if_fxp.c revision 147038
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 147038 2005-06-06 02:12:12Z brooks $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	int i, rid, m1, m2, prefer_iomap;
377	int error, s;
378
379	error = 0;
380	sc = device_get_softc(dev);
381	sc->dev = dev;
382	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384	    MTX_DEF);
385	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386	    fxp_serial_ifmedia_sts);
387
388	s = splimp();
389
390	/*
391	 * Enable bus mastering.
392	 */
393	pci_enable_busmaster(dev);
394	val = pci_read_config(dev, PCIR_COMMAND, 2);
395
396	/*
397	 * Figure out which we should try first - memory mapping or i/o mapping?
398	 * We default to memory mapping. Then we accept an override from the
399	 * command line. Then we check to see which one is enabled.
400	 */
401	m1 = PCIM_CMD_MEMEN;
402	m2 = PCIM_CMD_PORTEN;
403	prefer_iomap = 0;
404	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406		m1 = PCIM_CMD_PORTEN;
407		m2 = PCIM_CMD_MEMEN;
408	}
409
410	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413	if (sc->mem == NULL) {
414		sc->rtp =
415		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                            RF_ACTIVE);
419	}
420
421	if (!sc->mem) {
422		error = ENXIO;
423		goto fail;
424        }
425	if (bootverbose) {
426		device_printf(dev, "using %s space register mapping\n",
427		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428	}
429
430	sc->sc_st = rman_get_bustag(sc->mem);
431	sc->sc_sh = rman_get_bushandle(sc->mem);
432
433	/*
434	 * Allocate our interrupt.
435	 */
436	rid = 0;
437	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438				 RF_SHAREABLE | RF_ACTIVE);
439	if (sc->irq == NULL) {
440		device_printf(dev, "could not map interrupt\n");
441		error = ENXIO;
442		goto fail;
443	}
444
445	/*
446	 * Reset to a stable state.
447	 */
448	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449	DELAY(10);
450
451	/*
452	 * Find out how large of an SEEPROM we have.
453	 */
454	fxp_autosize_eeprom(sc);
455
456	/*
457	 * Find out the chip revision; lump all 82557 revs together.
458	 */
459	fxp_read_eeprom(sc, &data, 5, 1);
460	if ((data >> 8) == 1)
461		sc->revision = FXP_REV_82557;
462	else
463		sc->revision = pci_get_revid(dev);
464
465	/*
466	 * Determine whether we must use the 503 serial interface.
467	 */
468	fxp_read_eeprom(sc, &data, 6, 1);
469	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470	    && (data & FXP_PHY_SERIAL_ONLY))
471		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472
473	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477	    "FXP driver receive interrupt microcode bundling delay");
478	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482	    "FXP driver receive interrupt microcode bundle size limit");
483	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486	    "FXP RNR events");
487	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490	    "FXP flow control disabled");
491
492	/*
493	 * Pull in device tunables.
494	 */
495	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497	sc->tunable_noflow = 1;
498	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499	    "int_delay", &sc->tunable_int_delay);
500	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501	    "bundle_max", &sc->tunable_bundle_max);
502	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503	    "noflow", &sc->tunable_noflow);
504	sc->rnr = 0;
505
506	/*
507	 * Enable workarounds for certain chip revision deficiencies.
508	 *
509	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510	 * some systems based a normal 82559 design, have a defect where
511	 * the chip can cause a PCI protocol violation if it receives
512	 * a CU_RESUME command when it is entering the IDLE state.  The
513	 * workaround is to disable Dynamic Standby Mode, so the chip never
514	 * deasserts CLKRUN#, and always remains in an active state.
515	 *
516	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517	 */
518	i = pci_get_device(dev);
519	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520	    sc->revision >= FXP_REV_82559_A0) {
521		fxp_read_eeprom(sc, &data, 10, 1);
522		if (data & 0x02) {			/* STB enable */
523			uint16_t cksum;
524			int i;
525
526			device_printf(dev,
527			    "Disabling dynamic standby mode in EEPROM\n");
528			data &= ~0x02;
529			fxp_write_eeprom(sc, &data, 10, 1);
530			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531			cksum = 0;
532			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533				fxp_read_eeprom(sc, &data, i, 1);
534				cksum += data;
535			}
536			i = (1 << sc->eeprom_size) - 1;
537			cksum = 0xBABA - cksum;
538			fxp_read_eeprom(sc, &data, i, 1);
539			fxp_write_eeprom(sc, &cksum, i, 1);
540			device_printf(dev,
541			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542			    i, data, cksum);
543#if 1
544			/*
545			 * If the user elects to continue, try the software
546			 * workaround, as it is better than nothing.
547			 */
548			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549#endif
550		}
551	}
552
553	/*
554	 * If we are not a 82557 chip, we can enable extended features.
555	 */
556	if (sc->revision != FXP_REV_82557) {
557		/*
558		 * If MWI is enabled in the PCI configuration, and there
559		 * is a valid cacheline size (8 or 16 dwords), then tell
560		 * the board to turn on MWI.
561		 */
562		if (val & PCIM_CMD_MWRICEN &&
563		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564			sc->flags |= FXP_FLAG_MWI_ENABLE;
565
566		/* turn on the extended TxCB feature */
567		sc->flags |= FXP_FLAG_EXT_TXCB;
568
569		/* enable reception of long frames for VLAN */
570		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571	} else {
572		/* a hack to get long VLAN frames on a 82557 */
573		sc->flags |= FXP_FLAG_SAVE_BAD;
574	}
575
576	/*
577	 * Enable use of extended RFDs and TCBs for 82550
578	 * and later chips. Note: we need extended TXCB support
579	 * too, but that's already enabled by the code above.
580	 * Be careful to do this only on the right devices.
581	 */
582	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
583	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
584	    || sc->revision == FXP_REV_82551_10) {
585		sc->rfa_size = sizeof (struct fxp_rfa);
586		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
587		sc->flags |= FXP_FLAG_EXT_RFA;
588	} else {
589		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
590		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
591	}
592
593	/*
594	 * Allocate DMA tags and DMA safe memory.
595	 */
596	sc->maxtxseg = FXP_NTXSEG;
597	if (sc->flags & FXP_FLAG_EXT_RFA)
598		sc->maxtxseg--;
599	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
600	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
601	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
602	    &sc->fxp_mtag);
603	if (error) {
604		device_printf(dev, "could not allocate dma tag\n");
605		goto fail;
606	}
607
608	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
609	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
610	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
611	    &sc->fxp_stag);
612	if (error) {
613		device_printf(dev, "could not allocate dma tag\n");
614		goto fail;
615	}
616
617	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
618	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
619	if (error)
620		goto fail;
621	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
622	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
623	if (error) {
624		device_printf(dev, "could not map the stats buffer\n");
625		goto fail;
626	}
627
628	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
629	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
630	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
631	if (error) {
632		device_printf(dev, "could not allocate dma tag\n");
633		goto fail;
634	}
635
636	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
637	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
638	if (error)
639		goto fail;
640
641	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
642	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
643	    &sc->fxp_desc.cbl_addr, 0);
644	if (error) {
645		device_printf(dev, "could not map DMA memory\n");
646		goto fail;
647	}
648
649	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
650	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
651	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
652	    &sc->mcs_tag);
653	if (error) {
654		device_printf(dev, "could not allocate dma tag\n");
655		goto fail;
656	}
657
658	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
659	    BUS_DMA_NOWAIT, &sc->mcs_map);
660	if (error)
661		goto fail;
662	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
663	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
664	if (error) {
665		device_printf(dev, "can't map the multicast setup command\n");
666		goto fail;
667	}
668
669	/*
670	 * Pre-allocate the TX DMA maps and setup the pointers to
671	 * the TX command blocks.
672	 */
673	txp = sc->fxp_desc.tx_list;
674	tcbp = sc->fxp_desc.cbl_list;
675	for (i = 0; i < FXP_NTXCB; i++) {
676		txp[i].tx_cb = tcbp + i;
677		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
678		if (error) {
679			device_printf(dev, "can't create DMA map for TX\n");
680			goto fail;
681		}
682	}
683	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
684	if (error) {
685		device_printf(dev, "can't create spare DMA map\n");
686		goto fail;
687	}
688
689	/*
690	 * Pre-allocate our receive buffers.
