXP_UNLOCK(sc);
1188}
1189
1190/*
1191 * Start packet transmission on the interface.
1192 * This routine must be called with the softc lock held, and is an
1193 * internal entry point only.
1194 */
1195static void
1196fxp_start_body(struct ifnet *ifp)
1197{
1198	struct fxp_softc *sc = ifp->if_softc;
1199	struct mbuf *mb_head;
1200	int error, txqueued;
1201
1202	FXP_LOCK_ASSERT(sc, MA_OWNED);
1203
1204	/*
1205	 * See if we need to suspend xmit until the multicast filter
1206	 * has been reprogrammed (which can only be done at the head
1207	 * of the command chain).
1208	 */
1209	if (sc->need_mcsetup)
1210		return;
1211
1212	/*
1213	 * We're finished if there is nothing more to add to the list or if
1214	 * we're all filled up with buffers to transmit.
1215	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1216	 *       a NOP command when needed.
1217	 */
1218	txqueued = 0;
1219	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1220	    sc->tx_queued < FXP_NTXCB - 1) {
1221
1222		/*
1223		 * Grab a packet to transmit.
1224		 */
1225		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1226		if (mb_head == NULL)
1227			break;
1228
1229		error = fxp_encap(sc, mb_head);
1230		if (error)
1231			break;
1232		txqueued = 1;
1233	}
1234	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1235
1236	/*
1237	 * We're finished. If we added to the list, issue a RESUME to get DMA
1238	 * going again if suspended.
1239	 */
1240	if (txqueued) {
1241		fxp_scb_wait(sc);
1242		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1243	}
1244}
1245
1246static int
1247fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1248{
1249	struct ifnet *ifp;
1250	struct mbuf *m;
1251	struct fxp_tx *txp;
1252	struct fxp_cb_tx *cbp;
1253	bus_dma_segment_t segs[FXP_NTXSEG];
1254	int chainlen, error, i, nseg;
1255
1256	FXP_LOCK_ASSERT(sc, MA_OWNED);
1257	ifp = sc->ifp;
1258
1259	/*
1260	 * Get pointer to next available tx desc.
1261	 */
1262	txp = sc->fxp_desc.tx_last->tx_next;
1263
1264	/*
1265	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1266	 * Ethernet Controller Family Open Source Software
1267	 * Developer Manual says:
1268	 *   Using software parsing is only allowed with legal
1269	 *   TCP/IP or UDP/IP packets.
1270	 *   ...
1271	 *   For all other datagrams, hardware parsing must
1272	 *   be used.
1273	 * Software parsing appears to truncate ICMP and
1274	 * fragmented UDP packets that contain one to three
1275	 * bytes in the second (and final) mbuf of the packet.
1276	 */
1277	if (sc->flags & FXP_FLAG_EXT_RFA)
1278		txp->tx_cb->ipcb_ip_activation_high =
1279		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1280
1281	/*
1282	 * Deal with TCP/IP checksum offload. Note that
1283	 * in order for TCP checksum offload to work,
1284	 * the pseudo header checksum must have already
1285	 * been computed and stored in the checksum field
1286	 * in the TCP header. The stack should have
1287	 * already done this for us.
1288	 */
1289	if (m_head->m_pkthdr.csum_flags) {
1290		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1291			txp->tx_cb->ipcb_ip_schedule =
1292			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1293			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1294				txp->tx_cb->ipcb_ip_schedule |=
1295				    FXP_IPCB_TCP_PACKET;
1296		}
1297
1298#ifdef FXP_IP_CSUM_WAR
1299		/*
1300		 * XXX The 82550 chip appears to have trouble
1301		 * dealing with IP header checksums in very small
1302		 * datagrams, namely fragments from 1 to 3 bytes
1303		 * in size. For example, say you want to transmit
1304		 * a UDP packet of 1473 bytes. The packet will be
1305		 * fragmented over two IP datagrams, the latter
1306		 * containing only one byte of data. The 82550 will
1307		 * botch the header checksum on the 1-byte fragment.
1308		 * As long as the datagram contains 4 or more bytes
1309		 * of data, you're ok.
1310		 *
1311                 * The following code attempts to work around this
1312		 * problem: if the datagram is less than 38 bytes
1313		 * in size (14 bytes ether header, 20 bytes IP header,
1314		 * plus 4 bytes of data), we punt and compute the IP
1315		 * header checksum by hand. This workaround doesn't
1316		 * work very well, however, since it can be fooled
1317		 * by things like VLAN tags and IP options that make
1318		 * the header sizes/offsets vary.
1319		 */
1320
1321		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1322			if (m_head->m_pkthdr.len < 38) {
1323				struct ip *ip;
1324				m_head->m_data += ETHER_HDR_LEN;
1325				ip = mtod(mb_head, struct ip *);
1326				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1327				m_head->m_data -= ETHER_HDR_LEN;
1328			} else {
1329				txp->tx_cb->ipcb_ip_activation_high =
1330				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1331				txp->tx_cb->ipcb_ip_schedule |=
1332				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1333			}
1334		}
1335#endif
1336	}
1337
1338	chainlen = 0;
1339	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1340		chainlen++;
1341	if (chainlen > sc->maxtxseg) {
1342		struct mbuf *mn;
1343
1344		/*
1345		 * We ran out of segments. We have to recopy this
1346		 * mbuf chain first. Bail out if we can't get the
1347		 * new buffers.
1348		 */
1349		mn = m_defrag(m_head, M_DONTWAIT);
1350		if (mn == NULL) {
1351			m_freem(m_head);
1352			return (-1);
1353		} else {
1354			m_head = mn;
1355		}
1356	}
1357
1358	/*
1359	 * Go through each of the mbufs in the chain and initialize
1360	 * the transmit buffer descriptors with the physical address
1361	 * and size of the mbuf.
