if_fxp.c revision 143705
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 143705 2005-03-16 16:39:04Z mux $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	int i, rid, m1, m2, prefer_iomap;
377	int error, s;
378
379	error = 0;
380	sc = device_get_softc(dev);
381	sc->dev = dev;
382	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384	    MTX_DEF);
385	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386	    fxp_serial_ifmedia_sts);
387
388	s = splimp();
389
390	/*
391	 * Enable bus mastering.
392	 */
393	pci_enable_busmaster(dev);
394	val = pci_read_config(dev, PCIR_COMMAND, 2);
395
396	/*
397	 * Figure out which we should try first - memory mapping or i/o mapping?
398	 * We default to memory mapping. Then we accept an override from the
399	 * command line. Then we check to see which one is enabled.
400	 */
401	m1 = PCIM_CMD_MEMEN;
402	m2 = PCIM_CMD_PORTEN;
403	prefer_iomap = 0;
404	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406		m1 = PCIM_CMD_PORTEN;
407		m2 = PCIM_CMD_MEMEN;
408	}
409
410	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413	if (sc->mem == NULL) {
414		sc->rtp =
415		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                            RF_ACTIVE);
419	}
420
421	if (!sc->mem) {
422		error = ENXIO;
423		goto fail;
424        }
425	if (bootverbose) {
426		device_printf(dev, "using %s space register mapping\n",
427		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428	}
429
430	sc->sc_st = rman_get_bustag(sc->mem);
431	sc->sc_sh = rman_get_bushandle(sc->mem);
432
433	/*
434	 * Allocate our interrupt.
435	 */
436	rid = 0;
437	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438				 RF_SHAREABLE | RF_ACTIVE);
439	if (sc->irq == NULL) {
440		device_printf(dev, "could not map interrupt\n");
441		error = ENXIO;
442		goto fail;
443	}
444
445	/*
446	 * Reset to a stable state.
447	 */
448	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449	DELAY(10);
450
451	/*
452	 * Find out how large of an SEEPROM we have.
453	 */
454	fxp_autosize_eeprom(sc);
455
456	/*
457	 * Find out the chip revision; lump all 82557 revs together.
458	 */
459	fxp_read_eeprom(sc, &data, 5, 1);
460	if ((data >> 8) == 1)
461		sc->revision = FXP_REV_82557;
462	else
463		sc->revision = pci_get_revid(dev);
464
465	/*
466	 * Determine whether we must use the 503 serial interface.
467	 */
468	fxp_read_eeprom(sc, &data, 6, 1);
469	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470	    && (data & FXP_PHY_SERIAL_ONLY))
471		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472
473	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477	    "FXP driver receive interrupt microcode bundling delay");
478	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482	    "FXP driver receive interrupt microcode bundle size limit");
483	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486	    "FXP RNR events");
487	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490	    "FXP flow control disabled");
491
492	/*
493	 * Pull in device tunables.
494	 */
495	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497	sc->tunable_noflow = 1;
498	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499	    "int_delay", &sc->tunable_int_delay);
500	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501	    "bundle_max", &sc->tunable_bundle_max);
502	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503	    "noflow", &sc->tunable_noflow);
504	sc->rnr = 0;
505
506	/*
507	 * Enable workarounds for certain chip revision deficiencies.
508	 *
509	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510	 * some systems based a normal 82559 design, have a defect where
511	 * the chip can cause a PCI protocol violation if it receives
512	 * a CU_RESUME command when it is entering the IDLE state.  The
513	 * workaround is to disable Dynamic Standby Mode, so the chip never
514	 * deasserts CLKRUN#, and always remains in an active state.
515	 *
516	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517	 */
518	i = pci_get_device(dev);
519	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520	    sc->revision >= FXP_REV_82559_A0) {
521		fxp_read_eeprom(sc, &data, 10, 1);
522		if (data & 0x02) {			/* STB enable */
523			uint16_t cksum;
524			int i;
525
526			device_printf(dev,
527			    "Disabling dynamic standby mode in EEPROM\n");
528			data &= ~0x02;
529			fxp_write_eeprom(sc, &data, 10, 1);
530			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531			cksum = 0;
532			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533				fxp_read_eeprom(sc, &data, i, 1);
534				cksum += data;
535			}
536			i = (1 << sc->eeprom_size) - 1;
537			cksum = 0xBABA - cksum;
538			fxp_read_eeprom(sc, &data, i, 1);
539			fxp_write_eeprom(sc, &cksum, i, 1);
540			device_printf(dev,
541			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542			    i, data, cksum);
543#if 1
544			/*
545			 * If the user elects to continue, try the software
546			 * workaround, as it is better than nothing.
547			 */
548			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549#endif
550		}
551	}
552
553	/*
554	 * If we are not a 82557 chip, we can enable extended features.
555	 */
556	if (sc->revision != FXP_REV_82557) {
557		/*
558		 * If MWI is enabled in the PCI configuration, and there
559		 * is a valid cacheline size (8 or 16 dwords), then tell
560		 * the board to turn on MWI.
561		 */
562		if (val & PCIM_CMD_MWRICEN &&
563		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564			sc->flags |= FXP_FLAG_MWI_ENABLE;
565
566		/* turn on the extended TxCB feature */
567		sc->flags |= FXP_FLAG_EXT_TXCB;
568
569		/* enable reception of long frames for VLAN */
570		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571	} else {
572		/* a hack to get long VLAN frames on a 82557 */
573		sc->flags |= FXP_FLAG_SAVE_BAD;
574	}
575
576	/*
577	 * Enable use of extended RFDs and TCBs for 82550
578	 * and later chips. Note: we need extended TXCB support
579	 * too, but that's already enabled by the code above.
580	 * Be careful to do this only on the right devices.
581	 */
582
583	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
584		sc->rfa_size = sizeof (struct fxp_rfa);
585		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
586		sc->flags |= FXP_FLAG_EXT_RFA;
587	} else {
588		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
589		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
590	}
591
592	/*
593	 * Allocate DMA tags and DMA safe memory.
594	 */
595	sc->maxtxseg = FXP_NTXSEG;
596	if (sc->flags & FXP_FLAG_EXT_RFA)
597		sc->maxtxseg--;
598	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
599	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
600	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
601	    &sc->fxp_mtag);
602	if (error) {
603		device_printf(dev, "could not allocate dma tag\n");
604		goto fail;
605	}
606
607	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
608	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
609	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
610	    &sc->fxp_stag);
611	if (error) {
612		device_printf(dev, "could not allocate dma tag\n");
613		goto fail;
614	}
615
616	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
617	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
618	if (error)
619		goto fail;
620	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
621	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
622	if (error) {
623		device_printf(dev, "could not map the stats buffer\n");
624		goto fail;
625	}
626
627	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
628	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
629	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
630	if (error) {
631		device_printf(dev, "could not allocate dma tag\n");
632		goto fail;
633	}
634
635	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
636	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
637	if (error)
638		goto fail;
639
640	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
641	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
642	    &sc->fxp_desc.cbl_addr, 0);
643	if (error) {
644		device_printf(dev, "could not map DMA memory\n");
645		goto fail;
646	}
647
648	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
649	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
650	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
651	    &sc->mcs_tag);
652	if (error) {
653		device_printf(dev, "could not allocate dma tag\n");
654		goto fail;
655	}
656
657	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
658	    BUS_DMA_NOWAIT, &sc->mcs_map);
659	if (error)
660		goto fail;
661	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
662	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
663	if (error) {
664		device_printf(dev, "can't map the multicast setup command\n");
665		goto fail;
666	}
667
668	/*
669	 * Pre-allocate the TX DMA maps and setup the pointers to
670	 * the TX command blocks.
671	 */
672	txp = sc->fxp_desc.tx_list;
673	tcbp = sc->fxp_desc.cbl_list;
674	for (i = 0; i < FXP_NTXCB; i++) {
675		txp[i].tx_cb = tcbp + i;
676		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
677		if (error) {
678			device_printf(dev, "can't create DMA map for TX\n");
679			goto fail;
680		}
681	}
682	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
683	if (error) {
684		device_printf(dev, "can't create spare DMA map\n");
685		goto fail;
686	}
687
688	/*
689	 * Pre-allocate our receive buffers.
