if_fxp.c revision 143243
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 143243 2005-03-07 13:20:49Z mux $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	uint16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193    { 0,	-1,	NULL },
194};
195
196#ifdef FXP_IP_CSUM_WAR
197#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198#else
199#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200#endif
201
202static int		fxp_probe(device_t dev);
203static int		fxp_attach(device_t dev);
204static int		fxp_detach(device_t dev);
205static int		fxp_shutdown(device_t dev);
206static int		fxp_suspend(device_t dev);
207static int		fxp_resume(device_t dev);
208
209static void		fxp_intr(void *xsc);
210static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211			    uint8_t statack, int count);
212static void 		fxp_init(void *xsc);
213static void 		fxp_init_body(struct fxp_softc *sc);
214static void 		fxp_tick(void *xsc);
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218static void		fxp_stop(struct fxp_softc *sc);
219static void 		fxp_release(struct fxp_softc *sc);
220static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221			    caddr_t data);
222static void 		fxp_watchdog(struct ifnet *ifp);
223static int		fxp_add_rfabuf(struct fxp_softc *sc,
224    			    struct fxp_rx *rxp);
225static int		fxp_mc_addrs(struct fxp_softc *sc);
226static void		fxp_mc_setup(struct fxp_softc *sc);
227static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228			    int autosize);
229static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230			    uint16_t data);
231static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235			    int offset, int words);
236static int		fxp_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241			    struct ifmediareq *ifmr);
242static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244			    int value);
245static void		fxp_load_ucode(struct fxp_softc *sc);
246static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247			    int low, int high);
248static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250static void 		fxp_scb_wait(struct fxp_softc *sc);
251static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252static void		fxp_dma_wait(struct fxp_softc *sc,
253    			    volatile uint16_t *status, bus_dma_tag_t dmat,
254			    bus_dmamap_t map);
255
256static device_method_t fxp_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		fxp_probe),
259	DEVMETHOD(device_attach,	fxp_attach),
260	DEVMETHOD(device_detach,	fxp_detach),
261	DEVMETHOD(device_shutdown,	fxp_shutdown),
262	DEVMETHOD(device_suspend,	fxp_suspend),
263	DEVMETHOD(device_resume,	fxp_resume),
264
265	/* MII interface */
266	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268
269	{ 0, 0 }
270};
271
272static driver_t fxp_driver = {
273	"fxp",
274	fxp_methods,
275	sizeof(struct fxp_softc),
276};
277
278static devclass_t fxp_devclass;
279
280DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284/*
285 * Wait for the previous command to be accepted (but not necessarily
286 * completed).
287 */
288static void
289fxp_scb_wait(struct fxp_softc *sc)
290{
291	int i = 10000;
292
293	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294		DELAY(2);
295	if (i == 0)
296		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301}
302
303static void
304fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	uint16_t devid;
336	uint8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (BUS_PROBE_DEFAULT);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353static void
354fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355{
356	uint32_t *addr;
357
358	if (error)
359		return;
360
361	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362	addr = arg;
363	*addr = segs->ds_addr;
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	struct fxp_softc *sc;
370	struct fxp_cb_tx *tcbp;
371	struct fxp_tx *txp;
372	struct fxp_rx *rxp;
373	struct ifnet *ifp;
374	uint32_t val;
375	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376	int i, rid, m1, m2, prefer_iomap;
377	int error, s;
378
379	error = 0;
380	sc = device_get_softc(dev);
381	sc->dev = dev;
382	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384	    MTX_DEF);
385	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386	    fxp_serial_ifmedia_sts);
387
388	s = splimp();
389
390	/*
391	 * Enable bus mastering.
392	 */
393	pci_enable_busmaster(dev);
394	val = pci_read_config(dev, PCIR_COMMAND, 2);
395
396	/*
397	 * Figure out which we should try first - memory mapping or i/o mapping?
398	 * We default to memory mapping. Then we accept an override from the
399	 * command line. Then we check to see which one is enabled.
400	 */
401	m1 = PCIM_CMD_MEMEN;
402	m2 = PCIM_CMD_PORTEN;
403	prefer_iomap = 0;
404	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406		m1 = PCIM_CMD_PORTEN;
407		m2 = PCIM_CMD_MEMEN;
408	}
409
410	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413	if (sc->mem == NULL) {
414		sc->rtp =
415		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                            RF_ACTIVE);
419	}
420
421	if (!sc->mem) {
422		error = ENXIO;
423		goto fail;
424        }
425	if (bootverbose) {
426		device_printf(dev, "using %s space register mapping\n",
427		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428	}
429
430	sc->sc_st = rman_get_bustag(sc->mem);
431	sc->sc_sh = rman_get_bushandle(sc->mem);
432
433	/*
434	 * Allocate our interrupt.
435	 */
436	rid = 0;
437	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438				 RF_SHAREABLE | RF_ACTIVE);
439	if (sc->irq == NULL) {
440		device_printf(dev, "could not map interrupt\n");
441		error = ENXIO;
442		goto fail;
443	}
444
445	/*
446	 * Reset to a stable state.
447	 */
448	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449	DELAY(10);
450
451	/*
452	 * Find out how large of an SEEPROM we have.
453	 */
454	fxp_autosize_eeprom(sc);
455
456	/*
457	 * Find out the chip revision; lump all 82557 revs together.
458	 */
459	fxp_read_eeprom(sc, &data, 5, 1);
460	if ((data >> 8) == 1)
461		sc->revision = FXP_REV_82557;
462	else
463		sc->revision = pci_get_revid(dev);
464
465	/*
466	 * Determine whether we must use the 503 serial interface.
467	 */
468	fxp_read_eeprom(sc, &data, 6, 1);
469	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470	    && (data & FXP_PHY_SERIAL_ONLY))
471		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472
473	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477	    "FXP driver receive interrupt microcode bundling delay");
478	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482	    "FXP driver receive interrupt microcode bundle size limit");
483	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486	    "FXP RNR events");
487	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490	    "FXP flow control disabled");
491
492	/*
493	 * Pull in device tunables.
494	 */
495	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497	sc->tunable_noflow = 1;
498	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499	    "int_delay", &sc->tunable_int_delay);
500	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501	    "bundle_max", &sc->tunable_bundle_max);
502	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503	    "noflow", &sc->tunable_noflow);
504	sc->rnr = 0;
505
506	/*
507	 * Enable workarounds for certain chip revision deficiencies.
508	 *
509	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510	 * some systems based a normal 82559 design, have a defect where
511	 * the chip can cause a PCI protocol violation if it receives
512	 * a CU_RESUME command when it is entering the IDLE state.  The
513	 * workaround is to disable Dynamic Standby Mode, so the chip never
514	 * deasserts CLKRUN#, and always remains in an active state.
515	 *
516	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517	 */
518	i = pci_get_device(dev);
519	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520	    sc->revision >= FXP_REV_82559_A0) {
521		fxp_read_eeprom(sc, &data, 10, 1);
522		if (data & 0x02) {			/* STB enable */
523			uint16_t cksum;
524			int i;
525
526			device_printf(dev,
527			    "Disabling dynamic standby mode in EEPROM\n");
528			data &= ~0x02;
529			fxp_write_eeprom(sc, &data, 10, 1);
530			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531			cksum = 0;
532			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533				fxp_read_eeprom(sc, &data, i, 1);
534				cksum += data;
535			}
536			i = (1 << sc->eeprom_size) - 1;
537			cksum = 0xBABA - cksum;
538			fxp_read_eeprom(sc, &data, i, 1);
539			fxp_write_eeprom(sc, &cksum, i, 1);
540			device_printf(dev,
541			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542			    i, data, cksum);
543#if 1
544			/*
545			 * If the user elects to continue, try the software
546			 * workaround, as it is better than nothing.
547			 */
548			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549#endif
550		}
551	}
552
553	/*
554	 * If we are not a 82557 chip, we can enable extended features.
555	 */
556	if (sc->revision != FXP_REV_82557) {
557		/*
558		 * If MWI is enabled in the PCI configuration, and there
559		 * is a valid cacheline size (8 or 16 dwords), then tell
560		 * the board to turn on MWI.
561		 */
562		if (val & PCIM_CMD_MWRICEN &&
563		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564			sc->flags |= FXP_FLAG_MWI_ENABLE;
565
566		/* turn on the extended TxCB feature */
567		sc->flags |= FXP_FLAG_EXT_TXCB;
568
569		/* enable reception of long frames for VLAN */
570		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571	} else {
572		/* a hack to get long VLAN frames on a 82557 */
573		sc->flags |= FXP_FLAG_SAVE_BAD;
574	}
575
576	/*
577	 * Enable use of extended RFDs and TCBs for 82550
578	 * and later chips. Note: we need extended TXCB support
579	 * too, but that's already enabled by the code above.