691	 */
692	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
693	for (i = 0; i < FXP_NRFABUFS; i++) {
694		rxp = &sc->fxp_desc.rx_list[i];
695		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
696		if (error) {
697			device_printf(dev, "can't create DMA map for RX\n");
698			goto fail;
699		}
700		if (fxp_add_rfabuf(sc, rxp) != 0) {
701			error = ENOMEM;
702			goto fail;
703		}
704	}
705
706	/*
707	 * Read MAC address.
708	 */
709	fxp_read_eeprom(sc, myea, 0, 3);
710	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
711	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
712	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
713	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
714	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
715	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
716	if (bootverbose) {
717		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
718		    pci_get_vendor(dev), pci_get_device(dev),
719		    pci_get_subvendor(dev), pci_get_subdevice(dev),
720		    pci_get_revid(dev));
721		fxp_read_eeprom(sc, &data, 10, 1);
722		device_printf(dev, "Dynamic Standby mode is %s\n",
723		    data & 0x02 ? "enabled" : "disabled");
724	}
725
726	/*
727	 * If this is only a 10Mbps device, then there is no MII, and
728	 * the PHY will use a serial interface instead.
729	 *
730	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
731	 * doesn't have a programming interface of any sort.  The
732	 * media is sensed automatically based on how the link partner
733	 * is configured.  This is, in essence, manual configuration.
734	 */
735	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
736		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
737		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
738	} else {
739		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
740		    fxp_ifmedia_sts)) {
741	                device_printf(dev, "MII without any PHY!\n");
742			error = ENXIO;
743			goto fail;
744		}
745	}
746
747	ifp = &sc->arpcom.ac_if;
748	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
749	ifp->if_baudrate = 100000000;
750	ifp->if_init = fxp_init;
751	ifp->if_softc = sc;
752	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
753	ifp->if_ioctl = fxp_ioctl;
754	ifp->if_start = fxp_start;
755	ifp->if_watchdog = fxp_watchdog;
756
757	ifp->if_capabilities = ifp->if_capenable = 0;
758
759	/* Enable checksum offload for 82550 or better chips */
760	if (sc->flags & FXP_FLAG_EXT_RFA) {
761		ifp->if_hwassist = FXP_CSUM_FEATURES;
762		ifp->if_capabilities |= IFCAP_HWCSUM;
763		ifp->if_capenable |= IFCAP_HWCSUM;
764	}
765
766#ifdef DEVICE_POLLING
767	/* Inform the world we support polling. */
768	ifp->if_capabilities |= IFCAP_POLLING;
769	ifp->if_capenable |= IFCAP_POLLING;
770#endif
771
772	/*
773	 * Attach the interface.
774	 */
775	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
776
777	/*
778	 * Tell the upper layer(s) we support long frames.
779	 * Must appear after the call to ether_ifattach() because
780	 * ether_ifattach() sets ifi_hdrlen to the default value.
781	 */
782	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
783	ifp->if_capabilities |= IFCAP_VLAN_MTU;
784	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
785
786	/*
787	 * Let the system queue as many packets as we have available
788	 * TX descriptors.
789	 */
790	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
791	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
792	IFQ_SET_READY(&ifp->if_snd);
793
794	/*
795	 * Hook our interrupt after all initialization is complete.
796	 */
797	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
798			       fxp_intr, sc, &sc->ih);
799	if (error) {
800		device_printf(dev, "could not setup irq\n");
801		ether_ifdetach(&sc->arpcom.ac_if);
802		goto fail;
803	}
804
805fail:
806	splx(s);
807	if (error)
808		fxp_release(sc);
809	return (error);
810}
811
812/*
813 * Release all resources.  The softc lock should not be held and the
814 * interrupt should already be torn down.
815 */
816static void
817fxp_release(struct fxp_softc *sc)
818{
819	struct fxp_rx *rxp;
820	struct fxp_tx *txp;
821	int i;
822
823	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
824	KASSERT(sc->ih == NULL,
825	    ("fxp_release() called with intr handle still active"));
826	if (sc->miibus)
827		device_delete_child(sc->dev, sc->miibus);
828	bus_generic_detach(sc->dev);
829	ifmedia_removeall(&sc->sc_media);
830	if (sc->fxp_desc.cbl_list) {
831		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
832		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
833		    sc->cbl_map);
834	}
835	if (sc->fxp_stats) {
836		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
837		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
838	}
839	if (sc->mcsp) {
840		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
841		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
842	}
843	if (sc->irq)
844		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
845	if (sc->mem)
846		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
847	if (sc->fxp_mtag) {
848		for (i = 0; i < FXP_NRFABUFS; i++) {
849			rxp = &sc->fxp_desc.rx_list[i];
850			if (rxp->rx_mbuf != NULL) {
851				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
852				    BUS_DMASYNC_POSTREAD);
853				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
854				m_freem(rxp->rx_mbuf);
855			}
856			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
857		}
858		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
859		for (i = 0; i < FXP_NTXCB; i++) {
860			txp = &sc->fxp_desc.tx_list[i];
861			if (txp->tx_mbuf != NULL) {
862				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
863				    BUS_DMASYNC_POSTWRITE);
864				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
865				m_freem(txp->tx_mbuf);
866			}
867			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
868		}
869		bus_dma_tag_destroy(sc->fxp_mtag);
870	}
871	if (sc->fxp_stag)
872		bus_dma_tag_destroy(sc->fxp_stag);
873	if (sc->cbl_tag)
874		bus_dma_tag_destroy(sc->cbl_tag);
875	if (sc->mcs_tag)
876		bus_dma_tag_destroy(sc->mcs_tag);
877
878	mtx_destroy(&sc->sc_mtx);
879}
880
881/*
882 * Detach interface.
883 */
884static int
885fxp_detach(device_t dev)
886{
887	struct fxp_softc *sc = device_get_softc(dev);
888	int s;
889
890	FXP_LOCK(sc);
891	s = splimp();
892
893	sc->suspended = 1;	/* Do same thing as we do for suspend */
894	/*
895	 * Close down routes etc.
896	 */
897	ether_ifdetach(&sc->arpcom.ac_if);
898
899	/*
900	 * Stop DMA and drop transmit queue, but disable interrupts first.
901	 */
902	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
903	fxp_stop(sc);
904	FXP_UNLOCK(sc);
905
906	/*
907	 * Unhook interrupt before dropping lock. This is to prevent
908	 * races with fxp_intr().
909	 */
910	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
911	sc->ih = NULL;
912
913	splx(s);
914
915	/* Release our allocated resources. */
916	fxp_release(sc);
917	return (0);
918}
919
920/*
921 * Device shutdown routine. Called at system shutdown after sync. The
922 * main purpose of this routine is to shut off receiver DMA so that
923 * kernel memory doesn't get clobbered during warmboot.
924 */
925static int
926fxp_shutdown(device_t dev)
927{
928	/*
929	 * Make sure that DMA is disabled prior to reboot. Not doing
930	 * do could allow DMA to corrupt kernel memory during the
931	 * reboot before the driver initializes.
932	 */
933	fxp_stop((struct fxp_softc *) device_get_softc(dev));
934	return (0);
935}
936
937/*
938 * Device suspend routine.  Stop the interface and save some PCI
939 * settings in case the BIOS doesn't restore them properly on
940 * resume.
941 */
942static int
943fxp_suspend(device_t dev)
944{
945	struct fxp_softc *sc = device_get_softc(dev);
946	int s;
947
948	FXP_LOCK(sc);
949	s = splimp();
950
951	fxp_stop(sc);
952
953	sc->suspended = 1;
954
955	FXP_UNLOCK(sc);
956	splx(s);
957	return (0);
958}
959
960/*
961 * Device resume routine.  Restore some PCI settings in case the BIOS
962 * doesn't, re-enable busmastering, and restart the interface if
963 * appropriate.
964 */
965static int
966fxp_resume(device_t dev)
967{
968	struct fxp_softc *sc = device_get_softc(dev);
969	struct ifnet *ifp = &sc->sc_if;
970	uint16_t pci_command;
971	int s;
972
973	FXP_LOCK(sc);
974	s = splimp();
975
976	/* reenable busmastering */
977	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
978	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
979	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
980
981	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
982	DELAY(10);
983
984	/* reinitialize interface if necessary */
985	if (ifp->if_flags & IFF_UP)
986		fxp_init_body(sc);
987
988	sc->suspended = 0;
989
990	FXP_UNLOCK(sc);
991	splx(s);
992	return (0);
993}
994
995static void
996fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
997{
998	uint16_t reg;
999	int x;
1000
1001	/*
1002	 * Shift in data.