1362	 */
1363	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1364	    m_head, segs, &nseg, 0);
1365	if (error) {
1366		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1367		m_freem(m_head);
1368		return (-1);
1369	}
1370
1371	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1372
1373	cbp = txp->tx_cb;
1374	for (i = 0; i < nseg; i++) {
1375		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1376		/*
1377		 * If this is an 82550/82551, then we're using extended
1378		 * TxCBs _and_ we're using checksum offload. This means
1379		 * that the TxCB is really an IPCB. One major difference
1380		 * between the two is that with plain extended TxCBs,
1381		 * the bottom half of the TxCB contains two entries from
1382		 * the TBD array, whereas IPCBs contain just one entry:
1383		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1384		 * checksum offload control bits. So to make things work
1385		 * right, we have to start filling in the TBD array
1386		 * starting from a different place depending on whether
1387		 * the chip is an 82550/82551 or not.
1388		 */
1389		if (sc->flags & FXP_FLAG_EXT_RFA) {
1390			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1391			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1392		} else {
1393			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1394			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1395		}
1396	}
1397	cbp->tbd_number = nseg;
1398
1399	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1400	txp->tx_mbuf = m_head;
1401	txp->tx_cb->cb_status = 0;
1402	txp->tx_cb->byte_count = 0;
1403	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1404		txp->tx_cb->cb_command =
1405		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1406		    FXP_CB_COMMAND_S);
1407	} else {
1408		txp->tx_cb->cb_command =
1409		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1410		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1411		/*
1412		 * Set a 5 second timer just in case we don't hear
1413		 * from the card again.
1414		 */
1415		ifp->if_timer = 5;
1416	}
1417	txp->tx_cb->tx_threshold = tx_threshold;
1418
1419	/*
1420	 * Advance the end of list forward.
1421	 */
1422
1423#ifdef __alpha__
1424	/*
1425	 * On platforms which can't access memory in 16-bit
1426	 * granularities, we must prevent the card from DMA'ing
1427	 * up the status while we update the command field.
1428	 * This could cause us to overwrite the completion status.
1429	 * XXX This is probably bogus and we're _not_ looking
1430	 * for atomicity here.
1431	 */
1432	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1433	    htole16(FXP_CB_COMMAND_S));
1434#else
1435	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1436#endif /*__alpha__*/
1437	sc->fxp_desc.tx_last = txp;
1438
1439	/*
1440	 * Advance the beginning of the list forward if there are
1441	 * no other packets queued (when nothing is queued, tx_first
1442	 * sits on the last TxCB that was sent out).
1443	 */
1444	if (sc->tx_queued == 0)
1445		sc->fxp_desc.tx_first = txp;
1446
1447	sc->tx_queued++;
1448
1449	/*
1450	 * Pass packet to bpf if there is a listener.
1451	 */
1452	BPF_MTAP(ifp, m_head);
1453	return (0);
1454}
1455
1456#ifdef DEVICE_POLLING
1457static poll_handler_t fxp_poll;
1458
1459static void
1460fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1461{
1462	struct fxp_softc *sc = ifp->if_softc;
1463	uint8_t statack;
1464
1465	FXP_LOCK(sc);
1466	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1467		ether_poll_deregister(ifp);
1468		cmd = POLL_DEREGISTER;
1469	}
1470	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1471		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1472		FXP_UNLOCK(sc);
1473		return;
1474	}
1475	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1476	    FXP_SCB_STATACK_FR;
1477	if (cmd == POLL_AND_CHECK_STATUS) {
1478		uint8_t tmp;
1479
1480		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1481		if (tmp == 0xff || tmp == 0) {
1482			FXP_UNLOCK(sc);
1483			return; /* nothing to do */
1484		}
1485		tmp &= ~statack;
1486		/* ack what we can */
1487		if (tmp != 0)
1488			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1489		statack |= tmp;
1490	}
1491	fxp_intr_body(sc, ifp, statack, count);
1492	FXP_UNLOCK(sc);
1493}
1494#endif /* DEVICE_POLLING */
1495
1496/*
1497 * Process interface interrupts.
1498 */
1499static void
1500fxp_intr(void *xsc)
1501{
1502	struct fxp_softc *sc = xsc;
1503	struct ifnet *ifp = sc->ifp;
1504	uint8_t statack;
1505
1506	FXP_LOCK(sc);
1507	if (sc->suspended) {
1508		FXP_UNLOCK(sc);
1509		return;
1510	}
1511
1512#ifdef DEVICE_POLLING
1513	if (ifp->if_flags & IFF_POLLING) {
1514		FXP_UNLOCK(sc);
1515		return;
1516	}
1517	if ((ifp->if_capenable & IFCAP_POLLING) &&
1518	    ether_poll_register(fxp_poll, ifp)) {
1519		/* disable interrupts */
1520		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1521		FXP_UNLOCK(sc);
1522		fxp_poll(ifp, 0, 1);
1523		return;
1524	}
1525#endif
1526	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1527		/*
1528		 * It should not be possible to have all bits set; the
1529		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1530		 * all bits are set, this may indicate that the card has
1531		 * been physically ejected, so ignore it.
1532		 */
1533		if (statack == 0xff) {
1534			FXP_UNLOCK(sc);
1535			return;
1536		}
1537
1538		/*
1539		 * First ACK all the interrupts in this pass.