690	 */
691	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
692	for (i = 0; i < FXP_NRFABUFS; i++) {
693		rxp = &sc->fxp_desc.rx_list[i];
694		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
695		if (error) {
696			device_printf(dev, "can't create DMA map for RX\n");
697			goto fail;
698		}
699		if (fxp_add_rfabuf(sc, rxp) != 0) {
700			error = ENOMEM;
701			goto fail;
702		}
703	}
704
705	/*
706	 * Read MAC address.
707	 */
708	fxp_read_eeprom(sc, myea, 0, 3);
709	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
710	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
711	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
712	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
713	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
714	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
715	if (bootverbose) {
716		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
717		    pci_get_vendor(dev), pci_get_device(dev),
718		    pci_get_subvendor(dev), pci_get_subdevice(dev),
719		    pci_get_revid(dev));
720		fxp_read_eeprom(sc, &data, 10, 1);
721		device_printf(dev, "Dynamic Standby mode is %s\n",
722		    data & 0x02 ? "enabled" : "disabled");
723	}
724
725	/*
726	 * If this is only a 10Mbps device, then there is no MII, and
727	 * the PHY will use a serial interface instead.
728	 *
729	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
730	 * doesn't have a programming interface of any sort.  The
731	 * media is sensed automatically based on how the link partner
732	 * is configured.  This is, in essence, manual configuration.
733	 */
734	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
735		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
736		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
737	} else {
738		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
739		    fxp_ifmedia_sts)) {
740	                device_printf(dev, "MII without any PHY!\n");
741			error = ENXIO;
742			goto fail;
743		}
744	}
745
746	ifp = &sc->arpcom.ac_if;
747	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
748	ifp->if_baudrate = 100000000;
749	ifp->if_init = fxp_init;
750	ifp->if_softc = sc;
751	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752	ifp->if_ioctl = fxp_ioctl;
753	ifp->if_start = fxp_start;
754	ifp->if_watchdog = fxp_watchdog;
755
756	ifp->if_capabilities = ifp->if_capenable = 0;
757
758	/* Enable checksum offload for 82550 or better chips */
759	if (sc->flags & FXP_FLAG_EXT_RFA) {
760		ifp->if_hwassist = FXP_CSUM_FEATURES;
761		ifp->if_capabilities |= IFCAP_HWCSUM;
762		ifp->if_capenable |= IFCAP_HWCSUM;
763	}
764
765#ifdef DEVICE_POLLING
766	/* Inform the world we support polling. */
767	ifp->if_capabilities |= IFCAP_POLLING;
768	ifp->if_capenable |= IFCAP_POLLING;
769#endif
770
771	/*
772	 * Attach the interface.
773	 */
774	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
775
776	/*
777	 * Tell the upper layer(s) we support long frames.
778	 * Must appear after the call to ether_ifattach() because
779	 * ether_ifattach() sets ifi_hdrlen to the default value.
780	 */
781	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
782	ifp->if_capabilities |= IFCAP_VLAN_MTU;
783	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
784
785	/*
786	 * Let the system queue as many packets as we have available
787	 * TX descriptors.
788	 */
789	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
790	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
791	IFQ_SET_READY(&ifp->if_snd);
792
793	/*
794	 * Hook our interrupt after all initialization is complete.
795	 */
796	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
797			       fxp_intr, sc, &sc->ih);
798	if (error) {
799		device_printf(dev, "could not setup irq\n");
800		ether_ifdetach(&sc->arpcom.ac_if);
801		goto fail;
802	}
803
804fail:
805	splx(s);
806	if (error)
807		fxp_release(sc);
808	return (error);
809}
810
811/*
812 * Release all resources.  The softc lock should not be held and the
813 * interrupt should already be torn down.
814 */
815static void
816fxp_release(struct fxp_softc *sc)
817{
818	struct fxp_rx *rxp;
819	struct fxp_tx *txp;
820	int i;
821
822	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
823	KASSERT(sc->ih == NULL,
824	    ("fxp_release() called with intr handle still active"));
825	if (sc->miibus)
826		device_delete_child(sc->dev, sc->miibus);
827	bus_generic_detach(sc->dev);
828	ifmedia_removeall(&sc->sc_media);
829	if (sc->fxp_desc.cbl_list) {
830		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
831		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
832		    sc->cbl_map);
833	}
834	if (sc->fxp_stats) {
835		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
836		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
837	}
838	if (sc->mcsp) {
839		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
840		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
841	}
842	if (sc->irq)
843		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
844	if (sc->mem)
845		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
846	if (sc->fxp_mtag) {
847		for (i = 0; i < FXP_NRFABUFS; i++) {
848			rxp = &sc->fxp_desc.rx_list[i];
849			if (rxp->rx_mbuf != NULL) {
850				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
851				    BUS_DMASYNC_POSTREAD);
852				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
853				m_freem(rxp->rx_mbuf);
854			}
855			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
856		}
857		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
858		for (i = 0; i < FXP_NTXCB; i++) {
859			txp = &sc->fxp_desc.tx_list[i];
860			if (txp->tx_mbuf != NULL) {
861				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
862				    BUS_DMASYNC_POSTWRITE);
863				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
864				m_freem(txp->tx_mbuf);
865			}
866			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
867		}
868		bus_dma_tag_destroy(sc->fxp_mtag);
869	}
870	if (sc->fxp_stag)
871		bus_dma_tag_destroy(sc->fxp_stag);
872	if (sc->cbl_tag)
873		bus_dma_tag_destroy(sc->cbl_tag);
874	if (sc->mcs_tag)
875		bus_dma_tag_destroy(sc->mcs_tag);
876
877	mtx_destroy(&sc->sc_mtx);
878}
879
880/*
881 * Detach interface.
882 */
883static int
884fxp_detach(device_t dev)
885{
886	struct fxp_softc *sc = device_get_softc(dev);
887	int s;
888
889	FXP_LOCK(sc);
890	s = splimp();
891
892	sc->suspended = 1;	/* Do same thing as we do for suspend */
893	/*
894	 * Close down routes etc.
895	 */
896	ether_ifdetach(&sc->arpcom.ac_if);
897
898	/*
899	 * Stop DMA and drop transmit queue, but disable interrupts first.
900	 */
901	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
902	fxp_stop(sc);
903	FXP_UNLOCK(sc);
904
905	/*
906	 * Unhook interrupt before dropping lock. This is to prevent
907	 * races with fxp_intr().
908	 */
909	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
910	sc->ih = NULL;
911
912	splx(s);
913
914	/* Release our allocated resources. */
915	fxp_release(sc);
916	return (0);
917}
918
919/*
920 * Device shutdown routine. Called at system shutdown after sync. The
921 * main purpose of this routine is to shut off receiver DMA so that
922 * kernel memory doesn't get clobbered during warmboot.
923 */
924static int
925fxp_shutdown(device_t dev)
926{
927	/*
928	 * Make sure that DMA is disabled prior to reboot. Not doing
929	 * do could allow DMA to corrupt kernel memory during the
930	 * reboot before the driver initializes.
931	 */
932	fxp_stop((struct fxp_softc *) device_get_softc(dev));
933	return (0);
934}
935
936/*
937 * Device suspend routine.  Stop the interface and save some PCI
938 * settings in case the BIOS doesn't restore them properly on
939 * resume.
940 */
941static int
942fxp_suspend(device_t dev)
943{
944	struct fxp_softc *sc = device_get_softc(dev);
945	int i, s;
946
947	FXP_LOCK(sc);
948	s = splimp();
949
950	fxp_stop(sc);
951
952	for (i = 0; i < 5; i++)
953		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
954	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
955	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
956	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
957	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
958
959	sc->suspended = 1;
960
961	FXP_UNLOCK(sc);
962	splx(s);
963	return (0);
964}
965
966/*
967 * Device resume routine.  Restore some PCI settings in case the BIOS
968 * doesn't, re-enable busmastering, and restart the interface if
969 * appropriate.
970 */
971static int
972fxp_resume(device_t dev)
973{
974	struct fxp_softc *sc = device_get_softc(dev);
975	struct ifnet *ifp = &sc->sc_if;
976	uint16_t pci_command;
977	int i, s;
978
979	FXP_LOCK(sc);
980	s = splimp();
981
982	/* better way to do this? */
983	for (i = 0; i < 5; i++)
984		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
985	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
986	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
987	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
988	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
989
990	/* reenable busmastering */
991	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
992	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
993	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
994
995	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
996	DELAY(10);
997
998	/* reinitialize interface if necessary */
999	if (ifp->if_flags & IFF_UP)
1000		fxp_init_body(sc);
1001
1002	sc->suspended = 0;
1003
1004	FXP_UNLOCK(sc);
1005	splx(s);
1006	return (0);
1007}
1008
1009static void
1010fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1011{
1012	uint16_t reg;
1013	int x;
1014
1015	/*
1016	 * Shift in data.