1003	 */
1004	for (x = 1 << (length - 1); x; x >>= 1) {
1005		if (data & x)
1006			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1007		else
1008			reg = FXP_EEPROM_EECS;
1009		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1010		DELAY(1);
1011		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1012		DELAY(1);
1013		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1014		DELAY(1);
1015	}
1016}
1017
1018/*
1019 * Read from the serial EEPROM. Basically, you manually shift in
1020 * the read opcode (one bit at a time) and then shift in the address,
1021 * and then you shift out the data (all of this one bit at a time).
1022 * The word size is 16 bits, so you have to provide the address for
1023 * every 16 bits of data.
1024 */
1025static uint16_t
1026fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1027{
1028	uint16_t reg, data;
1029	int x;
1030
1031	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1032	/*
1033	 * Shift in read opcode.
1034	 */
1035	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1036	/*
1037	 * Shift in address.
1038	 */
1039	data = 0;
1040	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1041		if (offset & x)
1042			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1043		else
1044			reg = FXP_EEPROM_EECS;
1045		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1046		DELAY(1);
1047		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1048		DELAY(1);
1049		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1050		DELAY(1);
1051		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1052		data++;
1053		if (autosize && reg == 0) {
1054			sc->eeprom_size = data;
1055			break;
1056		}
1057	}
1058	/*
1059	 * Shift out data.
1060	 */
1061	data = 0;
1062	reg = FXP_EEPROM_EECS;
1063	for (x = 1 << 15; x; x >>= 1) {
1064		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1065		DELAY(1);
1066		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1067			data |= x;
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1069		DELAY(1);
1070	}
1071	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1072	DELAY(1);
1073
1074	return (data);
1075}
1076
1077static void
1078fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1079{
1080	int i;
1081
1082	/*
1083	 * Erase/write enable.
1084	 */
1085	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1086	fxp_eeprom_shiftin(sc, 0x4, 3);
1087	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1088	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1089	DELAY(1);
1090	/*
1091	 * Shift in write opcode, address, data.
1092	 */
1093	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1094	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1095	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1096	fxp_eeprom_shiftin(sc, data, 16);
1097	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1098	DELAY(1);
1099	/*
1100	 * Wait for EEPROM to finish up.
1101	 */
1102	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1103	DELAY(1);
1104	for (i = 0; i < 1000; i++) {
1105		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1106			break;
1107		DELAY(50);
1108	}
1109	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1110	DELAY(1);
1111	/*
1112	 * Erase/write disable.
1113	 */
1114	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1115	fxp_eeprom_shiftin(sc, 0x4, 3);
1116	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1117	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1118	DELAY(1);
1119}
1120
1121/*
1122 * From NetBSD:
1123 *
1124 * Figure out EEPROM size.
1125 *
1126 * 559's can have either 64-word or 256-word EEPROMs, the 558
1127 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1128 * talks about the existance of 16 to 256 word EEPROMs.
1129 *
1130 * The only known sizes are 64 and 256, where the 256 version is used
1131 * by CardBus cards to store CIS information.
1132 *
1133 * The address is shifted in msb-to-lsb, and after the last
1134 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1135 * after which follows the actual data. We try to detect this zero, by
1136 * probing the data-out bit in the EEPROM control register just after
1137 * having shifted in a bit. If the bit is zero, we assume we've
1138 * shifted enough address bits. The data-out should be tri-state,
1139 * before this, which should translate to a logical one.
1140 */
1141static void
1142fxp_autosize_eeprom(struct fxp_softc *sc)
1143{
1144
1145	/* guess maximum size of 256 words */
1146	sc->eeprom_size = 8;
1147
1148	/* autosize */
1149	(void) fxp_eeprom_getword(sc, 0, 1);
1150}
1151
1152static void
1153fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1154{
1155	int i;
1156
1157	for (i = 0; i < words; i++)
1158		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1159}
1160
1161static void
1162fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1163{
1164	int i;
1165
1166	for (i = 0; i < words; i++)
1167		fxp_eeprom_putword(sc, offset + i, data[i]);
1168}
1169
1170/*
1171 * Grab the softc lock and call the real fxp_start_body() routine
1172 */
1173static void
1174fxp_start(struct ifnet *ifp)
1175{
1176	struct fxp_softc *sc = ifp->if_softc;
1177
1178	FXP_LOCK(sc);
1179	fxp_start_body(ifp);
1180	FXP_UNLOCK(sc);
1181}
1182
1183/*
1184 * Start packet transmission on the interface.
1185 * This routine must be called with the softc lock held, and is an
1186 * internal entry point only.
1187 */
1188static void
1189fxp_start_body(struct ifnet *ifp)
1190{
1191	struct fxp_softc *sc = ifp->if_softc;
1192	struct mbuf *mb_head;
1193	int error, txqueued;
1194
1195	FXP_LOCK_ASSERT(sc, MA_OWNED);
1196
1197	/*
1198	 * See if we need to suspend xmit until the multicast filter
1199	 * has been reprogrammed (which can only be done at the head
1200	 * of the command chain).
1201	 */
1202	if (sc->need_mcsetup)
1203		return;
1204
1205	/*
1206	 * We're finished if there is nothing more to add to the list or if
1207	 * we're all filled up with buffers to transmit.
1208	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1209	 *       a NOP command when needed.
1210	 */
1211	txqueued = 0;
1212	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1213	    sc->tx_queued < FXP_NTXCB - 1) {
1214
1215		/*
1216		 * Grab a packet to transmit.
1217		 */
1218		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1219		if (mb_head == NULL)
1220			break;
1221
1222		error = fxp_encap(sc, mb_head);
1223		if (error)
1224			break;
1225		txqueued = 1;
1226	}
1227	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1228
1229	/*
1230	 * We're finished. If we added to the list, issue a RESUME to get DMA
1231	 * going again if suspended.
1232	 */
1233	if (txqueued) {
1234		fxp_scb_wait(sc);
1235		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1236	}
1237}
1238
1239static int
1240fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1241{
1242	struct ifnet *ifp;
1243	struct mbuf *m;
1244	struct fxp_tx *txp;
1245	struct fxp_cb_tx *cbp;
1246	bus_dma_segment_t segs[FXP_NTXSEG];
1247	int chainlen, error, i, nseg;
1248
1249	FXP_LOCK_ASSERT(sc, MA_OWNED);
1250	ifp = &sc->sc_if;
1251
1252	/*
1253	 * Get pointer to next available tx desc.
1254	 */
1255	txp = sc->fxp_desc.tx_last->tx_next;
1256
1257	/*
1258	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1259	 * Ethernet Controller Family Open Source Software
1260	 * Developer Manual says:
1261	 *   Using software parsing is only allowed with legal
1262	 *   TCP/IP or UDP/IP packets.
1263	 *   ...
1264	 *   For all other datagrams, hardware parsing must
1265	 *   be used.
1266	 * Software parsing appears to truncate ICMP and
1267	 * fragmented UDP packets that contain one to three
1268	 * bytes in the second (and final) mbuf of the packet.
1269	 */
1270	if (sc->flags & FXP_FLAG_EXT_RFA)
1271		txp->tx_cb->ipcb_ip_activation_high =
1272		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1273
1274	/*
1275	 * Deal with TCP/IP checksum offload. Note that
1276	 * in order for TCP checksum offload to work,
1277	 * the pseudo header checksum must have already
1278	 * been computed and stored in the checksum field
1279	 * in the TCP header. The stack should have
1280	 * already done this for us.
1281	 */
1282	if (m_head->m_pkthdr.csum_flags) {
1283		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1284			txp->tx_cb->ipcb_ip_schedule =
1285			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1286			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1287				txp->tx_cb->ipcb_ip_schedule |=
1288				    FXP_IPCB_TCP_PACKET;
1289		}
1290
1291#ifdef FXP_IP_CSUM_WAR
1292		/*
1293		 * XXX The 82550 chip appears to have trouble
1294		 * dealing with IP header checksums in very small
1295		 * datagrams, namely fragments from 1 to 3 bytes
1296		 * in size. For example, say you want to transmit
1297		 * a UDP packet of 1473 bytes. The packet will be
1298		 * fragmented over two IP datagrams, the latter
1299		 * containing only one byte of data. The 82550 will
1300		 * botch the header checksum on the 1-byte fragment.
