if_fxp.c revision 143069
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 143069 2005-03-03 00:22:59Z mux $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	u_int16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192    { 0,	-1,	NULL },
193};
194
195#ifdef FXP_IP_CSUM_WAR
196#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197#else
198#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199#endif
200
201static int		fxp_probe(device_t dev);
202static int		fxp_attach(device_t dev);
203static int		fxp_detach(device_t dev);
204static int		fxp_shutdown(device_t dev);
205static int		fxp_suspend(device_t dev);
206static int		fxp_resume(device_t dev);
207
208static void		fxp_intr(void *xsc);
209static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210			    u_int8_t statack, int count);
211static void 		fxp_init(void *xsc);
212static void 		fxp_init_body(struct fxp_softc *sc);
213static void 		fxp_tick(void *xsc);
214static void 		fxp_start(struct ifnet *ifp);
215static void 		fxp_start_body(struct ifnet *ifp);
216static void		fxp_stop(struct fxp_softc *sc);
217static void 		fxp_release(struct fxp_softc *sc);
218static int		fxp_ioctl(struct ifnet *ifp, u_long command,
219			    caddr_t data);
220static void 		fxp_watchdog(struct ifnet *ifp);
221static int		fxp_add_rfabuf(struct fxp_softc *sc,
222    			    struct fxp_rx *rxp);
223static int		fxp_mc_addrs(struct fxp_softc *sc);
224static void		fxp_mc_setup(struct fxp_softc *sc);
225static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
226			    int autosize);
227static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
228			    u_int16_t data);
229static void		fxp_autosize_eeprom(struct fxp_softc *sc);
230static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
231			    int offset, int words);
232static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static int		fxp_ifmedia_upd(struct ifnet *ifp);
235static void		fxp_ifmedia_sts(struct ifnet *ifp,
236			    struct ifmediareq *ifmr);
237static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
241static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
242			    int value);
243static void		fxp_load_ucode(struct fxp_softc *sc);
244static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
245			    int low, int high);
246static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
247static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
248static void 		fxp_scb_wait(struct fxp_softc *sc);
249static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
250static void		fxp_dma_wait(struct fxp_softc *sc,
251    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
252			    bus_dmamap_t map);
253
254static device_method_t fxp_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		fxp_probe),
257	DEVMETHOD(device_attach,	fxp_attach),
258	DEVMETHOD(device_detach,	fxp_detach),
259	DEVMETHOD(device_shutdown,	fxp_shutdown),
260	DEVMETHOD(device_suspend,	fxp_suspend),
261	DEVMETHOD(device_resume,	fxp_resume),
262
263	/* MII interface */
264	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266
267	{ 0, 0 }
268};
269
270static driver_t fxp_driver = {
271	"fxp",
272	fxp_methods,
273	sizeof(struct fxp_softc),
274};
275
276static devclass_t fxp_devclass;
277
278DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
279DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
280DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
281
282/*
283 * Wait for the previous command to be accepted (but not necessarily
284 * completed).
285 */
286static void
287fxp_scb_wait(struct fxp_softc *sc)
288{
289	int i = 10000;
290
291	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
292		DELAY(2);
293	if (i == 0)
294		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
295		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
296		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
297		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
298		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
299}
300
301static void
302fxp_scb_cmd(struct fxp_softc *sc, int cmd)
303{
304
305	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
306		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
307		fxp_scb_wait(sc);
308	}
309	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
310}
311
312static void
313fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
314    bus_dma_tag_t dmat, bus_dmamap_t map)
315{
316	int i = 10000;
317
318	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
319	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
320		DELAY(2);
321		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
322	}
323	if (i == 0)
324		device_printf(sc->dev, "DMA timeout\n");
325}
326
327/*
328 * Return identification string if this device is ours.
329 */
330static int
331fxp_probe(device_t dev)
332{
333	u_int16_t devid;
334	u_int8_t revid;
335	struct fxp_ident *ident;
336
337	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
338		devid = pci_get_device(dev);
339		revid = pci_get_revid(dev);
340		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
341			if (ident->devid == devid &&
342			    (ident->revid == revid || ident->revid == -1)) {
343				device_set_desc(dev, ident->name);
344				return (0);
345			}
346		}
347	}
348	return (ENXIO);
349}
350
351static void
352fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
353{
354	u_int32_t *addr;
355
356	if (error)
357		return;
358
359	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
360	addr = arg;
361	*addr = segs->ds_addr;
362}
363
364static int
365fxp_attach(device_t dev)
366{
367	struct fxp_softc *sc;
368	struct fxp_cb_tx *tcbp;
369	struct fxp_tx *txp;
370	struct fxp_rx *rxp;
371	struct ifnet *ifp;
372	u_int32_t val;
373	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
374	int i, rid, m1, m2, prefer_iomap, maxtxseg;
375	int error, s;
376
377	error = 0;
378	sc = device_get_softc(dev);
379	sc->dev = dev;
380	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
381	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
382	    MTX_DEF);
383	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
384	    fxp_serial_ifmedia_sts);
385
386	s = splimp();
387
388	/*
389	 * Enable bus mastering.
390	 */
391	pci_enable_busmaster(dev);
392	val = pci_read_config(dev, PCIR_COMMAND, 2);
393
394	/*
395	 * Figure out which we should try first - memory mapping or i/o mapping?
396	 * We default to memory mapping. Then we accept an override from the
397	 * command line. Then we check to see which one is enabled.
398	 */
399	m1 = PCIM_CMD_MEMEN;
400	m2 = PCIM_CMD_PORTEN;
401	prefer_iomap = 0;
402	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
403	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
404		m1 = PCIM_CMD_PORTEN;
405		m2 = PCIM_CMD_MEMEN;
406	}
407
408	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
409	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
410	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
411	if (sc->mem == NULL) {
412		sc->rtp =
413		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
414		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
415		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
416                                            RF_ACTIVE);
417	}
418
419	if (!sc->mem) {
420		error = ENXIO;
421		goto fail;
422        }
423	if (bootverbose) {
424		device_printf(dev, "using %s space register mapping\n",
425		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
426	}
427
428	sc->sc_st = rman_get_bustag(sc->mem);
429	sc->sc_sh = rman_get_bushandle(sc->mem);
430
431	/*
432	 * Allocate our interrupt.
433	 */
434	rid = 0;
435	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
436				 RF_SHAREABLE | RF_ACTIVE);
437	if (sc->irq == NULL) {
438		device_printf(dev, "could not map interrupt\n");
439		error = ENXIO;
440		goto fail;
441	}
442
443	/*
444	 * Reset to a stable state.
445	 */
446	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
447	DELAY(10);
448
449	/*
450	 * Find out how large of an SEEPROM we have.
451	 */
452	fxp_autosize_eeprom(sc);
453
454	/*
455	 * Find out the chip revision; lump all 82557 revs together.
456	 */
457	fxp_read_eeprom(sc, &data, 5, 1);
458	if ((data >> 8) == 1)
459		sc->revision = FXP_REV_82557;
460	else
461		sc->revision = pci_get_revid(dev);
462
463	/*
464	 * Determine whether we must use the 503 serial interface.
465	 */
466	fxp_read_eeprom(sc, &data, 6, 1);
467	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
468	    && (data & FXP_PHY_SERIAL_ONLY))
469		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
470
471	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
472	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
473	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
474	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
475	    "FXP driver receive interrupt microcode bundling delay");
476	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
477	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
478	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
479	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
480	    "FXP driver receive interrupt microcode bundle size limit");
481	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
482	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
483	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
484	    "FXP RNR events");
485	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
486	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
487	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
488	    "FXP flow control disabled");
489
490	/*
491	 * Pull in device tunables.
