if_fxp.c revision 145368
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 145368 2005-04-21 19:34:57Z mux $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	int i, rid, m1, m2, prefer_iomap;
377	int error, s;
378
379	error = 0;
380	sc = device_get_softc(dev);
381	sc->dev = dev;
382	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384	    MTX_DEF);
385	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386	    fxp_serial_ifmedia_sts);
387
388	s = splimp();
389
390	/*
391	 * Enable bus mastering.
392	 */
393	pci_enable_busmaster(dev);
394	val = pci_read_config(dev, PCIR_COMMAND, 2);
395
396	/*
397	 * Figure out which we should try first - memory mapping or i/o mapping?
398	 * We default to memory mapping. Then we accept an override from the
399	 * command line. Then we check to see which one is enabled.
400	 */
401	m1 = PCIM_CMD_MEMEN;
402	m2 = PCIM_CMD_PORTEN;
403	prefer_iomap = 0;
404	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406		m1 = PCIM_CMD_PORTEN;
407		m2 = PCIM_CMD_MEMEN;
408	}
409
410	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413	if (sc->mem == NULL) {
414		sc->rtp =
415		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                            RF_ACTIVE);
419	}
420
421	if (!sc->mem) {
422		error = ENXIO;
423		goto fail;
424        }
425	if (bootverbose) {
426		device_printf(dev, "using %s space register mapping\n",
427		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428	}
429
430	sc->sc_st = rman_get_bustag(sc->mem);
431	sc->sc_sh = rman_get_bushandle(sc->mem);
432
433	/*
434	 * Allocate our interrupt.
435	 */
436	rid = 0;
437	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438				 RF_SHAREABLE | RF_ACTIVE);
439	if (sc->irq == NULL) {
440		device_printf(dev, "could not map interrupt\n");
441		error = ENXIO;
442		goto fail;
443	}
444
445	/*
446	 * Reset to a stable state.
447	 */
448	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449	DELAY(10);
450
451	/*
452	 * Find out how large of an SEEPROM we have.
453	 */
454	fxp_autosize_eeprom(sc);
455
456	/*
457	 * Find out the chip revision; lump all 82557 revs together.
458	 */
459	fxp_read_eeprom(sc, &data, 5, 1);
460	if ((data >> 8) == 1)
461		sc->revision = FXP_REV_82557;
462	else
463		sc->revision = pci_get_revid(dev);
464
465	/*
466	 * Determine whether we must use the 503 serial interface.
467	 */
468	fxp_read_eeprom(sc, &data, 6, 1);
469	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470	    && (data & FXP_PHY_SERIAL_ONLY))
471		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472
473	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477	    "FXP driver receive interrupt microcode bundling delay");
478	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482	    "FXP driver receive interrupt microcode bundle size limit");
483	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486	    "FXP RNR events");
487	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490	    "FXP flow control disabled");
491
492	/*
493	 * Pull in device tunables.
494	 */
495	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497	sc->tunable_noflow = 1;
498	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499	    "int_delay", &sc->tunable_int_delay);
500	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501	    "bundle_max", &sc->tunable_bundle_max);
502	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503	    "noflow", &sc->tunable_noflow);
504	sc->rnr = 0;
505
506	/*
507	 * Enable workarounds for certain chip revision deficiencies.
508	 *
509	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510	 * some systems based a normal 82559 design, have a defect where
511	 * the chip can cause a PCI protocol violation if it receives
512	 * a CU_RESUME command when it is entering the IDLE state.  The
513	 * workaround is to disable Dynamic Standby Mode, so the chip never
514	 * deasserts CLKRUN#, and always remains in an active state.
515	 *
516	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517	 */
518	i = pci_get_device(dev);
519	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520	    sc->revision >= FXP_REV_82559_A0) {
521		fxp_read_eeprom(sc, &data, 10, 1);
522		if (data & 0x02) {			/* STB enable */
523			uint16_t cksum;
524			int i;
525
526			device_printf(dev,
527			    "Disabling dynamic standby mode in EEPROM\n");
528			data &= ~0x02;
529			fxp_write_eeprom(sc, &data, 10, 1);
530			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531			cksum = 0;
532			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533				fxp_read_eeprom(sc, &data, i, 1);
534				cksum += data;
535			}
536			i = (1 << sc->eeprom_size) - 1;
537			cksum = 0xBABA - cksum;
538			fxp_read_eeprom(sc, &data, i, 1);
539			fxp_write_eeprom(sc, &cksum, i, 1);
540			device_printf(dev,
541			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542			    i, data, cksum);
543#if 1
544			/*
545			 * If the user elects to continue, try the software
546			 * workaround, as it is better than nothing.
547			 */
548			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549#endif
550		}
551	}
552
553	/*
554	 * If we are not a 82557 chip, we can enable extended features.
555	 */
556	if (sc->revision != FXP_REV_82557) {
557		/*
558		 * If MWI is enabled in the PCI configuration, and there
559		 * is a valid cacheline size (8 or 16 dwords), then tell
560		 * the board to turn on MWI.
561		 */
562		if (val & PCIM_CMD_MWRICEN &&
563		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564			sc->flags |= FXP_FLAG_MWI_ENABLE;
565
566		/* turn on the extended TxCB feature */
567		sc->flags |= FXP_FLAG_EXT_TXCB;
568
569		/* enable reception of long frames for VLAN */
570		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571	} else {
572		/* a hack to get long VLAN frames on a 82557 */
573		sc->flags |= FXP_FLAG_SAVE_BAD;
574	}
575
576	/*
577	 * Enable use of extended RFDs and TCBs for 82550
578	 * and later chips. Note: we need extended TXCB support
579	 * too, but that's already enabled by the code above.
580	 * Be careful to do this only on the right devices.
581	 */
582	if (sc->revision >= FXP_REV_82550) {
583		sc->rfa_size = sizeof (struct fxp_rfa);
584		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
585		sc->flags |= FXP_FLAG_EXT_RFA;
586	} else {
587		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
588		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
589	}
590
591	/*
592	 * Allocate DMA tags and DMA safe memory.
593	 */
594	sc->maxtxseg = FXP_NTXSEG;
595	if (sc->flags & FXP_FLAG_EXT_RFA)
596		sc->maxtxseg--;
597	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
598	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
599	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
600	    &sc->fxp_mtag);
601	if (error) {
602		device_printf(dev, "could not allocate dma tag\n");
603		goto fail;
604	}
605
606	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
607	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
608	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
609	    &sc->fxp_stag);
610	if (error) {
611		device_printf(dev, "could not allocate dma tag\n");
612		goto fail;
613	}
614
615	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
616	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
617	if (error)
618		goto fail;
619	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
620	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
621	if (error) {
622		device_printf(dev, "could not map the stats buffer\n");
623		goto fail;
624	}
625
626	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
627	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
628	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
629	if (error) {
630		device_printf(dev, "could not allocate dma tag\n");
631		goto fail;
632	}
633
634	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
635	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
636	if (error)
637		goto fail;
638
639	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
640	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
641	    &sc->fxp_desc.cbl_addr, 0);
642	if (error) {
643		device_printf(dev, "could not map DMA memory\n");
644		goto fail;
645	}
646
647	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
648	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
649	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
650	    &sc->mcs_tag);
651	if (error) {
652		device_printf(dev, "could not allocate dma tag\n");
653		goto fail;
654	}
655
656	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
657	    BUS_DMA_NOWAIT, &sc->mcs_map);
658	if (error)
659		goto fail;
660	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
661	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
662	if (error) {
663		device_printf(dev, "can't map the multicast setup command\n");
664		goto fail;
665	}
666
667	/*
668	 * Pre-allocate the TX DMA maps and setup the pointers to
669	 * the TX command blocks.
670	 */
671	txp = sc->fxp_desc.tx_list;
672	tcbp = sc->fxp_desc.cbl_list;
673	for (i = 0; i < FXP_NTXCB; i++) {
674		txp[i].tx_cb = tcbp + i;
675		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
676		if (error) {
677			device_printf(dev, "can't create DMA map for TX\n");
678			goto fail;
679		}
680	}
681	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
682	if (error) {
683		device_printf(dev, "can't create spare DMA map\n");
684		goto fail;
685	}
686
687	/*
688	 * Pre-allocate our receive buffers.