1301		 * As long as the datagram contains 4 or more bytes
1302		 * of data, you're ok.
1303		 *
1304                 * The following code attempts to work around this
1305		 * problem: if the datagram is less than 38 bytes
1306		 * in size (14 bytes ether header, 20 bytes IP header,
1307		 * plus 4 bytes of data), we punt and compute the IP
1308		 * header checksum by hand. This workaround doesn't
1309		 * work very well, however, since it can be fooled
1310		 * by things like VLAN tags and IP options that make
1311		 * the header sizes/offsets vary.
1312		 */
1313
1314		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1315			if (m_head->m_pkthdr.len < 38) {
1316				struct ip *ip;
1317				m_head->m_data += ETHER_HDR_LEN;
1318				ip = mtod(mb_head, struct ip *);
1319				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1320				m_head->m_data -= ETHER_HDR_LEN;
1321			} else {
1322				txp->tx_cb->ipcb_ip_activation_high =
1323				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1324				txp->tx_cb->ipcb_ip_schedule |=
1325				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1326			}
1327		}
1328#endif
1329	}
1330
1331	chainlen = 0;
1332	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1333		chainlen++;
1334	if (chainlen > sc->maxtxseg) {
1335		struct mbuf *mn;
1336
1337		/*
1338		 * We ran out of segments. We have to recopy this
1339		 * mbuf chain first. Bail out if we can't get the
1340		 * new buffers.
1341		 */
1342		mn = m_defrag(m_head, M_DONTWAIT);
1343		if (mn == NULL) {
1344			m_freem(m_head);
1345			return (-1);
1346		} else {
1347			m_head = mn;
1348		}
1349	}
1350
1351	/*
1352	 * Go through each of the mbufs in the chain and initialize
1353	 * the transmit buffer descriptors with the physical address
1354	 * and size of the mbuf.
1355	 */
1356	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1357	    m_head, segs, &nseg, 0);
1358	if (error) {
1359		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1360		m_freem(m_head);
1361		return (-1);
1362	}
1363
1364	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1365
1366	cbp = txp->tx_cb;
1367	for (i = 0; i < nseg; i++) {
1368		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1369		/*
1370		 * If this is an 82550/82551, then we're using extended
1371		 * TxCBs _and_ we're using checksum offload. This means
1372		 * that the TxCB is really an IPCB. One major difference
1373		 * between the two is that with plain extended TxCBs,
1374		 * the bottom half of the TxCB contains two entries from
1375		 * the TBD array, whereas IPCBs contain just one entry:
1376		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1377		 * checksum offload control bits. So to make things work
1378		 * right, we have to start filling in the TBD array
1379		 * starting from a different place depending on whether
1380		 * the chip is an 82550/82551 or not.
1381		 */
1382		if (sc->flags & FXP_FLAG_EXT_RFA) {
1383			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1384			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1385		} else {
1386			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1387			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1388		}
1389	}
1390	cbp->tbd_number = nseg;
1391
1392	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1393	txp->tx_mbuf = m_head;
1394	txp->tx_cb->cb_status = 0;
1395	txp->tx_cb->byte_count = 0;
1396	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1397		txp->tx_cb->cb_command =
1398		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1399		    FXP_CB_COMMAND_S);
1400	} else {
1401		txp->tx_cb->cb_command =
1402		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1403		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1404		/*
1405		 * Set a 5 second timer just in case we don't hear
1406		 * from the card again.
1407		 */
1408		ifp->if_timer = 5;
1409	}
1410	txp->tx_cb->tx_threshold = tx_threshold;
1411
1412	/*
1413	 * Advance the end of list forward.
1414	 */
1415
1416#ifdef __alpha__
1417	/*
1418	 * On platforms which can't access memory in 16-bit
1419	 * granularities, we must prevent the card from DMA'ing
1420	 * up the status while we update the command field.
1421	 * This could cause us to overwrite the completion status.
1422	 * XXX This is probably bogus and we're _not_ looking
1423	 * for atomicity here.
1424	 */
1425	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1426	    htole16(FXP_CB_COMMAND_S));
1427#else
1428	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1429#endif /*__alpha__*/
1430	sc->fxp_desc.tx_last = txp;
1431
1432	/*
1433	 * Advance the beginning of the list forward if there are
1434	 * no other packets queued (when nothing is queued, tx_first
1435	 * sits on the last TxCB that was sent out).
1436	 */
1437	if (sc->tx_queued == 0)
1438		sc->fxp_desc.tx_first = txp;
1439
1440	sc->tx_queued++;
1441
1442	/*
1443	 * Pass packet to bpf if there is a listener.
1444	 */
1445	BPF_MTAP(ifp, m_head);
1446	return (0);
1447}
1448
1449#ifdef DEVICE_POLLING
1450static poll_handler_t fxp_poll;
1451
1452static void
1453fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1454{
1455	struct fxp_softc *sc = ifp->if_softc;
1456	uint8_t statack;
1457
1458	FXP_LOCK(sc);
1459	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1460		ether_poll_deregister(ifp);
1461		cmd = POLL_DEREGISTER;
1462	}
1463	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1464		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1465		FXP_UNLOCK(sc);
1466		return;
1467	}
1468	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1469	    FXP_SCB_STATACK_FR;
1470	if (cmd == POLL_AND_CHECK_STATUS) {
1471		uint8_t tmp;
1472
1473		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1474		if (tmp == 0xff || tmp == 0) {
1475			FXP_UNLOCK(sc);
1476			return; /* nothing to do */
1477		}
1478		tmp &= ~statack;
1479		/* ack what we can */
1480		if (tmp != 0)
1481			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1482		statack |= tmp;
1483	}
1484	fxp_intr_body(sc, ifp, statack, count);
1485	FXP_UNLOCK(sc);
1486}
1487#endif /* DEVICE_POLLING */
1488
1489/*
1490 * Process interface interrupts.
1491 */
1492static void
1493fxp_intr(void *xsc)
1494{
1495	struct fxp_softc *sc = xsc;
1496	struct ifnet *ifp = &sc->sc_if;
1497	uint8_t statack;
1498
1499	FXP_LOCK(sc);
1500	if (sc->suspended) {
1501		FXP_UNLOCK(sc);
1502		return;
1503	}
1504
1505#ifdef DEVICE_POLLING
1506	if (ifp->if_flags & IFF_POLLING) {
1507		FXP_UNLOCK(sc);
1508		return;
1509	}
1510	if ((ifp->if_capenable & IFCAP_POLLING) &&
1511	    ether_poll_register(fxp_poll, ifp)) {
1512		/* disable interrupts */
1513		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1514		FXP_UNLOCK(sc);
1515		fxp_poll(ifp, 0, 1);
1516		return;
1517	}
1518#endif
1519	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1520		/*
1521		 * It should not be possible to have all bits set; the
1522		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1523		 * all bits are set, this may indicate that the card has
1524		 * been physically ejected, so ignore it.
1525		 */
1526		if (statack == 0xff) {
1527			FXP_UNLOCK(sc);
1528			return;
1529		}
1530
1531		/*
1532		 * First ACK all the interrupts in this pass.
1533		 */
1534		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1535		fxp_intr_body(sc, ifp, statack, -1);
1536	}
1537	FXP_UNLOCK(sc);
1538}
1539
1540static void
1541fxp_txeof(struct fxp_softc *sc)
1542{
1543	struct fxp_tx *txp;
1544
1545	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1546	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1547	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1548	    txp = txp->tx_next) {
1549		if (txp->tx_mbuf != NULL) {
1550			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1551			    BUS_DMASYNC_POSTWRITE);
1552			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1553			m_freem(txp->tx_mbuf);
1554			txp->tx_mbuf = NULL;
1555			/* clear this to reset csum offload bits */
1556			txp->tx_cb->tbd[0].tb_addr = 0;
1557		}
1558		sc->tx_queued--;
1559	}
1560	sc->fxp_desc.tx_first = txp;
1561	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1562}
1563
1564static void
1565fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1566    int count)
1567{
1568	struct mbuf *m;
1569	struct fxp_rx *rxp;
1570	struct fxp_rfa *rfa;
1571	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1572
1573	FXP_LOCK_ASSERT(sc, MA_OWNED);
1574	if (rnr)
1575		sc->rnr++;
1576#ifdef DEVICE_POLLING
1577	/* Pick up a deferred RNR condition if `count' ran out last time. */
1578	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1579		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1580		rnr = 1;
1581	}
1582#endif
1583
1584	/*
1585	 * Free any finished transmit mbuf chains.