580	 * Be careful to do this only on the right devices.
581	 */
582
583	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
584		sc->rfa_size = sizeof (struct fxp_rfa);
585		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
586		sc->flags |= FXP_FLAG_EXT_RFA;
587	} else {
588		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
589		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
590	}
591
592	/*
593	 * Allocate DMA tags and DMA safe memory.
594	 */
595	sc->maxtxseg = FXP_NTXSEG;
596	if (sc->flags & FXP_FLAG_EXT_RFA)
597		sc->maxtxseg--;
598	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
599	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
600	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
601	    &sc->fxp_mtag);
602	if (error) {
603		device_printf(dev, "could not allocate dma tag\n");
604		goto fail;
605	}
606
607	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
608	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
609	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
610	    &sc->fxp_stag);
611	if (error) {
612		device_printf(dev, "could not allocate dma tag\n");
613		goto fail;
614	}
615
616	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
617	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
618	if (error)
619		goto fail;
620	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
621	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
622	if (error) {
623		device_printf(dev, "could not map the stats buffer\n");
624		goto fail;
625	}
626
627	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
628	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
629	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
630	if (error) {
631		device_printf(dev, "could not allocate dma tag\n");
632		goto fail;
633	}
634
635	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
636	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
637	if (error)
638		goto fail;
639
640	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
641	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
642	    &sc->fxp_desc.cbl_addr, 0);
643	if (error) {
644		device_printf(dev, "could not map DMA memory\n");
645		goto fail;
646	}
647
648	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
649	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
650	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
651	    &sc->mcs_tag);
652	if (error) {
653		device_printf(dev, "could not allocate dma tag\n");
654		goto fail;
655	}
656
657	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
658	    BUS_DMA_NOWAIT, &sc->mcs_map);
659	if (error)
660		goto fail;
661	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
662	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
663	if (error) {
664		device_printf(dev, "can't map the multicast setup command\n");
665		goto fail;
666	}
667
668	/*
669	 * Pre-allocate the TX DMA maps and setup the pointers to
670	 * the TX command blocks.
671	 */
672	txp = sc->fxp_desc.tx_list;
673	tcbp = sc->fxp_desc.cbl_list;
674	for (i = 0; i < FXP_NTXCB; i++) {
675		txp[i].tx_cb = tcbp + i;
676		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
677		if (error) {
678			device_printf(dev, "can't create DMA map for TX\n");
679			goto fail;
680		}
681	}
682	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
683	if (error) {
684		device_printf(dev, "can't create spare DMA map\n");
685		goto fail;
686	}
687
688	/*
689	 * Pre-allocate our receive buffers.
690	 */
691	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
692	for (i = 0; i < FXP_NRFABUFS; i++) {
693		rxp = &sc->fxp_desc.rx_list[i];
694		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
695		if (error) {
696			device_printf(dev, "can't create DMA map for RX\n");
697			goto fail;
698		}
699		if (fxp_add_rfabuf(sc, rxp) != 0) {
700			error = ENOMEM;
701			goto fail;
702		}
703	}
704
705	/*
706	 * Read MAC address.
707	 */
708	fxp_read_eeprom(sc, myea, 0, 3);
709	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
710	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
711	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
712	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
713	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
714	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
715	if (bootverbose) {
716		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
717		    pci_get_vendor(dev), pci_get_device(dev),
718		    pci_get_subvendor(dev), pci_get_subdevice(dev),
719		    pci_get_revid(dev));
720		fxp_read_eeprom(sc, &data, 10, 1);
721		device_printf(dev, "Dynamic Standby mode is %s\n",
722		    data & 0x02 ? "enabled" : "disabled");
723	}
724
725	/*
726	 * If this is only a 10Mbps device, then there is no MII, and
727	 * the PHY will use a serial interface instead.
728	 *
729	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
730	 * doesn't have a programming interface of any sort.  The
731	 * media is sensed automatically based on how the link partner
732	 * is configured.  This is, in essence, manual configuration.
733	 */
734	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
735		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
736		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
737	} else {
738		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
739		    fxp_ifmedia_sts)) {
740	                device_printf(dev, "MII without any PHY!\n");
741			error = ENXIO;
742			goto fail;
743		}
744	}
745
746	ifp = &sc->arpcom.ac_if;
747	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
748	ifp->if_baudrate = 100000000;
749	ifp->if_init = fxp_init;
750	ifp->if_softc = sc;
751	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752	ifp->if_ioctl = fxp_ioctl;
753	ifp->if_start = fxp_start;
754	ifp->if_watchdog = fxp_watchdog;
755
756	ifp->if_capabilities = ifp->if_capenable = 0;
757
758	/* Enable checksum offload for 82550 or better chips */
759	if (sc->flags & FXP_FLAG_EXT_RFA) {
760		ifp->if_hwassist = FXP_CSUM_FEATURES;
761		ifp->if_capabilities |= IFCAP_HWCSUM;
762		ifp->if_capenable |= IFCAP_HWCSUM;
763	}
764
765#ifdef DEVICE_POLLING
766	/* Inform the world we support polling. */
767	ifp->if_capabilities |= IFCAP_POLLING;
768	ifp->if_capenable |= IFCAP_POLLING;
769#endif
770
771	/*
772	 * Attach the interface.
773	 */
774	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
775
776	/*
777	 * Tell the upper layer(s) we support long frames.
778	 * Must appear after the call to ether_ifattach() because
779	 * ether_ifattach() sets ifi_hdrlen to the default value.
780	 */
781	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
782	ifp->if_capabilities |= IFCAP_VLAN_MTU;
783	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
784
785	/*
786	 * Let the system queue as many packets as we have available
787	 * TX descriptors.
788	 */
789	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
790	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
791	IFQ_SET_READY(&ifp->if_snd);
792
793	/*
794	 * Hook our interrupt after all initialization is complete.
795	 */
796	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
797			       fxp_intr, sc, &sc->ih);
798	if (error) {
799		device_printf(dev, "could not setup irq\n");
800		ether_ifdetach(&sc->arpcom.ac_if);
801		goto fail;
802	}
803
804fail:
805	splx(s);
806	if (error)
807		fxp_release(sc);
808	return (error);
809}
810
811/*
812 * Release all resources.  The softc lock should not be held and the
813 * interrupt should already be torn down.
814 */
815static void
816fxp_release(struct fxp_softc *sc)
817{
818	struct fxp_rx *rxp;
819	struct fxp_tx *txp;
820	int i;
821
822	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
823	KASSERT(sc->ih == NULL,
824	    ("fxp_release() called with intr handle still active"));
825	if (sc->miibus)
826		device_delete_child(sc->dev, sc->miibus);
827	bus_generic_detach(sc->dev);
828	ifmedia_removeall(&sc->sc_media);
829	if (sc->fxp_desc.cbl_list) {
830		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
831		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
832		    sc->cbl_map);
833	}
834	if (sc->fxp_stats) {
835		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
836		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
837	}
838	if (sc->mcsp) {
839		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
840		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
841	}
842	if (sc->irq)
843		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
844	if (sc->mem)
845		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
846	if (sc->fxp_mtag) {
847		for (i = 0; i < FXP_NRFABUFS; i++) {
848			rxp = &sc->fxp_desc.rx_list[i];
849			if (rxp->rx_mbuf != NULL) {
850				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
851				    BUS_DMASYNC_POSTREAD);
852				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
853				m_freem(rxp->rx_mbuf);
854			}
855			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
856		}
857		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
858		bus_dma_tag_destroy(sc->fxp_mtag);
859	}
860	if (sc->fxp_stag) {
861		for (i = 0; i < FXP_NTXCB; i++) {
862			txp = &sc->fxp_desc.tx_list[i];
863			if (txp->tx_mbuf != NULL) {
864				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
865				    BUS_DMASYNC_POSTWRITE);
866				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
867				m_freem(txp->tx_mbuf);
868			}
869			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
870		}
871		bus_dma_tag_destroy(sc->fxp_stag);
872	}
873	if (sc->cbl_tag)
874		bus_dma_tag_destroy(sc->cbl_tag);
875	if (sc->mcs_tag)
876		bus_dma_tag_destroy(sc->mcs_tag);
877
878	mtx_destroy(&sc->sc_mtx);
879}
880
881/*
882 * Detach interface.
883 */
884static int
885fxp_detach(device_t dev)
886{
887	struct fxp_softc *sc = device_get_softc(dev);
888	int s;
889
890	FXP_LOCK(sc);
891	s = splimp();
892
893	sc->suspended = 1;	/* Do same thing as we do for suspend */
894	/*
895	 * Close down routes etc.
896	 */
897	ether_ifdetach(&sc->arpcom.ac_if);
898
899	/*
900	 * Stop DMA and drop transmit queue, but disable interrupts first.