689	 */
690	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
691	for (i = 0; i < FXP_NRFABUFS; i++) {
692		rxp = &sc->fxp_desc.rx_list[i];
693		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
694		if (error) {
695			device_printf(dev, "can't create DMA map for RX\n");
696			goto fail;
697		}
698		if (fxp_add_rfabuf(sc, rxp) != 0) {
699			error = ENOMEM;
700			goto fail;
701		}
702	}
703
704	/*
705	 * Read MAC address.
706	 */
707	fxp_read_eeprom(sc, myea, 0, 3);
708	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
709	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
710	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
711	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
712	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
713	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
714	if (bootverbose) {
715		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
716		    pci_get_vendor(dev), pci_get_device(dev),
717		    pci_get_subvendor(dev), pci_get_subdevice(dev),
718		    pci_get_revid(dev));
719		fxp_read_eeprom(sc, &data, 10, 1);
720		device_printf(dev, "Dynamic Standby mode is %s\n",
721		    data & 0x02 ? "enabled" : "disabled");
722	}
723
724	/*
725	 * If this is only a 10Mbps device, then there is no MII, and
726	 * the PHY will use a serial interface instead.
727	 *
728	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
729	 * doesn't have a programming interface of any sort.  The
730	 * media is sensed automatically based on how the link partner
731	 * is configured.  This is, in essence, manual configuration.
732	 */
733	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
734		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
735		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
736	} else {
737		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
738		    fxp_ifmedia_sts)) {
739	                device_printf(dev, "MII without any PHY!\n");
740			error = ENXIO;
741			goto fail;
742		}
743	}
744
745	ifp = &sc->arpcom.ac_if;
746	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
747	ifp->if_baudrate = 100000000;
748	ifp->if_init = fxp_init;
749	ifp->if_softc = sc;
750	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751	ifp->if_ioctl = fxp_ioctl;
752	ifp->if_start = fxp_start;
753	ifp->if_watchdog = fxp_watchdog;
754
755	ifp->if_capabilities = ifp->if_capenable = 0;
756
757	/* Enable checksum offload for 82550 or better chips */
758	if (sc->flags & FXP_FLAG_EXT_RFA) {
759		ifp->if_hwassist = FXP_CSUM_FEATURES;
760		ifp->if_capabilities |= IFCAP_HWCSUM;
761		ifp->if_capenable |= IFCAP_HWCSUM;
762	}
763
764#ifdef DEVICE_POLLING
765	/* Inform the world we support polling. */
766	ifp->if_capabilities |= IFCAP_POLLING;
767	ifp->if_capenable |= IFCAP_POLLING;
768#endif
769
770	/*
771	 * Attach the interface.
772	 */
773	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
774
775	/*
776	 * Tell the upper layer(s) we support long frames.
777	 * Must appear after the call to ether_ifattach() because
778	 * ether_ifattach() sets ifi_hdrlen to the default value.
779	 */
780	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
781	ifp->if_capabilities |= IFCAP_VLAN_MTU;
782	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
783
784	/*
785	 * Let the system queue as many packets as we have available
786	 * TX descriptors.
787	 */
788	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
789	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
790	IFQ_SET_READY(&ifp->if_snd);
791
792	/*
793	 * Hook our interrupt after all initialization is complete.
794	 */
795	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
796			       fxp_intr, sc, &sc->ih);
797	if (error) {
798		device_printf(dev, "could not setup irq\n");
799		ether_ifdetach(&sc->arpcom.ac_if);
800		goto fail;
801	}
802
803fail:
804	splx(s);
805	if (error)
806		fxp_release(sc);
807	return (error);
808}
809
810/*
811 * Release all resources.  The softc lock should not be held and the
812 * interrupt should already be torn down.
813 */
814static void
815fxp_release(struct fxp_softc *sc)
816{
817	struct fxp_rx *rxp;
818	struct fxp_tx *txp;
819	int i;
820
821	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
822	KASSERT(sc->ih == NULL,
823	    ("fxp_release() called with intr handle still active"));
824	if (sc->miibus)
825		device_delete_child(sc->dev, sc->miibus);
826	bus_generic_detach(sc->dev);
827	ifmedia_removeall(&sc->sc_media);
828	if (sc->fxp_desc.cbl_list) {
829		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
830		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
831		    sc->cbl_map);
832	}
833	if (sc->fxp_stats) {
834		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
835		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
836	}
837	if (sc->mcsp) {
838		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
839		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
840	}
841	if (sc->irq)
842		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
843	if (sc->mem)
844		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
845	if (sc->fxp_mtag) {
846		for (i = 0; i < FXP_NRFABUFS; i++) {
847			rxp = &sc->fxp_desc.rx_list[i];
848			if (rxp->rx_mbuf != NULL) {
849				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
850				    BUS_DMASYNC_POSTREAD);
851				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
852				m_freem(rxp->rx_mbuf);
853			}
854			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
855		}
856		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
857		for (i = 0; i < FXP_NTXCB; i++) {
858			txp = &sc->fxp_desc.tx_list[i];
859			if (txp->tx_mbuf != NULL) {
860				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
861				    BUS_DMASYNC_POSTWRITE);
862				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
863				m_freem(txp->tx_mbuf);
864			}
865			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
866		}
867		bus_dma_tag_destroy(sc->fxp_mtag);
868	}
869	if (sc->fxp_stag)
870		bus_dma_tag_destroy(sc->fxp_stag);
871	if (sc->cbl_tag)
872		bus_dma_tag_destroy(sc->cbl_tag);
873	if (sc->mcs_tag)
874		bus_dma_tag_destroy(sc->mcs_tag);
875
876	mtx_destroy(&sc->sc_mtx);
877}
878
879/*
880 * Detach interface.
881 */
882static int
883fxp_detach(device_t dev)
884{
885	struct fxp_softc *sc = device_get_softc(dev);
886	int s;
887
888	FXP_LOCK(sc);
889	s = splimp();
890
891	sc->suspended = 1;	/* Do same thing as we do for suspend */
892	/*
893	 * Close down routes etc.
894	 */
895	ether_ifdetach(&sc->arpcom.ac_if);
896
897	/*
898	 * Stop DMA and drop transmit queue, but disable interrupts first.
899	 */
900	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
901	fxp_stop(sc);
902	FXP_UNLOCK(sc);
903
904	/*
905	 * Unhook interrupt before dropping lock. This is to prevent
906	 * races with fxp_intr().
907	 */
908	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
909	sc->ih = NULL;
910
911	splx(s);
912
913	/* Release our allocated resources. */
914	fxp_release(sc);
915	return (0);
916}
917
918/*
919 * Device shutdown routine. Called at system shutdown after sync. The
920 * main purpose of this routine is to shut off receiver DMA so that
921 * kernel memory doesn't get clobbered during warmboot.
922 */
923static int
924fxp_shutdown(device_t dev)
925{
926	/*
927	 * Make sure that DMA is disabled prior to reboot. Not doing
928	 * do could allow DMA to corrupt kernel memory during the
929	 * reboot before the driver initializes.
930	 */
931	fxp_stop((struct fxp_softc *) device_get_softc(dev));
932	return (0);
933}
934
935/*
936 * Device suspend routine.  Stop the interface and save some PCI
937 * settings in case the BIOS doesn't restore them properly on
938 * resume.
939 */
940static int
941fxp_suspend(device_t dev)
942{
943	struct fxp_softc *sc = device_get_softc(dev);
944	int i, s;
945
946	FXP_LOCK(sc);
947	s = splimp();
948
949	fxp_stop(sc);
950
951	for (i = 0; i < 5; i++)
952		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
953	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
954	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
955	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
956	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
957
958	sc->suspended = 1;
959
960	FXP_UNLOCK(sc);
961	splx(s);
962	return (0);
963}
964
965/*
966 * Device resume routine.  Restore some PCI settings in case the BIOS
967 * doesn't, re-enable busmastering, and restart the interface if
968 * appropriate.
969 */
970static int
971fxp_resume(device_t dev)
972{
973	struct fxp_softc *sc = device_get_softc(dev);
974	struct ifnet *ifp = &sc->sc_if;
975	uint16_t pci_command;
976	int i, s;
977
978	FXP_LOCK(sc);
979	s = splimp();
980
981	/* better way to do this? */
982	for (i = 0; i < 5; i++)
983		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
984	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
985	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
986	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
987	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
988
989	/* reenable busmastering */
990	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
991	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
992	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
993
994	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
995	DELAY(10);
996
997	/* reinitialize interface if necessary */
998	if (ifp->if_flags & IFF_UP)
999		fxp_init_body(sc);
1000
1001	sc->suspended = 0;
1002
1003	FXP_UNLOCK(sc);
1004	splx(s);
1005	return (0);
1006}
1007
1008static void
1009fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1010{
1011	uint16_t reg;
1012	int x;
1013
1014	/*
1015	 * Shift in data.