1017	 */
1018	for (x = 1 << (length - 1); x; x >>= 1) {
1019		if (data & x)
1020			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1021		else
1022			reg = FXP_EEPROM_EECS;
1023		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1024		DELAY(1);
1025		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1026		DELAY(1);
1027		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1028		DELAY(1);
1029	}
1030}
1031
1032/*
1033 * Read from the serial EEPROM. Basically, you manually shift in
1034 * the read opcode (one bit at a time) and then shift in the address,
1035 * and then you shift out the data (all of this one bit at a time).
1036 * The word size is 16 bits, so you have to provide the address for
1037 * every 16 bits of data.
1038 */
1039static uint16_t
1040fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1041{
1042	uint16_t reg, data;
1043	int x;
1044
1045	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1046	/*
1047	 * Shift in read opcode.
1048	 */
1049	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1050	/*
1051	 * Shift in address.
1052	 */
1053	data = 0;
1054	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1055		if (offset & x)
1056			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1057		else
1058			reg = FXP_EEPROM_EECS;
1059		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1060		DELAY(1);
1061		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1062		DELAY(1);
1063		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1064		DELAY(1);
1065		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1066		data++;
1067		if (autosize && reg == 0) {
1068			sc->eeprom_size = data;
1069			break;
1070		}
1071	}
1072	/*
1073	 * Shift out data.
1074	 */
1075	data = 0;
1076	reg = FXP_EEPROM_EECS;
1077	for (x = 1 << 15; x; x >>= 1) {
1078		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1079		DELAY(1);
1080		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1081			data |= x;
1082		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1083		DELAY(1);
1084	}
1085	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1086	DELAY(1);
1087
1088	return (data);
1089}
1090
1091static void
1092fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1093{
1094	int i;
1095
1096	/*
1097	 * Erase/write enable.
1098	 */
1099	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1100	fxp_eeprom_shiftin(sc, 0x4, 3);
1101	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1102	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1103	DELAY(1);
1104	/*
1105	 * Shift in write opcode, address, data.
1106	 */
1107	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1108	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1109	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1110	fxp_eeprom_shiftin(sc, data, 16);
1111	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112	DELAY(1);
1113	/*
1114	 * Wait for EEPROM to finish up.
1115	 */
1116	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1117	DELAY(1);
1118	for (i = 0; i < 1000; i++) {
1119		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1120			break;
1121		DELAY(50);
1122	}
1123	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1124	DELAY(1);
1125	/*
1126	 * Erase/write disable.
1127	 */
1128	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1129	fxp_eeprom_shiftin(sc, 0x4, 3);
1130	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1131	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1132	DELAY(1);
1133}
1134
1135/*
1136 * From NetBSD:
1137 *
1138 * Figure out EEPROM size.
1139 *
1140 * 559's can have either 64-word or 256-word EEPROMs, the 558
1141 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1142 * talks about the existance of 16 to 256 word EEPROMs.
1143 *
1144 * The only known sizes are 64 and 256, where the 256 version is used
1145 * by CardBus cards to store CIS information.
1146 *
1147 * The address is shifted in msb-to-lsb, and after the last
1148 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1149 * after which follows the actual data. We try to detect this zero, by
1150 * probing the data-out bit in the EEPROM control register just after
1151 * having shifted in a bit. If the bit is zero, we assume we've
1152 * shifted enough address bits. The data-out should be tri-state,
1153 * before this, which should translate to a logical one.
1154 */
1155static void
1156fxp_autosize_eeprom(struct fxp_softc *sc)
1157{
1158
1159	/* guess maximum size of 256 words */
1160	sc->eeprom_size = 8;
1161
1162	/* autosize */
1163	(void) fxp_eeprom_getword(sc, 0, 1);
1164}
1165
1166static void
1167fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1168{
1169	int i;
1170
1171	for (i = 0; i < words; i++)
1172		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1173}
1174
1175static void
1176fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1177{
1178	int i;
1179
1180	for (i = 0; i < words; i++)
1181		fxp_eeprom_putword(sc, offset + i, data[i]);
1182}
1183
1184/*
1185 * Grab the softc lock and call the real fxp_start_body() routine
1186 */
1187static void
1188fxp_start(struct ifnet *ifp)
1189{
1190	struct fxp_softc *sc = ifp->if_softc;
1191
1192	FXP_LOCK(sc);
1193	fxp_start_body(ifp);
1194	FXP_UNLOCK(sc);
1195}
1196
1197/*
1198 * Start packet transmission on the interface.
1199 * This routine must be called with the softc lock held, and is an
1200 * internal entry point only.
1201 */
1202static void
1203fxp_start_body(struct ifnet *ifp)
1204{
1205	struct fxp_softc *sc = ifp->if_softc;
1206	struct mbuf *mb_head;
1207	int error, txqueued;
1208
1209	FXP_LOCK_ASSERT(sc, MA_OWNED);
1210
1211	/*
1212	 * See if we need to suspend xmit until the multicast filter
1213	 * has been reprogrammed (which can only be done at the head
1214	 * of the command chain).
1215	 */
1216	if (sc->need_mcsetup)
1217		return;
1218
1219	/*
1220	 * We're finished if there is nothing more to add to the list or if
1221	 * we're all filled up with buffers to transmit.
1222	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1223	 *       a NOP command when needed.
1224	 */
1225	txqueued = 0;
1226	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1227	    sc->tx_queued < FXP_NTXCB - 1) {
1228
1229		/*
1230		 * Grab a packet to transmit.
1231		 */
1232		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1233		if (mb_head == NULL)
1234			break;
1235
1236		error = fxp_encap(sc, mb_head);
1237		if (error)
1238			break;
1239		txqueued = 1;
1240	}
1241	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1242
1243	/*
1244	 * We're finished. If we added to the list, issue a RESUME to get DMA
1245	 * going again if suspended.
1246	 */
1247	if (txqueued) {
1248		fxp_scb_wait(sc);
1249		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1250	}
1251}
1252
1253static int
1254fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1255{
1256	struct ifnet *ifp;
1257	struct mbuf *m;
1258	struct fxp_tx *txp;
1259	struct fxp_cb_tx *cbp;
1260	bus_dma_segment_t segs[FXP_NTXSEG];
1261	int chainlen, error, i, nseg;
1262
1263	FXP_LOCK_ASSERT(sc, MA_OWNED);
1264	ifp = &sc->sc_if;
1265
1266	/*
1267	 * Get pointer to next available tx desc.
1268	 */
1269	txp = sc->fxp_desc.tx_last->tx_next;
1270
1271	/*
1272	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1273	 * Ethernet Controller Family Open Source Software
1274	 * Developer Manual says:
1275	 *   Using software parsing is only allowed with legal
1276	 *   TCP/IP or UDP/IP packets.
1277	 *   ...
1278	 *   For all other datagrams, hardware parsing must
1279	 *   be used.
1280	 * Software parsing appears to truncate ICMP and
1281	 * fragmented UDP packets that contain one to three
1282	 * bytes in the second (and final) mbuf of the packet.
1283	 */
1284	if (sc->flags & FXP_FLAG_EXT_RFA)
1285		txp->tx_cb->ipcb_ip_activation_high =
1286		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1287
1288	/*
1289	 * Deal with TCP/IP checksum offload. Note that
1290	 * in order for TCP checksum offload to work,
1291	 * the pseudo header checksum must have already
1292	 * been computed and stored in the checksum field
1293	 * in the TCP header. The stack should have
1294	 * already done this for us.
1295	 */
1296	if (m_head->m_pkthdr.csum_flags) {
1297		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1298			txp->tx_cb->ipcb_ip_schedule =
1299			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1300			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1301				txp->tx_cb->ipcb_ip_schedule |=
1302				    FXP_IPCB_TCP_PACKET;
1303		}
1304
1305#ifdef FXP_IP_CSUM_WAR
1306		/*
1307		 * XXX The 82550 chip appears to have trouble
1308		 * dealing with IP header checksums in very small
1309		 * datagrams, namely fragments from 1 to 3 bytes
1310		 * in size. For example, say you want to transmit
1311		 * a UDP packet of 1473 bytes. The packet will be
1312		 * fragmented over two IP datagrams, the latter
1313		 * containing only one byte of data. The 82550 will
1314		 * botch the header checksum on the 1-byte fragment.