901	 */
902	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
903	fxp_stop(sc);
904	FXP_UNLOCK(sc);
905
906	/*
907	 * Unhook interrupt before dropping lock. This is to prevent
908	 * races with fxp_intr().
909	 */
910	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
911	sc->ih = NULL;
912
913	splx(s);
914
915	/* Release our allocated resources. */
916	fxp_release(sc);
917	return (0);
918}
919
920/*
921 * Device shutdown routine. Called at system shutdown after sync. The
922 * main purpose of this routine is to shut off receiver DMA so that
923 * kernel memory doesn't get clobbered during warmboot.
924 */
925static int
926fxp_shutdown(device_t dev)
927{
928	/*
929	 * Make sure that DMA is disabled prior to reboot. Not doing
930	 * do could allow DMA to corrupt kernel memory during the
931	 * reboot before the driver initializes.
932	 */
933	fxp_stop((struct fxp_softc *) device_get_softc(dev));
934	return (0);
935}
936
937/*
938 * Device suspend routine.  Stop the interface and save some PCI
939 * settings in case the BIOS doesn't restore them properly on
940 * resume.
941 */
942static int
943fxp_suspend(device_t dev)
944{
945	struct fxp_softc *sc = device_get_softc(dev);
946	int i, s;
947
948	FXP_LOCK(sc);
949	s = splimp();
950
951	fxp_stop(sc);
952
953	for (i = 0; i < 5; i++)
954		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
955	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
956	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
957	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
958	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
959
960	sc->suspended = 1;
961
962	FXP_UNLOCK(sc);
963	splx(s);
964	return (0);
965}
966
967/*
968 * Device resume routine.  Restore some PCI settings in case the BIOS
969 * doesn't, re-enable busmastering, and restart the interface if
970 * appropriate.
971 */
972static int
973fxp_resume(device_t dev)
974{
975	struct fxp_softc *sc = device_get_softc(dev);
976	struct ifnet *ifp = &sc->sc_if;
977	uint16_t pci_command;
978	int i, s;
979
980	FXP_LOCK(sc);
981	s = splimp();
982
983	/* better way to do this? */
984	for (i = 0; i < 5; i++)
985		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
986	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
987	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
988	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
989	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
990
991	/* reenable busmastering */
992	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
993	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
994	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
995
996	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
997	DELAY(10);
998
999	/* reinitialize interface if necessary */
1000	if (ifp->if_flags & IFF_UP)
1001		fxp_init_body(sc);
1002
1003	sc->suspended = 0;
1004
1005	FXP_UNLOCK(sc);
1006	splx(s);
1007	return (0);
1008}
1009
1010static void
1011fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1012{
1013	uint16_t reg;
1014	int x;
1015
1016	/*
1017	 * Shift in data.
1018	 */
1019	for (x = 1 << (length - 1); x; x >>= 1) {
1020		if (data & x)
1021			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1022		else
1023			reg = FXP_EEPROM_EECS;
1024		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1025		DELAY(1);
1026		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1027		DELAY(1);
1028		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1029		DELAY(1);
1030	}
1031}
1032
1033/*
1034 * Read from the serial EEPROM. Basically, you manually shift in
1035 * the read opcode (one bit at a time) and then shift in the address,
1036 * and then you shift out the data (all of this one bit at a time).
1037 * The word size is 16 bits, so you have to provide the address for
1038 * every 16 bits of data.
1039 */
1040static uint16_t
1041fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1042{
1043	uint16_t reg, data;
1044	int x;
1045
1046	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1047	/*
1048	 * Shift in read opcode.
1049	 */
1050	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1051	/*
1052	 * Shift in address.
1053	 */
1054	data = 0;
1055	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1056		if (offset & x)
1057			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1058		else
1059			reg = FXP_EEPROM_EECS;
1060		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1061		DELAY(1);
1062		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1063		DELAY(1);
1064		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1065		DELAY(1);
1066		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1067		data++;
1068		if (autosize && reg == 0) {
1069			sc->eeprom_size = data;
1070			break;
1071		}
1072	}
1073	/*
1074	 * Shift out data.
1075	 */
1076	data = 0;
1077	reg = FXP_EEPROM_EECS;
1078	for (x = 1 << 15; x; x >>= 1) {
1079		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1080		DELAY(1);
1081		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1082			data |= x;
1083		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1084		DELAY(1);
1085	}
1086	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1087	DELAY(1);
1088
1089	return (data);
1090}
1091
1092static void
1093fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1094{
1095	int i;
1096
1097	/*
1098	 * Erase/write enable.
1099	 */
1100	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101	fxp_eeprom_shiftin(sc, 0x4, 3);
1102	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1103	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1104	DELAY(1);
1105	/*
1106	 * Shift in write opcode, address, data.
1107	 */
1108	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1109	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1110	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1111	fxp_eeprom_shiftin(sc, data, 16);
1112	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1113	DELAY(1);
1114	/*
1115	 * Wait for EEPROM to finish up.
1116	 */
1117	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1118	DELAY(1);
1119	for (i = 0; i < 1000; i++) {
1120		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1121			break;
1122		DELAY(50);
1123	}
1124	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125	DELAY(1);
1126	/*
1127	 * Erase/write disable.
1128	 */
1129	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1130	fxp_eeprom_shiftin(sc, 0x4, 3);
1131	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1132	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1133	DELAY(1);
1134}
1135
1136/*
1137 * From NetBSD:
1138 *
1139 * Figure out EEPROM size.
1140 *
1141 * 559's can have either 64-word or 256-word EEPROMs, the 558
1142 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1143 * talks about the existance of 16 to 256 word EEPROMs.
1144 *
1145 * The only known sizes are 64 and 256, where the 256 version is used
1146 * by CardBus cards to store CIS information.
1147 *
1148 * The address is shifted in msb-to-lsb, and after the last
1149 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1150 * after which follows the actual data. We try to detect this zero, by
1151 * probing the data-out bit in the EEPROM control register just after
1152 * having shifted in a bit. If the bit is zero, we assume we've
1153 * shifted enough address bits. The data-out should be tri-state,
1154 * before this, which should translate to a logical one.
1155 */
1156static void
1157fxp_autosize_eeprom(struct fxp_softc *sc)
1158{
1159
1160	/* guess maximum size of 256 words */
1161	sc->eeprom_size = 8;
1162
1163	/* autosize */
1164	(void) fxp_eeprom_getword(sc, 0, 1);
1165}
1166
1167static void
1168fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1169{
1170	int i;
1171
1172	for (i = 0; i < words; i++)
1173		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1174}
1175
1176static void
1177fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1178{
1179	int i;
1180
1181	for (i = 0; i < words; i++)
1182		fxp_eeprom_putword(sc, offset + i, data[i]);
1183}
1184
1185/*
1186 * Grab the softc lock and call the real fxp_start_body() routine
1187 */
1188static void
1189fxp_start(struct ifnet *ifp)
1190{
1191	struct fxp_softc *sc = ifp->if_softc;
1192
1193	FXP_LOCK(sc);
1194	fxp_start_body(ifp);
1195	FXP_UNLOCK(sc);
1196}
1197
1198/*
1199 * Start packet transmission on the interface.
1200 * This routine must be called with the softc lock held, and is an
1201 * internal entry point only.
1202 */
1203static void
1204fxp_start_body(struct ifnet *ifp)
1205{
1206	struct fxp_softc *sc = ifp->if_softc;
1207	struct mbuf *mb_head;
1208	int error, txqueued;
1209
1210	FXP_LOCK_ASSERT(sc, MA_OWNED);
1211
1212	/*
1213	 * See if we need to suspend xmit until the multicast filter
1214	 * has been reprogrammed (which can only be done at the head
1215	 * of the command chain).
1216	 */
1217	if (sc->need_mcsetup)
1218		return;
1219
1220	/*
1221	 * We're finished if there is nothing more to add to the list or if
1222	 * we're all filled up with buffers to transmit.
1223	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1224	 *       a NOP command when needed.
1225	 */
1226	txqueued = 0;
1227	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1228	    sc->tx_queued < FXP_NTXCB - 1) {
1229
1230		/*
1231		 * Grab a packet to transmit.
1232		 */
1233		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1234		if (mb_head == NULL)
1235			break;
1236
1237		error = fxp_encap(sc, mb_head);
1238		if (error)
1239			break;
1240		txqueued = 1;
1241	}
1242	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1243
1244	/*
1245	 * We're finished. If we added to the list, issue a RESUME to get DMA
1246	 * going again if suspended.