1016	 */
1017	for (x = 1 << (length - 1); x; x >>= 1) {
1018		if (data & x)
1019			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1020		else
1021			reg = FXP_EEPROM_EECS;
1022		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1023		DELAY(1);
1024		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1025		DELAY(1);
1026		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1027		DELAY(1);
1028	}
1029}
1030
1031/*
1032 * Read from the serial EEPROM. Basically, you manually shift in
1033 * the read opcode (one bit at a time) and then shift in the address,
1034 * and then you shift out the data (all of this one bit at a time).
1035 * The word size is 16 bits, so you have to provide the address for
1036 * every 16 bits of data.
1037 */
1038static uint16_t
1039fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1040{
1041	uint16_t reg, data;
1042	int x;
1043
1044	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1045	/*
1046	 * Shift in read opcode.
1047	 */
1048	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1049	/*
1050	 * Shift in address.
1051	 */
1052	data = 0;
1053	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1054		if (offset & x)
1055			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1056		else
1057			reg = FXP_EEPROM_EECS;
1058		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1059		DELAY(1);
1060		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1061		DELAY(1);
1062		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1063		DELAY(1);
1064		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1065		data++;
1066		if (autosize && reg == 0) {
1067			sc->eeprom_size = data;
1068			break;
1069		}
1070	}
1071	/*
1072	 * Shift out data.
1073	 */
1074	data = 0;
1075	reg = FXP_EEPROM_EECS;
1076	for (x = 1 << 15; x; x >>= 1) {
1077		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1078		DELAY(1);
1079		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1080			data |= x;
1081		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1082		DELAY(1);
1083	}
1084	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1085	DELAY(1);
1086
1087	return (data);
1088}
1089
1090static void
1091fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1092{
1093	int i;
1094
1095	/*
1096	 * Erase/write enable.
1097	 */
1098	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1099	fxp_eeprom_shiftin(sc, 0x4, 3);
1100	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1101	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1102	DELAY(1);
1103	/*
1104	 * Shift in write opcode, address, data.
1105	 */
1106	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1107	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1108	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1109	fxp_eeprom_shiftin(sc, data, 16);
1110	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1111	DELAY(1);
1112	/*
1113	 * Wait for EEPROM to finish up.
1114	 */
1115	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1116	DELAY(1);
1117	for (i = 0; i < 1000; i++) {
1118		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1119			break;
1120		DELAY(50);
1121	}
1122	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1123	DELAY(1);
1124	/*
1125	 * Erase/write disable.
1126	 */
1127	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1128	fxp_eeprom_shiftin(sc, 0x4, 3);
1129	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1130	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1131	DELAY(1);
1132}
1133
1134/*
1135 * From NetBSD:
1136 *
1137 * Figure out EEPROM size.
1138 *
1139 * 559's can have either 64-word or 256-word EEPROMs, the 558
1140 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1141 * talks about the existance of 16 to 256 word EEPROMs.
1142 *
1143 * The only known sizes are 64 and 256, where the 256 version is used
1144 * by CardBus cards to store CIS information.
1145 *
1146 * The address is shifted in msb-to-lsb, and after the last
1147 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1148 * after which follows the actual data. We try to detect this zero, by
1149 * probing the data-out bit in the EEPROM control register just after
1150 * having shifted in a bit. If the bit is zero, we assume we've
1151 * shifted enough address bits. The data-out should be tri-state,
1152 * before this, which should translate to a logical one.
1153 */
1154static void
1155fxp_autosize_eeprom(struct fxp_softc *sc)
1156{
1157
1158	/* guess maximum size of 256 words */
1159	sc->eeprom_size = 8;
1160
1161	/* autosize */
1162	(void) fxp_eeprom_getword(sc, 0, 1);
1163}
1164
1165static void
1166fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1167{
1168	int i;
1169
1170	for (i = 0; i < words; i++)
1171		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1172}
1173
1174static void
1175fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1176{
1177	int i;
1178
1179	for (i = 0; i < words; i++)
1180		fxp_eeprom_putword(sc, offset + i, data[i]);
1181}
1182
1183/*
1184 * Grab the softc lock and call the real fxp_start_body() routine
1185 */
1186static void
1187fxp_start(struct ifnet *ifp)
1188{
1189	struct fxp_softc *sc = ifp->if_softc;
1190
1191	FXP_LOCK(sc);
1192	fxp_start_body(ifp);
1193	FXP_UNLOCK(sc);
1194}
1195
1196/*
1197 * Start packet transmission on the interface.
1198 * This routine must be called with the softc lock held, and is an
1199 * internal entry point only.
1200 */
1201static void
1202fxp_start_body(struct ifnet *ifp)
1203{
1204	struct fxp_softc *sc = ifp->if_softc;
1205	struct mbuf *mb_head;
1206	int error, txqueued;
1207
1208	FXP_LOCK_ASSERT(sc, MA_OWNED);
1209
1210	/*
1211	 * See if we need to suspend xmit until the multicast filter
1212	 * has been reprogrammed (which can only be done at the head
1213	 * of the command chain).
1214	 */
1215	if (sc->need_mcsetup)
1216		return;
1217
1218	/*
1219	 * We're finished if there is nothing more to add to the list or if
1220	 * we're all filled up with buffers to transmit.
1221	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1222	 *       a NOP command when needed.
1223	 */
1224	txqueued = 0;
1225	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1226	    sc->tx_queued < FXP_NTXCB - 1) {
1227
1228		/*
1229		 * Grab a packet to transmit.
1230		 */
1231		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1232		if (mb_head == NULL)
1233			break;
1234
1235		error = fxp_encap(sc, mb_head);
1236		if (error)
1237			break;
1238		txqueued = 1;
1239	}
1240	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1241
1242	/*
1243	 * We're finished. If we added to the list, issue a RESUME to get DMA
1244	 * going again if suspended.
1245	 */
1246	if (txqueued) {
1247		fxp_scb_wait(sc);
1248		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1249	}
1250}
1251
1252static int
1253fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1254{
1255	struct ifnet *ifp;
1256	struct mbuf *m;
1257	struct fxp_tx *txp;
1258	struct fxp_cb_tx *cbp;
1259	bus_dma_segment_t segs[FXP_NTXSEG];
1260	int chainlen, error, i, nseg;
1261
1262	FXP_LOCK_ASSERT(sc, MA_OWNED);
1263	ifp = &sc->sc_if;
1264
1265	/*
1266	 * Get pointer to next available tx desc.
1267	 */
1268	txp = sc->fxp_desc.tx_last->tx_next;
1269
1270	/*
1271	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1272	 * Ethernet Controller Family Open Source Software
1273	 * Developer Manual says:
1274	 *   Using software parsing is only allowed with legal
1275	 *   TCP/IP or UDP/IP packets.
1276	 *   ...
1277	 *   For all other datagrams, hardware parsing must
1278	 *   be used.
1279	 * Software parsing appears to truncate ICMP and
1280	 * fragmented UDP packets that contain one to three
1281	 * bytes in the second (and final) mbuf of the packet.
1282	 */
1283	if (sc->flags & FXP_FLAG_EXT_RFA)
1284		txp->tx_cb->ipcb_ip_activation_high =
1285		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1286
1287	/*
1288	 * Deal with TCP/IP checksum offload. Note that
1289	 * in order for TCP checksum offload to work,
1290	 * the pseudo header checksum must have already
1291	 * been computed and stored in the checksum field
1292	 * in the TCP header. The stack should have
1293	 * already done this for us.
1294	 */
1295	if (m_head->m_pkthdr.csum_flags) {
1296		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1297			txp->tx_cb->ipcb_ip_schedule =
1298			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1299			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1300				txp->tx_cb->ipcb_ip_schedule |=
1301				    FXP_IPCB_TCP_PACKET;
1302		}
1303
1304#ifdef FXP_IP_CSUM_WAR
1305		/*
1306		 * XXX The 82550 chip appears to have trouble
1307		 * dealing with IP header checksums in very small
1308		 * datagrams, namely fragments from 1 to 3 bytes
1309		 * in size. For example, say you want to transmit
1310		 * a UDP packet of 1473 bytes. The packet will be
1311		 * fragmented over two IP datagrams, the latter
1312		 * containing only one byte of data. The 82550 will
1313		 * botch the header checksum on the 1-byte fragment.