492	 */
493	sc->tunable_int_delay = TUNABLE_INT_DELAY;
494	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
495	sc->tunable_noflow = 1;
496	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
497	    "int_delay", &sc->tunable_int_delay);
498	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499	    "bundle_max", &sc->tunable_bundle_max);
500	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501	    "noflow", &sc->tunable_noflow);
502	sc->rnr = 0;
503
504	/*
505	 * Enable workarounds for certain chip revision deficiencies.
506	 *
507	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
508	 * some systems based a normal 82559 design, have a defect where
509	 * the chip can cause a PCI protocol violation if it receives
510	 * a CU_RESUME command when it is entering the IDLE state.  The
511	 * workaround is to disable Dynamic Standby Mode, so the chip never
512	 * deasserts CLKRUN#, and always remains in an active state.
513	 *
514	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
515	 */
516	i = pci_get_device(dev);
517	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
518	    sc->revision >= FXP_REV_82559_A0) {
519		fxp_read_eeprom(sc, &data, 10, 1);
520		if (data & 0x02) {			/* STB enable */
521			u_int16_t cksum;
522			int i;
523
524			device_printf(dev,
525			    "Disabling dynamic standby mode in EEPROM\n");
526			data &= ~0x02;
527			fxp_write_eeprom(sc, &data, 10, 1);
528			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
529			cksum = 0;
530			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
531				fxp_read_eeprom(sc, &data, i, 1);
532				cksum += data;
533			}
534			i = (1 << sc->eeprom_size) - 1;
535			cksum = 0xBABA - cksum;
536			fxp_read_eeprom(sc, &data, i, 1);
537			fxp_write_eeprom(sc, &cksum, i, 1);
538			device_printf(dev,
539			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
540			    i, data, cksum);
541#if 1
542			/*
543			 * If the user elects to continue, try the software
544			 * workaround, as it is better than nothing.
545			 */
546			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
547#endif
548		}
549	}
550
551	/*
552	 * If we are not a 82557 chip, we can enable extended features.
553	 */
554	if (sc->revision != FXP_REV_82557) {
555		/*
556		 * If MWI is enabled in the PCI configuration, and there
557		 * is a valid cacheline size (8 or 16 dwords), then tell
558		 * the board to turn on MWI.
559		 */
560		if (val & PCIM_CMD_MWRICEN &&
561		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
562			sc->flags |= FXP_FLAG_MWI_ENABLE;
563
564		/* turn on the extended TxCB feature */
565		sc->flags |= FXP_FLAG_EXT_TXCB;
566
567		/* enable reception of long frames for VLAN */
568		sc->flags |= FXP_FLAG_LONG_PKT_EN;
569	} else {
570		/* a hack to get long VLAN frames on a 82557 */
571		sc->flags |= FXP_FLAG_SAVE_BAD;
572	}
573
574	/*
575	 * Enable use of extended RFDs and TCBs for 82550
576	 * and later chips. Note: we need extended TXCB support
577	 * too, but that's already enabled by the code above.
578	 * Be careful to do this only on the right devices.
579	 */
580
581	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
582		sc->rfa_size = sizeof (struct fxp_rfa);
583		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
584		sc->flags |= FXP_FLAG_EXT_RFA;
585	} else {
586		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
587		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
588	}
589
590	/*
591	 * Allocate DMA tags and DMA safe memory.
592	 */
593	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
594	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
595	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
596	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
597	if (error) {
598		device_printf(dev, "could not allocate dma tag\n");
599		goto fail;
600	}
601
602	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
603	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
604	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
605	    &sc->fxp_stag);
606	if (error) {
607		device_printf(dev, "could not allocate dma tag\n");
608		goto fail;
609	}
610
611	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
612	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
613	if (error)
614		goto fail;
615	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
616	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
617	if (error) {
618		device_printf(dev, "could not map the stats buffer\n");
619		goto fail;
620	}
621
622	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
623	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
624	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
625	if (error) {
626		device_printf(dev, "could not allocate dma tag\n");
627		goto fail;
628	}
629
630	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
631	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
632	if (error)
633		goto fail;
634
635	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
636	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
637	    &sc->fxp_desc.cbl_addr, 0);
638	if (error) {
639		device_printf(dev, "could not map DMA memory\n");
640		goto fail;
641	}
642
643	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
644	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
645	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
646	    &sc->mcs_tag);
647	if (error) {
648		device_printf(dev, "could not allocate dma tag\n");
649		goto fail;
650	}
651
652	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
653	    BUS_DMA_NOWAIT, &sc->mcs_map);
654	if (error)
655		goto fail;
656	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
657	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
658	if (error) {
659		device_printf(dev, "can't map the multicast setup command\n");
660		goto fail;
661	}
662
663	/*
664	 * Pre-allocate the TX DMA maps and setup the pointers to
665	 * the TX command blocks.
666	 */
667	txp = sc->fxp_desc.tx_list;
668	tcbp = sc->fxp_desc.cbl_list;
669	for (i = 0; i < FXP_NTXCB; i++) {
670		txp[i].tx_cb = tcbp + i;
671		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
672		if (error) {
673			device_printf(dev, "can't create DMA map for TX\n");
674			goto fail;
675		}
676	}
677	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
678	if (error) {
679		device_printf(dev, "can't create spare DMA map\n");
680		goto fail;
681	}
682
683	/*
684	 * Pre-allocate our receive buffers.
685	 */
686	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
687	for (i = 0; i < FXP_NRFABUFS; i++) {
688		rxp = &sc->fxp_desc.rx_list[i];
689		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
690		if (error) {
691			device_printf(dev, "can't create DMA map for RX\n");
692			goto fail;
693		}
694		if (fxp_add_rfabuf(sc, rxp) != 0) {
695			error = ENOMEM;
696			goto fail;
697		}
698	}
699
700	/*
701	 * Read MAC address.
702	 */
703	fxp_read_eeprom(sc, myea, 0, 3);
704	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
705	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
706	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
707	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
708	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
709	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
710	if (bootverbose) {
711		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
712		    pci_get_vendor(dev), pci_get_device(dev),
713		    pci_get_subvendor(dev), pci_get_subdevice(dev),
714		    pci_get_revid(dev));
715		fxp_read_eeprom(sc, &data, 10, 1);
716		device_printf(dev, "Dynamic Standby mode is %s\n",
717		    data & 0x02 ? "enabled" : "disabled");
718	}
719
720	/*
721	 * If this is only a 10Mbps device, then there is no MII, and
722	 * the PHY will use a serial interface instead.
723	 *
724	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
725	 * doesn't have a programming interface of any sort.  The
726	 * media is sensed automatically based on how the link partner
727	 * is configured.  This is, in essence, manual configuration.
728	 */
729	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
730		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
731		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
732	} else {
733		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
734		    fxp_ifmedia_sts)) {
735	                device_printf(dev, "MII without any PHY!\n");
736			error = ENXIO;
737			goto fail;
738		}
739	}
740
741	ifp = &sc->arpcom.ac_if;
742	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
743	ifp->if_baudrate = 100000000;
744	ifp->if_init = fxp_init;
745	ifp->if_softc = sc;
746	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747	ifp->if_ioctl = fxp_ioctl;
748	ifp->if_start = fxp_start;
749	ifp->if_watchdog = fxp_watchdog;
750
751	ifp->if_capabilities = ifp->if_capenable = 0;
752
753	/* Enable checksum offload for 82550 or better chips */
754	if (sc->flags & FXP_FLAG_EXT_RFA) {
755		ifp->if_hwassist = FXP_CSUM_FEATURES;
756		ifp->if_capabilities |= IFCAP_HWCSUM;
757		ifp->if_capenable |= IFCAP_HWCSUM;
758	}
759
760#ifdef DEVICE_POLLING
761	/* Inform the world we support polling. */
762	ifp->if_capabilities |= IFCAP_POLLING;
763	ifp->if_capenable |= IFCAP_POLLING;
764#endif
765
766	/*
767	 * Attach the interface.