1247	 */
1248	if (txqueued) {
1249		fxp_scb_wait(sc);
1250		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1251	}
1252}
1253
1254static int
1255fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1256{
1257	struct ifnet *ifp;
1258	struct mbuf *m;
1259	struct fxp_tx *txp;
1260	struct fxp_cb_tx *cbp;
1261	bus_dma_segment_t segs[FXP_NTXSEG];
1262	int chainlen, error, i, nseg;
1263
1264	FXP_LOCK_ASSERT(sc, MA_OWNED);
1265	ifp = &sc->sc_if;
1266
1267	/*
1268	 * Get pointer to next available tx desc.
1269	 */
1270	txp = sc->fxp_desc.tx_last->tx_next;
1271
1272	/*
1273	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1274	 * Ethernet Controller Family Open Source Software
1275	 * Developer Manual says:
1276	 *   Using software parsing is only allowed with legal
1277	 *   TCP/IP or UDP/IP packets.
1278	 *   ...
1279	 *   For all other datagrams, hardware parsing must
1280	 *   be used.
1281	 * Software parsing appears to truncate ICMP and
1282	 * fragmented UDP packets that contain one to three
1283	 * bytes in the second (and final) mbuf of the packet.
1284	 */
1285	if (sc->flags & FXP_FLAG_EXT_RFA)
1286		txp->tx_cb->ipcb_ip_activation_high =
1287		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1288
1289	/*
1290	 * Deal with TCP/IP checksum offload. Note that
1291	 * in order for TCP checksum offload to work,
1292	 * the pseudo header checksum must have already
1293	 * been computed and stored in the checksum field
1294	 * in the TCP header. The stack should have
1295	 * already done this for us.
1296	 */
1297	if (m_head->m_pkthdr.csum_flags) {
1298		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1299			txp->tx_cb->ipcb_ip_schedule =
1300			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1301			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1302				txp->tx_cb->ipcb_ip_schedule |=
1303				    FXP_IPCB_TCP_PACKET;
1304		}
1305
1306#ifdef FXP_IP_CSUM_WAR
1307		/*
1308		 * XXX The 82550 chip appears to have trouble
1309		 * dealing with IP header checksums in very small
1310		 * datagrams, namely fragments from 1 to 3 bytes
1311		 * in size. For example, say you want to transmit
1312		 * a UDP packet of 1473 bytes. The packet will be
1313		 * fragmented over two IP datagrams, the latter
1314		 * containing only one byte of data. The 82550 will
1315		 * botch the header checksum on the 1-byte fragment.
1316		 * As long as the datagram contains 4 or more bytes
1317		 * of data, you're ok.
1318		 *
1319                 * The following code attempts to work around this
1320		 * problem: if the datagram is less than 38 bytes
1321		 * in size (14 bytes ether header, 20 bytes IP header,
1322		 * plus 4 bytes of data), we punt and compute the IP
1323		 * header checksum by hand. This workaround doesn't
1324		 * work very well, however, since it can be fooled
1325		 * by things like VLAN tags and IP options that make
1326		 * the header sizes/offsets vary.
1327		 */
1328
1329		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1330			if (m_head->m_pkthdr.len < 38) {
1331				struct ip *ip;
1332				m_head->m_data += ETHER_HDR_LEN;
1333				ip = mtod(mb_head, struct ip *);
1334				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1335				m_head->m_data -= ETHER_HDR_LEN;
1336			} else {
1337				txp->tx_cb->ipcb_ip_activation_high =
1338				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1339				txp->tx_cb->ipcb_ip_schedule |=
1340				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1341			}
1342		}
1343#endif
1344	}
1345
1346	chainlen = 0;
1347	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1348		chainlen++;
1349	if (chainlen > sc->maxtxseg) {
1350		struct mbuf *mn;
1351
1352		/*
1353		 * We ran out of segments. We have to recopy this
1354		 * mbuf chain first. Bail out if we can't get the
1355		 * new buffers.
1356		 */
1357		mn = m_defrag(m_head, M_DONTWAIT);
1358		if (mn == NULL) {
1359			m_freem(m_head);
1360			return (-1);
1361		} else {
1362			m_head = mn;
1363		}
1364	}
1365
1366	/*
1367	 * Go through each of the mbufs in the chain and initialize
1368	 * the transmit buffer descriptors with the physical address
1369	 * and size of the mbuf.
1370	 */
1371	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1372	    m_head, segs, &nseg, 0);
1373	if (error) {
1374		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1375		m_freem(m_head);
1376		return (-1);
1377	}
1378
1379	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1380
1381	cbp = txp->tx_cb;
1382	for (i = 0; i < nseg; i++) {
1383		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1384		/*
1385		 * If this is an 82550/82551, then we're using extended
1386		 * TxCBs _and_ we're using checksum offload. This means
1387		 * that the TxCB is really an IPCB. One major difference
1388		 * between the two is that with plain extended TxCBs,
1389		 * the bottom half of the TxCB contains two entries from
1390		 * the TBD array, whereas IPCBs contain just one entry:
1391		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1392		 * checksum offload control bits. So to make things work
1393		 * right, we have to start filling in the TBD array
1394		 * starting from a different place depending on whether
1395		 * the chip is an 82550/82551 or not.
1396		 */
1397		if (sc->flags & FXP_FLAG_EXT_RFA) {
1398			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1399			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1400		} else {
1401			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1402			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1403		}
1404	}
1405	cbp->tbd_number = nseg;
1406
1407	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1408	txp->tx_mbuf = m_head;
1409	txp->tx_cb->cb_status = 0;
1410	txp->tx_cb->byte_count = 0;
1411	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1412		txp->tx_cb->cb_command =
1413		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1414		    FXP_CB_COMMAND_S);
1415	} else {
1416		txp->tx_cb->cb_command =
1417		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1418		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1419		/*
1420		 * Set a 5 second timer just in case we don't hear
1421		 * from the card again.
1422		 */
1423		ifp->if_timer = 5;
1424	}
1425	txp->tx_cb->tx_threshold = tx_threshold;
1426
1427	/*
1428	 * Advance the end of list forward.
1429	 */
1430
1431#ifdef __alpha__
1432	/*
1433	 * On platforms which can't access memory in 16-bit
1434	 * granularities, we must prevent the card from DMA'ing
1435	 * up the status while we update the command field.
1436	 * This could cause us to overwrite the completion status.
1437	 * XXX This is probably bogus and we're _not_ looking
1438	 * for atomicity here.
1439	 */
1440	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1441	    htole16(FXP_CB_COMMAND_S));
1442#else
1443	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1444#endif /*__alpha__*/
1445	sc->fxp_desc.tx_last = txp;
1446
1447	/*
1448	 * Advance the beginning of the list forward if there are
1449	 * no other packets queued (when nothing is queued, tx_first
1450	 * sits on the last TxCB that was sent out).
1451	 */
1452	if (sc->tx_queued == 0)
1453		sc->fxp_desc.tx_first = txp;
1454
1455	sc->tx_queued++;
1456
1457	/*
1458	 * Pass packet to bpf if there is a listener.
1459	 */
1460	BPF_MTAP(ifp, m_head);
1461	return (0);
1462}
1463
1464#ifdef DEVICE_POLLING
1465static poll_handler_t fxp_poll;
1466
1467static void
1468fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1469{
1470	struct fxp_softc *sc = ifp->if_softc;
1471	uint8_t statack;
1472
1473	FXP_LOCK(sc);
1474	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1475		ether_poll_deregister(ifp);
1476		cmd = POLL_DEREGISTER;
1477	}
1478	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1479		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1480		FXP_UNLOCK(sc);
1481		return;
1482	}
1483	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1484	    FXP_SCB_STATACK_FR;
1485	if (cmd == POLL_AND_CHECK_STATUS) {
1486		uint8_t tmp;
1487
1488		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1489		if (tmp == 0xff || tmp == 0) {
1490			FXP_UNLOCK(sc);
1491			return; /* nothing to do */
1492		}
1493		tmp &= ~statack;
1494		/* ack what we can */
1495		if (tmp != 0)
1496			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1497		statack |= tmp;
1498	}
1499	fxp_intr_body(sc, ifp, statack, count);
1500	FXP_UNLOCK(sc);
1501}
1502#endif /* DEVICE_POLLING */
1503
1504/*
1505 * Process interface interrupts.
1506 */
1507static void
1508fxp_intr(void *xsc)
1509{
1510	struct fxp_softc *sc = xsc;
1511	struct ifnet *ifp = &sc->sc_if;
1512	uint8_t statack;
1513
1514	FXP_LOCK(sc);
1515	if (sc->suspended) {
1516		FXP_UNLOCK(sc);
1517		return;
1518	}
1519
1520#ifdef DEVICE_POLLING
1521	if (ifp->if_flags & IFF_POLLING) {
1522		FXP_UNLOCK(sc);
1523		return;
1524	}
1525	if ((ifp->if_capenable & IFCAP_POLLING) &&
1526	    ether_poll_register(fxp_poll, ifp)) {
1527		/* disable interrupts */
1528		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1529		FXP_UNLOCK(sc);
1530		fxp_poll(ifp, 0, 1);
1531		return;
1532	}
1533#endif
1534	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1535		/*
1536		 * It should not be possible to have all bits set; the
1537		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1538		 * all bits are set, this may indicate that the card has
1539		 * been physically ejected, so ignore it.