1314		 * As long as the datagram contains 4 or more bytes
1315		 * of data, you're ok.
1316		 *
1317                 * The following code attempts to work around this
1318		 * problem: if the datagram is less than 38 bytes
1319		 * in size (14 bytes ether header, 20 bytes IP header,
1320		 * plus 4 bytes of data), we punt and compute the IP
1321		 * header checksum by hand. This workaround doesn't
1322		 * work very well, however, since it can be fooled
1323		 * by things like VLAN tags and IP options that make
1324		 * the header sizes/offsets vary.
1325		 */
1326
1327		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1328			if (m_head->m_pkthdr.len < 38) {
1329				struct ip *ip;
1330				m_head->m_data += ETHER_HDR_LEN;
1331				ip = mtod(mb_head, struct ip *);
1332				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1333				m_head->m_data -= ETHER_HDR_LEN;
1334			} else {
1335				txp->tx_cb->ipcb_ip_activation_high =
1336				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1337				txp->tx_cb->ipcb_ip_schedule |=
1338				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1339			}
1340		}
1341#endif
1342	}
1343
1344	chainlen = 0;
1345	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1346		chainlen++;
1347	if (chainlen > sc->maxtxseg) {
1348		struct mbuf *mn;
1349
1350		/*
1351		 * We ran out of segments. We have to recopy this
1352		 * mbuf chain first. Bail out if we can't get the
1353		 * new buffers.
1354		 */
1355		mn = m_defrag(m_head, M_DONTWAIT);
1356		if (mn == NULL) {
1357			m_freem(m_head);
1358			return (-1);
1359		} else {
1360			m_head = mn;
1361		}
1362	}
1363
1364	/*
1365	 * Go through each of the mbufs in the chain and initialize
1366	 * the transmit buffer descriptors with the physical address
1367	 * and size of the mbuf.
1368	 */
1369	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1370	    m_head, segs, &nseg, 0);
1371	if (error) {
1372		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1373		m_freem(m_head);
1374		return (-1);
1375	}
1376
1377	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1378
1379	cbp = txp->tx_cb;
1380	for (i = 0; i < nseg; i++) {
1381		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1382		/*
1383		 * If this is an 82550/82551, then we're using extended
1384		 * TxCBs _and_ we're using checksum offload. This means
1385		 * that the TxCB is really an IPCB. One major difference
1386		 * between the two is that with plain extended TxCBs,
1387		 * the bottom half of the TxCB contains two entries from
1388		 * the TBD array, whereas IPCBs contain just one entry:
1389		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1390		 * checksum offload control bits. So to make things work
1391		 * right, we have to start filling in the TBD array
1392		 * starting from a different place depending on whether
1393		 * the chip is an 82550/82551 or not.
1394		 */
1395		if (sc->flags & FXP_FLAG_EXT_RFA) {
1396			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1397			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1398		} else {
1399			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1400			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1401		}
1402	}
1403	cbp->tbd_number = nseg;
1404
1405	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1406	txp->tx_mbuf = m_head;
1407	txp->tx_cb->cb_status = 0;
1408	txp->tx_cb->byte_count = 0;
1409	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1410		txp->tx_cb->cb_command =
1411		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1412		    FXP_CB_COMMAND_S);
1413	} else {
1414		txp->tx_cb->cb_command =
1415		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1416		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1417		/*
1418		 * Set a 5 second timer just in case we don't hear
1419		 * from the card again.
1420		 */
1421		ifp->if_timer = 5;
1422	}
1423	txp->tx_cb->tx_threshold = tx_threshold;
1424
1425	/*
1426	 * Advance the end of list forward.
1427	 */
1428
1429#ifdef __alpha__
1430	/*
1431	 * On platforms which can't access memory in 16-bit
1432	 * granularities, we must prevent the card from DMA'ing
1433	 * up the status while we update the command field.
1434	 * This could cause us to overwrite the completion status.
1435	 * XXX This is probably bogus and we're _not_ looking
1436	 * for atomicity here.
1437	 */
1438	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1439	    htole16(FXP_CB_COMMAND_S));
1440#else
1441	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1442#endif /*__alpha__*/
1443	sc->fxp_desc.tx_last = txp;
1444
1445	/*
1446	 * Advance the beginning of the list forward if there are
1447	 * no other packets queued (when nothing is queued, tx_first
1448	 * sits on the last TxCB that was sent out).
1449	 */
1450	if (sc->tx_queued == 0)
1451		sc->fxp_desc.tx_first = txp;
1452
1453	sc->tx_queued++;
1454
1455	/*
1456	 * Pass packet to bpf if there is a listener.
1457	 */
1458	BPF_MTAP(ifp, m_head);
1459	return (0);
1460}
1461
1462#ifdef DEVICE_POLLING
1463static poll_handler_t fxp_poll;
1464
1465static void
1466fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1467{
1468	struct fxp_softc *sc = ifp->if_softc;
1469	uint8_t statack;
1470
1471	FXP_LOCK(sc);
1472	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1473		ether_poll_deregister(ifp);
1474		cmd = POLL_DEREGISTER;
1475	}
1476	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1477		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1478		FXP_UNLOCK(sc);
1479		return;
1480	}
1481	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1482	    FXP_SCB_STATACK_FR;
1483	if (cmd == POLL_AND_CHECK_STATUS) {
1484		uint8_t tmp;
1485
1486		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1487		if (tmp == 0xff || tmp == 0) {
1488			FXP_UNLOCK(sc);
1489			return; /* nothing to do */
1490		}
1491		tmp &= ~statack;
1492		/* ack what we can */
1493		if (tmp != 0)
1494			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1495		statack |= tmp;
1496	}
1497	fxp_intr_body(sc, ifp, statack, count);
1498	FXP_UNLOCK(sc);
1499}
1500#endif /* DEVICE_POLLING */
1501
1502/*
1503 * Process interface interrupts.
1504 */
1505static void
1506fxp_intr(void *xsc)
1507{
1508	struct fxp_softc *sc = xsc;
1509	struct ifnet *ifp = &sc->sc_if;
1510	uint8_t statack;
1511
1512	FXP_LOCK(sc);
1513	if (sc->suspended) {
1514		FXP_UNLOCK(sc);
1515		return;
1516	}
1517
1518#ifdef DEVICE_POLLING
1519	if (ifp->if_flags & IFF_POLLING) {
1520		FXP_UNLOCK(sc);
1521		return;
1522	}
1523	if ((ifp->if_capenable & IFCAP_POLLING) &&
1524	    ether_poll_register(fxp_poll, ifp)) {
1525		/* disable interrupts */
1526		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1527		FXP_UNLOCK(sc);
1528		fxp_poll(ifp, 0, 1);
1529		return;
1530	}
1531#endif
1532	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1533		/*
1534		 * It should not be possible to have all bits set; the
1535		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1536		 * all bits are set, this may indicate that the card has
1537		 * been physically ejected, so ignore it.
1538		 */
1539		if (statack == 0xff) {
1540			FXP_UNLOCK(sc);
1541			return;
1542		}
1543
1544		/*
1545		 * First ACK all the interrupts in this pass.
1546		 */
1547		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1548		fxp_intr_body(sc, ifp, statack, -1);
1549	}
1550	FXP_UNLOCK(sc);
1551}
1552
1553static void
1554fxp_txeof(struct fxp_softc *sc)
1555{
1556	struct fxp_tx *txp;
1557
1558	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1559	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1560	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1561	    txp = txp->tx_next) {
1562		if (txp->tx_mbuf != NULL) {
1563			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1564			    BUS_DMASYNC_POSTWRITE);
1565			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1566			m_freem(txp->tx_mbuf);
1567			txp->tx_mbuf = NULL;
1568			/* clear this to reset csum offload bits */
1569			txp->tx_cb->tbd[0].tb_addr = 0;
1570		}
1571		sc->tx_queued--;
1572	}
1573	sc->fxp_desc.tx_first = txp;
1574	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1575}
1576
1577static void
1578fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1579    int count)
1580{
1581	struct mbuf *m;
1582	struct fxp_rx *rxp;
1583	struct fxp_rfa *rfa;
1584	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1585
1586	FXP_LOCK_ASSERT(sc, MA_OWNED);
1587	if (rnr)
1588		sc->rnr++;
1589#ifdef DEVICE_POLLING
1590	/* Pick up a deferred RNR condition if `count' ran out last time. */
1591	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1592		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1593		rnr = 1;
1594	}
1595#endif
1596
1597	/*
1598	 * Free any finished transmit mbuf chains.