1315		 * As long as the datagram contains 4 or more bytes
1316		 * of data, you're ok.
1317		 *
1318                 * The following code attempts to work around this
1319		 * problem: if the datagram is less than 38 bytes
1320		 * in size (14 bytes ether header, 20 bytes IP header,
1321		 * plus 4 bytes of data), we punt and compute the IP
1322		 * header checksum by hand. This workaround doesn't
1323		 * work very well, however, since it can be fooled
1324		 * by things like VLAN tags and IP options that make
1325		 * the header sizes/offsets vary.
1326		 */
1327
1328		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1329			if (m_head->m_pkthdr.len < 38) {
1330				struct ip *ip;
1331				m_head->m_data += ETHER_HDR_LEN;
1332				ip = mtod(mb_head, struct ip *);
1333				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1334				m_head->m_data -= ETHER_HDR_LEN;
1335			} else {
1336				txp->tx_cb->ipcb_ip_activation_high =
1337				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1338				txp->tx_cb->ipcb_ip_schedule |=
1339				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1340			}
1341		}
1342#endif
1343	}
1344
1345	chainlen = 0;
1346	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1347		chainlen++;
1348	if (chainlen > sc->maxtxseg) {
1349		struct mbuf *mn;
1350
1351		/*
1352		 * We ran out of segments. We have to recopy this
1353		 * mbuf chain first. Bail out if we can't get the
1354		 * new buffers.
1355		 */
1356		mn = m_defrag(m_head, M_DONTWAIT);
1357		if (mn == NULL) {
1358			m_freem(m_head);
1359			return (-1);
1360		} else {
1361			m_head = mn;
1362		}
1363	}
1364
1365	/*
1366	 * Go through each of the mbufs in the chain and initialize
1367	 * the transmit buffer descriptors with the physical address
1368	 * and size of the mbuf.
1369	 */
1370	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1371	    m_head, segs, &nseg, 0);
1372	if (error) {
1373		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1374		m_freem(m_head);
1375		return (-1);
1376	}
1377
1378	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1379
1380	cbp = txp->tx_cb;
1381	for (i = 0; i < nseg; i++) {
1382		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1383		/*
1384		 * If this is an 82550/82551, then we're using extended
1385		 * TxCBs _and_ we're using checksum offload. This means
1386		 * that the TxCB is really an IPCB. One major difference
1387		 * between the two is that with plain extended TxCBs,
1388		 * the bottom half of the TxCB contains two entries from
1389		 * the TBD array, whereas IPCBs contain just one entry:
1390		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1391		 * checksum offload control bits. So to make things work
1392		 * right, we have to start filling in the TBD array
1393		 * starting from a different place depending on whether
1394		 * the chip is an 82550/82551 or not.
1395		 */
1396		if (sc->flags & FXP_FLAG_EXT_RFA) {
1397			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1398			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1399		} else {
1400			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1401			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1402		}
1403	}
1404	cbp->tbd_number = nseg;
1405
1406	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1407	txp->tx_mbuf = m_head;
1408	txp->tx_cb->cb_status = 0;
1409	txp->tx_cb->byte_count = 0;
1410	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1411		txp->tx_cb->cb_command =
1412		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1413		    FXP_CB_COMMAND_S);
1414	} else {
1415		txp->tx_cb->cb_command =
1416		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1417		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1418		/*
1419		 * Set a 5 second timer just in case we don't hear
1420		 * from the card again.
1421		 */
1422		ifp->if_timer = 5;
1423	}
1424	txp->tx_cb->tx_threshold = tx_threshold;
1425
1426	/*
1427	 * Advance the end of list forward.
1428	 */
1429
1430#ifdef __alpha__
1431	/*
1432	 * On platforms which can't access memory in 16-bit
1433	 * granularities, we must prevent the card from DMA'ing
1434	 * up the status while we update the command field.
1435	 * This could cause us to overwrite the completion status.
1436	 * XXX This is probably bogus and we're _not_ looking
1437	 * for atomicity here.
1438	 */
1439	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1440	    htole16(FXP_CB_COMMAND_S));
1441#else
1442	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1443#endif /*__alpha__*/
1444	sc->fxp_desc.tx_last = txp;
1445
1446	/*
1447	 * Advance the beginning of the list forward if there are
1448	 * no other packets queued (when nothing is queued, tx_first
1449	 * sits on the last TxCB that was sent out).
1450	 */
1451	if (sc->tx_queued == 0)
1452		sc->fxp_desc.tx_first = txp;
1453
1454	sc->tx_queued++;
1455
1456	/*
1457	 * Pass packet to bpf if there is a listener.
1458	 */
1459	BPF_MTAP(ifp, m_head);
1460	return (0);
1461}
1462
1463#ifdef DEVICE_POLLING
1464static poll_handler_t fxp_poll;
1465
1466static void
1467fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1468{
1469	struct fxp_softc *sc = ifp->if_softc;
1470	uint8_t statack;
1471
1472	FXP_LOCK(sc);
1473	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1474		ether_poll_deregister(ifp);
1475		cmd = POLL_DEREGISTER;
1476	}
1477	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1478		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1479		FXP_UNLOCK(sc);
1480		return;
1481	}
1482	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1483	    FXP_SCB_STATACK_FR;
1484	if (cmd == POLL_AND_CHECK_STATUS) {
1485		uint8_t tmp;
1486
1487		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1488		if (tmp == 0xff || tmp == 0) {
1489			FXP_UNLOCK(sc);
1490			return; /* nothing to do */
1491		}
1492		tmp &= ~statack;
1493		/* ack what we can */
1494		if (tmp != 0)
1495			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1496		statack |= tmp;
1497	}
1498	fxp_intr_body(sc, ifp, statack, count);
1499	FXP_UNLOCK(sc);
1500}
1501#endif /* DEVICE_POLLING */
1502
1503/*
1504 * Process interface interrupts.
1505 */
1506static void
1507fxp_intr(void *xsc)
1508{
1509	struct fxp_softc *sc = xsc;
1510	struct ifnet *ifp = &sc->sc_if;
1511	uint8_t statack;
1512
1513	FXP_LOCK(sc);
1514	if (sc->suspended) {
1515		FXP_UNLOCK(sc);
1516		return;
1517	}
1518
1519#ifdef DEVICE_POLLING
1520	if (ifp->if_flags & IFF_POLLING) {
1521		FXP_UNLOCK(sc);
1522		return;
1523	}
1524	if ((ifp->if_capenable & IFCAP_POLLING) &&
1525	    ether_poll_register(fxp_poll, ifp)) {
1526		/* disable interrupts */
1527		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1528		FXP_UNLOCK(sc);
1529		fxp_poll(ifp, 0, 1);
1530		return;
1531	}
1532#endif
1533	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1534		/*
1535		 * It should not be possible to have all bits set; the
1536		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1537		 * all bits are set, this may indicate that the card has
1538		 * been physically ejected, so ignore it.
1539		 */
1540		if (statack == 0xff) {
1541			FXP_UNLOCK(sc);
1542			return;
1543		}
1544
1545		/*
1546		 * First ACK all the interrupts in this pass.
1547		 */
1548		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1549		fxp_intr_body(sc, ifp, statack, -1);
1550	}
1551	FXP_UNLOCK(sc);
1552}
1553
1554static void
1555fxp_txeof(struct fxp_softc *sc)
1556{
1557	struct fxp_tx *txp;
1558
1559	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1560	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1561	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1562	    txp = txp->tx_next) {
1563		if (txp->tx_mbuf != NULL) {
1564			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1565			    BUS_DMASYNC_POSTWRITE);
1566			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1567			m_freem(txp->tx_mbuf);
1568			txp->tx_mbuf = NULL;
1569			/* clear this to reset csum offload bits */
1570			txp->tx_cb->tbd[0].tb_addr = 0;
1571		}
1572		sc->tx_queued--;
1573	}
1574	sc->fxp_desc.tx_first = txp;
1575	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1576}
1577
1578static void
1579fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1580    int count)
1581{
1582	struct mbuf *m;
1583	struct fxp_rx *rxp;
1584	struct fxp_rfa *rfa;
1585	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1586
1587	FXP_LOCK_ASSERT(sc, MA_OWNED);
1588	if (rnr)
1589		sc->rnr++;
1590#ifdef DEVICE_POLLING
1591	/* Pick up a deferred RNR condition if `count' ran out last time. */
1592	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1593		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1594		rnr = 1;
1595	}
1596#endif
1597
1598	/*
1599	 * Free any finished transmit mbuf chains.