768	 */
769	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
770
771	/*
772	 * Tell the upper layer(s) we support long frames.
773	 * Must appear after the call to ether_ifattach() because
774	 * ether_ifattach() sets ifi_hdrlen to the default value.
775	 */
776	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
777	ifp->if_capabilities |= IFCAP_VLAN_MTU;
778	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
779
780	/*
781	 * Let the system queue as many packets as we have available
782	 * TX descriptors.
783	 */
784	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
785	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
786	IFQ_SET_READY(&ifp->if_snd);
787
788	/*
789	 * Hook our interrupt after all initialization is complete.
790	 */
791	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
792			       fxp_intr, sc, &sc->ih);
793	if (error) {
794		device_printf(dev, "could not setup irq\n");
795		ether_ifdetach(&sc->arpcom.ac_if);
796		goto fail;
797	}
798
799fail:
800	splx(s);
801	if (error)
802		fxp_release(sc);
803	return (error);
804}
805
806/*
807 * Release all resources.  The softc lock should not be held and the
808 * interrupt should already be torn down.
809 */
810static void
811fxp_release(struct fxp_softc *sc)
812{
813	struct fxp_rx *rxp;
814	struct fxp_tx *txp;
815	int i;
816
817	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
818	KASSERT(sc->ih == NULL,
819	    ("fxp_release() called with intr handle still active"));
820	if (sc->miibus)
821		device_delete_child(sc->dev, sc->miibus);
822	bus_generic_detach(sc->dev);
823	ifmedia_removeall(&sc->sc_media);
824	if (sc->fxp_desc.cbl_list) {
825		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
826		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
827		    sc->cbl_map);
828	}
829	if (sc->fxp_stats) {
830		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
831		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
832	}
833	if (sc->mcsp) {
834		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
835		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
836	}
837	if (sc->irq)
838		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
839	if (sc->mem)
840		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
841	if (sc->fxp_mtag) {
842		for (i = 0; i < FXP_NRFABUFS; i++) {
843			rxp = &sc->fxp_desc.rx_list[i];
844			if (rxp->rx_mbuf != NULL) {
845				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
846				    BUS_DMASYNC_POSTREAD);
847				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
848				m_freem(rxp->rx_mbuf);
849			}
850			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
851		}
852		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
853		bus_dma_tag_destroy(sc->fxp_mtag);
854	}
855	if (sc->fxp_stag) {
856		for (i = 0; i < FXP_NTXCB; i++) {
857			txp = &sc->fxp_desc.tx_list[i];
858			if (txp->tx_mbuf != NULL) {
859				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
860				    BUS_DMASYNC_POSTWRITE);
861				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
862				m_freem(txp->tx_mbuf);
863			}
864			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
865		}
866		bus_dma_tag_destroy(sc->fxp_stag);
867	}
868	if (sc->cbl_tag)
869		bus_dma_tag_destroy(sc->cbl_tag);
870	if (sc->mcs_tag)
871		bus_dma_tag_destroy(sc->mcs_tag);
872
873	mtx_destroy(&sc->sc_mtx);
874}
875
876/*
877 * Detach interface.
878 */
879static int
880fxp_detach(device_t dev)
881{
882	struct fxp_softc *sc = device_get_softc(dev);
883	int s;
884
885	FXP_LOCK(sc);
886	s = splimp();
887
888	sc->suspended = 1;	/* Do same thing as we do for suspend */
889	/*
890	 * Close down routes etc.
891	 */
892	ether_ifdetach(&sc->arpcom.ac_if);
893
894	/*
895	 * Stop DMA and drop transmit queue, but disable interrupts first.
896	 */
897	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
898	fxp_stop(sc);
899	FXP_UNLOCK(sc);
900
901	/*
902	 * Unhook interrupt before dropping lock. This is to prevent
903	 * races with fxp_intr().
904	 */
905	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
906	sc->ih = NULL;
907
908	splx(s);
909
910	/* Release our allocated resources. */
911	fxp_release(sc);
912	return (0);
913}
914
915/*
916 * Device shutdown routine. Called at system shutdown after sync. The
917 * main purpose of this routine is to shut off receiver DMA so that
918 * kernel memory doesn't get clobbered during warmboot.
919 */
920static int
921fxp_shutdown(device_t dev)
922{
923	/*
924	 * Make sure that DMA is disabled prior to reboot. Not doing
925	 * do could allow DMA to corrupt kernel memory during the
926	 * reboot before the driver initializes.
927	 */
928	fxp_stop((struct fxp_softc *) device_get_softc(dev));
929	return (0);
930}
931
932/*
933 * Device suspend routine.  Stop the interface and save some PCI
934 * settings in case the BIOS doesn't restore them properly on
935 * resume.
936 */
937static int
938fxp_suspend(device_t dev)
939{
940	struct fxp_softc *sc = device_get_softc(dev);
941	int i, s;
942
943	FXP_LOCK(sc);
944	s = splimp();
945
946	fxp_stop(sc);
947
948	for (i = 0; i < 5; i++)
949		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
950	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
951	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
952	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
953	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
954
955	sc->suspended = 1;
956
957	FXP_UNLOCK(sc);
958	splx(s);
959	return (0);
960}
961
962/*
963 * Device resume routine.  Restore some PCI settings in case the BIOS
964 * doesn't, re-enable busmastering, and restart the interface if
965 * appropriate.
966 */
967static int
968fxp_resume(device_t dev)
969{
970	struct fxp_softc *sc = device_get_softc(dev);
971	struct ifnet *ifp = &sc->sc_if;
972	u_int16_t pci_command;
973	int i, s;
974
975	FXP_LOCK(sc);
976	s = splimp();
977
978	/* better way to do this? */
979	for (i = 0; i < 5; i++)
980		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
981	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
982	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
983	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
984	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
985
986	/* reenable busmastering */
987	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
988	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
989	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
990
991	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
992	DELAY(10);
993
994	/* reinitialize interface if necessary */
995	if (ifp->if_flags & IFF_UP)
996		fxp_init_body(sc);
997
998	sc->suspended = 0;
999
1000	FXP_UNLOCK(sc);
1001	splx(s);
1002	return (0);
1003}
1004
1005static void
1006fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1007{
1008	u_int16_t reg;
1009	int x;
1010
1011	/*
1012	 * Shift in data.
1013	 */
1014	for (x = 1 << (length - 1); x; x >>= 1) {
1015		if (data & x)
1016			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1017		else
1018			reg = FXP_EEPROM_EECS;
1019		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1020		DELAY(1);
1021		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1022		DELAY(1);
1023		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1024		DELAY(1);
1025	}
1026}
1027
1028/*
1029 * Read from the serial EEPROM. Basically, you manually shift in
1030 * the read opcode (one bit at a time) and then shift in the address,
1031 * and then you shift out the data (all of this one bit at a time).
1032 * The word size is 16 bits, so you have to provide the address for
1033 * every 16 bits of data.
1034 */
1035static u_int16_t
1036fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1037{
1038	u_int16_t reg, data;
1039	int x;
1040
1041	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1042	/*
1043	 * Shift in read opcode.
1044	 */
1045	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1046	/*
1047	 * Shift in address.
1048	 */
1049	data = 0;
1050	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1051		if (offset & x)
1052			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1053		else
1054			reg = FXP_EEPROM_EECS;
1055		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1056		DELAY(1);
1057		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1058		DELAY(1);
1059		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1060		DELAY(1);
1061		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1062		data++;
1063		if (autosize && reg == 0) {
1064			sc->eeprom_size = data;
1065			break;
1066		}
1067	}
1068	/*
1069	 * Shift out data.