1599	 *
1600	 * Handle the CNA event likt a CXTNO event. It used to
1601	 * be that this event (control unit not ready) was not
1602	 * encountered, but it is now with the SMPng modifications.
1603	 * The exact sequence of events that occur when the interface
1604	 * is brought up are different now, and if this event
1605	 * goes unhandled, the configuration/rxfilter setup sequence
1606	 * can stall for several seconds. The result is that no
1607	 * packets go out onto the wire for about 5 to 10 seconds
1608	 * after the interface is ifconfig'ed for the first time.
1609	 */
1610	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1611		fxp_txeof(sc);
1612
1613		ifp->if_timer = 0;
1614		if (sc->tx_queued == 0) {
1615			if (sc->need_mcsetup)
1616				fxp_mc_setup(sc);
1617		}
1618		/*
1619		 * Try to start more packets transmitting.
1620		 */
1621		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1622			fxp_start_body(ifp);
1623	}
1624
1625	/*
1626	 * Just return if nothing happened on the receive side.
1627	 */
1628	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1629		return;
1630
1631	/*
1632	 * Process receiver interrupts. If a no-resource (RNR)
1633	 * condition exists, get whatever packets we can and
1634	 * re-start the receiver.
1635	 *
1636	 * When using polling, we do not process the list to completion,
1637	 * so when we get an RNR interrupt we must defer the restart
1638	 * until we hit the last buffer with the C bit set.
1639	 * If we run out of cycles and rfa_headm has the C bit set,
1640	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1641	 * that the info will be used in the subsequent polling cycle.
1642	 */
1643	for (;;) {
1644		rxp = sc->fxp_desc.rx_head;
1645		m = rxp->rx_mbuf;
1646		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1647		    RFA_ALIGNMENT_FUDGE);
1648		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1649		    BUS_DMASYNC_POSTREAD);
1650
1651#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1652		if (count >= 0 && count-- == 0) {
1653			if (rnr) {
1654				/* Defer RNR processing until the next time. */
1655				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1656				rnr = 0;
1657			}
1658			break;
1659		}
1660#endif /* DEVICE_POLLING */
1661
1662		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1663			break;
1664
1665		/*
1666		 * Advance head forward.
1667		 */
1668		sc->fxp_desc.rx_head = rxp->rx_next;
1669
1670		/*
1671		 * Add a new buffer to the receive chain.
1672		 * If this fails, the old buffer is recycled
1673		 * instead.
1674		 */
1675		if (fxp_add_rfabuf(sc, rxp) == 0) {
1676			int total_len;
1677
1678			/*
1679			 * Fetch packet length (the top 2 bits of
1680			 * actual_size are flags set by the controller
1681			 * upon completion), and drop the packet in case
1682			 * of bogus length or CRC errors.
1683			 */
1684			total_len = le16toh(rfa->actual_size) & 0x3fff;
1685			if (total_len < sizeof(struct ether_header) ||
1686			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1687				sc->rfa_size ||
1688			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1689				m_freem(m);
1690				continue;
1691			}
1692
1693                        /* Do IP checksum checking. */
1694			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1695				if (rfa->rfax_csum_sts &
1696				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1697					m->m_pkthdr.csum_flags |=
1698					    CSUM_IP_CHECKED;
1699				if (rfa->rfax_csum_sts &
1700				    FXP_RFDX_CS_IP_CSUM_VALID)
1701					m->m_pkthdr.csum_flags |=
1702					    CSUM_IP_VALID;
1703				if ((rfa->rfax_csum_sts &
1704				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1705				    (rfa->rfax_csum_sts &
1706				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1707					m->m_pkthdr.csum_flags |=
1708					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1709					m->m_pkthdr.csum_data = 0xffff;
1710				}
1711			}
1712
1713			m->m_pkthdr.len = m->m_len = total_len;
1714			m->m_pkthdr.rcvif = ifp;
1715
1716			/*
1717			 * Drop locks before calling if_input() since it
1718			 * may re-enter fxp_start() in the netisr case.
1719			 * This would result in a lock reversal.  Better
1720			 * performance might be obtained by chaining all
1721			 * packets received, dropping the lock, and then
1722			 * calling if_input() on each one.
1723			 */
1724			FXP_UNLOCK(sc);
1725			(*ifp->if_input)(ifp, m);
1726			FXP_LOCK(sc);
1727		}
1728	}
1729	if (rnr) {
1730		fxp_scb_wait(sc);
1731		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1732		    sc->fxp_desc.rx_head->rx_addr);
1733		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1734	}
1735}
1736
1737/*
1738 * Update packet in/out/collision statistics. The i82557 doesn't
1739 * allow you to access these counters without doing a fairly
1740 * expensive DMA to get _all_ of the statistics it maintains, so
1741 * we do this operation here only once per second. The statistics
1742 * counters in the kernel are updated from the previous dump-stats
1743 * DMA and then a new dump-stats DMA is started. The on-chip
1744 * counters are zeroed when the DMA completes. If we can't start
1745 * the DMA immediately, we don't wait - we just prepare to read
1746 * them again next time.
1747 */
1748static void
1749fxp_tick(void *xsc)
1750{
1751	struct fxp_softc *sc = xsc;
1752	struct ifnet *ifp = &sc->sc_if;
1753	struct fxp_stats *sp = sc->fxp_stats;
1754	int s;
1755
1756	FXP_LOCK(sc);
1757	s = splimp();
1758	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1759	ifp->if_opackets += le32toh(sp->tx_good);
1760	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1761	if (sp->rx_good) {
1762		ifp->if_ipackets += le32toh(sp->rx_good);
1763		sc->rx_idle_secs = 0;
1764	} else {
1765		/*
1766		 * Receiver's been idle for another second.
1767		 */
1768		sc->rx_idle_secs++;
1769	}
1770	ifp->if_ierrors +=
1771	    le32toh(sp->rx_crc_errors) +
1772	    le32toh(sp->rx_alignment_errors) +
1773	    le32toh(sp->rx_rnr_errors) +
1774	    le32toh(sp->rx_overrun_errors);
1775	/*
1776	 * If any transmit underruns occured, bump up the transmit
1777	 * threshold by another 512 bytes (64 * 8).
1778	 */
1779	if (sp->tx_underruns) {
1780		ifp->if_oerrors += le32toh(sp->tx_underruns);
1781		if (tx_threshold < 192)
1782			tx_threshold += 64;
1783	}
1784
1785	/*
1786	 * Release any xmit buffers that have completed DMA. This isn't
1787	 * strictly necessary to do here, but it's advantagous for mbufs
1788	 * with external storage to be released in a timely manner rather
1789	 * than being defered for a potentially long time. This limits
1790	 * the delay to a maximum of one second.
1791	 */
1792	fxp_txeof(sc);
1793
1794	/*
1795	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1796	 * then assume the receiver has locked up and attempt to clear
1797	 * the condition by reprogramming the multicast filter. This is
1798	 * a work-around for a bug in the 82557 where the receiver locks
1799	 * up if it gets certain types of garbage in the syncronization
1800	 * bits prior to the packet header. This bug is supposed to only
1801	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1802	 * mode as well (perhaps due to a 10/100 speed transition).
1803	 */
1804	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1805		sc->rx_idle_secs = 0;
1806		fxp_mc_setup(sc);
1807	}
1808	/*
1809	 * If there is no pending command, start another stats
1810	 * dump. Otherwise punt for now.
1811	 */
1812	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1813		/*
1814		 * Start another stats dump.
1815		 */
1816		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1817		    BUS_DMASYNC_PREREAD);
1818		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1819	} else {
1820		/*
1821		 * A previous command is still waiting to be accepted.
1822		 * Just zero our copy of the stats and wait for the
1823		 * next timer event to update them.