1600	 *
1601	 * Handle the CNA event likt a CXTNO event. It used to
1602	 * be that this event (control unit not ready) was not
1603	 * encountered, but it is now with the SMPng modifications.
1604	 * The exact sequence of events that occur when the interface
1605	 * is brought up are different now, and if this event
1606	 * goes unhandled, the configuration/rxfilter setup sequence
1607	 * can stall for several seconds. The result is that no
1608	 * packets go out onto the wire for about 5 to 10 seconds
1609	 * after the interface is ifconfig'ed for the first time.
1610	 */
1611	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1612		fxp_txeof(sc);
1613
1614		ifp->if_timer = 0;
1615		if (sc->tx_queued == 0) {
1616			if (sc->need_mcsetup)
1617				fxp_mc_setup(sc);
1618		}
1619		/*
1620		 * Try to start more packets transmitting.
1621		 */
1622		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1623			fxp_start_body(ifp);
1624	}
1625
1626	/*
1627	 * Just return if nothing happened on the receive side.
1628	 */
1629	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1630		return;
1631
1632	/*
1633	 * Process receiver interrupts. If a no-resource (RNR)
1634	 * condition exists, get whatever packets we can and
1635	 * re-start the receiver.
1636	 *
1637	 * When using polling, we do not process the list to completion,
1638	 * so when we get an RNR interrupt we must defer the restart
1639	 * until we hit the last buffer with the C bit set.
1640	 * If we run out of cycles and rfa_headm has the C bit set,
1641	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1642	 * that the info will be used in the subsequent polling cycle.
1643	 */
1644	for (;;) {
1645		rxp = sc->fxp_desc.rx_head;
1646		m = rxp->rx_mbuf;
1647		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1648		    RFA_ALIGNMENT_FUDGE);
1649		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1650		    BUS_DMASYNC_POSTREAD);
1651
1652#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1653		if (count >= 0 && count-- == 0) {
1654			if (rnr) {
1655				/* Defer RNR processing until the next time. */
1656				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1657				rnr = 0;
1658			}
1659			break;
1660		}
1661#endif /* DEVICE_POLLING */
1662
1663		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1664			break;
1665
1666		/*
1667		 * Advance head forward.
1668		 */
1669		sc->fxp_desc.rx_head = rxp->rx_next;
1670
1671		/*
1672		 * Add a new buffer to the receive chain.
1673		 * If this fails, the old buffer is recycled
1674		 * instead.
1675		 */
1676		if (fxp_add_rfabuf(sc, rxp) == 0) {
1677			int total_len;
1678
1679			/*
1680			 * Fetch packet length (the top 2 bits of
1681			 * actual_size are flags set by the controller
1682			 * upon completion), and drop the packet in case
1683			 * of bogus length or CRC errors.
1684			 */
1685			total_len = le16toh(rfa->actual_size) & 0x3fff;
1686			if (total_len < sizeof(struct ether_header) ||
1687			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1688				sc->rfa_size ||
1689			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1690				m_freem(m);
1691				continue;
1692			}
1693
1694                        /* Do IP checksum checking. */
1695			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1696				if (rfa->rfax_csum_sts &
1697				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1698					m->m_pkthdr.csum_flags |=
1699					    CSUM_IP_CHECKED;
1700				if (rfa->rfax_csum_sts &
1701				    FXP_RFDX_CS_IP_CSUM_VALID)
1702					m->m_pkthdr.csum_flags |=
1703					    CSUM_IP_VALID;
1704				if ((rfa->rfax_csum_sts &
1705				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1706				    (rfa->rfax_csum_sts &
1707				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1708					m->m_pkthdr.csum_flags |=
1709					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1710					m->m_pkthdr.csum_data = 0xffff;
1711				}
1712			}
1713
1714			m->m_pkthdr.len = m->m_len = total_len;
1715			m->m_pkthdr.rcvif = ifp;
1716
1717			/*
1718			 * Drop locks before calling if_input() since it
1719			 * may re-enter fxp_start() in the netisr case.
1720			 * This would result in a lock reversal.  Better
1721			 * performance might be obtained by chaining all
1722			 * packets received, dropping the lock, and then
1723			 * calling if_input() on each one.
1724			 */
1725			FXP_UNLOCK(sc);
1726			(*ifp->if_input)(ifp, m);
1727			FXP_LOCK(sc);
1728		}
1729	}
1730	if (rnr) {
1731		fxp_scb_wait(sc);
1732		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1733		    sc->fxp_desc.rx_head->rx_addr);
1734		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1735	}
1736}
1737
1738/*
1739 * Update packet in/out/collision statistics. The i82557 doesn't
1740 * allow you to access these counters without doing a fairly
1741 * expensive DMA to get _all_ of the statistics it maintains, so
1742 * we do this operation here only once per second. The statistics
1743 * counters in the kernel are updated from the previous dump-stats
1744 * DMA and then a new dump-stats DMA is started. The on-chip
1745 * counters are zeroed when the DMA completes. If we can't start
1746 * the DMA immediately, we don't wait - we just prepare to read
1747 * them again next time.
1748 */
1749static void
1750fxp_tick(void *xsc)
1751{
1752	struct fxp_softc *sc = xsc;
1753	struct ifnet *ifp = &sc->sc_if;
1754	struct fxp_stats *sp = sc->fxp_stats;
1755	int s;
1756
1757	FXP_LOCK(sc);
1758	s = splimp();
1759	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1760	ifp->if_opackets += le32toh(sp->tx_good);
1761	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1762	if (sp->rx_good) {
1763		ifp->if_ipackets += le32toh(sp->rx_good);
1764		sc->rx_idle_secs = 0;
1765	} else {
1766		/*
1767		 * Receiver's been idle for another second.
1768		 */
1769		sc->rx_idle_secs++;
1770	}
1771	ifp->if_ierrors +=
1772	    le32toh(sp->rx_crc_errors) +
1773	    le32toh(sp->rx_alignment_errors) +
1774	    le32toh(sp->rx_rnr_errors) +
1775	    le32toh(sp->rx_overrun_errors);
1776	/*
1777	 * If any transmit underruns occured, bump up the transmit
1778	 * threshold by another 512 bytes (64 * 8).
1779	 */
1780	if (sp->tx_underruns) {
1781		ifp->if_oerrors += le32toh(sp->tx_underruns);
1782		if (tx_threshold < 192)
1783			tx_threshold += 64;
1784	}
1785
1786	/*
1787	 * Release any xmit buffers that have completed DMA. This isn't
1788	 * strictly necessary to do here, but it's advantagous for mbufs
1789	 * with external storage to be released in a timely manner rather
1790	 * than being defered for a potentially long time. This limits
1791	 * the delay to a maximum of one second.
1792	 */
1793	fxp_txeof(sc);
1794
1795	/*
1796	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1797	 * then assume the receiver has locked up and attempt to clear
1798	 * the condition by reprogramming the multicast filter. This is
1799	 * a work-around for a bug in the 82557 where the receiver locks
1800	 * up if it gets certain types of garbage in the syncronization
1801	 * bits prior to the packet header. This bug is supposed to only
1802	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1803	 * mode as well (perhaps due to a 10/100 speed transition).
1804	 */
1805	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1806		sc->rx_idle_secs = 0;
1807		fxp_mc_setup(sc);
1808	}
1809	/*
1810	 * If there is no pending command, start another stats
1811	 * dump. Otherwise punt for now.
1812	 */
1813	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1814		/*
1815		 * Start another stats dump.
1816		 */
1817		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1818		    BUS_DMASYNC_PREREAD);
1819		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1820	} else {
1821		/*
1822		 * A previous command is still waiting to be accepted.
1823		 * Just zero our copy of the stats and wait for the
1824		 * next timer event to update them.