1070	 */
1071	data = 0;
1072	reg = FXP_EEPROM_EECS;
1073	for (x = 1 << 15; x; x >>= 1) {
1074		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1075		DELAY(1);
1076		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1077			data |= x;
1078		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1079		DELAY(1);
1080	}
1081	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1082	DELAY(1);
1083
1084	return (data);
1085}
1086
1087static void
1088fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1089{
1090	int i;
1091
1092	/*
1093	 * Erase/write enable.
1094	 */
1095	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1096	fxp_eeprom_shiftin(sc, 0x4, 3);
1097	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1098	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1099	DELAY(1);
1100	/*
1101	 * Shift in write opcode, address, data.
1102	 */
1103	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1104	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1105	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1106	fxp_eeprom_shiftin(sc, data, 16);
1107	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1108	DELAY(1);
1109	/*
1110	 * Wait for EEPROM to finish up.
1111	 */
1112	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1113	DELAY(1);
1114	for (i = 0; i < 1000; i++) {
1115		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1116			break;
1117		DELAY(50);
1118	}
1119	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1120	DELAY(1);
1121	/*
1122	 * Erase/write disable.
1123	 */
1124	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1125	fxp_eeprom_shiftin(sc, 0x4, 3);
1126	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1127	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1128	DELAY(1);
1129}
1130
1131/*
1132 * From NetBSD:
1133 *
1134 * Figure out EEPROM size.
1135 *
1136 * 559's can have either 64-word or 256-word EEPROMs, the 558
1137 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1138 * talks about the existance of 16 to 256 word EEPROMs.
1139 *
1140 * The only known sizes are 64 and 256, where the 256 version is used
1141 * by CardBus cards to store CIS information.
1142 *
1143 * The address is shifted in msb-to-lsb, and after the last
1144 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1145 * after which follows the actual data. We try to detect this zero, by
1146 * probing the data-out bit in the EEPROM control register just after
1147 * having shifted in a bit. If the bit is zero, we assume we've
1148 * shifted enough address bits. The data-out should be tri-state,
1149 * before this, which should translate to a logical one.
1150 */
1151static void
1152fxp_autosize_eeprom(struct fxp_softc *sc)
1153{
1154
1155	/* guess maximum size of 256 words */
1156	sc->eeprom_size = 8;
1157
1158	/* autosize */
1159	(void) fxp_eeprom_getword(sc, 0, 1);
1160}
1161
1162static void
1163fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1164{
1165	int i;
1166
1167	for (i = 0; i < words; i++)
1168		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1169}
1170
1171static void
1172fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1173{
1174	int i;
1175
1176	for (i = 0; i < words; i++)
1177		fxp_eeprom_putword(sc, offset + i, data[i]);
1178}
1179
1180static void
1181fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1182    bus_size_t mapsize, int error)
1183{
1184	struct fxp_softc *sc;
1185	struct fxp_cb_tx *txp;
1186	int i;
1187
1188	if (error)
1189		return;
1190
1191	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1192
1193	sc = arg;
1194	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1195	for (i = 0; i < nseg; i++) {
1196		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1197		/*
1198		 * If this is an 82550/82551, then we're using extended
1199		 * TxCBs _and_ we're using checksum offload. This means
1200		 * that the TxCB is really an IPCB. One major difference
1201		 * between the two is that with plain extended TxCBs,
1202		 * the bottom half of the TxCB contains two entries from
1203		 * the TBD array, whereas IPCBs contain just one entry:
1204		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1205		 * checksum offload control bits. So to make things work
1206		 * right, we have to start filling in the TBD array
1207		 * starting from a different place depending on whether
1208		 * the chip is an 82550/82551 or not.
1209		 */
1210		if (sc->flags & FXP_FLAG_EXT_RFA) {
1211			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1212			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1213		} else {
1214			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1215			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1216		}
1217	}
1218	txp->tbd_number = nseg;
1219}
1220
1221/*
1222 * Grab the softc lock and call the real fxp_start_body() routine
1223 */
1224static void
1225fxp_start(struct ifnet *ifp)
1226{
1227	struct fxp_softc *sc = ifp->if_softc;
1228
1229	FXP_LOCK(sc);
1230	fxp_start_body(ifp);
1231	FXP_UNLOCK(sc);
1232}
1233
1234/*
1235 * Start packet transmission on the interface.
1236 * This routine must be called with the softc lock held, and is an
1237 * internal entry point only.
1238 */
1239static void
1240fxp_start_body(struct ifnet *ifp)
1241{
1242	struct fxp_softc *sc = ifp->if_softc;
1243	struct fxp_tx *txp;
1244	struct mbuf *mb_head;
1245	int error;
1246
1247	FXP_LOCK_ASSERT(sc, MA_OWNED);
1248	/*
1249	 * See if we need to suspend xmit until the multicast filter
1250	 * has been reprogrammed (which can only be done at the head
1251	 * of the command chain).
1252	 */
1253	if (sc->need_mcsetup) {
1254		return;
1255	}
1256
1257	txp = NULL;
1258
1259	/*
1260	 * We're finished if there is nothing more to add to the list or if
1261	 * we're all filled up with buffers to transmit.
1262	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1263	 *       a NOP command when needed.
1264	 */
1265	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1266	    sc->tx_queued < FXP_NTXCB - 1) {
1267
1268		/*
1269		 * Grab a packet to transmit.
1270		 */
1271		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1272		if (mb_head == NULL)
1273			break;
1274
1275		/*
1276		 * Get pointer to next available tx desc.
1277		 */
1278		txp = sc->fxp_desc.tx_last->tx_next;
1279
1280		/*
1281		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1282		 * Ethernet Controller Family Open Source Software
1283		 * Developer Manual says:
1284		 *   Using software parsing is only allowed with legal
1285		 *   TCP/IP or UDP/IP packets.
1286		 *   ...
1287		 *   For all other datagrams, hardware parsing must
1288		 *   be used.
1289		 * Software parsing appears to truncate ICMP and
1290		 * fragmented UDP packets that contain one to three
1291		 * bytes in the second (and final) mbuf of the packet.
1292		 */
1293		if (sc->flags & FXP_FLAG_EXT_RFA)
1294			txp->tx_cb->ipcb_ip_activation_high =
1295			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1296
1297		/*
1298		 * Deal with TCP/IP checksum offload. Note that
1299		 * in order for TCP checksum offload to work,
1300		 * the pseudo header checksum must have already
1301		 * been computed and stored in the checksum field
1302		 * in the TCP header. The stack should have
1303		 * already done this for us.
1304		 */
1305
1306		if (mb_head->m_pkthdr.csum_flags) {
1307			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1308				txp->tx_cb->ipcb_ip_schedule =
1309				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1310				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1311					txp->tx_cb->ipcb_ip_schedule |=
1312					    FXP_IPCB_TCP_PACKET;
1313			}
1314#ifdef FXP_IP_CSUM_WAR
1315		/*
1316		 * XXX The 82550 chip appears to have trouble
1317		 * dealing with IP header checksums in very small
1318		 * datagrams, namely fragments from 1 to 3 bytes
1319		 * in size. For example, say you want to transmit
1320		 * a UDP packet of 1473 bytes. The packet will be
1321		 * fragmented over two IP datagrams, the latter
1322		 * containing only one byte of data. The 82550 will
1323		 * botch the header checksum on the 1-byte fragment.
1324		 * As long as the datagram contains 4 or more bytes
1325		 * of data, you're ok.