1540		 */
1541		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1542		fxp_intr_body(sc, ifp, statack, -1);
1543	}
1544	FXP_UNLOCK(sc);
1545}
1546
1547static void
1548fxp_txeof(struct fxp_softc *sc)
1549{
1550	struct fxp_tx *txp;
1551
1552	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1553	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1554	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1555	    txp = txp->tx_next) {
1556		if (txp->tx_mbuf != NULL) {
1557			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1558			    BUS_DMASYNC_POSTWRITE);
1559			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1560			m_freem(txp->tx_mbuf);
1561			txp->tx_mbuf = NULL;
1562			/* clear this to reset csum offload bits */
1563			txp->tx_cb->tbd[0].tb_addr = 0;
1564		}
1565		sc->tx_queued--;
1566	}
1567	sc->fxp_desc.tx_first = txp;
1568	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1569}
1570
1571static void
1572fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1573    int count)
1574{
1575	struct mbuf *m;
1576	struct fxp_rx *rxp;
1577	struct fxp_rfa *rfa;
1578	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1579
1580	FXP_LOCK_ASSERT(sc, MA_OWNED);
1581	if (rnr)
1582		sc->rnr++;
1583#ifdef DEVICE_POLLING
1584	/* Pick up a deferred RNR condition if `count' ran out last time. */
1585	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1586		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1587		rnr = 1;
1588	}
1589#endif
1590
1591	/*
1592	 * Free any finished transmit mbuf chains.
1593	 *
1594	 * Handle the CNA event likt a CXTNO event. It used to
1595	 * be that this event (control unit not ready) was not
1596	 * encountered, but it is now with the SMPng modifications.
1597	 * The exact sequence of events that occur when the interface
1598	 * is brought up are different now, and if this event
1599	 * goes unhandled, the configuration/rxfilter setup sequence
1600	 * can stall for several seconds. The result is that no
1601	 * packets go out onto the wire for about 5 to 10 seconds
1602	 * after the interface is ifconfig'ed for the first time.
1603	 */
1604	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1605		fxp_txeof(sc);
1606
1607		ifp->if_timer = 0;
1608		if (sc->tx_queued == 0) {
1609			if (sc->need_mcsetup)
1610				fxp_mc_setup(sc);
1611		}
1612		/*
1613		 * Try to start more packets transmitting.
1614		 */
1615		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1616			fxp_start_body(ifp);
1617	}
1618
1619	/*
1620	 * Just return if nothing happened on the receive side.
1621	 */
1622	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1623		return;
1624
1625	/*
1626	 * Process receiver interrupts. If a no-resource (RNR)
1627	 * condition exists, get whatever packets we can and
1628	 * re-start the receiver.
1629	 *
1630	 * When using polling, we do not process the list to completion,
1631	 * so when we get an RNR interrupt we must defer the restart
1632	 * until we hit the last buffer with the C bit set.
1633	 * If we run out of cycles and rfa_headm has the C bit set,
1634	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1635	 * that the info will be used in the subsequent polling cycle.
1636	 */
1637	for (;;) {
1638		rxp = sc->fxp_desc.rx_head;
1639		m = rxp->rx_mbuf;
1640		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1641		    RFA_ALIGNMENT_FUDGE);
1642		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1643		    BUS_DMASYNC_POSTREAD);
1644
1645#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1646		if (count >= 0 && count-- == 0) {
1647			if (rnr) {
1648				/* Defer RNR processing until the next time. */
1649				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1650				rnr = 0;
1651			}
1652			break;
1653		}
1654#endif /* DEVICE_POLLING */
1655
1656		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1657			break;
1658
1659		/*
1660		 * Advance head forward.
1661		 */
1662		sc->fxp_desc.rx_head = rxp->rx_next;
1663
1664		/*
1665		 * Add a new buffer to the receive chain.
1666		 * If this fails, the old buffer is recycled
1667		 * instead.
1668		 */
1669		if (fxp_add_rfabuf(sc, rxp) == 0) {
1670			int total_len;
1671
1672			/*
1673			 * Fetch packet length (the top 2 bits of
1674			 * actual_size are flags set by the controller
1675			 * upon completion), and drop the packet in case
1676			 * of bogus length or CRC errors.
1677			 */
1678			total_len = le16toh(rfa->actual_size) & 0x3fff;
1679			if (total_len < sizeof(struct ether_header) ||
1680			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1681				sc->rfa_size ||
1682			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1683				m_freem(m);
1684				continue;
1685			}
1686
1687                        /* Do IP checksum checking. */
1688			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1689				if (rfa->rfax_csum_sts &
1690				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1691					m->m_pkthdr.csum_flags |=
1692					    CSUM_IP_CHECKED;
1693				if (rfa->rfax_csum_sts &
1694				    FXP_RFDX_CS_IP_CSUM_VALID)
1695					m->m_pkthdr.csum_flags |=
1696					    CSUM_IP_VALID;
1697				if ((rfa->rfax_csum_sts &
1698				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1699				    (rfa->rfax_csum_sts &
1700				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1701					m->m_pkthdr.csum_flags |=
1702					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1703					m->m_pkthdr.csum_data = 0xffff;
1704				}
1705			}
1706
1707			m->m_pkthdr.len = m->m_len = total_len;
1708			m->m_pkthdr.rcvif = ifp;
1709
1710			/*
1711			 * Drop locks before calling if_input() since it
1712			 * may re-enter fxp_start() in the netisr case.
1713			 * This would result in a lock reversal.  Better
1714			 * performance might be obtained by chaining all
1715			 * packets received, dropping the lock, and then
1716			 * calling if_input() on each one.