1825		 */
1826		sp->tx_good = 0;
1827		sp->tx_underruns = 0;
1828		sp->tx_total_collisions = 0;
1829
1830		sp->rx_good = 0;
1831		sp->rx_crc_errors = 0;
1832		sp->rx_alignment_errors = 0;
1833		sp->rx_rnr_errors = 0;
1834		sp->rx_overrun_errors = 0;
1835	}
1836	if (sc->miibus != NULL)
1837		mii_tick(device_get_softc(sc->miibus));
1838
1839	/*
1840	 * Schedule another timeout one second from now.
1841	 */
1842	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1843	FXP_UNLOCK(sc);
1844	splx(s);
1845}
1846
1847/*
1848 * Stop the interface. Cancels the statistics updater and resets
1849 * the interface.
1850 */
1851static void
1852fxp_stop(struct fxp_softc *sc)
1853{
1854	struct ifnet *ifp = &sc->sc_if;
1855	struct fxp_tx *txp;
1856	int i;
1857
1858	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859	ifp->if_timer = 0;
1860
1861#ifdef DEVICE_POLLING
1862	ether_poll_deregister(ifp);
1863#endif
1864	/*
1865	 * Cancel stats updater.
1866	 */
1867	callout_stop(&sc->stat_ch);
1868
1869	/*
1870	 * Issue software reset, which also unloads the microcode.
1871	 */
1872	sc->flags &= ~FXP_FLAG_UCODE;
1873	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1874	DELAY(50);
1875
1876	/*
1877	 * Release any xmit buffers.
1878	 */
1879	txp = sc->fxp_desc.tx_list;
1880	if (txp != NULL) {
1881		for (i = 0; i < FXP_NTXCB; i++) {
1882 			if (txp[i].tx_mbuf != NULL) {
1883				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1884				    BUS_DMASYNC_POSTWRITE);
1885				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1886				m_freem(txp[i].tx_mbuf);
1887				txp[i].tx_mbuf = NULL;
1888				/* clear this to reset csum offload bits */
1889				txp[i].tx_cb->tbd[0].tb_addr = 0;
1890			}
1891		}
1892	}
1893	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1894	sc->tx_queued = 0;
1895}
1896
1897/*
1898 * Watchdog/transmission transmit timeout handler. Called when a
1899 * transmission is started on the interface, but no interrupt is
1900 * received before the timeout. This usually indicates that the
1901 * card has wedged for some reason.
1902 */
1903static void
1904fxp_watchdog(struct ifnet *ifp)
1905{
1906	struct fxp_softc *sc = ifp->if_softc;
1907
1908	FXP_LOCK(sc);
1909	device_printf(sc->dev, "device timeout\n");
1910	ifp->if_oerrors++;
1911
1912	fxp_init_body(sc);
1913	FXP_UNLOCK(sc);
1914}
1915
1916/*
1917 * Acquire locks and then call the real initialization function.  This
1918 * is necessary because ether_ioctl() calls if_init() and this would
1919 * result in mutex recursion if the mutex was held.
1920 */
1921static void
1922fxp_init(void *xsc)
1923{
1924	struct fxp_softc *sc = xsc;
1925
1926	FXP_LOCK(sc);
1927	fxp_init_body(sc);
1928	FXP_UNLOCK(sc);
1929}
1930
1931/*
1932 * Perform device initialization. This routine must be called with the
1933 * softc lock held.
1934 */
1935static void
1936fxp_init_body(struct fxp_softc *sc)
1937{
1938	struct ifnet *ifp = &sc->sc_if;
1939	struct fxp_cb_config *cbp;
1940	struct fxp_cb_ias *cb_ias;
1941	struct fxp_cb_tx *tcbp;
1942	struct fxp_tx *txp;
1943	struct fxp_cb_mcs *mcsp;
1944	int i, prm, s;
1945
1946	FXP_LOCK_ASSERT(sc, MA_OWNED);
1947	s = splimp();
1948	/*
1949	 * Cancel any pending I/O
1950	 */
1951	fxp_stop(sc);
1952
1953	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1954
1955	/*
1956	 * Initialize base of CBL and RFA memory. Loading with zero
1957	 * sets it up for regular linear addressing.
1958	 */
1959	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1960	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1961
1962	fxp_scb_wait(sc);
1963	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1964
1965	/*
1966	 * Initialize base of dump-stats buffer.
1967	 */
1968	fxp_scb_wait(sc);
1969	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1970	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1971	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1972
1973	/*
1974	 * Attempt to load microcode if requested.
1975	 */
1976	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1977		fxp_load_ucode(sc);
1978
1979	/*
1980	 * Initialize the multicast address list.
1981	 */
1982	if (fxp_mc_addrs(sc)) {
1983		mcsp = sc->mcsp;
1984		mcsp->cb_status = 0;
1985		mcsp->cb_command =
1986		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1987		mcsp->link_addr = 0xffffffff;
1988		/*
1989	 	 * Start the multicast setup command.
1990		 */
1991		fxp_scb_wait(sc);
1992		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1993		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1994		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1995		/* ...and wait for it to complete. */
1996		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1997		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1998		    BUS_DMASYNC_POSTWRITE);
1999	}
2000
2001	/*
2002	 * We temporarily use memory that contains the TxCB list to
2003	 * construct the config CB. The TxCB list memory is rebuilt
2004	 * later.
2005	 */
2006	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2007
2008	/*
2009	 * This bcopy is kind of disgusting, but there are a bunch of must be
2010	 * zero and must be one bits in this structure and this is the easiest
2011	 * way to initialize them all to proper values.
2012	 */
2013	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2014
2015	cbp->cb_status =	0;
2016	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2017	    FXP_CB_COMMAND_EL);
2018	cbp->link_addr =	0xffffffff;	/* (no) next command */
2019	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2020	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2021	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2022	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2023	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2024	cbp->type_enable =	0;	/* actually reserved */
2025	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2026	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2027	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2028	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2029	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2030	cbp->late_scb =		0;	/* (don't) defer SCB update */
2031	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2032	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2033	cbp->ci_int =		1;	/* interrupt on CU idle */
2034	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2035	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2036	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2037	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2038	cbp->disc_short_rx =	!prm;	/* discard short packets */
2039	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2040	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2041	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2042	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2043	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2044	cbp->csma_dis =		0;	/* (don't) disable link */
2045	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2046	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2047	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2048	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2049	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2050	cbp->nsai =		1;	/* (don't) disable source addr insert */
2051	cbp->preamble_length =	2;	/* (7 byte) preamble */
2052	cbp->loopback =		0;	/* (don't) loopback */
2053	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2054	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2055	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2056	cbp->promiscuous =	prm;	/* promiscuous mode */
2057	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2058	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2059	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2060	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2061	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2062
2063	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2064	cbp->padding =		1;	/* (do) pad short tx packets */
2065	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2066	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2067	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2068	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2069					/* must set wake_en in PMCSR also */
2070	cbp->force_fdx =	0;	/* (don't) force full duplex */
2071	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2072	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2073	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2074	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2075
2076	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2077		/*
2078		 * The 82557 has no hardware flow control, the values
2079		 * below are the defaults for the chip.
2080		 */
2081		cbp->fc_delay_lsb =	0;
2082		cbp->fc_delay_msb =	0x40;
2083		cbp->pri_fc_thresh =	3;
2084		cbp->tx_fc_dis =	0;
2085		cbp->rx_fc_restop =	0;
2086		cbp->rx_fc_restart =	0;
2087		cbp->fc_filter =	0;
2088		cbp->pri_fc_loc =	1;
2089	} else {
2090		cbp->fc_delay_lsb =	0x1f;
2091		cbp->fc_delay_msb =	0x01;
2092		cbp->pri_fc_thresh =	3;
2093		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2094		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2095		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2096		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2097		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2098	}
2099
2100	/*
2101	 * Start the config command/DMA.
2102	 */
2103	fxp_scb_wait(sc);
2104	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2105	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2106	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2107	/* ...and wait for it to complete. */
2108	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2109	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2110
2111	/*
2112	 * Now initialize the station address. Temporarily use the TxCB
2113	 * memory area like we did above for the config CB.
2114	 */
2115	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2116	cb_ias->cb_status = 0;
2117	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2118	cb_ias->link_addr = 0xffffffff;
2119	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2120	    sizeof(sc->arpcom.ac_enaddr));
2121
2122	/*
2123	 * Start the IAS (Individual Address Setup) command/DMA.