1326		 *
1327                 * The following code attempts to work around this
1328		 * problem: if the datagram is less than 38 bytes
1329		 * in size (14 bytes ether header, 20 bytes IP header,
1330		 * plus 4 bytes of data), we punt and compute the IP
1331		 * header checksum by hand. This workaround doesn't
1332		 * work very well, however, since it can be fooled
1333		 * by things like VLAN tags and IP options that make
1334		 * the header sizes/offsets vary.
1335		 */
1336
1337			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1338				if (mb_head->m_pkthdr.len < 38) {
1339					struct ip *ip;
1340					mb_head->m_data += ETHER_HDR_LEN;
1341					ip = mtod(mb_head, struct ip *);
1342					ip->ip_sum = in_cksum(mb_head,
1343					    ip->ip_hl << 2);
1344					mb_head->m_data -= ETHER_HDR_LEN;
1345				} else {
1346					txp->tx_cb->ipcb_ip_activation_high =
1347					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1348					txp->tx_cb->ipcb_ip_schedule |=
1349					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1350				}
1351			}
1352#endif
1353		}
1354
1355		/*
1356		 * Go through each of the mbufs in the chain and initialize
1357		 * the transmit buffer descriptors with the physical address
1358		 * and size of the mbuf.
1359		 */
1360		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1361		    mb_head, fxp_dma_map_txbuf, sc, 0);
1362
1363		if (error && error != EFBIG) {
1364			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1365			    error);
1366			m_freem(mb_head);
1367			break;
1368		}
1369
1370		if (error) {
1371			struct mbuf *mn;
1372
1373			/*
1374			 * We ran out of segments. We have to recopy this
1375			 * mbuf chain first. Bail out if we can't get the
1376			 * new buffers.
1377			 */
1378			mn = m_defrag(mb_head, M_DONTWAIT);
1379			if (mn == NULL) {
1380				m_freem(mb_head);
1381				break;
1382			} else {
1383				mb_head = mn;
1384			}
1385			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1386			    mb_head, fxp_dma_map_txbuf, sc, 0);
1387			if (error) {
1388				device_printf(sc->dev,
1389				    "can't map mbuf (error %d)\n", error);
1390				m_freem(mb_head);
1391				break;
1392			}
1393		}
1394
1395		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1396		    BUS_DMASYNC_PREWRITE);
1397
1398		txp->tx_mbuf = mb_head;
1399		txp->tx_cb->cb_status = 0;
1400		txp->tx_cb->byte_count = 0;
1401		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1402			txp->tx_cb->cb_command =
1403			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1404			    FXP_CB_COMMAND_S);
1405		} else {
1406			txp->tx_cb->cb_command =
1407			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1408			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1409			/*
1410			 * Set a 5 second timer just in case we don't hear
1411			 * from the card again.
1412			 */
1413			ifp->if_timer = 5;
1414		}
1415		txp->tx_cb->tx_threshold = tx_threshold;
1416
1417		/*
1418		 * Advance the end of list forward.
1419		 */
1420
1421#ifdef __alpha__
1422		/*
1423		 * On platforms which can't access memory in 16-bit
1424		 * granularities, we must prevent the card from DMA'ing
1425		 * up the status while we update the command field.
1426		 * This could cause us to overwrite the completion status.
1427		 * XXX This is probably bogus and we're _not_ looking
1428		 * for atomicity here.
1429		 */
1430		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1431		    htole16(FXP_CB_COMMAND_S));
1432#else
1433		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1434		    htole16(~FXP_CB_COMMAND_S);
1435#endif /*__alpha__*/
1436		sc->fxp_desc.tx_last = txp;
1437
1438		/*
1439		 * Advance the beginning of the list forward if there are
1440		 * no other packets queued (when nothing is queued, tx_first
1441		 * sits on the last TxCB that was sent out).
1442		 */
1443		if (sc->tx_queued == 0)
1444			sc->fxp_desc.tx_first = txp;
1445
1446		sc->tx_queued++;
1447
1448		/*
1449		 * Pass packet to bpf if there is a listener.
1450		 */
1451		BPF_MTAP(ifp, mb_head);
1452	}
1453	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1454
1455	/*
1456	 * We're finished. If we added to the list, issue a RESUME to get DMA
1457	 * going again if suspended.
1458	 */
1459	if (txp != NULL) {
1460		fxp_scb_wait(sc);
1461		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1462	}
1463}
1464
1465#ifdef DEVICE_POLLING
1466static poll_handler_t fxp_poll;
1467
1468static void
1469fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1470{
1471	struct fxp_softc *sc = ifp->if_softc;
1472	u_int8_t statack;
1473
1474	FXP_LOCK(sc);
1475	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1476		ether_poll_deregister(ifp);
1477		cmd = POLL_DEREGISTER;
1478	}
1479	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1480		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1481		FXP_UNLOCK(sc);
1482		return;
1483	}
1484	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1485	    FXP_SCB_STATACK_FR;
1486	if (cmd == POLL_AND_CHECK_STATUS) {
1487		u_int8_t tmp;
1488
1489		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1490		if (tmp == 0xff || tmp == 0) {
1491			FXP_UNLOCK(sc);
1492			return; /* nothing to do */
1493		}
1494		tmp &= ~statack;
1495		/* ack what we can */
1496		if (tmp != 0)
1497			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1498		statack |= tmp;
1499	}
1500	fxp_intr_body(sc, ifp, statack, count);
1501	FXP_UNLOCK(sc);
1502}
1503#endif /* DEVICE_POLLING */
1504
1505/*
1506 * Process interface interrupts.
1507 */
1508static void
1509fxp_intr(void *xsc)
1510{
1511	struct fxp_softc *sc = xsc;
1512	struct ifnet *ifp = &sc->sc_if;
1513	u_int8_t statack;
1514
1515	FXP_LOCK(sc);
1516	if (sc->suspended) {
1517		FXP_UNLOCK(sc);
1518		return;
1519	}
1520
1521#ifdef DEVICE_POLLING
1522	if (ifp->if_flags & IFF_POLLING) {
1523		FXP_UNLOCK(sc);
1524		return;
1525	}
1526	if ((ifp->if_capenable & IFCAP_POLLING) &&
1527	    ether_poll_register(fxp_poll, ifp)) {
1528		/* disable interrupts */
1529		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1530		FXP_UNLOCK(sc);
1531		fxp_poll(ifp, 0, 1);
1532		return;
1533	}
1534#endif
1535	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1536		/*
1537		 * It should not be possible to have all bits set; the
1538		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1539		 * all bits are set, this may indicate that the card has
1540		 * been physically ejected, so ignore it.
1541		 */
1542		if (statack == 0xff) {
1543			FXP_UNLOCK(sc);
1544			return;
1545		}
1546
1547		/*
1548		 * First ACK all the interrupts in this pass.
1549		 */
1550		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1551		fxp_intr_body(sc, ifp, statack, -1);
1552	}
1553	FXP_UNLOCK(sc);
1554}
1555
1556static void
1557fxp_txeof(struct fxp_softc *sc)
1558{
1559	struct fxp_tx *txp;
1560
1561	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1562	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1563	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1564	    txp = txp->tx_next) {
1565		if (txp->tx_mbuf != NULL) {
1566			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1567			    BUS_DMASYNC_POSTWRITE);
1568			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1569			m_freem(txp->tx_mbuf);
1570			txp->tx_mbuf = NULL;
1571			/* clear this to reset csum offload bits */
1572			txp->tx_cb->tbd[0].tb_addr = 0;
1573		}
1574		sc->tx_queued--;
1575	}
1576	sc->fxp_desc.tx_first = txp;
1577	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1578}
1579
1580static void
1581fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1582    int count)
1583{
1584	struct mbuf *m;
1585	struct fxp_rx *rxp;
1586	struct fxp_rfa *rfa;
1587	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1588
1589	FXP_LOCK_ASSERT(sc, MA_OWNED);
1590	if (rnr)
1591		sc->rnr++;
1592#ifdef DEVICE_POLLING
1593	/* Pick up a deferred RNR condition if `count' ran out last time. */
1594	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1595		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1596		rnr = 1;
1597	}
1598#endif
1599
1600	/*
1601	 * Free any finished transmit mbuf chains.