1717			 */
1718			FXP_UNLOCK(sc);
1719			(*ifp->if_input)(ifp, m);
1720			FXP_LOCK(sc);
1721		}
1722	}
1723	if (rnr) {
1724		fxp_scb_wait(sc);
1725		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1726		    sc->fxp_desc.rx_head->rx_addr);
1727		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1728	}
1729}
1730
1731/*
1732 * Update packet in/out/collision statistics. The i82557 doesn't
1733 * allow you to access these counters without doing a fairly
1734 * expensive DMA to get _all_ of the statistics it maintains, so
1735 * we do this operation here only once per second. The statistics
1736 * counters in the kernel are updated from the previous dump-stats
1737 * DMA and then a new dump-stats DMA is started. The on-chip
1738 * counters are zeroed when the DMA completes. If we can't start
1739 * the DMA immediately, we don't wait - we just prepare to read
1740 * them again next time.
1741 */
1742static void
1743fxp_tick(void *xsc)
1744{
1745	struct fxp_softc *sc = xsc;
1746	struct ifnet *ifp = sc->ifp;
1747	struct fxp_stats *sp = sc->fxp_stats;
1748	int s;
1749
1750	FXP_LOCK(sc);
1751	s = splimp();
1752	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1753	ifp->if_opackets += le32toh(sp->tx_good);
1754	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1755	if (sp->rx_good) {
1756		ifp->if_ipackets += le32toh(sp->rx_good);
1757		sc->rx_idle_secs = 0;
1758	} else {
1759		/*
1760		 * Receiver's been idle for another second.
1761		 */
1762		sc->rx_idle_secs++;
1763	}
1764	ifp->if_ierrors +=
1765	    le32toh(sp->rx_crc_errors) +
1766	    le32toh(sp->rx_alignment_errors) +
1767	    le32toh(sp->rx_rnr_errors) +
1768	    le32toh(sp->rx_overrun_errors);
1769	/*
1770	 * If any transmit underruns occured, bump up the transmit
1771	 * threshold by another 512 bytes (64 * 8).
1772	 */
1773	if (sp->tx_underruns) {
1774		ifp->if_oerrors += le32toh(sp->tx_underruns);
1775		if (tx_threshold < 192)
1776			tx_threshold += 64;
1777	}
1778
1779	/*
1780	 * Release any xmit buffers that have completed DMA. This isn't
1781	 * strictly necessary to do here, but it's advantagous for mbufs
1782	 * with external storage to be released in a timely manner rather
1783	 * than being defered for a potentially long time. This limits
1784	 * the delay to a maximum of one second.
1785	 */
1786	fxp_txeof(sc);
1787
1788	/*
1789	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1790	 * then assume the receiver has locked up and attempt to clear
1791	 * the condition by reprogramming the multicast filter. This is
1792	 * a work-around for a bug in the 82557 where the receiver locks
1793	 * up if it gets certain types of garbage in the syncronization
1794	 * bits prior to the packet header. This bug is supposed to only
1795	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1796	 * mode as well (perhaps due to a 10/100 speed transition).
1797	 */
1798	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1799		sc->rx_idle_secs = 0;
1800		fxp_mc_setup(sc);
1801	}
1802	/*
1803	 * If there is no pending command, start another stats
1804	 * dump. Otherwise punt for now.
1805	 */
1806	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1807		/*
1808		 * Start another stats dump.
1809		 */
1810		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1811		    BUS_DMASYNC_PREREAD);
1812		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1813	} else {
1814		/*
1815		 * A previous command is still waiting to be accepted.
1816		 * Just zero our copy of the stats and wait for the
1817		 * next timer event to update them.
1818		 */
1819		sp->tx_good = 0;
1820		sp->tx_underruns = 0;
1821		sp->tx_total_collisions = 0;
1822
1823		sp->rx_good = 0;
1824		sp->rx_crc_errors = 0;
1825		sp->rx_alignment_errors = 0;
1826		sp->rx_rnr_errors = 0;
1827		sp->rx_overrun_errors = 0;
1828	}
1829	if (sc->miibus != NULL)
1830		mii_tick(device_get_softc(sc->miibus));
1831
1832	/*
1833	 * Schedule another timeout one second from now.
1834	 */
1835	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1836	FXP_UNLOCK(sc);
1837	splx(s);
1838}
1839
1840/*
1841 * Stop the interface. Cancels the statistics updater and resets
1842 * the interface.
1843 */
1844static void
1845fxp_stop(struct fxp_softc *sc)
1846{
1847	struct ifnet *ifp = sc->ifp;
1848	struct fxp_tx *txp;
1849	int i;
1850
1851	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1852	ifp->if_timer = 0;
1853
1854#ifdef DEVICE_POLLING
1855	ether_poll_deregister(ifp);
1856#endif
1857	/*
1858	 * Cancel stats updater.
1859	 */
1860	callout_stop(&sc->stat_ch);
1861
1862	/*
1863	 * Issue software reset, which also unloads the microcode.
1864	 */
1865	sc->flags &= ~FXP_FLAG_UCODE;
1866	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1867	DELAY(50);
1868
1869	/*
1870	 * Release any xmit buffers.
1871	 */
1872	txp = sc->fxp_desc.tx_list;
1873	if (txp != NULL) {
1874		for (i = 0; i < FXP_NTXCB; i++) {
1875 			if (txp[i].tx_mbuf != NULL) {
1876				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1877				    BUS_DMASYNC_POSTWRITE);
1878				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1879				m_freem(txp[i].tx_mbuf);
1880				txp[i].tx_mbuf = NULL;
1881				/* clear this to reset csum offload bits */
1882				txp[i].tx_cb->tbd[0].tb_addr = 0;
1883			}
1884		}
1885	}
1886	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1887	sc->tx_queued = 0;
1888}
1889
1890/*
1891 * Watchdog/transmission transmit timeout handler. Called when a
1892 * transmission is started on the interface, but no interrupt is
1893 * received before the timeout. This usually indicates that the
1894 * card has wedged for some reason.