1586	 *
1587	 * Handle the CNA event likt a CXTNO event. It used to
1588	 * be that this event (control unit not ready) was not
1589	 * encountered, but it is now with the SMPng modifications.
1590	 * The exact sequence of events that occur when the interface
1591	 * is brought up are different now, and if this event
1592	 * goes unhandled, the configuration/rxfilter setup sequence
1593	 * can stall for several seconds. The result is that no
1594	 * packets go out onto the wire for about 5 to 10 seconds
1595	 * after the interface is ifconfig'ed for the first time.
1596	 */
1597	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1598		fxp_txeof(sc);
1599
1600		ifp->if_timer = 0;
1601		if (sc->tx_queued == 0) {
1602			if (sc->need_mcsetup)
1603				fxp_mc_setup(sc);
1604		}
1605		/*
1606		 * Try to start more packets transmitting.
1607		 */
1608		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1609			fxp_start_body(ifp);
1610	}
1611
1612	/*
1613	 * Just return if nothing happened on the receive side.
1614	 */
1615	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1616		return;
1617
1618	/*
1619	 * Process receiver interrupts. If a no-resource (RNR)
1620	 * condition exists, get whatever packets we can and
1621	 * re-start the receiver.
1622	 *
1623	 * When using polling, we do not process the list to completion,
1624	 * so when we get an RNR interrupt we must defer the restart
1625	 * until we hit the last buffer with the C bit set.
1626	 * If we run out of cycles and rfa_headm has the C bit set,
1627	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1628	 * that the info will be used in the subsequent polling cycle.
1629	 */
1630	for (;;) {
1631		rxp = sc->fxp_desc.rx_head;
1632		m = rxp->rx_mbuf;
1633		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1634		    RFA_ALIGNMENT_FUDGE);
1635		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1636		    BUS_DMASYNC_POSTREAD);
1637
1638#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1639		if (count >= 0 && count-- == 0) {
1640			if (rnr) {
1641				/* Defer RNR processing until the next time. */
1642				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1643				rnr = 0;
1644			}
1645			break;
1646		}
1647#endif /* DEVICE_POLLING */
1648
1649		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1650			break;
1651
1652		/*
1653		 * Advance head forward.
1654		 */
1655		sc->fxp_desc.rx_head = rxp->rx_next;
1656
1657		/*
1658		 * Add a new buffer to the receive chain.
1659		 * If this fails, the old buffer is recycled
1660		 * instead.
1661		 */
1662		if (fxp_add_rfabuf(sc, rxp) == 0) {
1663			int total_len;
1664
1665			/*
1666			 * Fetch packet length (the top 2 bits of
1667			 * actual_size are flags set by the controller
1668			 * upon completion), and drop the packet in case
1669			 * of bogus length or CRC errors.
1670			 */
1671			total_len = le16toh(rfa->actual_size) & 0x3fff;
1672			if (total_len < sizeof(struct ether_header) ||
1673			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1674				sc->rfa_size ||
1675			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1676				m_freem(m);
1677				continue;
1678			}
1679
1680                        /* Do IP checksum checking. */
1681			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1682				if (rfa->rfax_csum_sts &
1683				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1684					m->m_pkthdr.csum_flags |=
1685					    CSUM_IP_CHECKED;
1686				if (rfa->rfax_csum_sts &
1687				    FXP_RFDX_CS_IP_CSUM_VALID)
1688					m->m_pkthdr.csum_flags |=
1689					    CSUM_IP_VALID;
1690				if ((rfa->rfax_csum_sts &
1691				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1692				    (rfa->rfax_csum_sts &
1693				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1694					m->m_pkthdr.csum_flags |=
1695					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1696					m->m_pkthdr.csum_data = 0xffff;
1697				}
1698			}
1699
1700			m->m_pkthdr.len = m->m_len = total_len;
1701			m->m_pkthdr.rcvif = ifp;
1702
1703			/*
1704			 * Drop locks before calling if_input() since it
1705			 * may re-enter fxp_start() in the netisr case.
1706			 * This would result in a lock reversal.  Better
1707			 * performance might be obtained by chaining all
1708			 * packets received, dropping the lock, and then
1709			 * calling if_input() on each one.
1710			 */
1711			FXP_UNLOCK(sc);
1712			(*ifp->if_input)(ifp, m);
1713			FXP_LOCK(sc);
1714		}
1715	}
1716	if (rnr) {
1717		fxp_scb_wait(sc);
1718		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1719		    sc->fxp_desc.rx_head->rx_addr);
1720		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1721	}
1722}
1723
1724/*
1725 * Update packet in/out/collision statistics. The i82557 doesn't
1726 * allow you to access these counters without doing a fairly
1727 * expensive DMA to get _all_ of the statistics it maintains, so
1728 * we do this operation here only once per second. The statistics
1729 * counters in the kernel are updated from the previous dump-stats
1730 * DMA and then a new dump-stats DMA is started. The on-chip
1731 * counters are zeroed when the DMA completes. If we can't start
1732 * the DMA immediately, we don't wait - we just prepare to read
1733 * them again next time.
1734 */
1735static void
1736fxp_tick(void *xsc)
1737{
1738	struct fxp_softc *sc = xsc;
1739	struct ifnet *ifp = &sc->sc_if;
1740	struct fxp_stats *sp = sc->fxp_stats;
1741	int s;
1742
1743	FXP_LOCK(sc);
1744	s = splimp();
1745	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1746	ifp->if_opackets += le32toh(sp->tx_good);
1747	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1748	if (sp->rx_good) {
1749		ifp->if_ipackets += le32toh(sp->rx_good);
1750		sc->rx_idle_secs = 0;
1751	} else {
1752		/*
1753		 * Receiver's been idle for another second.
1754		 */
1755		sc->rx_idle_secs++;
1756	}
1757	ifp->if_ierrors +=
1758	    le32toh(sp->rx_crc_errors) +
1759	    le32toh(sp->rx_alignment_errors) +
1760	    le32toh(sp->rx_rnr_errors) +
1761	    le32toh(sp->rx_overrun_errors);
1762	/*
1763	 * If any transmit underruns occured, bump up the transmit
1764	 * threshold by another 512 bytes (64 * 8).
1765	 */
1766	if (sp->tx_underruns) {
1767		ifp->if_oerrors += le32toh(sp->tx_underruns);
1768		if (tx_threshold < 192)
1769			tx_threshold += 64;
1770	}
1771
1772	/*
1773	 * Release any xmit buffers that have completed DMA. This isn't
1774	 * strictly necessary to do here, but it's advantagous for mbufs
1775	 * with external storage to be released in a timely manner rather
1776	 * than being defered for a potentially long time. This limits
1777	 * the delay to a maximum of one second.
1778	 */
1779	fxp_txeof(sc);
1780
1781	/*
1782	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1783	 * then assume the receiver has locked up and attempt to clear
1784	 * the condition by reprogramming the multicast filter. This is
1785	 * a work-around for a bug in the 82557 where the receiver locks
1786	 * up if it gets certain types of garbage in the syncronization
1787	 * bits prior to the packet header. This bug is supposed to only
1788	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1789	 * mode as well (perhaps due to a 10/100 speed transition).
1790	 */
1791	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1792		sc->rx_idle_secs = 0;
1793		fxp_mc_setup(sc);
1794	}
1795	/*
1796	 * If there is no pending command, start another stats
1797	 * dump. Otherwise punt for now.
1798	 */
1799	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1800		/*
1801		 * Start another stats dump.
1802		 */
1803		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1804		    BUS_DMASYNC_PREREAD);
1805		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1806	} else {
1807		/*
1808		 * A previous command is still waiting to be accepted.
1809		 * Just zero our copy of the stats and wait for the
1810		 * next timer event to update them.