2124	 */
2125	fxp_scb_wait(sc);
2126	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2127	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2128	/* ...and wait for it to complete. */
2129	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2130	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2131
2132	/*
2133	 * Initialize transmit control block (TxCB) list.
2134	 */
2135	txp = sc->fxp_desc.tx_list;
2136	tcbp = sc->fxp_desc.cbl_list;
2137	bzero(tcbp, FXP_TXCB_SZ);
2138	for (i = 0; i < FXP_NTXCB; i++) {
2139		txp[i].tx_mbuf = NULL;
2140		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2141		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2142		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2143		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2144		if (sc->flags & FXP_FLAG_EXT_TXCB)
2145			tcbp[i].tbd_array_addr =
2146			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2147		else
2148			tcbp[i].tbd_array_addr =
2149			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2150		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2151	}
2152	/*
2153	 * Set the suspend flag on the first TxCB and start the control
2154	 * unit. It will execute the NOP and then suspend.
2155	 */
2156	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2157	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2158	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2159	sc->tx_queued = 1;
2160
2161	fxp_scb_wait(sc);
2162	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2163
2164	/*
2165	 * Initialize receiver buffer area - RFA.
2166	 */
2167	fxp_scb_wait(sc);
2168	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2169	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2170
2171	/*
2172	 * Set current media.
2173	 */
2174	if (sc->miibus != NULL)
2175		mii_mediachg(device_get_softc(sc->miibus));
2176
2177	ifp->if_flags |= IFF_RUNNING;
2178	ifp->if_flags &= ~IFF_OACTIVE;
2179
2180	/*
2181	 * Enable interrupts.
2182	 */
2183#ifdef DEVICE_POLLING
2184	/*
2185	 * ... but only do that if we are not polling. And because (presumably)
2186	 * the default is interrupts on, we need to disable them explicitly!
2187	 */
2188	if ( ifp->if_flags & IFF_POLLING )
2189		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2190	else
2191#endif /* DEVICE_POLLING */
2192	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2193
2194	/*
2195	 * Start stats updater.
2196	 */
2197	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2198	splx(s);
2199}
2200
2201static int
2202fxp_serial_ifmedia_upd(struct ifnet *ifp)
2203{
2204
2205	return (0);
2206}
2207
2208static void
2209fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2210{
2211
2212	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2213}
2214
2215/*
2216 * Change media according to request.
2217 */
2218static int
2219fxp_ifmedia_upd(struct ifnet *ifp)
2220{
2221	struct fxp_softc *sc = ifp->if_softc;
2222	struct mii_data *mii;
2223
2224	mii = device_get_softc(sc->miibus);
2225	mii_mediachg(mii);
2226	return (0);
2227}
2228
2229/*
2230 * Notify the world which media we're using.
2231 */
2232static void
2233fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2234{
2235	struct fxp_softc *sc = ifp->if_softc;
2236	struct mii_data *mii;
2237
2238	mii = device_get_softc(sc->miibus);
2239	mii_pollstat(mii);
2240	ifmr->ifm_active = mii->mii_media_active;
2241	ifmr->ifm_status = mii->mii_media_status;
2242
2243	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2244		sc->cu_resume_bug = 1;
2245	else
2246		sc->cu_resume_bug = 0;
2247}
2248
2249/*
2250 * Add a buffer to the end of the RFA buffer list.
2251 * Return 0 if successful, 1 for failure. A failure results in
2252 * adding the 'oldm' (if non-NULL) on to the end of the list -
2253 * tossing out its old contents and recycling it.
2254 * The RFA struct is stuck at the beginning of mbuf cluster and the
2255 * data pointer is fixed up to point just past it.
2256 */
2257static int
2258fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2259{
2260	struct mbuf *m;
2261	struct fxp_rfa *rfa, *p_rfa;
2262	struct fxp_rx *p_rx;
2263	bus_dmamap_t tmp_map;
2264	int error;
2265
2266	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2267	if (m == NULL)
2268		return (ENOBUFS);
2269
2270	/*
2271	 * Move the data pointer up so that the incoming data packet
2272	 * will be 32-bit aligned.
2273	 */
2274	m->m_data += RFA_ALIGNMENT_FUDGE;
2275
2276	/*
2277	 * Get a pointer to the base of the mbuf cluster and move
2278	 * data start past it.
2279	 */
2280	rfa = mtod(m, struct fxp_rfa *);
2281	m->m_data += sc->rfa_size;
2282	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2283
2284	rfa->rfa_status = 0;
2285	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2286	rfa->actual_size = 0;
2287
2288	/*
2289	 * Initialize the rest of the RFA.  Note that since the RFA
2290	 * is misaligned, we cannot store values directly.  We're thus
2291	 * using the le32enc() function which handles endianness and
2292	 * is also alignment-safe.
2293	 */
2294	le32enc(&rfa->link_addr, 0xffffffff);
2295	le32enc(&rfa->rbd_addr, 0xffffffff);
2296
2297	/* Map the RFA into DMA memory. */
2298	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2299	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2300	    &rxp->rx_addr, 0);
2301	if (error) {
2302		m_freem(m);
2303		return (error);
2304	}
2305
2306	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2307	tmp_map = sc->spare_map;
2308	sc->spare_map = rxp->rx_map;
2309	rxp->rx_map = tmp_map;
2310	rxp->rx_mbuf = m;
2311
2312	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2313	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314
2315	/*
2316	 * If there are other buffers already on the list, attach this
2317	 * one to the end by fixing up the tail to point to this one.
2318	 */
2319	if (sc->fxp_desc.rx_head != NULL) {
2320		p_rx = sc->fxp_desc.rx_tail;
2321		p_rfa = (struct fxp_rfa *)
2322		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2323		p_rx->rx_next = rxp;
2324		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2325		p_rfa->rfa_control = 0;
2326		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2327		    BUS_DMASYNC_PREWRITE);
2328	} else {
2329		rxp->rx_next = NULL;
2330		sc->fxp_desc.rx_head = rxp;
2331	}
2332	sc->fxp_desc.rx_tail = rxp;
2333	return (0);
2334}
2335
2336static volatile int
2337fxp_miibus_readreg(device_t dev, int phy, int reg)
2338{
2339	struct fxp_softc *sc = device_get_softc(dev);
2340	int count = 10000;
2341	int value;
2342
2343	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2345
2346	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2347	    && count--)
2348		DELAY(10);
2349
2350	if (count <= 0)
2351		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2352
2353	return (value & 0xffff);
2354}
2355
2356static void
2357fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2358{
2359	struct fxp_softc *sc = device_get_softc(dev);
2360	int count = 10000;
2361
2362	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2363	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2364	    (value & 0xffff));
2365
2366	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2367	    count--)
2368		DELAY(10);
2369
2370	if (count <= 0)
2371		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2372}
2373
2374static int
2375fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2376{
2377	struct fxp_softc *sc = ifp->if_softc;
2378	struct ifreq *ifr = (struct ifreq *)data;
2379	struct mii_data *mii;
2380	int flag, mask, s, error = 0;
2381
2382	/*
2383	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2384	 * that by saying we're busy if the lock is already held.
2385	 */
2386	if (FXP_LOCKED(sc))
2387		return (EBUSY);
2388
2389	FXP_LOCK(sc);
2390	s = splimp();
2391
2392	switch (command) {
2393	case SIOCSIFFLAGS:
2394		if (ifp->if_flags & IFF_ALLMULTI)
2395			sc->flags |= FXP_FLAG_ALL_MCAST;
2396		else
2397			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2398
2399		/*
2400		 * If interface is marked up and not running, then start it.
2401		 * If it is marked down and running, stop it.
2402		 * XXX If it's up then re-initialize it. This is so flags
2403		 * such as IFF_PROMISC are handled.
2404		 */
2405		if (ifp->if_flags & IFF_UP) {
2406			fxp_init_body(sc);
2407		} else {
2408			if (ifp->if_flags & IFF_RUNNING)
2409				fxp_stop(sc);
2410		}
2411		break;
2412
2413	case SIOCADDMULTI:
2414	case SIOCDELMULTI:
2415		if (ifp->if_flags & IFF_ALLMULTI)
2416			sc->flags |= FXP_FLAG_ALL_MCAST;
2417		else
2418			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2419		/*
2420		 * Multicast list has changed; set the hardware filter
2421		 * accordingly.