1895 */
1896static void
1897fxp_watchdog(struct ifnet *ifp)
1898{
1899	struct fxp_softc *sc = ifp->if_softc;
1900
1901	FXP_LOCK(sc);
1902	device_printf(sc->dev, "device timeout\n");
1903	ifp->if_oerrors++;
1904
1905	fxp_init_body(sc);
1906	FXP_UNLOCK(sc);
1907}
1908
1909/*
1910 * Acquire locks and then call the real initialization function.  This
1911 * is necessary because ether_ioctl() calls if_init() and this would
1912 * result in mutex recursion if the mutex was held.
1913 */
1914static void
1915fxp_init(void *xsc)
1916{
1917	struct fxp_softc *sc = xsc;
1918
1919	FXP_LOCK(sc);
1920	fxp_init_body(sc);
1921	FXP_UNLOCK(sc);
1922}
1923
1924/*
1925 * Perform device initialization. This routine must be called with the
1926 * softc lock held.
1927 */
1928static void
1929fxp_init_body(struct fxp_softc *sc)
1930{
1931	struct ifnet *ifp = sc->ifp;
1932	struct fxp_cb_config *cbp;
1933	struct fxp_cb_ias *cb_ias;
1934	struct fxp_cb_tx *tcbp;
1935	struct fxp_tx *txp;
1936	struct fxp_cb_mcs *mcsp;
1937	int i, prm, s;
1938
1939	FXP_LOCK_ASSERT(sc, MA_OWNED);
1940	s = splimp();
1941	/*
1942	 * Cancel any pending I/O
1943	 */
1944	fxp_stop(sc);
1945
1946	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1947
1948	/*
1949	 * Initialize base of CBL and RFA memory. Loading with zero
1950	 * sets it up for regular linear addressing.
1951	 */
1952	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1953	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1954
1955	fxp_scb_wait(sc);
1956	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1957
1958	/*
1959	 * Initialize base of dump-stats buffer.
1960	 */
1961	fxp_scb_wait(sc);
1962	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1963	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1964	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1965
1966	/*
1967	 * Attempt to load microcode if requested.
1968	 */
1969	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1970		fxp_load_ucode(sc);
1971
1972	/*
1973	 * Initialize the multicast address list.
1974	 */
1975	if (fxp_mc_addrs(sc)) {
1976		mcsp = sc->mcsp;
1977		mcsp->cb_status = 0;
1978		mcsp->cb_command =
1979		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1980		mcsp->link_addr = 0xffffffff;
1981		/*
1982	 	 * Start the multicast setup command.
1983		 */
1984		fxp_scb_wait(sc);
1985		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1986		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1987		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1988		/* ...and wait for it to complete. */
1989		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1990		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1991		    BUS_DMASYNC_POSTWRITE);
1992	}
1993
1994	/*
1995	 * We temporarily use memory that contains the TxCB list to
1996	 * construct the config CB. The TxCB list memory is rebuilt
1997	 * later.
1998	 */
1999	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2000
2001	/*
2002	 * This bcopy is kind of disgusting, but there are a bunch of must be
2003	 * zero and must be one bits in this structure and this is the easiest
2004	 * way to initialize them all to proper values.
2005	 */
2006	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2007
2008	cbp->cb_status =	0;
2009	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2010	    FXP_CB_COMMAND_EL);
2011	cbp->link_addr =	0xffffffff;	/* (no) next command */
2012	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2013	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2014	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2015	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2016	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2017	cbp->type_enable =	0;	/* actually reserved */
2018	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2019	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2020	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2021	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2022	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2023	cbp->late_scb =		0;	/* (don't) defer SCB update */
2024	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2025	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2026	cbp->ci_int =		1;	/* interrupt on CU idle */
2027	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2028	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2029	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2030	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2031	cbp->disc_short_rx =	!prm;	/* discard short packets */
2032	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2033	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2034	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2035	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2036	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2037	cbp->csma_dis =		0;	/* (don't) disable link */
2038	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2039	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2040	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2041	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2042	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2043	cbp->nsai =		1;	/* (don't) disable source addr insert */
2044	cbp->preamble_length =	2;	/* (7 byte) preamble */
2045	cbp->loopback =		0;	/* (don't) loopback */
2046	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2047	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2048	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2049	cbp->promiscuous =	prm;	/* promiscuous mode */
2050	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2051	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2052	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2053	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2054	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2055
2056	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2057	cbp->padding =		1;	/* (do) pad short tx packets */
2058	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2059	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2060	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2061	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2062					/* must set wake_en in PMCSR also */
2063	cbp->force_fdx =	0;	/* (don't) force full duplex */
2064	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2065	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2066	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2067	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2068
2069	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2070		/*
2071		 * The 82557 has no hardware flow control, the values
2072		 * below are the defaults for the chip.
2073		 */
2074		cbp->fc_delay_lsb =	0;
2075		cbp->fc_delay_msb =	0x40;
2076		cbp->pri_fc_thresh =	3;
2077		cbp->tx_fc_dis =	0;
2078		cbp->rx_fc_restop =	0;
2079		cbp->rx_fc_restart =	0;
2080		cbp->fc_filter =	0;
2081		cbp->pri_fc_loc =	1;
2082	} else {
2083		cbp->fc_delay_lsb =	0x1f;
2084		cbp->fc_delay_msb =	0x01;
2085		cbp->pri_fc_thresh =	3;
2086		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2087		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2088		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2089		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2090		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2091	}
2092
2093	/*
2094	 * Start the config command/DMA.
2095	 */
2096	fxp_scb_wait(sc);
2097	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2098	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2099	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2100	/* ...and wait for it to complete. */
2101	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2102	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2103
2104	/*
2105	 * Now initialize the station address. Temporarily use the TxCB
2106	 * memory area like we did above for the config CB.