1811		 */
1812		sp->tx_good = 0;
1813		sp->tx_underruns = 0;
1814		sp->tx_total_collisions = 0;
1815
1816		sp->rx_good = 0;
1817		sp->rx_crc_errors = 0;
1818		sp->rx_alignment_errors = 0;
1819		sp->rx_rnr_errors = 0;
1820		sp->rx_overrun_errors = 0;
1821	}
1822	if (sc->miibus != NULL)
1823		mii_tick(device_get_softc(sc->miibus));
1824
1825	/*
1826	 * Schedule another timeout one second from now.
1827	 */
1828	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1829	FXP_UNLOCK(sc);
1830	splx(s);
1831}
1832
1833/*
1834 * Stop the interface. Cancels the statistics updater and resets
1835 * the interface.
1836 */
1837static void
1838fxp_stop(struct fxp_softc *sc)
1839{
1840	struct ifnet *ifp = &sc->sc_if;
1841	struct fxp_tx *txp;
1842	int i;
1843
1844	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1845	ifp->if_timer = 0;
1846
1847#ifdef DEVICE_POLLING
1848	ether_poll_deregister(ifp);
1849#endif
1850	/*
1851	 * Cancel stats updater.
1852	 */
1853	callout_stop(&sc->stat_ch);
1854
1855	/*
1856	 * Issue software reset, which also unloads the microcode.
1857	 */
1858	sc->flags &= ~FXP_FLAG_UCODE;
1859	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1860	DELAY(50);
1861
1862	/*
1863	 * Release any xmit buffers.
1864	 */
1865	txp = sc->fxp_desc.tx_list;
1866	if (txp != NULL) {
1867		for (i = 0; i < FXP_NTXCB; i++) {
1868 			if (txp[i].tx_mbuf != NULL) {
1869				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1870				    BUS_DMASYNC_POSTWRITE);
1871				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1872				m_freem(txp[i].tx_mbuf);
1873				txp[i].tx_mbuf = NULL;
1874				/* clear this to reset csum offload bits */
1875				txp[i].tx_cb->tbd[0].tb_addr = 0;
1876			}
1877		}
1878	}
1879	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1880	sc->tx_queued = 0;
1881}
1882
1883/*
1884 * Watchdog/transmission transmit timeout handler. Called when a
1885 * transmission is started on the interface, but no interrupt is
1886 * received before the timeout. This usually indicates that the
1887 * card has wedged for some reason.
1888 */
1889static void
1890fxp_watchdog(struct ifnet *ifp)
1891{
1892	struct fxp_softc *sc = ifp->if_softc;
1893
1894	FXP_LOCK(sc);
1895	device_printf(sc->dev, "device timeout\n");
1896	ifp->if_oerrors++;
1897
1898	fxp_init_body(sc);
1899	FXP_UNLOCK(sc);
1900}
1901
1902/*
1903 * Acquire locks and then call the real initialization function.  This
1904 * is necessary because ether_ioctl() calls if_init() and this would
1905 * result in mutex recursion if the mutex was held.
1906 */
1907static void
1908fxp_init(void *xsc)
1909{
1910	struct fxp_softc *sc = xsc;
1911
1912	FXP_LOCK(sc);
1913	fxp_init_body(sc);
1914	FXP_UNLOCK(sc);
1915}
1916
1917/*
1918 * Perform device initialization. This routine must be called with the
1919 * softc lock held.
1920 */
1921static void
1922fxp_init_body(struct fxp_softc *sc)
1923{
1924	struct ifnet *ifp = &sc->sc_if;
1925	struct fxp_cb_config *cbp;
1926	struct fxp_cb_ias *cb_ias;
1927	struct fxp_cb_tx *tcbp;
1928	struct fxp_tx *txp;
1929	struct fxp_cb_mcs *mcsp;
1930	int i, prm, s;
1931
1932	FXP_LOCK_ASSERT(sc, MA_OWNED);
1933	s = splimp();
1934	/*
1935	 * Cancel any pending I/O
1936	 */
1937	fxp_stop(sc);
1938
1939	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1940
1941	/*
1942	 * Initialize base of CBL and RFA memory. Loading with zero
1943	 * sets it up for regular linear addressing.
1944	 */
1945	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1946	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1947
1948	fxp_scb_wait(sc);
1949	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1950
1951	/*
1952	 * Initialize base of dump-stats buffer.
1953	 */
1954	fxp_scb_wait(sc);
1955	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1956	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1957	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1958
1959	/*
1960	 * Attempt to load microcode if requested.
1961	 */
1962	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1963		fxp_load_ucode(sc);
1964
1965	/*
1966	 * Initialize the multicast address list.
1967	 */
1968	if (fxp_mc_addrs(sc)) {
1969		mcsp = sc->mcsp;
1970		mcsp->cb_status = 0;
1971		mcsp->cb_command =
1972		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1973		mcsp->link_addr = 0xffffffff;
1974		/*
1975	 	 * Start the multicast setup command.
1976		 */
1977		fxp_scb_wait(sc);
1978		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1979		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1980		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1981		/* ...and wait for it to complete. */
1982		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1983		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1984		    BUS_DMASYNC_POSTWRITE);
1985	}
1986
1987	/*
1988	 * We temporarily use memory that contains the TxCB list to
1989	 * construct the config CB. The TxCB list memory is rebuilt
1990	 * later.
1991	 */
1992	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1993
1994	/*
1995	 * This bcopy is kind of disgusting, but there are a bunch of must be
1996	 * zero and must be one bits in this structure and this is the easiest
1997	 * way to initialize them all to proper values.
1998	 */
1999	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2000
2001	cbp->cb_status =	0;
2002	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2003	    FXP_CB_COMMAND_EL);
2004	cbp->link_addr =	0xffffffff;	/* (no) next command */
2005	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2006	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2007	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2008	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2009	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2010	cbp->type_enable =	0;	/* actually reserved */
2011	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2012	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2013	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2014	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2015	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2016	cbp->late_scb =		0;	/* (don't) defer SCB update */
2017	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2018	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2019	cbp->ci_int =		1;	/* interrupt on CU idle */
2020	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2021	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2022	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2023	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2024	cbp->disc_short_rx =	!prm;	/* discard short packets */
2025	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2026	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2027	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2028	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2029	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2030	cbp->csma_dis =		0;	/* (don't) disable link */
2031	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2032	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2033	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2034	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2035	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2036	cbp->nsai =		1;	/* (don't) disable source addr insert */
2037	cbp->preamble_length =	2;	/* (7 byte) preamble */
2038	cbp->loopback =		0;	/* (don't) loopback */
2039	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2040	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2041	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2042	cbp->promiscuous =	prm;	/* promiscuous mode */
2043	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2044	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2045	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2046	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2047	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2048
2049	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2050	cbp->padding =		1;	/* (do) pad short tx packets */
2051	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2052	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2053	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2054	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2055					/* must set wake_en in PMCSR also */
2056	cbp->force_fdx =	0;	/* (don't) force full duplex */
2057	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2058	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2059	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2060	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2061
2062	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2063		/*
2064		 * The 82557 has no hardware flow control, the values
2065		 * below are the defaults for the chip.
2066		 */
2067		cbp->fc_delay_lsb =	0;
2068		cbp->fc_delay_msb =	0x40;
2069		cbp->pri_fc_thresh =	3;
2070		cbp->tx_fc_dis =	0;
2071		cbp->rx_fc_restop =	0;
2072		cbp->rx_fc_restart =	0;
2073		cbp->fc_filter =	0;
2074		cbp->pri_fc_loc =	1;
2075	} else {
2076		cbp->fc_delay_lsb =	0x1f;
2077		cbp->fc_delay_msb =	0x01;
2078		cbp->pri_fc_thresh =	3;
2079		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2080		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2081		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2082		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2083		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2084	}
2085
2086	/*
2087	 * Start the config command/DMA.
2088	 */
2089	fxp_scb_wait(sc);
2090	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2091	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2092	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2093	/* ...and wait for it to complete. */
2094	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2095	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2096
2097	/*
2098	 * Now initialize the station address. Temporarily use the TxCB
2099	 * memory area like we did above for the config CB.
2100	 */
2101	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2102	cb_ias->cb_status = 0;
2103	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2104	cb_ias->link_addr = 0xffffffff;
2105	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2106	    sizeof(sc->arpcom.ac_enaddr));
2107
2108	/*
2109	 * Start the IAS (Individual Address Setup) command/DMA.