1824		 */
1825		sp->tx_good = 0;
1826		sp->tx_underruns = 0;
1827		sp->tx_total_collisions = 0;
1828
1829		sp->rx_good = 0;
1830		sp->rx_crc_errors = 0;
1831		sp->rx_alignment_errors = 0;
1832		sp->rx_rnr_errors = 0;
1833		sp->rx_overrun_errors = 0;
1834	}
1835	if (sc->miibus != NULL)
1836		mii_tick(device_get_softc(sc->miibus));
1837
1838	/*
1839	 * Schedule another timeout one second from now.
1840	 */
1841	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1842	FXP_UNLOCK(sc);
1843	splx(s);
1844}
1845
1846/*
1847 * Stop the interface. Cancels the statistics updater and resets
1848 * the interface.
1849 */
1850static void
1851fxp_stop(struct fxp_softc *sc)
1852{
1853	struct ifnet *ifp = &sc->sc_if;
1854	struct fxp_tx *txp;
1855	int i;
1856
1857	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1858	ifp->if_timer = 0;
1859
1860#ifdef DEVICE_POLLING
1861	ether_poll_deregister(ifp);
1862#endif
1863	/*
1864	 * Cancel stats updater.
1865	 */
1866	callout_stop(&sc->stat_ch);
1867
1868	/*
1869	 * Issue software reset, which also unloads the microcode.
1870	 */
1871	sc->flags &= ~FXP_FLAG_UCODE;
1872	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1873	DELAY(50);
1874
1875	/*
1876	 * Release any xmit buffers.
1877	 */
1878	txp = sc->fxp_desc.tx_list;
1879	if (txp != NULL) {
1880		for (i = 0; i < FXP_NTXCB; i++) {
1881 			if (txp[i].tx_mbuf != NULL) {
1882				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1883				    BUS_DMASYNC_POSTWRITE);
1884				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1885				m_freem(txp[i].tx_mbuf);
1886				txp[i].tx_mbuf = NULL;
1887				/* clear this to reset csum offload bits */
1888				txp[i].tx_cb->tbd[0].tb_addr = 0;
1889			}
1890		}
1891	}
1892	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1893	sc->tx_queued = 0;
1894}
1895
1896/*
1897 * Watchdog/transmission transmit timeout handler. Called when a
1898 * transmission is started on the interface, but no interrupt is
1899 * received before the timeout. This usually indicates that the
1900 * card has wedged for some reason.
1901 */
1902static void
1903fxp_watchdog(struct ifnet *ifp)
1904{
1905	struct fxp_softc *sc = ifp->if_softc;
1906
1907	FXP_LOCK(sc);
1908	device_printf(sc->dev, "device timeout\n");
1909	ifp->if_oerrors++;
1910
1911	fxp_init_body(sc);
1912	FXP_UNLOCK(sc);
1913}
1914
1915/*
1916 * Acquire locks and then call the real initialization function.  This
1917 * is necessary because ether_ioctl() calls if_init() and this would
1918 * result in mutex recursion if the mutex was held.
1919 */
1920static void
1921fxp_init(void *xsc)
1922{
1923	struct fxp_softc *sc = xsc;
1924
1925	FXP_LOCK(sc);
1926	fxp_init_body(sc);
1927	FXP_UNLOCK(sc);
1928}
1929
1930/*
1931 * Perform device initialization. This routine must be called with the
1932 * softc lock held.
1933 */
1934static void
1935fxp_init_body(struct fxp_softc *sc)
1936{
1937	struct ifnet *ifp = &sc->sc_if;
1938	struct fxp_cb_config *cbp;
1939	struct fxp_cb_ias *cb_ias;
1940	struct fxp_cb_tx *tcbp;
1941	struct fxp_tx *txp;
1942	struct fxp_cb_mcs *mcsp;
1943	int i, prm, s;
1944
1945	FXP_LOCK_ASSERT(sc, MA_OWNED);
1946	s = splimp();
1947	/*
1948	 * Cancel any pending I/O
1949	 */
1950	fxp_stop(sc);
1951
1952	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1953
1954	/*
1955	 * Initialize base of CBL and RFA memory. Loading with zero
1956	 * sets it up for regular linear addressing.
1957	 */
1958	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1959	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1960
1961	fxp_scb_wait(sc);
1962	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1963
1964	/*
1965	 * Initialize base of dump-stats buffer.
1966	 */
1967	fxp_scb_wait(sc);
1968	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1969	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1970	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1971
1972	/*
1973	 * Attempt to load microcode if requested.
1974	 */
1975	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1976		fxp_load_ucode(sc);
1977
1978	/*
1979	 * Initialize the multicast address list.
1980	 */
1981	if (fxp_mc_addrs(sc)) {
1982		mcsp = sc->mcsp;
1983		mcsp->cb_status = 0;
1984		mcsp->cb_command =
1985		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1986		mcsp->link_addr = 0xffffffff;
1987		/*
1988	 	 * Start the multicast setup command.
1989		 */
1990		fxp_scb_wait(sc);
1991		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1992		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1993		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1994		/* ...and wait for it to complete. */
1995		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1996		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1997		    BUS_DMASYNC_POSTWRITE);
1998	}
1999
2000	/*
2001	 * We temporarily use memory that contains the TxCB list to
2002	 * construct the config CB. The TxCB list memory is rebuilt
2003	 * later.
2004	 */
2005	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2006
2007	/*
2008	 * This bcopy is kind of disgusting, but there are a bunch of must be
2009	 * zero and must be one bits in this structure and this is the easiest
2010	 * way to initialize them all to proper values.
2011	 */
2012	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2013
2014	cbp->cb_status =	0;
2015	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2016	    FXP_CB_COMMAND_EL);
2017	cbp->link_addr =	0xffffffff;	/* (no) next command */
2018	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2019	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2020	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2021	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2022	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2023	cbp->type_enable =	0;	/* actually reserved */
2024	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2025	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2026	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2027	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2028	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2029	cbp->late_scb =		0;	/* (don't) defer SCB update */
2030	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2031	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2032	cbp->ci_int =		1;	/* interrupt on CU idle */
2033	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2034	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2035	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2036	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2037	cbp->disc_short_rx =	!prm;	/* discard short packets */
2038	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2039	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2040	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2041	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2042	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2043	cbp->csma_dis =		0;	/* (don't) disable link */
2044	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2045	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2046	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2047	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2048	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2049	cbp->nsai =		1;	/* (don't) disable source addr insert */
2050	cbp->preamble_length =	2;	/* (7 byte) preamble */
2051	cbp->loopback =		0;	/* (don't) loopback */
2052	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2053	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2054	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2055	cbp->promiscuous =	prm;	/* promiscuous mode */
2056	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2057	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2058	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2059	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2060	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2061
2062	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2063	cbp->padding =		1;	/* (do) pad short tx packets */
2064	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2065	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2066	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2067	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2068					/* must set wake_en in PMCSR also */
2069	cbp->force_fdx =	0;	/* (don't) force full duplex */
2070	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2071	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2072	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2073	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2074
2075	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2076		/*
2077		 * The 82557 has no hardware flow control, the values
2078		 * below are the defaults for the chip.
2079		 */
2080		cbp->fc_delay_lsb =	0;
2081		cbp->fc_delay_msb =	0x40;
2082		cbp->pri_fc_thresh =	3;
2083		cbp->tx_fc_dis =	0;
2084		cbp->rx_fc_restop =	0;
2085		cbp->rx_fc_restart =	0;
2086		cbp->fc_filter =	0;
2087		cbp->pri_fc_loc =	1;
2088	} else {
2089		cbp->fc_delay_lsb =	0x1f;
2090		cbp->fc_delay_msb =	0x01;
2091		cbp->pri_fc_thresh =	3;
2092		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2093		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2094		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2095		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2096		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2097	}
2098
2099	/*
2100	 * Start the config command/DMA.
2101	 */
2102	fxp_scb_wait(sc);
2103	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2104	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2105	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2106	/* ...and wait for it to complete. */
2107	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2108	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2109
2110	/*
2111	 * Now initialize the station address. Temporarily use the TxCB
2112	 * memory area like we did above for the config CB.
2113	 */
2114	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2115	cb_ias->cb_status = 0;
2116	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2117	cb_ias->link_addr = 0xffffffff;
2118	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2119	    sizeof(sc->arpcom.ac_enaddr));
2120
2121	/*
2122	 * Start the IAS (Individual Address Setup) command/DMA.