2107	 */
2108	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2109	cb_ias->cb_status = 0;
2110	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2111	cb_ias->link_addr = 0xffffffff;
2112	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2113	    sizeof(IFP2ENADDR(sc->ifp)));
2114
2115	/*
2116	 * Start the IAS (Individual Address Setup) command/DMA.
2117	 */
2118	fxp_scb_wait(sc);
2119	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2120	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2121	/* ...and wait for it to complete. */
2122	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2123	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2124
2125	/*
2126	 * Initialize transmit control block (TxCB) list.
2127	 */
2128	txp = sc->fxp_desc.tx_list;
2129	tcbp = sc->fxp_desc.cbl_list;
2130	bzero(tcbp, FXP_TXCB_SZ);
2131	for (i = 0; i < FXP_NTXCB; i++) {
2132		txp[i].tx_mbuf = NULL;
2133		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2134		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2135		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2136		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2137		if (sc->flags & FXP_FLAG_EXT_TXCB)
2138			tcbp[i].tbd_array_addr =
2139			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2140		else
2141			tcbp[i].tbd_array_addr =
2142			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2143		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2144	}
2145	/*
2146	 * Set the suspend flag on the first TxCB and start the control
2147	 * unit. It will execute the NOP and then suspend.
2148	 */
2149	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2150	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2151	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2152	sc->tx_queued = 1;
2153
2154	fxp_scb_wait(sc);
2155	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2156
2157	/*
2158	 * Initialize receiver buffer area - RFA.
2159	 */
2160	fxp_scb_wait(sc);
2161	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2162	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2163
2164	/*
2165	 * Set current media.
2166	 */
2167	if (sc->miibus != NULL)
2168		mii_mediachg(device_get_softc(sc->miibus));
2169
2170	ifp->if_flags |= IFF_RUNNING;
2171	ifp->if_flags &= ~IFF_OACTIVE;
2172
2173	/*
2174	 * Enable interrupts.
2175	 */
2176#ifdef DEVICE_POLLING
2177	/*
2178	 * ... but only do that if we are not polling. And because (presumably)
2179	 * the default is interrupts on, we need to disable them explicitly!
2180	 */
2181	if ( ifp->if_flags & IFF_POLLING )
2182		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2183	else
2184#endif /* DEVICE_POLLING */
2185	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2186
2187	/*
2188	 * Start stats updater.
2189	 */
2190	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2191	splx(s);
2192}
2193
2194static int
2195fxp_serial_ifmedia_upd(struct ifnet *ifp)
2196{
2197
2198	return (0);
2199}
2200
2201static void
2202fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2203{
2204
2205	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2206}
2207
2208/*
2209 * Change media according to request.
2210 */
2211static int
2212fxp_ifmedia_upd(struct ifnet *ifp)
2213{
2214	struct fxp_softc *sc = ifp->if_softc;
2215	struct mii_data *mii;
2216
2217	mii = device_get_softc(sc->miibus);
2218	mii_mediachg(mii);
2219	return (0);
2220}
2221
2222/*
2223 * Notify the world which media we're using.
2224 */
2225static void
2226fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2227{
2228	struct fxp_softc *sc = ifp->if_softc;
2229	struct mii_data *mii;
2230
2231	mii = device_get_softc(sc->miibus);
2232	mii_pollstat(mii);
2233	ifmr->ifm_active = mii->mii_media_active;
2234	ifmr->ifm_status = mii->mii_media_status;
2235
2236	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2237		sc->cu_resume_bug = 1;
2238	else
2239		sc->cu_resume_bug = 0;
2240}
2241
2242/*
2243 * Add a buffer to the end of the RFA buffer list.
2244 * Return 0 if successful, 1 for failure. A failure results in
2245 * adding the 'oldm' (if non-NULL) on to the end of the list -
2246 * tossing out its old contents and recycling it.
2247 * The RFA struct is stuck at the beginning of mbuf cluster and the
2248 * data pointer is fixed up to point just past it.
2249 */
2250static int
2251fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2252{
2253	struct mbuf *m;
2254	struct fxp_rfa *rfa, *p_rfa;
2255	struct fxp_rx *p_rx;
2256	bus_dmamap_t tmp_map;
2257	int error;
2258
2259	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2260	if (m == NULL)
2261		return (ENOBUFS);
2262
2263	/*
2264	 * Move the data pointer up so that the incoming data packet
2265	 * will be 32-bit aligned.
2266	 */
2267	m->m_data += RFA_ALIGNMENT_FUDGE;
2268
2269	/*
2270	 * Get a pointer to the base of the mbuf cluster and move
2271	 * data start past it.
2272	 */
2273	rfa = mtod(m, struct fxp_rfa *);
2274	m->m_data += sc->rfa_size;
2275	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2276
2277	rfa->rfa_status = 0;
2278	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2279	rfa->actual_size = 0;
2280
2281	/*
2282	 * Initialize the rest of the RFA.  Note that since the RFA
2283	 * is misaligned, we cannot store values directly.  We're thus
2284	 * using the le32enc() function which handles endianness and
2285	 * is also alignment-safe.
2286	 */
2287	le32enc(&rfa->link_addr, 0xffffffff);
2288	le32enc(&rfa->rbd_addr, 0xffffffff);
2289
2290	/* Map the RFA into DMA memory. */
2291	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2292	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2293	    &rxp->rx_addr, 0);
2294	if (error) {
2295		m_freem(m);
2296		return (error);
2297	}
2298
2299	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2300	tmp_map = sc->spare_map;
2301	sc->spare_map = rxp->rx_map;
2302	rxp->rx_map = tmp_map;
2303	rxp->rx_mbuf = m;
2304
2305	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2306	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307
2308	/*
2309	 * If there are other buffers already on the list, attach this
2310	 * one to the end by fixing up the tail to point to this one.