1602	 *
1603	 * Handle the CNA event likt a CXTNO event. It used to
1604	 * be that this event (control unit not ready) was not
1605	 * encountered, but it is now with the SMPng modifications.
1606	 * The exact sequence of events that occur when the interface
1607	 * is brought up are different now, and if this event
1608	 * goes unhandled, the configuration/rxfilter setup sequence
1609	 * can stall for several seconds. The result is that no
1610	 * packets go out onto the wire for about 5 to 10 seconds
1611	 * after the interface is ifconfig'ed for the first time.
1612	 */
1613	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1614		fxp_txeof(sc);
1615
1616		ifp->if_timer = 0;
1617		if (sc->tx_queued == 0) {
1618			if (sc->need_mcsetup)
1619				fxp_mc_setup(sc);
1620		}
1621		/*
1622		 * Try to start more packets transmitting.
1623		 */
1624		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1625			fxp_start_body(ifp);
1626	}
1627
1628	/*
1629	 * Just return if nothing happened on the receive side.
1630	 */
1631	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1632		return;
1633
1634	/*
1635	 * Process receiver interrupts. If a no-resource (RNR)
1636	 * condition exists, get whatever packets we can and
1637	 * re-start the receiver.
1638	 *
1639	 * When using polling, we do not process the list to completion,
1640	 * so when we get an RNR interrupt we must defer the restart
1641	 * until we hit the last buffer with the C bit set.
1642	 * If we run out of cycles and rfa_headm has the C bit set,
1643	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1644	 * that the info will be used in the subsequent polling cycle.
1645	 */
1646	for (;;) {
1647		rxp = sc->fxp_desc.rx_head;
1648		m = rxp->rx_mbuf;
1649		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1650		    RFA_ALIGNMENT_FUDGE);
1651		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1652		    BUS_DMASYNC_POSTREAD);
1653
1654#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1655		if (count >= 0 && count-- == 0) {
1656			if (rnr) {
1657				/* Defer RNR processing until the next time. */
1658				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1659				rnr = 0;
1660			}
1661			break;
1662		}
1663#endif /* DEVICE_POLLING */
1664
1665		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1666			break;
1667
1668		/*
1669		 * Advance head forward.
1670		 */
1671		sc->fxp_desc.rx_head = rxp->rx_next;
1672
1673		/*
1674		 * Add a new buffer to the receive chain.
1675		 * If this fails, the old buffer is recycled
1676		 * instead.
1677		 */
1678		if (fxp_add_rfabuf(sc, rxp) == 0) {
1679			int total_len;
1680
1681			/*
1682			 * Fetch packet length (the top 2 bits of
1683			 * actual_size are flags set by the controller
1684			 * upon completion), and drop the packet in case
1685			 * of bogus length or CRC errors.
1686			 */
1687			total_len = le16toh(rfa->actual_size) & 0x3fff;
1688			if (total_len < sizeof(struct ether_header) ||
1689			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1690				sc->rfa_size ||
1691			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1692				m_freem(m);
1693				continue;
1694			}
1695
1696                        /* Do IP checksum checking. */
1697			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1698				if (rfa->rfax_csum_sts &
1699				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1700					m->m_pkthdr.csum_flags |=
1701					    CSUM_IP_CHECKED;
1702				if (rfa->rfax_csum_sts &
1703				    FXP_RFDX_CS_IP_CSUM_VALID)
1704					m->m_pkthdr.csum_flags |=
1705					    CSUM_IP_VALID;
1706				if ((rfa->rfax_csum_sts &
1707				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1708				    (rfa->rfax_csum_sts &
1709				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1710					m->m_pkthdr.csum_flags |=
1711					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1712					m->m_pkthdr.csum_data = 0xffff;
1713				}
1714			}
1715
1716			m->m_pkthdr.len = m->m_len = total_len;
1717			m->m_pkthdr.rcvif = ifp;
1718
1719			/*
1720			 * Drop locks before calling if_input() since it
1721			 * may re-enter fxp_start() in the netisr case.
1722			 * This would result in a lock reversal.  Better
1723			 * performance might be obtained by chaining all
1724			 * packets received, dropping the lock, and then
1725			 * calling if_input() on each one.
1726			 */
1727			FXP_UNLOCK(sc);
1728			(*ifp->if_input)(ifp, m);
1729			FXP_LOCK(sc);
1730		}
1731	}
1732	if (rnr) {
1733		fxp_scb_wait(sc);
1734		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1735		    sc->fxp_desc.rx_head->rx_addr);
1736		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1737	}
1738}
1739
1740/*
1741 * Update packet in/out/collision statistics. The i82557 doesn't
1742 * allow you to access these counters without doing a fairly
1743 * expensive DMA to get _all_ of the statistics it maintains, so
1744 * we do this operation here only once per second. The statistics
1745 * counters in the kernel are updated from the previous dump-stats
1746 * DMA and then a new dump-stats DMA is started. The on-chip
1747 * counters are zeroed when the DMA completes. If we can't start
1748 * the DMA immediately, we don't wait - we just prepare to read
1749 * them again next time.
1750 */
1751static void
1752fxp_tick(void *xsc)
1753{
1754	struct fxp_softc *sc = xsc;
1755	struct ifnet *ifp = &sc->sc_if;
1756	struct fxp_stats *sp = sc->fxp_stats;
1757	int s;
1758
1759	FXP_LOCK(sc);
1760	s = splimp();
1761	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1762	ifp->if_opackets += le32toh(sp->tx_good);
1763	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1764	if (sp->rx_good) {
1765		ifp->if_ipackets += le32toh(sp->rx_good);
1766		sc->rx_idle_secs = 0;
1767	} else {
1768		/*
1769		 * Receiver's been idle for another second.
1770		 */
1771		sc->rx_idle_secs++;
1772	}
1773	ifp->if_ierrors +=
1774	    le32toh(sp->rx_crc_errors) +
1775	    le32toh(sp->rx_alignment_errors) +
1776	    le32toh(sp->rx_rnr_errors) +
1777	    le32toh(sp->rx_overrun_errors);
1778	/*
1779	 * If any transmit underruns occured, bump up the transmit
1780	 * threshold by another 512 bytes (64 * 8).
1781	 */
1782	if (sp->tx_underruns) {
1783		ifp->if_oerrors += le32toh(sp->tx_underruns);
1784		if (tx_threshold < 192)
1785			tx_threshold += 64;
1786	}
1787
1788	/*
1789	 * Release any xmit buffers that have completed DMA. This isn't
1790	 * strictly necessary to do here, but it's advantagous for mbufs
1791	 * with external storage to be released in a timely manner rather
1792	 * than being defered for a potentially long time. This limits
1793	 * the delay to a maximum of one second.
1794	 */
1795	fxp_txeof(sc);
1796
1797	/*
1798	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1799	 * then assume the receiver has locked up and attempt to clear
1800	 * the condition by reprogramming the multicast filter. This is
1801	 * a work-around for a bug in the 82557 where the receiver locks
1802	 * up if it gets certain types of garbage in the syncronization
1803	 * bits prior to the packet header. This bug is supposed to only
1804	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1805	 * mode as well (perhaps due to a 10/100 speed transition).
1806	 */
1807	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1808		sc->rx_idle_secs = 0;
1809		fxp_mc_setup(sc);
1810	}
1811	/*
1812	 * If there is no pending command, start another stats
1813	 * dump. Otherwise punt for now.