2123	 */
2124	fxp_scb_wait(sc);
2125	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2126	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2127	/* ...and wait for it to complete. */
2128	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2129	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2130
2131	/*
2132	 * Initialize transmit control block (TxCB) list.
2133	 */
2134	txp = sc->fxp_desc.tx_list;
2135	tcbp = sc->fxp_desc.cbl_list;
2136	bzero(tcbp, FXP_TXCB_SZ);
2137	for (i = 0; i < FXP_NTXCB; i++) {
2138		txp[i].tx_mbuf = NULL;
2139		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2140		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2141		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2142		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2143		if (sc->flags & FXP_FLAG_EXT_TXCB)
2144			tcbp[i].tbd_array_addr =
2145			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2146		else
2147			tcbp[i].tbd_array_addr =
2148			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2149		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2150	}
2151	/*
2152	 * Set the suspend flag on the first TxCB and start the control
2153	 * unit. It will execute the NOP and then suspend.
2154	 */
2155	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2156	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2157	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2158	sc->tx_queued = 1;
2159
2160	fxp_scb_wait(sc);
2161	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2162
2163	/*
2164	 * Initialize receiver buffer area - RFA.
2165	 */
2166	fxp_scb_wait(sc);
2167	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2168	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2169
2170	/*
2171	 * Set current media.
2172	 */
2173	if (sc->miibus != NULL)
2174		mii_mediachg(device_get_softc(sc->miibus));
2175
2176	ifp->if_flags |= IFF_RUNNING;
2177	ifp->if_flags &= ~IFF_OACTIVE;
2178
2179	/*
2180	 * Enable interrupts.
2181	 */
2182#ifdef DEVICE_POLLING
2183	/*
2184	 * ... but only do that if we are not polling. And because (presumably)
2185	 * the default is interrupts on, we need to disable them explicitly!
2186	 */
2187	if ( ifp->if_flags & IFF_POLLING )
2188		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2189	else
2190#endif /* DEVICE_POLLING */
2191	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2192
2193	/*
2194	 * Start stats updater.
2195	 */
2196	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2197	splx(s);
2198}
2199
2200static int
2201fxp_serial_ifmedia_upd(struct ifnet *ifp)
2202{
2203
2204	return (0);
2205}
2206
2207static void
2208fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2209{
2210
2211	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2212}
2213
2214/*
2215 * Change media according to request.
2216 */
2217static int
2218fxp_ifmedia_upd(struct ifnet *ifp)
2219{
2220	struct fxp_softc *sc = ifp->if_softc;
2221	struct mii_data *mii;
2222
2223	mii = device_get_softc(sc->miibus);
2224	mii_mediachg(mii);
2225	return (0);
2226}
2227
2228/*
2229 * Notify the world which media we're using.
2230 */
2231static void
2232fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2233{
2234	struct fxp_softc *sc = ifp->if_softc;
2235	struct mii_data *mii;
2236
2237	mii = device_get_softc(sc->miibus);
2238	mii_pollstat(mii);
2239	ifmr->ifm_active = mii->mii_media_active;
2240	ifmr->ifm_status = mii->mii_media_status;
2241
2242	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2243		sc->cu_resume_bug = 1;
2244	else
2245		sc->cu_resume_bug = 0;
2246}
2247
2248/*
2249 * Add a buffer to the end of the RFA buffer list.
2250 * Return 0 if successful, 1 for failure. A failure results in
2251 * adding the 'oldm' (if non-NULL) on to the end of the list -
2252 * tossing out its old contents and recycling it.
2253 * The RFA struct is stuck at the beginning of mbuf cluster and the
2254 * data pointer is fixed up to point just past it.
2255 */
2256static int
2257fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2258{
2259	struct mbuf *m;
2260	struct fxp_rfa *rfa, *p_rfa;
2261	struct fxp_rx *p_rx;
2262	bus_dmamap_t tmp_map;
2263	int error;
2264
2265	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2266	if (m == NULL)
2267		return (ENOBUFS);
2268
2269	/*
2270	 * Move the data pointer up so that the incoming data packet
2271	 * will be 32-bit aligned.
2272	 */
2273	m->m_data += RFA_ALIGNMENT_FUDGE;
2274
2275	/*
2276	 * Get a pointer to the base of the mbuf cluster and move
2277	 * data start past it.
2278	 */
2279	rfa = mtod(m, struct fxp_rfa *);
2280	m->m_data += sc->rfa_size;
2281	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2282
2283	rfa->rfa_status = 0;
2284	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2285	rfa->actual_size = 0;
2286
2287	/*
2288	 * Initialize the rest of the RFA.  Note that since the RFA
2289	 * is misaligned, we cannot store values directly.  We're thus
2290	 * using the le32enc() function which handles endianness and
2291	 * is also alignment-safe.
2292	 */
2293	le32enc(&rfa->link_addr, 0xffffffff);
2294	le32enc(&rfa->rbd_addr, 0xffffffff);
2295
2296	/* Map the RFA into DMA memory. */
2297	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2298	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2299	    &rxp->rx_addr, 0);
2300	if (error) {
2301		m_freem(m);
2302		return (error);
2303	}
2304
2305	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2306	tmp_map = sc->spare_map;
2307	sc->spare_map = rxp->rx_map;
2308	rxp->rx_map = tmp_map;
2309	rxp->rx_mbuf = m;
2310
2311	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2312	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2313
2314	/*
2315	 * If there are other buffers already on the list, attach this
2316	 * one to the end by fixing up the tail to point to this one.
2317	 */
2318	if (sc->fxp_desc.rx_head != NULL) {
2319		p_rx = sc->fxp_desc.rx_tail;
2320		p_rfa = (struct fxp_rfa *)
2321		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2322		p_rx->rx_next = rxp;
2323		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2324		p_rfa->rfa_control = 0;
2325		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2326		    BUS_DMASYNC_PREWRITE);
2327	} else {
2328		rxp->rx_next = NULL;
2329		sc->fxp_desc.rx_head = rxp;
2330	}
2331	sc->fxp_desc.rx_tail = rxp;
2332	return (0);
2333}
2334
2335static volatile int
2336fxp_miibus_readreg(device_t dev, int phy, int reg)
2337{
2338	struct fxp_softc *sc = device_get_softc(dev);
2339	int count = 10000;
2340	int value;
2341
2342	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2343	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2344
2345	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2346	    && count--)
2347		DELAY(10);
2348
2349	if (count <= 0)
2350		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2351
2352	return (value & 0xffff);
2353}
2354
2355static void
2356fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2357{
2358	struct fxp_softc *sc = device_get_softc(dev);
2359	int count = 10000;
2360
2361	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2362	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2363	    (value & 0xffff));
2364
2365	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2366	    count--)
2367		DELAY(10);
2368
2369	if (count <= 0)
2370		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2371}
2372
2373static int
2374fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2375{
2376	struct fxp_softc *sc = ifp->if_softc;
2377	struct ifreq *ifr = (struct ifreq *)data;
2378	struct mii_data *mii;
2379	int flag, mask, s, error = 0;
2380
2381	/*
2382	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2383	 * that by saying we're busy if the lock is already held.
2384	 */
2385	if (FXP_LOCKED(sc))
2386		return (EBUSY);
2387
2388	FXP_LOCK(sc);
2389	s = splimp();
2390
2391	switch (command) {
2392	case SIOCSIFFLAGS:
2393		if (ifp->if_flags & IFF_ALLMULTI)
2394			sc->flags |= FXP_FLAG_ALL_MCAST;
2395		else
2396			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2397
2398		/*
2399		 * If interface is marked up and not running, then start it.
2400		 * If it is marked down and running, stop it.
2401		 * XXX If it's up then re-initialize it. This is so flags
2402		 * such as IFF_PROMISC are handled.
2403		 */
2404		if (ifp->if_flags & IFF_UP) {
2405			fxp_init_body(sc);
2406		} else {
2407			if (ifp->if_flags & IFF_RUNNING)
2408				fxp_stop(sc);
2409		}
2410		break;
2411
2412	case SIOCADDMULTI:
2413	case SIOCDELMULTI:
2414		if (ifp->if_flags & IFF_ALLMULTI)
2415			sc->flags |= FXP_FLAG_ALL_MCAST;
2416		else
2417			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2418		/*
2419		 * Multicast list has changed; set the hardware filter
2420		 * accordingly.