2311	 */
2312	if (sc->fxp_desc.rx_head != NULL) {
2313		p_rx = sc->fxp_desc.rx_tail;
2314		p_rfa = (struct fxp_rfa *)
2315		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2316		p_rx->rx_next = rxp;
2317		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2318		p_rfa->rfa_control = 0;
2319		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2320		    BUS_DMASYNC_PREWRITE);
2321	} else {
2322		rxp->rx_next = NULL;
2323		sc->fxp_desc.rx_head = rxp;
2324	}
2325	sc->fxp_desc.rx_tail = rxp;
2326	return (0);
2327}
2328
2329static volatile int
2330fxp_miibus_readreg(device_t dev, int phy, int reg)
2331{
2332	struct fxp_softc *sc = device_get_softc(dev);
2333	int count = 10000;
2334	int value;
2335
2336	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2337	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2338
2339	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2340	    && count--)
2341		DELAY(10);
2342
2343	if (count <= 0)
2344		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2345
2346	return (value & 0xffff);
2347}
2348
2349static void
2350fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2351{
2352	struct fxp_softc *sc = device_get_softc(dev);
2353	int count = 10000;
2354
2355	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2356	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2357	    (value & 0xffff));
2358
2359	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2360	    count--)
2361		DELAY(10);
2362
2363	if (count <= 0)
2364		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2365}
2366
2367static int
2368fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2369{
2370	struct fxp_softc *sc = ifp->if_softc;
2371	struct ifreq *ifr = (struct ifreq *)data;
2372	struct mii_data *mii;
2373	int flag, mask, s, error = 0;
2374
2375	/*
2376	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2377	 * that by saying we're busy if the lock is already held.
2378	 */
2379	if (FXP_LOCKED(sc))
2380		return (EBUSY);
2381
2382	FXP_LOCK(sc);
2383	s = splimp();
2384
2385	switch (command) {
2386	case SIOCSIFFLAGS:
2387		if (ifp->if_flags & IFF_ALLMULTI)
2388			sc->flags |= FXP_FLAG_ALL_MCAST;
2389		else
2390			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2391
2392		/*
2393		 * If interface is marked up and not running, then start it.
2394		 * If it is marked down and running, stop it.
2395		 * XXX If it's up then re-initialize it. This is so flags
2396		 * such as IFF_PROMISC are handled.
2397		 */
2398		if (ifp->if_flags & IFF_UP) {
2399			fxp_init_body(sc);
2400		} else {
2401			if (ifp->if_flags & IFF_RUNNING)
2402				fxp_stop(sc);
2403		}
2404		break;
2405
2406	case SIOCADDMULTI:
2407	case SIOCDELMULTI:
2408		if (ifp->if_flags & IFF_ALLMULTI)
2409			sc->flags |= FXP_FLAG_ALL_MCAST;
2410		else
2411			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2412		/*
2413		 * Multicast list has changed; set the hardware filter
2414		 * accordingly.
2415		 */
2416		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2417			fxp_mc_setup(sc);
2418		/*
2419		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2420		 * again rather than else {}.
2421		 */
2422		if (sc->flags & FXP_FLAG_ALL_MCAST)
2423			fxp_init_body(sc);
2424		error = 0;
2425		break;
2426
2427	case SIOCSIFMEDIA:
2428	case SIOCGIFMEDIA:
2429		if (sc->miibus != NULL) {
2430			mii = device_get_softc(sc->miibus);
2431                        error = ifmedia_ioctl(ifp, ifr,
2432                            &mii->mii_media, command);
2433		} else {
2434                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2435		}
2436		break;
2437
2438	case SIOCSIFCAP:
2439		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2440		if (mask & IFCAP_POLLING)
2441			ifp->if_capenable ^= IFCAP_POLLING;
2442		if (mask & IFCAP_VLAN_MTU) {
2443			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2444			if (sc->revision != FXP_REV_82557)
2445				flag = FXP_FLAG_LONG_PKT_EN;
2446			else /* a hack to get long frames on the old chip */
2447				flag = FXP_FLAG_SAVE_BAD;
2448			sc->flags ^= flag;
2449			if (ifp->if_flags & IFF_UP)
2450				fxp_init_body(sc);
2451		}
2452		break;
2453
2454	default:
2455		/*
2456		 * ether_ioctl() will eventually call fxp_start() which
2457		 * will result in mutex recursion so drop it first.
2458		 */
2459		FXP_UNLOCK(sc);
2460		error = ether_ioctl(ifp, command, data);
2461	}
2462	if (FXP_LOCKED(sc))
2463		FXP_UNLOCK(sc);
2464	splx(s);
2465	return (error);
2466}
2467
2468/*
2469 * Fill in the multicast address list and return number of entries.
2470 */
2471static int
2472fxp_mc_addrs(struct fxp_softc *sc)
2473{
2474	struct fxp_cb_mcs *mcsp = sc->mcsp;
2475	struct ifnet *ifp = sc->ifp;
2476	struct ifmultiaddr *ifma;
2477	int nmcasts;
2478
2479	nmcasts = 0;
2480	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2481#if __FreeBSD_version < 500000
2482		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2483#else
2484		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2485#endif
2486			if (ifma->ifma_addr->sa_family != AF_LINK)
2487				continue;
2488			if (nmcasts >= MAXMCADDR) {
2489				sc->flags |= FXP_FLAG_ALL_MCAST;
2490				nmcasts = 0;
2491				break;
2492			}
2493			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2494			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2495			nmcasts++;
2496		}
2497	}
2498	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2499	return (nmcasts);
2500}
2501
2502/*
2503 * Program the multicast filter.