2110	 */
2111	fxp_scb_wait(sc);
2112	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2113	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2114	/* ...and wait for it to complete. */
2115	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2116	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2117
2118	/*
2119	 * Initialize transmit control block (TxCB) list.
2120	 */
2121	txp = sc->fxp_desc.tx_list;
2122	tcbp = sc->fxp_desc.cbl_list;
2123	bzero(tcbp, FXP_TXCB_SZ);
2124	for (i = 0; i < FXP_NTXCB; i++) {
2125		txp[i].tx_mbuf = NULL;
2126		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2127		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2128		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2129		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2130		if (sc->flags & FXP_FLAG_EXT_TXCB)
2131			tcbp[i].tbd_array_addr =
2132			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2133		else
2134			tcbp[i].tbd_array_addr =
2135			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2136		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2137	}
2138	/*
2139	 * Set the suspend flag on the first TxCB and start the control
2140	 * unit. It will execute the NOP and then suspend.
2141	 */
2142	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2143	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2144	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2145	sc->tx_queued = 1;
2146
2147	fxp_scb_wait(sc);
2148	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2149
2150	/*
2151	 * Initialize receiver buffer area - RFA.
2152	 */
2153	fxp_scb_wait(sc);
2154	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2155	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2156
2157	/*
2158	 * Set current media.
2159	 */
2160	if (sc->miibus != NULL)
2161		mii_mediachg(device_get_softc(sc->miibus));
2162
2163	ifp->if_flags |= IFF_RUNNING;
2164	ifp->if_flags &= ~IFF_OACTIVE;
2165
2166	/*
2167	 * Enable interrupts.
2168	 */
2169#ifdef DEVICE_POLLING
2170	/*
2171	 * ... but only do that if we are not polling. And because (presumably)
2172	 * the default is interrupts on, we need to disable them explicitly!
2173	 */
2174	if ( ifp->if_flags & IFF_POLLING )
2175		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2176	else
2177#endif /* DEVICE_POLLING */
2178	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2179
2180	/*
2181	 * Start stats updater.
2182	 */
2183	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2184	splx(s);
2185}
2186
2187static int
2188fxp_serial_ifmedia_upd(struct ifnet *ifp)
2189{
2190
2191	return (0);
2192}
2193
2194static void
2195fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2196{
2197
2198	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2199}
2200
2201/*
2202 * Change media according to request.
2203 */
2204static int
2205fxp_ifmedia_upd(struct ifnet *ifp)
2206{
2207	struct fxp_softc *sc = ifp->if_softc;
2208	struct mii_data *mii;
2209
2210	mii = device_get_softc(sc->miibus);
2211	mii_mediachg(mii);
2212	return (0);
2213}
2214
2215/*
2216 * Notify the world which media we're using.
2217 */
2218static void
2219fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2220{
2221	struct fxp_softc *sc = ifp->if_softc;
2222	struct mii_data *mii;
2223
2224	mii = device_get_softc(sc->miibus);
2225	mii_pollstat(mii);
2226	ifmr->ifm_active = mii->mii_media_active;
2227	ifmr->ifm_status = mii->mii_media_status;
2228
2229	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2230		sc->cu_resume_bug = 1;
2231	else
2232		sc->cu_resume_bug = 0;
2233}
2234
2235/*
2236 * Add a buffer to the end of the RFA buffer list.
2237 * Return 0 if successful, 1 for failure. A failure results in
2238 * adding the 'oldm' (if non-NULL) on to the end of the list -
2239 * tossing out its old contents and recycling it.
2240 * The RFA struct is stuck at the beginning of mbuf cluster and the
2241 * data pointer is fixed up to point just past it.
2242 */
2243static int
2244fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2245{
2246	struct mbuf *m;
2247	struct fxp_rfa *rfa, *p_rfa;
2248	struct fxp_rx *p_rx;
2249	bus_dmamap_t tmp_map;
2250	int error;
2251
2252	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2253	if (m == NULL)
2254		return (ENOBUFS);
2255
2256	/*
2257	 * Move the data pointer up so that the incoming data packet
2258	 * will be 32-bit aligned.
2259	 */
2260	m->m_data += RFA_ALIGNMENT_FUDGE;
2261
2262	/*
2263	 * Get a pointer to the base of the mbuf cluster and move
2264	 * data start past it.
2265	 */
2266	rfa = mtod(m, struct fxp_rfa *);
2267	m->m_data += sc->rfa_size;
2268	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2269
2270	rfa->rfa_status = 0;
2271	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2272	rfa->actual_size = 0;
2273
2274	/*
2275	 * Initialize the rest of the RFA.  Note that since the RFA
2276	 * is misaligned, we cannot store values directly.  We're thus
2277	 * using the le32enc() function which handles endianness and
2278	 * is also alignment-safe.
2279	 */
2280	le32enc(&rfa->link_addr, 0xffffffff);
2281	le32enc(&rfa->rbd_addr, 0xffffffff);
2282
2283	/* Map the RFA into DMA memory. */
2284	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2285	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2286	    &rxp->rx_addr, 0);
2287	if (error) {
2288		m_freem(m);
2289		return (error);
2290	}
2291
2292	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2293	tmp_map = sc->spare_map;
2294	sc->spare_map = rxp->rx_map;
2295	rxp->rx_map = tmp_map;
2296	rxp->rx_mbuf = m;
2297
2298	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2299	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2300
2301	/*
2302	 * If there are other buffers already on the list, attach this
2303	 * one to the end by fixing up the tail to point to this one.
2304	 */
2305	if (sc->fxp_desc.rx_head != NULL) {
2306		p_rx = sc->fxp_desc.rx_tail;
2307		p_rfa = (struct fxp_rfa *)
2308		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2309		p_rx->rx_next = rxp;
2310		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2311		p_rfa->rfa_control = 0;
2312		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2313		    BUS_DMASYNC_PREWRITE);
2314	} else {
2315		rxp->rx_next = NULL;
2316		sc->fxp_desc.rx_head = rxp;
2317	}
2318	sc->fxp_desc.rx_tail = rxp;
2319	return (0);
2320}
2321
2322static volatile int
2323fxp_miibus_readreg(device_t dev, int phy, int reg)
2324{
2325	struct fxp_softc *sc = device_get_softc(dev);
2326	int count = 10000;
2327	int value;
2328
2329	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2330	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2331
2332	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2333	    && count--)
2334		DELAY(10);
2335
2336	if (count <= 0)
2337		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2338
2339	return (value & 0xffff);
2340}
2341
2342static void
2343fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2344{
2345	struct fxp_softc *sc = device_get_softc(dev);
2346	int count = 10000;
2347
2348	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2349	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2350	    (value & 0xffff));
2351
2352	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2353	    count--)
2354		DELAY(10);
2355
2356	if (count <= 0)
2357		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2358}
2359
2360static int
2361fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2362{
2363	struct fxp_softc *sc = ifp->if_softc;
2364	struct ifreq *ifr = (struct ifreq *)data;
2365	struct mii_data *mii;
2366	int flag, mask, s, error = 0;
2367
2368	/*
2369	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2370	 * that by saying we're busy if the lock is already held.
2371	 */
2372	if (FXP_LOCKED(sc))
2373		return (EBUSY);
2374
2375	FXP_LOCK(sc);
2376	s = splimp();
2377
2378	switch (command) {
2379	case SIOCSIFFLAGS:
2380		if (ifp->if_flags & IFF_ALLMULTI)
2381			sc->flags |= FXP_FLAG_ALL_MCAST;
2382		else
2383			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2384
2385		/*
2386		 * If interface is marked up and not running, then start it.
2387		 * If it is marked down and running, stop it.
2388		 * XXX If it's up then re-initialize it. This is so flags
2389		 * such as IFF_PROMISC are handled.
2390		 */
2391		if (ifp->if_flags & IFF_UP) {
2392			fxp_init_body(sc);
2393		} else {
2394			if (ifp->if_flags & IFF_RUNNING)
2395				fxp_stop(sc);
2396		}
2397		break;
2398
2399	case SIOCADDMULTI:
2400	case SIOCDELMULTI:
2401		if (ifp->if_flags & IFF_ALLMULTI)
2402			sc->flags |= FXP_FLAG_ALL_MCAST;
2403		else
2404			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2405		/*
2406		 * Multicast list has changed; set the hardware filter
2407		 * accordingly.
2408		 */
2409		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2410			fxp_mc_setup(sc);
2411		/*
2412		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2413		 * again rather than else {}.