2421		 */
2422		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2423			fxp_mc_setup(sc);
2424		/*
2425		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2426		 * again rather than else {}.
2427		 */
2428		if (sc->flags & FXP_FLAG_ALL_MCAST)
2429			fxp_init_body(sc);
2430		error = 0;
2431		break;
2432
2433	case SIOCSIFMEDIA:
2434	case SIOCGIFMEDIA:
2435		if (sc->miibus != NULL) {
2436			mii = device_get_softc(sc->miibus);
2437                        error = ifmedia_ioctl(ifp, ifr,
2438                            &mii->mii_media, command);
2439		} else {
2440                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2441		}
2442		break;
2443
2444	case SIOCSIFCAP:
2445		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2446		if (mask & IFCAP_POLLING)
2447			ifp->if_capenable ^= IFCAP_POLLING;
2448		if (mask & IFCAP_VLAN_MTU) {
2449			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2450			if (sc->revision != FXP_REV_82557)
2451				flag = FXP_FLAG_LONG_PKT_EN;
2452			else /* a hack to get long frames on the old chip */
2453				flag = FXP_FLAG_SAVE_BAD;
2454			sc->flags ^= flag;
2455			if (ifp->if_flags & IFF_UP)
2456				fxp_init_body(sc);
2457		}
2458		break;
2459
2460	default:
2461		/*
2462		 * ether_ioctl() will eventually call fxp_start() which
2463		 * will result in mutex recursion so drop it first.
2464		 */
2465		FXP_UNLOCK(sc);
2466		error = ether_ioctl(ifp, command, data);
2467	}
2468	if (FXP_LOCKED(sc))
2469		FXP_UNLOCK(sc);
2470	splx(s);
2471	return (error);
2472}
2473
2474/*
2475 * Fill in the multicast address list and return number of entries.
2476 */
2477static int
2478fxp_mc_addrs(struct fxp_softc *sc)
2479{
2480	struct fxp_cb_mcs *mcsp = sc->mcsp;
2481	struct ifnet *ifp = &sc->sc_if;
2482	struct ifmultiaddr *ifma;
2483	int nmcasts;
2484
2485	nmcasts = 0;
2486	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2487#if __FreeBSD_version < 500000
2488		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2489#else
2490		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2491#endif
2492			if (ifma->ifma_addr->sa_family != AF_LINK)
2493				continue;
2494			if (nmcasts >= MAXMCADDR) {
2495				sc->flags |= FXP_FLAG_ALL_MCAST;
2496				nmcasts = 0;
2497				break;
2498			}
2499			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2500			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2501			nmcasts++;
2502		}
2503	}
2504	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2505	return (nmcasts);
2506}
2507
2508/*
2509 * Program the multicast filter.
2510 *
2511 * We have an artificial restriction that the multicast setup command
2512 * must be the first command in the chain, so we take steps to ensure
2513 * this. By requiring this, it allows us to keep up the performance of
2514 * the pre-initialized command ring (esp. link pointers) by not actually
2515 * inserting the mcsetup command in the ring - i.e. its link pointer
2516 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2517 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2518 * lead into the regular TxCB ring when it completes.
2519 *
2520 * This function must be called at splimp.
2521 */
2522static void
2523fxp_mc_setup(struct fxp_softc *sc)
2524{
2525	struct fxp_cb_mcs *mcsp = sc->mcsp;
2526	struct ifnet *ifp = &sc->sc_if;
2527	struct fxp_tx *txp;
2528	int count;
2529
2530	FXP_LOCK_ASSERT(sc, MA_OWNED);
2531	/*
2532	 * If there are queued commands, we must wait until they are all
2533	 * completed. If we are already waiting, then add a NOP command
2534	 * with interrupt option so that we're notified when all commands
2535	 * have been completed - fxp_start() ensures that no additional
2536	 * TX commands will be added when need_mcsetup is true.
2537	 */
2538	if (sc->tx_queued) {
2539		/*
2540		 * need_mcsetup will be true if we are already waiting for the
2541		 * NOP command to be completed (see below). In this case, bail.
2542		 */
2543		if (sc->need_mcsetup)
2544			return;
2545		sc->need_mcsetup = 1;
2546
2547		/*
2548		 * Add a NOP command with interrupt so that we are notified
2549		 * when all TX commands have been processed.
2550		 */
2551		txp = sc->fxp_desc.tx_last->tx_next;
2552		txp->tx_mbuf = NULL;
2553		txp->tx_cb->cb_status = 0;
2554		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2555		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2556		/*
2557		 * Advance the end of list forward.
2558		 */
2559		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2560		    htole16(~FXP_CB_COMMAND_S);
2561		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2562		sc->fxp_desc.tx_last = txp;
2563		sc->tx_queued++;
2564		/*
2565		 * Issue a resume in case the CU has just suspended.
2566		 */
2567		fxp_scb_wait(sc);
2568		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2569		/*
2570		 * Set a 5 second timer just in case we don't hear from the
2571		 * card again.
2572		 */
2573		ifp->if_timer = 5;
2574
2575		return;
2576	}
2577	sc->need_mcsetup = 0;
2578
2579	/*
2580	 * Initialize multicast setup descriptor.
2581	 */
2582	mcsp->cb_status = 0;
2583	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2584	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2585	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2586	txp = &sc->fxp_desc.mcs_tx;
2587	txp->tx_mbuf = NULL;
2588	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2589	txp->tx_next = sc->fxp_desc.tx_list;
2590	(void) fxp_mc_addrs(sc);
2591	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2592	sc->tx_queued = 1;
2593
2594	/*
2595	 * Wait until command unit is not active. This should never
2596	 * be the case when nothing is queued, but make sure anyway.
2597	 */
2598	count = 100;
2599	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2600	    FXP_SCB_CUS_ACTIVE && --count)
2601		DELAY(10);
2602	if (count == 0) {
2603		device_printf(sc->dev, "command queue timeout\n");
2604		return;
2605	}
2606
2607	/*
2608	 * Start the multicast setup command.
2609	 */
2610	fxp_scb_wait(sc);
2611	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2612	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2613	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2614
2615	ifp->if_timer = 2;
2616	return;
2617}
2618
2619static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2620static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2621static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2622static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2623static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2624static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2625static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2626
2627#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2628
2629struct ucode {
2630	uint32_t	revision;
2631	uint32_t	*ucode;
2632	int		length;
2633	u_short		int_delay_offset;
2634	u_short		bundle_max_offset;
2635} ucode_table[] = {
2636	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646	{ FXP_REV_82551, UCODE(fxp_ucode_d102e),
2647	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2648	{ 0, NULL, 0, 0, 0 }
2649};
2650
2651static void
2652fxp_load_ucode(struct fxp_softc *sc)
2653{
2654	struct ucode *uc;
2655	struct fxp_cb_ucode *cbp;
2656	int i;
2657
2658	for (uc = ucode_table; uc->ucode != NULL; uc++)
2659		if (sc->revision == uc->revision)
2660			break;
2661	if (uc->ucode == NULL)
2662		return;
2663	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2664	cbp->cb_status = 0;
2665	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2666	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2667	for (i = 0; i < uc->length; i++)
2668		cbp->ucode[i] = htole32(uc->ucode[i]);
2669	if (uc->int_delay_offset)
2670		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2671		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2672	if (uc->bundle_max_offset)
2673		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2674		    htole16(sc->tunable_bundle_max);
2675	/*
2676	 * Download the ucode to the chip.
2677	 */
2678	fxp_scb_wait(sc);
2679	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2680	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2681	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2682	/* ...and wait for it to complete. */
2683	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2684	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2685	device_printf(sc->dev,
2686	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2687	    sc->tunable_int_delay,
2688	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2689	sc->flags |= FXP_FLAG_UCODE;
2690}
2691
2692static int
2693sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2694{
2695	int error, value;
2696
2697	value = *(int *)arg1;
2698	error = sysctl_handle_int(oidp, &value, 0, req);
2699	if (error || !req->newptr)
2700		return (error);
2701	if (value < low || value > high)
2702		return (EINVAL);
2703	*(int *)arg1 = value;
2704	return (0);
2705}
2706
2707/*
2708 * Interrupt delay is expressed in microseconds, a multiplier is used
2709 * to convert this to the appropriate clock ticks before using.
2710 */
2711static int
2712sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2713{
2714	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2715}
2716
2717static int
2718sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2719{
2720	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2721}
2722