1814	 */
1815	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1816		/*
1817		 * Start another stats dump.
1818		 */
1819		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1820		    BUS_DMASYNC_PREREAD);
1821		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1822	} else {
1823		/*
1824		 * A previous command is still waiting to be accepted.
1825		 * Just zero our copy of the stats and wait for the
1826		 * next timer event to update them.
1827		 */
1828		sp->tx_good = 0;
1829		sp->tx_underruns = 0;
1830		sp->tx_total_collisions = 0;
1831
1832		sp->rx_good = 0;
1833		sp->rx_crc_errors = 0;
1834		sp->rx_alignment_errors = 0;
1835		sp->rx_rnr_errors = 0;
1836		sp->rx_overrun_errors = 0;
1837	}
1838	if (sc->miibus != NULL)
1839		mii_tick(device_get_softc(sc->miibus));
1840
1841	/*
1842	 * Schedule another timeout one second from now.
1843	 */
1844	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1845	FXP_UNLOCK(sc);
1846	splx(s);
1847}
1848
1849/*
1850 * Stop the interface. Cancels the statistics updater and resets
1851 * the interface.
1852 */
1853static void
1854fxp_stop(struct fxp_softc *sc)
1855{
1856	struct ifnet *ifp = &sc->sc_if;
1857	struct fxp_tx *txp;
1858	int i;
1859
1860	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1861	ifp->if_timer = 0;
1862
1863#ifdef DEVICE_POLLING
1864	ether_poll_deregister(ifp);
1865#endif
1866	/*
1867	 * Cancel stats updater.
1868	 */
1869	callout_stop(&sc->stat_ch);
1870
1871	/*
1872	 * Issue software reset, which also unloads the microcode.
1873	 */
1874	sc->flags &= ~FXP_FLAG_UCODE;
1875	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1876	DELAY(50);
1877
1878	/*
1879	 * Release any xmit buffers.
1880	 */
1881	txp = sc->fxp_desc.tx_list;
1882	if (txp != NULL) {
1883		for (i = 0; i < FXP_NTXCB; i++) {
1884 			if (txp[i].tx_mbuf != NULL) {
1885				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1886				    BUS_DMASYNC_POSTWRITE);
1887				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1888				m_freem(txp[i].tx_mbuf);
1889				txp[i].tx_mbuf = NULL;
1890				/* clear this to reset csum offload bits */
1891				txp[i].tx_cb->tbd[0].tb_addr = 0;
1892			}
1893		}
1894	}
1895	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1896	sc->tx_queued = 0;
1897}
1898
1899/*
1900 * Watchdog/transmission transmit timeout handler. Called when a
1901 * transmission is started on the interface, but no interrupt is
1902 * received before the timeout. This usually indicates that the
1903 * card has wedged for some reason.
1904 */
1905static void
1906fxp_watchdog(struct ifnet *ifp)
1907{
1908	struct fxp_softc *sc = ifp->if_softc;
1909
1910	FXP_LOCK(sc);
1911	device_printf(sc->dev, "device timeout\n");
1912	ifp->if_oerrors++;
1913
1914	fxp_init_body(sc);
1915	FXP_UNLOCK(sc);
1916}
1917
1918/*
1919 * Acquire locks and then call the real initialization function.  This
1920 * is necessary because ether_ioctl() calls if_init() and this would
1921 * result in mutex recursion if the mutex was held.
1922 */
1923static void
1924fxp_init(void *xsc)
1925{
1926	struct fxp_softc *sc = xsc;
1927
1928	FXP_LOCK(sc);
1929	fxp_init_body(sc);
1930	FXP_UNLOCK(sc);
1931}
1932
1933/*
1934 * Perform device initialization. This routine must be called with the
1935 * softc lock held.
1936 */
1937static void
1938fxp_init_body(struct fxp_softc *sc)
1939{
1940	struct ifnet *ifp = &sc->sc_if;
1941	struct fxp_cb_config *cbp;
1942	struct fxp_cb_ias *cb_ias;
1943	struct fxp_cb_tx *tcbp;
1944	struct fxp_tx *txp;
1945	struct fxp_cb_mcs *mcsp;
1946	int i, prm, s;
1947
1948	FXP_LOCK_ASSERT(sc, MA_OWNED);
1949	s = splimp();
1950	/*
1951	 * Cancel any pending I/O
1952	 */
1953	fxp_stop(sc);
1954
1955	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1956
1957	/*
1958	 * Initialize base of CBL and RFA memory. Loading with zero
1959	 * sets it up for regular linear addressing.
1960	 */
1961	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1962	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1963
1964	fxp_scb_wait(sc);
1965	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1966
1967	/*
1968	 * Initialize base of dump-stats buffer.
1969	 */
1970	fxp_scb_wait(sc);
1971	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1972	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1973	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1974
1975	/*
1976	 * Attempt to load microcode if requested.
1977	 */
1978	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1979		fxp_load_ucode(sc);
1980
1981	/*
1982	 * Initialize the multicast address list.
1983	 */
1984	if (fxp_mc_addrs(sc)) {
1985		mcsp = sc->mcsp;
1986		mcsp->cb_status = 0;
1987		mcsp->cb_command =
1988		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1989		mcsp->link_addr = 0xffffffff;
1990		/*
1991	 	 * Start the multicast setup command.
1992		 */
1993		fxp_scb_wait(sc);
1994		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1995		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1996		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1997		/* ...and wait for it to complete. */
1998		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1999		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2000		    BUS_DMASYNC_POSTWRITE);
2001	}
2002
2003	/*
2004	 * We temporarily use memory that contains the TxCB list to
2005	 * construct the config CB. The TxCB list memory is rebuilt
2006	 * later.
2007	 */
2008	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2009
2010	/*
2011	 * This bcopy is kind of disgusting, but there are a bunch of must be
2012	 * zero and must be one bits in this structure and this is the easiest
2013	 * way to initialize them all to proper values.
2014	 */
2015	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2016
2017	cbp->cb_status =	0;
2018	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2019	    FXP_CB_COMMAND_EL);
2020	cbp->link_addr =	0xffffffff;	/* (no) next command */
2021	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2022	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2023	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2024	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2025	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2026	cbp->type_enable =	0;	/* actually reserved */
2027	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2028	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2029	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2030	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2031	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2032	cbp->late_scb =		0;	/* (don't) defer SCB update */
2033	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2034	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2035	cbp->ci_int =		1;	/* interrupt on CU idle */
2036	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2037	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2038	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2039	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2040	cbp->disc_short_rx =	!prm;	/* discard short packets */
2041	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2042	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2043	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2044	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2045	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2046	cbp->csma_dis =		0;	/* (don't) disable link */
2047	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2048	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2049	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2050	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2051	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2052	cbp->nsai =		1;	/* (don't) disable source addr insert */
2053	cbp->preamble_length =	2;	/* (7 byte) preamble */
2054	cbp->loopback =		0;	/* (don't) loopback */
2055	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2056	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2057	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2058	cbp->promiscuous =	prm;	/* promiscuous mode */
2059	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2060	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2061	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2062	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2063	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2064
2065	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2066	cbp->padding =		1;	/* (do) pad short tx packets */
2067	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2068	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2069	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2070	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2071					/* must set wake_en in PMCSR also */
2072	cbp->force_fdx =	0;	/* (don't) force full duplex */
2073	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2074	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2075	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2076	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2077
2078	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2079		/*
2080		 * The 82557 has no hardware flow control, the values
2081		 * below are the defaults for the chip.