2414		 */
2415		if (sc->flags & FXP_FLAG_ALL_MCAST)
2416			fxp_init_body(sc);
2417		error = 0;
2418		break;
2419
2420	case SIOCSIFMEDIA:
2421	case SIOCGIFMEDIA:
2422		if (sc->miibus != NULL) {
2423			mii = device_get_softc(sc->miibus);
2424                        error = ifmedia_ioctl(ifp, ifr,
2425                            &mii->mii_media, command);
2426		} else {
2427                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2428		}
2429		break;
2430
2431	case SIOCSIFCAP:
2432		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2433		if (mask & IFCAP_POLLING)
2434			ifp->if_capenable ^= IFCAP_POLLING;
2435		if (mask & IFCAP_VLAN_MTU) {
2436			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2437			if (sc->revision != FXP_REV_82557)
2438				flag = FXP_FLAG_LONG_PKT_EN;
2439			else /* a hack to get long frames on the old chip */
2440				flag = FXP_FLAG_SAVE_BAD;
2441			sc->flags ^= flag;
2442			if (ifp->if_flags & IFF_UP)
2443				fxp_init_body(sc);
2444		}
2445		break;
2446
2447	default:
2448		/*
2449		 * ether_ioctl() will eventually call fxp_start() which
2450		 * will result in mutex recursion so drop it first.
2451		 */
2452		FXP_UNLOCK(sc);
2453		error = ether_ioctl(ifp, command, data);
2454	}
2455	if (FXP_LOCKED(sc))
2456		FXP_UNLOCK(sc);
2457	splx(s);
2458	return (error);
2459}
2460
2461/*
2462 * Fill in the multicast address list and return number of entries.
2463 */
2464static int
2465fxp_mc_addrs(struct fxp_softc *sc)
2466{
2467	struct fxp_cb_mcs *mcsp = sc->mcsp;
2468	struct ifnet *ifp = &sc->sc_if;
2469	struct ifmultiaddr *ifma;
2470	int nmcasts;
2471
2472	nmcasts = 0;
2473	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2474#if __FreeBSD_version < 500000
2475		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2476#else
2477		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2478#endif
2479			if (ifma->ifma_addr->sa_family != AF_LINK)
2480				continue;
2481			if (nmcasts >= MAXMCADDR) {
2482				sc->flags |= FXP_FLAG_ALL_MCAST;
2483				nmcasts = 0;
2484				break;
2485			}
2486			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2487			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2488			nmcasts++;
2489		}
2490	}
2491	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2492	return (nmcasts);
2493}
2494
2495/*
2496 * Program the multicast filter.
2497 *
2498 * We have an artificial restriction that the multicast setup command
2499 * must be the first command in the chain, so we take steps to ensure
2500 * this. By requiring this, it allows us to keep up the performance of
2501 * the pre-initialized command ring (esp. link pointers) by not actually
2502 * inserting the mcsetup command in the ring - i.e. its link pointer
2503 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2504 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2505 * lead into the regular TxCB ring when it completes.
2506 *
2507 * This function must be called at splimp.
2508 */
2509static void
2510fxp_mc_setup(struct fxp_softc *sc)
2511{
2512	struct fxp_cb_mcs *mcsp = sc->mcsp;
2513	struct ifnet *ifp = &sc->sc_if;
2514	struct fxp_tx *txp;
2515	int count;
2516
2517	FXP_LOCK_ASSERT(sc, MA_OWNED);
2518	/*
2519	 * If there are queued commands, we must wait until they are all
2520	 * completed. If we are already waiting, then add a NOP command
2521	 * with interrupt option so that we're notified when all commands
2522	 * have been completed - fxp_start() ensures that no additional
2523	 * TX commands will be added when need_mcsetup is true.
2524	 */
2525	if (sc->tx_queued) {
2526		/*
2527		 * need_mcsetup will be true if we are already waiting for the
2528		 * NOP command to be completed (see below). In this case, bail.
2529		 */
2530		if (sc->need_mcsetup)
2531			return;
2532		sc->need_mcsetup = 1;
2533
2534		/*
2535		 * Add a NOP command with interrupt so that we are notified
2536		 * when all TX commands have been processed.
2537		 */
2538		txp = sc->fxp_desc.tx_last->tx_next;
2539		txp->tx_mbuf = NULL;
2540		txp->tx_cb->cb_status = 0;
2541		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2542		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2543		/*
2544		 * Advance the end of list forward.
2545		 */
2546		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2547		    htole16(~FXP_CB_COMMAND_S);
2548		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2549		sc->fxp_desc.tx_last = txp;
2550		sc->tx_queued++;
2551		/*
2552		 * Issue a resume in case the CU has just suspended.
2553		 */
2554		fxp_scb_wait(sc);
2555		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2556		/*
2557		 * Set a 5 second timer just in case we don't hear from the
2558		 * card again.
2559		 */
2560		ifp->if_timer = 5;
2561
2562		return;
2563	}
2564	sc->need_mcsetup = 0;
2565
2566	/*
2567	 * Initialize multicast setup descriptor.
2568	 */
2569	mcsp->cb_status = 0;
2570	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2571	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2572	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2573	txp = &sc->fxp_desc.mcs_tx;
2574	txp->tx_mbuf = NULL;
2575	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2576	txp->tx_next = sc->fxp_desc.tx_list;
2577	(void) fxp_mc_addrs(sc);
2578	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2579	sc->tx_queued = 1;
2580
2581	/*
2582	 * Wait until command unit is not active. This should never
2583	 * be the case when nothing is queued, but make sure anyway.
2584	 */
2585	count = 100;
2586	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2587	    FXP_SCB_CUS_ACTIVE && --count)
2588		DELAY(10);
2589	if (count == 0) {
2590		device_printf(sc->dev, "command queue timeout\n");
2591		return;
2592	}
2593
2594	/*
2595	 * Start the multicast setup command.
2596	 */
2597	fxp_scb_wait(sc);
2598	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2599	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2600	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2601
2602	ifp->if_timer = 2;
2603	return;
2604}
2605
2606static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2607static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2608static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2609static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2610static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2611static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2612static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2613
2614#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2615
2616struct ucode {
2617	uint32_t	revision;
2618	uint32_t	*ucode;
2619	int		length;
2620	u_short		int_delay_offset;
2621	u_short		bundle_max_offset;
2622} ucode_table[] = {
2623	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2624	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2625	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2626	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2627	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2628	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2629	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2630	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2631	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2632	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2633	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2634	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2635	{ 0, NULL, 0, 0, 0 }
2636};
2637
2638static void
2639fxp_load_ucode(struct fxp_softc *sc)
2640{
2641	struct ucode *uc;
2642	struct fxp_cb_ucode *cbp;
2643	int i;
2644
2645	for (uc = ucode_table; uc->ucode != NULL; uc++)
2646		if (sc->revision == uc->revision)
2647			break;
2648	if (uc->ucode == NULL)
2649		return;
2650	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2651	cbp->cb_status = 0;
2652	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2653	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2654	for (i = 0; i < uc->length; i++)
2655		cbp->ucode[i] = htole32(uc->ucode[i]);
2656	if (uc->int_delay_offset)
2657		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2658		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2659	if (uc->bundle_max_offset)
2660		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2661		    htole16(sc->tunable_bundle_max);
2662	/*
2663	 * Download the ucode to the chip.
2664	 */
2665	fxp_scb_wait(sc);
2666	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2667	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2668	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2669	/* ...and wait for it to complete. */
2670	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2671	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2672	device_printf(sc->dev,
2673	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2674	    sc->tunable_int_delay,
2675	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2676	sc->flags |= FXP_FLAG_UCODE;
2677}
2678
2679static int
2680sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2681{
2682	int error, value;
2683
2684	value = *(int *)arg1;
2685	error = sysctl_handle_int(oidp, &value, 0, req);
2686	if (error || !req->newptr)
2687		return (error);
2688	if (value < low || value > high)
2689		return (EINVAL);
2690	*(int *)arg1 = value;
2691	return (0);
2692}
2693
2694/*
2695 * Interrupt delay is expressed in microseconds, a multiplier is used
2696 * to convert this to the appropriate clock ticks before using.
2697 */
2698static int
2699sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2700{
2701	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2702}
2703
2704static int
2705sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2706{
2707	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2708}
2709