1540		 */
1541		if (statack == 0xff) {
1542			FXP_UNLOCK(sc);
1543			return;
1544		}
1545
1546		/*
1547		 * First ACK all the interrupts in this pass.
1548		 */
1549		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1550		fxp_intr_body(sc, ifp, statack, -1);
1551	}
1552	FXP_UNLOCK(sc);
1553}
1554
1555static void
1556fxp_txeof(struct fxp_softc *sc)
1557{
1558	struct fxp_tx *txp;
1559
1560	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1561	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1562	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1563	    txp = txp->tx_next) {
1564		if (txp->tx_mbuf != NULL) {
1565			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1566			    BUS_DMASYNC_POSTWRITE);
1567			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1568			m_freem(txp->tx_mbuf);
1569			txp->tx_mbuf = NULL;
1570			/* clear this to reset csum offload bits */
1571			txp->tx_cb->tbd[0].tb_addr = 0;
1572		}
1573		sc->tx_queued--;
1574	}
1575	sc->fxp_desc.tx_first = txp;
1576	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1577}
1578
1579static void
1580fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1581    int count)
1582{
1583	struct mbuf *m;
1584	struct fxp_rx *rxp;
1585	struct fxp_rfa *rfa;
1586	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1587
1588	FXP_LOCK_ASSERT(sc, MA_OWNED);
1589	if (rnr)
1590		sc->rnr++;
1591#ifdef DEVICE_POLLING
1592	/* Pick up a deferred RNR condition if `count' ran out last time. */
1593	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1594		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1595		rnr = 1;
1596	}
1597#endif
1598
1599	/*
1600	 * Free any finished transmit mbuf chains.
1601	 *
1602	 * Handle the CNA event likt a CXTNO event. It used to
1603	 * be that this event (control unit not ready) was not
1604	 * encountered, but it is now with the SMPng modifications.
1605	 * The exact sequence of events that occur when the interface
1606	 * is brought up are different now, and if this event
1607	 * goes unhandled, the configuration/rxfilter setup sequence
1608	 * can stall for several seconds. The result is that no
1609	 * packets go out onto the wire for about 5 to 10 seconds
1610	 * after the interface is ifconfig'ed for the first time.
1611	 */
1612	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1613		fxp_txeof(sc);
1614
1615		ifp->if_timer = 0;
1616		if (sc->tx_queued == 0) {
1617			if (sc->need_mcsetup)
1618				fxp_mc_setup(sc);
1619		}
1620		/*
1621		 * Try to start more packets transmitting.
1622		 */
1623		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1624			fxp_start_body(ifp);
1625	}
1626
1627	/*
1628	 * Just return if nothing happened on the receive side.
1629	 */
1630	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1631		return;
1632
1633	/*
1634	 * Process receiver interrupts. If a no-resource (RNR)
1635	 * condition exists, get whatever packets we can and
1636	 * re-start the receiver.
1637	 *
1638	 * When using polling, we do not process the list to completion,
1639	 * so when we get an RNR interrupt we must defer the restart
1640	 * until we hit the last buffer with the C bit set.
1641	 * If we run out of cycles and rfa_headm has the C bit set,
1642	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1643	 * that the info will be used in the subsequent polling cycle.
1644	 */
1645	for (;;) {
1646		rxp = sc->fxp_desc.rx_head;
1647		m = rxp->rx_mbuf;
1648		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1649		    RFA_ALIGNMENT_FUDGE);
1650		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1651		    BUS_DMASYNC_POSTREAD);
1652
1653#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1654		if (count >= 0 && count-- == 0) {
1655			if (rnr) {
1656				/* Defer RNR processing until the next time. */
1657				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1658				rnr = 0;
1659			}
1660			break;
1661		}
1662#endif /* DEVICE_POLLING */
1663
1664		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1665			break;
1666
1667		/*
1668		 * Advance head forward.
1669		 */
1670		sc->fxp_desc.rx_head = rxp->rx_next;
1671
1672		/*
1673		 * Add a new buffer to the receive chain.
1674		 * If this fails, the old buffer is recycled
1675		 * instead.
1676		 */
1677		if (fxp_add_rfabuf(sc, rxp) == 0) {
1678			int total_len;
1679
1680			/*
1681			 * Fetch packet length (the top 2 bits of
1682			 * actual_size are flags set by the controller
1683			 * upon completion), and drop the packet in case
1684			 * of bogus length or CRC errors.
1685			 */
1686			total_len = le16toh(rfa->actual_size) & 0x3fff;
1687			if (total_len < sizeof(struct ether_header) ||
1688			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1689				sc->rfa_size ||
1690			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1691				m_freem(m);
1692				continue;
1693			}
1694
1695                        /* Do IP checksum checking. */
1696			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1697				if (rfa->rfax_csum_sts &
1698				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1699					m->m_pkthdr.csum_flags |=
1700					    CSUM_IP_CHECKED;
1701				if (rfa->rfax_csum_sts &
1702				    FXP_RFDX_CS_IP_CSUM_VALID)
1703					m->m_pkthdr.csum_flags |=
1704					    CSUM_IP_VALID;
1705				if ((rfa->rfax_csum_sts &
1706				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1707				    (rfa->rfax_csum_sts &
1708				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1709					m->m_pkthdr.csum_flags |=
1710					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1711					m->m_pkthdr.csum_data = 0xffff;
1712				}
1713			}
1714
1715			m->m_pkthdr.len = m->m_len = total_len;
1716			m->m_pkthdr.rcvif = ifp;
1717
1718			/*
1719			 * Drop locks before calling if_input() since it
1720			 * may re-enter fxp_start() in the netisr case.
1721			 * This would result in a lock reversal.  Better
1722			 * performance might be obtained by chaining all
1723			 * packets received, dropping the lock, and then
1724			 * calling if_input() on each one.
1725			 */
1726			FXP_UNLOCK(sc);
1727			(*ifp->if_input)(ifp, m);
1728			FXP_LOCK(sc);
1729		}
1730	}
1731	if (rnr) {
1732		fxp_scb_wait(sc);
1733		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1734		    sc->fxp_desc.rx_head->rx_addr);
1735		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1736	}
1737}
1738
1739/*
1740 * Update packet in/out/collision statistics. The i82557 doesn't
1741 * allow you to access these counters without doing a fairly
1742 * expensive DMA to get _all_ of the statistics it maintains, so
1743 * we do this operation here only once per second. The statistics
1744 * counters in the kernel are updated from the previous dump-stats
1745 * DMA and then a new dump-stats DMA is started. The on-chip
1746 * counters are zeroed when the DMA completes. If we can't start
1747 * the DMA immediately, we don't wait - we just prepare to read
1748 * them again next time.
1749 */
1750static void
1751fxp_tick(void *xsc)
1752{
1753	struct fxp_softc *sc = xsc;
1754	struct ifnet *ifp = &sc->sc_if;
1755	struct fxp_stats *sp = sc->fxp_stats;
1756	int s;
1757
1758	FXP_LOCK(sc);
1759	s = splimp();
1760	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1761	ifp->if_opackets += le32toh(sp->tx_good);
1762	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1763	if (sp->rx_good) {
1764		ifp->if_ipackets += le32toh(sp->rx_good);
1765		sc->rx_idle_secs = 0;
1766	} else {
1767		/*
1768		 * Receiver's been idle for another second.
1769		 */
1770		sc->rx_idle_secs++;
1771	}
1772	ifp->if_ierrors +=
1773	    le32toh(sp->rx_crc_errors) +
1774	    le32toh(sp->rx_alignment_errors) +
1775	    le32toh(sp->rx_rnr_errors) +
1776	    le32toh(sp->rx_overrun_errors);
1777	/*
1778	 * If any transmit underruns occured, bump up the transmit
1779	 * threshold by another 512 bytes (64 * 8).
1780	 */
1781	if (sp->tx_underruns) {
1782		ifp->if_oerrors += le32toh(sp->tx_underruns);
1783		if (tx_threshold < 192)
1784			tx_threshold += 64;
1785	}
1786
1787	/*
1788	 * Release any xmit buffers that have completed DMA. This isn't
1789	 * strictly necessary to do here, but it's advantagous for mbufs
1790	 * with external storage to be released in a timely manner rather
1791	 * than being defered for a potentially long time. This limits
1792	 * the delay to a maximum of one second.