2504 *
2505 * We have an artificial restriction that the multicast setup command
2506 * must be the first command in the chain, so we take steps to ensure
2507 * this. By requiring this, it allows us to keep up the performance of
2508 * the pre-initialized command ring (esp. link pointers) by not actually
2509 * inserting the mcsetup command in the ring - i.e. its link pointer
2510 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2511 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2512 * lead into the regular TxCB ring when it completes.
2513 *
2514 * This function must be called at splimp.
2515 */
2516static void
2517fxp_mc_setup(struct fxp_softc *sc)
2518{
2519	struct fxp_cb_mcs *mcsp = sc->mcsp;
2520	struct ifnet *ifp = sc->ifp;
2521	struct fxp_tx *txp;
2522	int count;
2523
2524	FXP_LOCK_ASSERT(sc, MA_OWNED);
2525	/*
2526	 * If there are queued commands, we must wait until they are all
2527	 * completed. If we are already waiting, then add a NOP command
2528	 * with interrupt option so that we're notified when all commands
2529	 * have been completed - fxp_start() ensures that no additional
2530	 * TX commands will be added when need_mcsetup is true.
2531	 */
2532	if (sc->tx_queued) {
2533		/*
2534		 * need_mcsetup will be true if we are already waiting for the
2535		 * NOP command to be completed (see below). In this case, bail.
2536		 */
2537		if (sc->need_mcsetup)
2538			return;
2539		sc->need_mcsetup = 1;
2540
2541		/*
2542		 * Add a NOP command with interrupt so that we are notified
2543		 * when all TX commands have been processed.
2544		 */
2545		txp = sc->fxp_desc.tx_last->tx_next;
2546		txp->tx_mbuf = NULL;
2547		txp->tx_cb->cb_status = 0;
2548		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2549		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2550		/*
2551		 * Advance the end of list forward.
2552		 */
2553		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2554		    htole16(~FXP_CB_COMMAND_S);
2555		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2556		sc->fxp_desc.tx_last = txp;
2557		sc->tx_queued++;
2558		/*
2559		 * Issue a resume in case the CU has just suspended.
2560		 */
2561		fxp_scb_wait(sc);
2562		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2563		/*
2564		 * Set a 5 second timer just in case we don't hear from the
2565		 * card again.
2566		 */
2567		ifp->if_timer = 5;
2568
2569		return;
2570	}
2571	sc->need_mcsetup = 0;
2572
2573	/*
2574	 * Initialize multicast setup descriptor.
2575	 */
2576	mcsp->cb_status = 0;
2577	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2578	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2579	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2580	txp = &sc->fxp_desc.mcs_tx;
2581	txp->tx_mbuf = NULL;
2582	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2583	txp->tx_next = sc->fxp_desc.tx_list;
2584	(void) fxp_mc_addrs(sc);
2585	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2586	sc->tx_queued = 1;
2587
2588	/*
2589	 * Wait until command unit is not active. This should never
2590	 * be the case when nothing is queued, but make sure anyway.
2591	 */
2592	count = 100;
2593	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2594	    FXP_SCB_CUS_ACTIVE && --count)
2595		DELAY(10);
2596	if (count == 0) {
2597		device_printf(sc->dev, "command queue timeout\n");
2598		return;
2599	}
2600
2601	/*
2602	 * Start the multicast setup command.
2603	 */
2604	fxp_scb_wait(sc);
2605	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2606	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2607	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2608
2609	ifp->if_timer = 2;
2610	return;
2611}
2612
2613static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2614static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2615static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2616static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2617static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2618static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2619static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2620
2621#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2622
2623struct ucode {
2624	uint32_t	revision;
2625	uint32_t	*ucode;
2626	int		length;
2627	u_short		int_delay_offset;
2628	u_short		bundle_max_offset;
2629} ucode_table[] = {
2630	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2631	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2632	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2633	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2634	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2635	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2636	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2637	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2638	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2639	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2640	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2641	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2642	{ 0, NULL, 0, 0, 0 }
2643};
2644
2645static void
2646fxp_load_ucode(struct fxp_softc *sc)
2647{
2648	struct ucode *uc;
2649	struct fxp_cb_ucode *cbp;
2650	int i;
2651
2652	for (uc = ucode_table; uc->ucode != NULL; uc++)
2653		if (sc->revision == uc->revision)
2654			break;
2655	if (uc->ucode == NULL)
2656		return;
2657	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2658	cbp->cb_status = 0;
2659	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2660	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2661	for (i = 0; i < uc->length; i++)
2662		cbp->ucode[i] = htole32(uc->ucode[i]);
2663	if (uc->int_delay_offset)
2664		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2665		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2666	if (uc->bundle_max_offset)
2667		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2668		    htole16(sc->tunable_bundle_max);
2669	/*
2670	 * Download the ucode to the chip.
2671	 */
2672	fxp_scb_wait(sc);
2673	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2674	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2675	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2676	/* ...and wait for it to complete. */
2677	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2678	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2679	device_printf(sc->dev,
2680	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2681	    sc->tunable_int_delay,
2682	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2683	sc->flags |= FXP_FLAG_UCODE;
2684}
2685
2686static int
2687sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2688{
2689	int error, value;
2690
2691	value = *(int *)arg1;
2692	error = sysctl_handle_int(oidp, &value, 0, req);
2693	if (error || !req->newptr)
2694		return (error);
2695	if (value < low || value > high)
2696		return (EINVAL);
2697	*(int *)arg1 = value;
2698	return (0);
2699}
2700
2701/*
2702 * Interrupt delay is expressed in microseconds, a multiplier is used
2703 * to convert this to the appropriate clock ticks before using.
2704 */
2705static int
2706sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2707{
2708	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2709}
2710
2711static int
2712sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2713{
2714	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2715}
2716