2422		 */
2423		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2424			fxp_mc_setup(sc);
2425		/*
2426		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2427		 * again rather than else {}.
2428		 */
2429		if (sc->flags & FXP_FLAG_ALL_MCAST)
2430			fxp_init_body(sc);
2431		error = 0;
2432		break;
2433
2434	case SIOCSIFMEDIA:
2435	case SIOCGIFMEDIA:
2436		if (sc->miibus != NULL) {
2437			mii = device_get_softc(sc->miibus);
2438                        error = ifmedia_ioctl(ifp, ifr,
2439                            &mii->mii_media, command);
2440		} else {
2441                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2442		}
2443		break;
2444
2445	case SIOCSIFCAP:
2446		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2447		if (mask & IFCAP_POLLING)
2448			ifp->if_capenable ^= IFCAP_POLLING;
2449		if (mask & IFCAP_VLAN_MTU) {
2450			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2451			if (sc->revision != FXP_REV_82557)
2452				flag = FXP_FLAG_LONG_PKT_EN;
2453			else /* a hack to get long frames on the old chip */
2454				flag = FXP_FLAG_SAVE_BAD;
2455			sc->flags ^= flag;
2456			if (ifp->if_flags & IFF_UP)
2457				fxp_init_body(sc);
2458		}
2459		break;
2460
2461	default:
2462		/*
2463		 * ether_ioctl() will eventually call fxp_start() which
2464		 * will result in mutex recursion so drop it first.
2465		 */
2466		FXP_UNLOCK(sc);
2467		error = ether_ioctl(ifp, command, data);
2468	}
2469	if (FXP_LOCKED(sc))
2470		FXP_UNLOCK(sc);
2471	splx(s);
2472	return (error);
2473}
2474
2475/*
2476 * Fill in the multicast address list and return number of entries.
2477 */
2478static int
2479fxp_mc_addrs(struct fxp_softc *sc)
2480{
2481	struct fxp_cb_mcs *mcsp = sc->mcsp;
2482	struct ifnet *ifp = &sc->sc_if;
2483	struct ifmultiaddr *ifma;
2484	int nmcasts;
2485
2486	nmcasts = 0;
2487	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2488#if __FreeBSD_version < 500000
2489		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2490#else
2491		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2492#endif
2493			if (ifma->ifma_addr->sa_family != AF_LINK)
2494				continue;
2495			if (nmcasts >= MAXMCADDR) {
2496				sc->flags |= FXP_FLAG_ALL_MCAST;
2497				nmcasts = 0;
2498				break;
2499			}
2500			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2501			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2502			nmcasts++;
2503		}
2504	}
2505	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2506	return (nmcasts);
2507}
2508
2509/*
2510 * Program the multicast filter.
2511 *
2512 * We have an artificial restriction that the multicast setup command
2513 * must be the first command in the chain, so we take steps to ensure
2514 * this. By requiring this, it allows us to keep up the performance of
2515 * the pre-initialized command ring (esp. link pointers) by not actually
2516 * inserting the mcsetup command in the ring - i.e. its link pointer
2517 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2518 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2519 * lead into the regular TxCB ring when it completes.
2520 *
2521 * This function must be called at splimp.
2522 */
2523static void
2524fxp_mc_setup(struct fxp_softc *sc)
2525{
2526	struct fxp_cb_mcs *mcsp = sc->mcsp;
2527	struct ifnet *ifp = &sc->sc_if;
2528	struct fxp_tx *txp;
2529	int count;
2530
2531	FXP_LOCK_ASSERT(sc, MA_OWNED);
2532	/*
2533	 * If there are queued commands, we must wait until they are all
2534	 * completed. If we are already waiting, then add a NOP command
2535	 * with interrupt option so that we're notified when all commands
2536	 * have been completed - fxp_start() ensures that no additional
2537	 * TX commands will be added when need_mcsetup is true.
2538	 */
2539	if (sc->tx_queued) {
2540		/*
2541		 * need_mcsetup will be true if we are already waiting for the
2542		 * NOP command to be completed (see below). In this case, bail.
2543		 */
2544		if (sc->need_mcsetup)
2545			return;
2546		sc->need_mcsetup = 1;
2547
2548		/*
2549		 * Add a NOP command with interrupt so that we are notified
2550		 * when all TX commands have been processed.
2551		 */
2552		txp = sc->fxp_desc.tx_last->tx_next;
2553		txp->tx_mbuf = NULL;
2554		txp->tx_cb->cb_status = 0;
2555		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2556		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2557		/*
2558		 * Advance the end of list forward.
2559		 */
2560		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2561		    htole16(~FXP_CB_COMMAND_S);
2562		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2563		sc->fxp_desc.tx_last = txp;
2564		sc->tx_queued++;
2565		/*
2566		 * Issue a resume in case the CU has just suspended.
2567		 */
2568		fxp_scb_wait(sc);
2569		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2570		/*
2571		 * Set a 5 second timer just in case we don't hear from the
2572		 * card again.
2573		 */
2574		ifp->if_timer = 5;
2575
2576		return;
2577	}
2578	sc->need_mcsetup = 0;
2579
2580	/*
2581	 * Initialize multicast setup descriptor.
2582	 */
2583	mcsp->cb_status = 0;
2584	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2585	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2586	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2587	txp = &sc->fxp_desc.mcs_tx;
2588	txp->tx_mbuf = NULL;
2589	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2590	txp->tx_next = sc->fxp_desc.tx_list;
2591	(void) fxp_mc_addrs(sc);
2592	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2593	sc->tx_queued = 1;
2594
2595	/*
2596	 * Wait until command unit is not active. This should never
2597	 * be the case when nothing is queued, but make sure anyway.
2598	 */
2599	count = 100;
2600	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2601	    FXP_SCB_CUS_ACTIVE && --count)
2602		DELAY(10);
2603	if (count == 0) {
2604		device_printf(sc->dev, "command queue timeout\n");
2605		return;
2606	}
2607
2608	/*
2609	 * Start the multicast setup command.
2610	 */
2611	fxp_scb_wait(sc);
2612	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2613	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2614	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2615
2616	ifp->if_timer = 2;
2617	return;
2618}
2619
2620static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2621static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2622static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2623static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2624static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2625static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2626
2627#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2628
2629struct ucode {
2630	uint32_t	revision;
2631	uint32_t	*ucode;
2632	int		length;
2633	u_short		int_delay_offset;
2634	u_short		bundle_max_offset;
2635} ucode_table[] = {
2636	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646	{ 0, NULL, 0, 0, 0 }
2647};
2648
2649static void
2650fxp_load_ucode(struct fxp_softc *sc)
2651{
2652	struct ucode *uc;
2653	struct fxp_cb_ucode *cbp;
2654	int i;
2655
2656	for (uc = ucode_table; uc->ucode != NULL; uc++)
2657		if (sc->revision == uc->revision)
2658			break;
2659	if (uc->ucode == NULL)
2660		return;
2661	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2662	cbp->cb_status = 0;
2663	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2664	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2665	for (i = 0; i < uc->length; i++)
2666		cbp->ucode[i] = htole32(uc->ucode[i]);
2667	if (uc->int_delay_offset)
2668		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2669		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2670	if (uc->bundle_max_offset)
2671		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2672		    htole16(sc->tunable_bundle_max);
2673	/*
2674	 * Download the ucode to the chip.
2675	 */
2676	fxp_scb_wait(sc);
2677	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2678	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2679	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2680	/* ...and wait for it to complete. */
2681	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2682	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2683	device_printf(sc->dev,
2684	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2685	    sc->tunable_int_delay,
2686	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2687	sc->flags |= FXP_FLAG_UCODE;
2688}
2689
2690static int
2691sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2692{
2693	int error, value;
2694
2695	value = *(int *)arg1;
2696	error = sysctl_handle_int(oidp, &value, 0, req);
2697	if (error || !req->newptr)
2698		return (error);
2699	if (value < low || value > high)
2700		return (EINVAL);
2701	*(int *)arg1 = value;
2702	return (0);
2703}
2704
2705/*
2706 * Interrupt delay is expressed in microseconds, a multiplier is used
2707 * to convert this to the appropriate clock ticks before using.
2708 */
2709static int
2710sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2711{
2712	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2713}
2714
2715static int
2716sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2717{
2718	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2719}
2720