1793	 */
1794	fxp_txeof(sc);
1795
1796	/*
1797	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1798	 * then assume the receiver has locked up and attempt to clear
1799	 * the condition by reprogramming the multicast filter. This is
1800	 * a work-around for a bug in the 82557 where the receiver locks
1801	 * up if it gets certain types of garbage in the syncronization
1802	 * bits prior to the packet header. This bug is supposed to only
1803	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1804	 * mode as well (perhaps due to a 10/100 speed transition).
1805	 */
1806	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1807		sc->rx_idle_secs = 0;
1808		fxp_mc_setup(sc);
1809	}
1810	/*
1811	 * If there is no pending command, start another stats
1812	 * dump. Otherwise punt for now.
1813	 */
1814	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1815		/*
1816		 * Start another stats dump.
1817		 */
1818		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1819		    BUS_DMASYNC_PREREAD);
1820		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1821	} else {
1822		/*
1823		 * A previous command is still waiting to be accepted.
1824		 * Just zero our copy of the stats and wait for the
1825		 * next timer event to update them.
1826		 */
1827		sp->tx_good = 0;
1828		sp->tx_underruns = 0;
1829		sp->tx_total_collisions = 0;
1830
1831		sp->rx_good = 0;
1832		sp->rx_crc_errors = 0;
1833		sp->rx_alignment_errors = 0;
1834		sp->rx_rnr_errors = 0;
1835		sp->rx_overrun_errors = 0;
1836	}
1837	if (sc->miibus != NULL)
1838		mii_tick(device_get_softc(sc->miibus));
1839
1840	/*
1841	 * Schedule another timeout one second from now.
1842	 */
1843	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1844	FXP_UNLOCK(sc);
1845	splx(s);
1846}
1847
1848/*
1849 * Stop the interface. Cancels the statistics updater and resets
1850 * the interface.
1851 */
1852static void
1853fxp_stop(struct fxp_softc *sc)
1854{
1855	struct ifnet *ifp = &sc->sc_if;
1856	struct fxp_tx *txp;
1857	int i;
1858
1859	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860	ifp->if_timer = 0;
1861
1862#ifdef DEVICE_POLLING
1863	ether_poll_deregister(ifp);
1864#endif
1865	/*
1866	 * Cancel stats updater.
1867	 */
1868	callout_stop(&sc->stat_ch);
1869
1870	/*
1871	 * Issue software reset, which also unloads the microcode.
1872	 */
1873	sc->flags &= ~FXP_FLAG_UCODE;
1874	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1875	DELAY(50);
1876
1877	/*
1878	 * Release any xmit buffers.
1879	 */
1880	txp = sc->fxp_desc.tx_list;
1881	if (txp != NULL) {
1882		for (i = 0; i < FXP_NTXCB; i++) {
1883 			if (txp[i].tx_mbuf != NULL) {
1884				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1885				    BUS_DMASYNC_POSTWRITE);
1886				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1887				m_freem(txp[i].tx_mbuf);
1888				txp[i].tx_mbuf = NULL;
1889				/* clear this to reset csum offload bits */
1890				txp[i].tx_cb->tbd[0].tb_addr = 0;
1891			}
1892		}
1893	}
1894	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1895	sc->tx_queued = 0;
1896}
1897
1898/*
1899 * Watchdog/transmission transmit timeout handler. Called when a
1900 * transmission is started on the interface, but no interrupt is
1901 * received before the timeout. This usually indicates that the
1902 * card has wedged for some reason.
1903 */
1904static void
1905fxp_watchdog(struct ifnet *ifp)
1906{
1907	struct fxp_softc *sc = ifp->if_softc;
1908
1909	FXP_LOCK(sc);
1910	device_printf(sc->dev, "device timeout\n");
1911	ifp->if_oerrors++;
1912
1913	fxp_init_body(sc);
1914	FXP_UNLOCK(sc);
1915}
1916
1917/*
1918 * Acquire locks and then call the real initialization function.  This
1919 * is necessary because ether_ioctl() calls if_init() and this would
1920 * result in mutex recursion if the mutex was held.
1921 */
1922static void
1923fxp_init(void *xsc)
1924{
1925	struct fxp_softc *sc = xsc;
1926
1927	FXP_LOCK(sc);
1928	fxp_init_body(sc);
1929	FXP_UNLOCK(sc);
1930}
1931
1932/*
1933 * Perform device initialization. This routine must be called with the
1934 * softc lock held.
1935 */
1936static void
1937fxp_init_body(struct fxp_softc *sc)
1938{
1939	struct ifnet *ifp = &sc->sc_if;
1940	struct fxp_cb_config *cbp;
1941	struct fxp_cb_ias *cb_ias;
1942	struct fxp_cb_tx *tcbp;
1943	struct fxp_tx *txp;
1944	struct fxp_cb_mcs *mcsp;
1945	int i, prm, s;
1946
1947	FXP_LOCK_ASSERT(sc, MA_OWNED);
1948	s = splimp();
1949	/*
1950	 * Cancel any pending I/O
1951	 */
1952	fxp_stop(sc);
1953
1954	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1955
1956	/*
1957	 * Initialize base of CBL and RFA memory. Loading with zero
1958	 * sets it up for regular linear addressing.
1959	 */
1960	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1961	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1962
1963	fxp_scb_wait(sc);
1964	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1965
1966	/*
1967	 * Initialize base of dump-stats buffer.
1968	 */
1969	fxp_scb_wait(sc);
1970	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1971	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1972	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1973
1974	/*
1975	 * Attempt to load microcode if requested.
1976	 */
1977	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1978		fxp_load_ucode(sc);
1979
1980	/*
1981	 * Initialize the multicast address list.
1982	 */
1983	if (fxp_mc_addrs(sc)) {
1984		mcsp = sc->mcsp;
1985		mcsp->cb_status = 0;
1986		mcsp->cb_command =
1987		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1988		mcsp->link_addr = 0xffffffff;
1989		/*
1990	 	 * Start the multicast setup command.
1991		 */
1992		fxp_scb_wait(sc);
1993		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1994		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1995		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1996		/* ...and wait for it to complete. */
1997		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1998		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1999		    BUS_DMASYNC_POSTWRITE);
2000	}
2001
2002	/*
2003	 * We temporarily use memory that contains the TxCB list to
2004	 * construct the config CB. The TxCB list memory is rebuilt
2005	 * later.
2006	 */
2007	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2008
2009	/*
2010	 * This bcopy is kind of disgusting, but there are a bunch of must be
2011	 * zero and must be one bits in this structure and this is the easiest
2012	 * way to initialize them all to proper values.
2013	 */
2014	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2015
2016	cbp->cb_status =	0;
2017	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2018	    FXP_CB_COMMAND_EL);
2019	cbp->link_addr =	0xffffffff;	/* (no) next command */
2020	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2021	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2022	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2023	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2024	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2025	cbp->type_enable =	0;	/* actually reserved */
2026	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2027	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2028	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2029	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2030	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2031	cbp->late_scb =		0;	/* (don't) defer SCB update */
2032	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2033	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2034	cbp->ci_int =		1;	/* interrupt on CU idle */
2035	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2036	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2037	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2038	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2039	cbp->disc_short_rx =	!prm;	/* discard short packets */
2040	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2041	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2042	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2043	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2044	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2045	cbp->csma_dis =		0;	/* (don't) disable link */
2046	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2047	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2048	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2049	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2050	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2051	cbp->nsai =		1;	/* (don't) disable source addr insert */
2052	cbp->preamble_length =	2;	/* (7 byte) preamble */
2053	cbp->loopback =		0;	/* (don't) loopback */
2054	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2055	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2056	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2057	cbp->promiscuous =	prm;	/* promiscuous mode */
2058	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2059	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2060	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2061	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2062	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2063
2064	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2065	cbp->padding =		1;	/* (do) pad short tx packets */
2066	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2067	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2068	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2069	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2070					/* must set wake_en in PMCSR also */
2071	cbp->force_fdx =	0;	/* (don't) force full duplex */
2072	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2073	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2074	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2075	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2076
2077	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2078		/*
2079		 * The 82557 has no hardware flow control, the values
2080		 * below are the defaults for the chip.
2081		 */
2082		cbp->fc_delay_lsb =	0;
2083		cbp->fc_delay_msb =	0x40;
2084		cbp->pri_fc_thresh =	3;
2085		cbp->tx_fc_dis =	0;
2086		cbp->rx_fc_restop =	0;
2087		cbp->rx_fc_restart =	0;
2088		cbp->fc_filter =	0;
2089		cbp->pri_fc_loc =	1;
2090	} else {
2091		cbp->fc_delay_lsb =	0x1f;
2092		cbp->fc_delay_msb =	0x01;
2093		cbp->pri_fc_thresh =	3;
2094		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2095		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2096		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2097		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2098		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2099	}
2100
2101	/*
2102	 * Start the config command/DMA.
2103	 */
2104	fxp_scb_wait(sc);
2105	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2106	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2107	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2108	/* ...and wait for it to complete. */
2109	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2110	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2111
2112	/*
2113	 * Now initialize the station address. Temporarily use the TxCB
2114	 * memory area like we did above for the config CB.
2115	 */
2116	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2117	cb_ias->cb_status = 0;
2118	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2119	cb_ias->link_addr = 0xffffffff;
2120	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2121	    sizeof(sc->arpcom.ac_enaddr));
2122
2123	/*
2124	 * Start the IAS (Individual Address Setup) command/DMA.
2125	 */
2126	fxp_scb_wait(sc);
2127	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2128	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2129	/* ...and wait for it to complete. */
2130	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2131	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2132
2133	/*
2134	 * Initialize transmit control block (TxCB) list.
2135	 */
2136	txp = sc->fxp_desc.tx_list;
2137	tcbp = sc->fxp_desc.cbl_list;
2138	bzero(tcbp, FXP_TXCB_SZ);
2139	for (i = 0; i < FXP_NTXCB; i++) {
2140		txp[i].tx_mbuf = NULL;
2141		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2142		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2143		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2144		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2145		if (sc->flags & FXP_FLAG_EXT_TXCB)
2146			tcbp[i].tbd_array_addr =
2147			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2148		else
2149			tcbp[i].tbd_array_addr =
2150			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2151		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2152	}
2153	/*
2154	 * Set the suspend flag on the first TxCB and start the control
2155	 * unit. It will execute the NOP and then suspend.
2156	 */
2157	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2158	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2159	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2160	sc->tx_queued = 1;
2161
2162	fxp_scb_wait(sc);
2163	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2164
2165	/*
2166	 * Initialize receiver buffer area - RFA.
2167	 */
2168	fxp_scb_wait(sc);
2169	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2170	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2171
2172	/*
2173	 * Set current media.
2174	 */
2175	if (sc->miibus != NULL)
2176		mii_mediachg(device_get_softc(sc->miibus));
2177
2178	ifp->if_flags |= IFF_RUNNING;
2179	ifp->if_flags &= ~IFF_OACTIVE;
2180
2181	/*
2182	 * Enable interrupts.
2183	 */
2184#ifdef DEVICE_POLLING
2185	/*
2186	 * ... but only do that if we are not polling. And because (presumably)
2187	 * the default is interrupts on, we need to disable them explicitly!
2188	 */
2189	if ( ifp->if_flags & IFF_POLLING )
2190		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2191	else
2192#endif /* DEVICE_POLLING */
2193	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2194
2195	/*
2196	 * Start stats updater.
2197	 */
2198	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2199	splx(s);
2200}
2201
2202static int
2203fxp_serial_ifmedia_upd(struct ifnet *ifp)
2204{
2205
2206	return (0);
2207}
2208
2209static void
2210fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2211{
2212
2213	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2214}
2215
2216/*
2217 * Change media according to request.
2218 */
2219static int
2220fxp_ifmedia_upd(struct ifnet *ifp)
2221{
2222	struct fxp_softc *sc = ifp->if_softc;
2223	struct mii_data *mii;
2224
2225	mii = device_get_softc(sc->miibus);
2226	mii_mediachg(mii);
2227	return (0);
2228}
2229
2230/*
2231 * Notify the world which media we're using.
2232 */
2233static void
2234fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2235{
2236	struct fxp_softc *sc = ifp->if_softc;
2237	struct mii_data *mii;
2238
2239	mii = device_get_softc(sc->miibus);
2240	mii_pollstat(mii);
2241	ifmr->ifm_active = mii->mii_media_active;
2242	ifmr->ifm_status = mii->mii_media_status;
2243
2244	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2245		sc->cu_resume_bug = 1;
2246	else
2247		sc->cu_resume_bug = 0;
2248}
2249
2250/*
2251 * Add a buffer to the end of the RFA buffer list.
2252 * Return 0 if successful, 1 for failure. A failure results in
2253 * adding the 'oldm' (if non-NULL) on to the end of the list -
2254 * tossing out its old contents and recycling it.
2255 * The RFA struct is stuck at the beginning of mbuf cluster and the
2256 * data pointer is fixed up to point just past it.
2257 */
2258static int
2259fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2260{
2261	struct mbuf *m;
2262	struct fxp_rfa *rfa, *p_rfa;
2263	struct fxp_rx *p_rx;
2264	bus_dmamap_t tmp_map;
2265	int error;
2266
2267	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2268	if (m == NULL)
2269		return (ENOBUFS);
2270
2271	/*
2272	 * Move the data pointer up so that the incoming data packet
2273	 * will be 32-bit aligned.
2274	 */
2275	m->m_data += RFA_ALIGNMENT_FUDGE;
2276
2277	/*
2278	 * Get a pointer to the base of the mbuf cluster and move
2279	 * data start past it.
2280	 */
2281	rfa = mtod(m, struct fxp_rfa *);
2282	m->m_data += sc->rfa_size;
2283	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2284
2285	rfa->rfa_status = 0;
2286	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2287	rfa->actual_size = 0;
2288
2289	/*
2290	 * Initialize the rest of the RFA.  Note that since the RFA
2291	 * is misaligned, we cannot store values directly.  We're thus
2292	 * using the le32enc() function which handles endianness and
2293	 * is also alignment-safe.
2294	 */
2295	le32enc(&rfa->link_addr, 0xffffffff);
2296	le32enc(&rfa->rbd_addr, 0xffffffff);
2297
2298	/* Map the RFA into DMA memory. */
2299	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2300	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2301	    &rxp->rx_addr, 0);
2302	if (error) {
2303		m_freem(m);
2304		return (error);
2305	}
2306
2307	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2308	tmp_map = sc->spare_map;
2309	sc->spare_map = rxp->rx_map;
2310	rxp->rx_map = tmp_map;
2311	rxp->rx_mbuf = m;
2312
2313	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2314	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2315
2316	/*
2317	 * If there are other buffers already on the list, attach this
2318	 * one to the end by fixing up the tail to point to this one.
2319	 */
2320	if (sc->fxp_desc.rx_head != NULL) {
2321		p_rx = sc->fxp_desc.rx_tail;
2322		p_rfa = (struct fxp_rfa *)
2323		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2324		p_rx->rx_next = rxp;
2325		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2326		p_rfa->rfa_control = 0;
2327		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2328		    BUS_DMASYNC_PREWRITE);
2329	} else {
2330		rxp->rx_next = NULL;
2331		sc->fxp_desc.rx_head = rxp;
2332	}
2333	sc->fxp_desc.rx_tail = rxp;
2334	return (0);
2335}
2336
2337static volatile int
2338fxp_miibus_readreg(device_t dev, int phy, int reg)
2339{
2340	struct fxp_softc *sc = device_get_softc(dev);
2341	int count = 10000;
2342	int value;
2343
2344	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2345	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2346
2347	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2348	    && count--)
2349		DELAY(10);
2350
2351	if (count <= 0)
2352		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2353
2354	return (value & 0xffff);
2355}
2356
2357static void
2358fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2359{
2360	struct fxp_softc *sc = device_get_softc(dev);
2361	int count = 10000;
2362
2363	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2364	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2365	    (value & 0xffff));
2366
2367	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2368	    count--)
2369		DELAY(10);
2370
2371	if (count <= 0)
2372		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2373}
2374
2375static int
2376fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2377{
2378	struct fxp_softc *sc = ifp->if_softc;
2379	struct ifreq *ifr = (struct ifreq *)data;
2380	struct mii_data *mii;
2381	int flag, mask, s, error = 0;
2382
2383	/*
2384	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2385	 * that by saying we're busy if the lock is already held.
2386	 */
2387	if (FXP_LOCKED(sc))
2388		return (EBUSY);
2389
2390	FXP_LOCK(sc);
2391	s = splimp();
2392
2393	switch (command) {
2394	case SIOCSIFFLAGS:
2395		if (ifp->if_flags & IFF_ALLMULTI)
2396			sc->flags |= FXP_FLAG_ALL_MCAST;
2397		else
2398			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2399
2400		/*
2401		 * If interface is marked up and not running, then start it.
2402		 * If it is marked down and running, stop it.
2403		 * XXX If it's up then re-initialize it. This is so flags
2404		 * such as IFF_PROMISC are handled.
2405		 */
2406		if (ifp->if_flags & IFF_UP) {
2407			fxp_init_body(sc);
2408		} else {
2409			if (ifp->if_flags & IFF_RUNNING)
2410				fxp_stop(sc);
2411		}
2412		break;
2413
2414	case SIOCADDMULTI:
2415	case SIOCDELMULTI:
2416		if (ifp->if_flags & IFF_ALLMULTI)
2417			sc->flags |= FXP_FLAG_ALL_MCAST;
2418		else
2419			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2420		/*
2421		 * Multicast list has changed; set the hardware filter
2422		 * accordingly.
2423		 */
2424		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2425			fxp_mc_setup(sc);
2426		/*
2427		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2428		 * again rather than else {}.
2429		 */
2430		if (sc->flags & FXP_FLAG_ALL_MCAST)
2431			fxp_init_body(sc);
2432		error = 0;
2433		break;
2434
2435	case SIOCSIFMEDIA:
2436	case SIOCGIFMEDIA:
2437		if (sc->miibus != NULL) {
2438			mii = device_get_softc(sc->miibus);
2439                        error = ifmedia_ioctl(ifp, ifr,
2440                            &mii->mii_media, command);
2441		} else {
2442                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2443		}
2444		break;
2445
2446	case SIOCSIFCAP:
2447		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2448		if (mask & IFCAP_POLLING)
2449			ifp->if_capenable ^= IFCAP_POLLING;
2450		if (mask & IFCAP_VLAN_MTU) {
2451			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2452			if (sc->revision != FXP_REV_82557)
2453				flag = FXP_FLAG_LONG_PKT_EN;
2454			else /* a hack to get long frames on the old chip */
2455				flag = FXP_FLAG_SAVE_BAD;
2456			sc->flags ^= flag;
2457			if (ifp->if_flags & IFF_UP)
2458				fxp_init_body(sc);
2459		}
2460		break;
2461
2462	default:
2463		/*
2464		 * ether_ioctl() will eventually call fxp_start() which
2465		 * will result in mutex recursion so drop it first.
2466		 */
2467		FXP_UNLOCK(sc);
2468		error = ether_ioctl(ifp, command, data);
2469	}
2470	if (FXP_LOCKED(sc))
2471		FXP_UNLOCK(sc);
2472	splx(s);
2473	return (error);
2474}
2475
2476/*
2477 * Fill in the multicast address list and return number of entries.
2478 */
2479static int
2480fxp_mc_addrs(struct fxp_softc *sc)
2481{
2482	struct fxp_cb_mcs *mcsp = sc->mcsp;
2483	struct ifnet *ifp = &sc->sc_if;
2484	struct ifmultiaddr *ifma;
2485	int nmcasts;
2486
2487	nmcasts = 0;
2488	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2489#if __FreeBSD_version < 500000
2490		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2491#else
2492		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2493#endif
2494			if (ifma->ifma_addr->sa_family != AF_LINK)
2495				continue;
2496			if (nmcasts >= MAXMCADDR) {
2497				sc->flags |= FXP_FLAG_ALL_MCAST;
2498				nmcasts = 0;
2499				break;
2500			}
2501			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2502			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2503			nmcasts++;
2504		}
2505	}
2506	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2507	return (nmcasts);
2508}
2509
2510/*
2511 * Program the multicast filter.
2512 *
2513 * We have an artificial restriction that the multicast setup command
2514 * must be the first command in the chain, so we take steps to ensure
2515 * this. By requiring this, it allows us to keep up the performance of
2516 * the pre-initialized command ring (esp. link pointers) by not actually
2517 * inserting the mcsetup command in the ring - i.e. its link pointer
2518 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2519 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2520 * lead into the regular TxCB ring when it completes.
2521 *
2522 * This function must be called at splimp.
2523 */
2524static void
2525fxp_mc_setup(struct fxp_softc *sc)
2526{
2527	struct fxp_cb_mcs *mcsp = sc->mcsp;
2528	struct ifnet *ifp = &sc->sc_if;
2529	struct fxp_tx *txp;
2530	int count;
2531
2532	FXP_LOCK_ASSERT(sc, MA_OWNED);
2533	/*
2534	 * If there are queued commands, we must wait until they are all
2535	 * completed. If we are already waiting, then add a NOP command
2536	 * with interrupt option so that we're notified when all commands
2537	 * have been completed - fxp_start() ensures that no additional
2538	 * TX commands will be added when need_mcsetup is true.
2539	 */
2540	if (sc->tx_queued) {
2541		/*
2542		 * need_mcsetup will be true if we are already waiting for the
2543		 * NOP command to be completed (see below). In this case, bail.
2544		 */
2545		if (sc->need_mcsetup)
2546			return;
2547		sc->need_mcsetup = 1;
2548
2549		/*
2550		 * Add a NOP command with interrupt so that we are notified
2551		 * when all TX commands have been processed.
2552		 */
2553		txp = sc->fxp_desc.tx_last->tx_next;
2554		txp->tx_mbuf = NULL;
2555		txp->tx_cb->cb_status = 0;
2556		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2557		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2558		/*
2559		 * Advance the end of list forward.
2560		 */
2561		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2562		    htole16(~FXP_CB_COMMAND_S);
2563		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2564		sc->fxp_desc.tx_last = txp;
2565		sc->tx_queued++;
2566		/*
2567		 * Issue a resume in case the CU has just suspended.
2568		 */
2569		fxp_scb_wait(sc);
2570		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2571		/*
2572		 * Set a 5 second timer just in case we don't hear from the
2573		 * card again.
2574		 */
2575		ifp->if_timer = 5;
2576
2577		return;
2578	}
2579	sc->need_mcsetup = 0;
2580
2581	/*
2582	 * Initialize multicast setup descriptor.
2583	 */
2584	mcsp->cb_status = 0;
2585	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2586	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2587	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2588	txp = &sc->fxp_desc.mcs_tx;
2589	txp->tx_mbuf = NULL;
2590	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2591	txp->tx_next = sc->fxp_desc.tx_list;
2592	(void) fxp_mc_addrs(sc);
2593	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2594	sc->tx_queued = 1;
2595
2596	/*
2597	 * Wait until command unit is not active. This should never
2598	 * be the case when nothing is queued, but make sure anyway.
2599	 */
2600	count = 100;
2601	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2602	    FXP_SCB_CUS_ACTIVE && --count)
2603		DELAY(10);
2604	if (count == 0) {
2605		device_printf(sc->dev, "command queue timeout\n");
2606		return;
2607	}
2608
2609	/*
2610	 * Start the multicast setup command.
2611	 */
2612	fxp_scb_wait(sc);
2613	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2614	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2615	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2616
2617	ifp->if_timer = 2;
2618	return;
2619}
2620
2621static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2622static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2623static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2624static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2625static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2626static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2627
2628#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2629
2630struct ucode {
2631	uint32_t	revision;
2632	uint32_t	*ucode;
2633	int		length;
2634	u_short		int_delay_offset;
2635	u_short		bundle_max_offset;
2636} ucode_table[] = {
2637	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2638	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2639	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2640	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2641	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2642	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2643	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2644	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2645	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2646	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2647	{ 0, NULL, 0, 0, 0 }
2648};
2649
2650static void
2651fxp_load_ucode(struct fxp_softc *sc)
2652{
2653	struct ucode *uc;
2654	struct fxp_cb_ucode *cbp;
2655	int i;
2656
2657	for (uc = ucode_table; uc->ucode != NULL; uc++)
2658		if (sc->revision == uc->revision)
2659			break;
2660	if (uc->ucode == NULL)
2661		return;
2662	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2663	cbp->cb_status = 0;
2664	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2665	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2666	for (i = 0; i < uc->length; i++)
2667		cbp->ucode[i] = htole32(uc->ucode[i]);
2668	if (uc->int_delay_offset)
2669		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2670		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2671	if (uc->bundle_max_offset)
2672		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2673		    htole16(sc->tunable_bundle_max);
2674	/*
2675	 * Download the ucode to the chip.
2676	 */
2677	fxp_scb_wait(sc);
2678	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2679	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2680	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2681	/* ...and wait for it to complete. */
2682	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2683	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2684	device_printf(sc->dev,
2685	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2686	    sc->tunable_int_delay,
2687	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2688	sc->flags |= FXP_FLAG_UCODE;
2689}
2690
2691static int
2692sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2693{
2694	int error, value;
2695
2696	value = *(int *)arg1;
2697	error = sysctl_handle_int(oidp, &value, 0, req);
2698	if (error || !req->newptr)
2699		return (error);
2700	if (value < low || value > high)
2701		return (EINVAL);
2702	*(int *)arg1 = value;
2703	return (0);
2704}
2705
2706/*
2707 * Interrupt delay is expressed in microseconds, a multiplier is used
2708 * to convert this to the appropriate clock ticks before using.
2709 */
2710static int
2711sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2712{
2713	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2714}
2715
2716static int
2717sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2718{
2719	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2720}
2721