2082		 */
2083		cbp->fc_delay_lsb =	0;
2084		cbp->fc_delay_msb =	0x40;
2085		cbp->pri_fc_thresh =	3;
2086		cbp->tx_fc_dis =	0;
2087		cbp->rx_fc_restop =	0;
2088		cbp->rx_fc_restart =	0;
2089		cbp->fc_filter =	0;
2090		cbp->pri_fc_loc =	1;
2091	} else {
2092		cbp->fc_delay_lsb =	0x1f;
2093		cbp->fc_delay_msb =	0x01;
2094		cbp->pri_fc_thresh =	3;
2095		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2096		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2097		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2098		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2099		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2100	}
2101
2102	/*
2103	 * Start the config command/DMA.
2104	 */
2105	fxp_scb_wait(sc);
2106	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2107	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2108	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2109	/* ...and wait for it to complete. */
2110	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2111	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2112
2113	/*
2114	 * Now initialize the station address. Temporarily use the TxCB
2115	 * memory area like we did above for the config CB.
2116	 */
2117	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2118	cb_ias->cb_status = 0;
2119	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2120	cb_ias->link_addr = 0xffffffff;
2121	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2122	    sizeof(sc->arpcom.ac_enaddr));
2123
2124	/*
2125	 * Start the IAS (Individual Address Setup) command/DMA.
2126	 */
2127	fxp_scb_wait(sc);
2128	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2129	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2130	/* ...and wait for it to complete. */
2131	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2132	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2133
2134	/*
2135	 * Initialize transmit control block (TxCB) list.
2136	 */
2137	txp = sc->fxp_desc.tx_list;
2138	tcbp = sc->fxp_desc.cbl_list;
2139	bzero(tcbp, FXP_TXCB_SZ);
2140	for (i = 0; i < FXP_NTXCB; i++) {
2141		txp[i].tx_mbuf = NULL;
2142		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2143		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2144		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2145		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2146		if (sc->flags & FXP_FLAG_EXT_TXCB)
2147			tcbp[i].tbd_array_addr =
2148			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2149		else
2150			tcbp[i].tbd_array_addr =
2151			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2152		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2153	}
2154	/*
2155	 * Set the suspend flag on the first TxCB and start the control
2156	 * unit. It will execute the NOP and then suspend.
2157	 */
2158	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2159	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2160	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2161	sc->tx_queued = 1;
2162
2163	fxp_scb_wait(sc);
2164	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2165
2166	/*
2167	 * Initialize receiver buffer area - RFA.
2168	 */
2169	fxp_scb_wait(sc);
2170	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2171	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2172
2173	/*
2174	 * Set current media.
2175	 */
2176	if (sc->miibus != NULL)
2177		mii_mediachg(device_get_softc(sc->miibus));
2178
2179	ifp->if_flags |= IFF_RUNNING;
2180	ifp->if_flags &= ~IFF_OACTIVE;
2181
2182	/*
2183	 * Enable interrupts.
2184	 */
2185#ifdef DEVICE_POLLING
2186	/*
2187	 * ... but only do that if we are not polling. And because (presumably)
2188	 * the default is interrupts on, we need to disable them explicitly!
2189	 */
2190	if ( ifp->if_flags & IFF_POLLING )
2191		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2192	else
2193#endif /* DEVICE_POLLING */
2194	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2195
2196	/*
2197	 * Start stats updater.
2198	 */
2199	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2200	splx(s);
2201}
2202
2203static int
2204fxp_serial_ifmedia_upd(struct ifnet *ifp)
2205{
2206
2207	return (0);
2208}
2209
2210static void
2211fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2212{
2213
2214	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2215}
2216
2217/*
2218 * Change media according to request.
2219 */
2220static int
2221fxp_ifmedia_upd(struct ifnet *ifp)
2222{
2223	struct fxp_softc *sc = ifp->if_softc;
2224	struct mii_data *mii;
2225
2226	mii = device_get_softc(sc->miibus);
2227	mii_mediachg(mii);
2228	return (0);
2229}
2230
2231/*
2232 * Notify the world which media we're using.
2233 */
2234static void
2235fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2236{
2237	struct fxp_softc *sc = ifp->if_softc;
2238	struct mii_data *mii;
2239
2240	mii = device_get_softc(sc->miibus);
2241	mii_pollstat(mii);
2242	ifmr->ifm_active = mii->mii_media_active;
2243	ifmr->ifm_status = mii->mii_media_status;
2244
2245	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2246		sc->cu_resume_bug = 1;
2247	else
2248		sc->cu_resume_bug = 0;
2249}
2250
2251/*
2252 * Add a buffer to the end of the RFA buffer list.
2253 * Return 0 if successful, 1 for failure. A failure results in
2254 * adding the 'oldm' (if non-NULL) on to the end of the list -
2255 * tossing out its old contents and recycling it.
2256 * The RFA struct is stuck at the beginning of mbuf cluster and the
2257 * data pointer is fixed up to point just past it.
2258 */
2259static int
2260fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2261{
2262	struct mbuf *m;
2263	struct fxp_rfa *rfa, *p_rfa;
2264	struct fxp_rx *p_rx;
2265	bus_dmamap_t tmp_map;
2266	int error;
2267
2268	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2269	if (m == NULL)
2270		return (ENOBUFS);
2271
2272	/*
2273	 * Move the data pointer up so that the incoming data packet
2274	 * will be 32-bit aligned.
2275	 */
2276	m->m_data += RFA_ALIGNMENT_FUDGE;
2277
2278	/*
2279	 * Get a pointer to the base of the mbuf cluster and move
2280	 * data start past it.
2281	 */
2282	rfa = mtod(m, struct fxp_rfa *);
2283	m->m_data += sc->rfa_size;
2284	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2285
2286	rfa->rfa_status = 0;
2287	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2288	rfa->actual_size = 0;
2289
2290	/*
2291	 * Initialize the rest of the RFA.  Note that since the RFA
2292	 * is misaligned, we cannot store values directly.  We're thus
2293	 * using the le32enc() function which handles endianness and
2294	 * is also alignment-safe.
2295	 */
2296	le32enc(&rfa->link_addr, 0xffffffff);
2297	le32enc(&rfa->rbd_addr, 0xffffffff);
2298
2299	/* Map the RFA into DMA memory. */
2300	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2301	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2302	    &rxp->rx_addr, 0);
2303	if (error) {
2304		m_freem(m);
2305		return (error);
2306	}
2307
2308	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2309	tmp_map = sc->spare_map;
2310	sc->spare_map = rxp->rx_map;
2311	rxp->rx_map = tmp_map;
2312	rxp->rx_mbuf = m;
2313
2314	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2315	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2316
2317	/*
2318	 * If there are other buffers already on the list, attach this
2319	 * one to the end by fixing up the tail to point to this one.
2320	 */
2321	if (sc->fxp_desc.rx_head != NULL) {
2322		p_rx = sc->fxp_desc.rx_tail;
2323		p_rfa = (struct fxp_rfa *)
2324		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2325		p_rx->rx_next = rxp;
2326		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2327		p_rfa->rfa_control = 0;
2328		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2329		    BUS_DMASYNC_PREWRITE);
2330	} else {
2331		rxp->rx_next = NULL;
2332		sc->fxp_desc.rx_head = rxp;
2333	}
2334	sc->fxp_desc.rx_tail = rxp;
2335	return (0);
2336}
2337
2338static volatile int
2339fxp_miibus_readreg(device_t dev, int phy, int reg)
2340{
2341	struct fxp_softc *sc = device_get_softc(dev);
2342	int count = 10000;
2343	int value;
2344
2345	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2346	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2347
2348	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2349	    && count--)
2350		DELAY(10);
2351
2352	if (count <= 0)
2353		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2354
2355	return (value & 0xffff);
2356}
2357
2358static void
2359fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2360{
2361	struct fxp_softc *sc = device_get_softc(dev);
2362	int count = 10000;
2363
2364	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2365	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2366	    (value & 0xffff));
2367
2368	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2369	    count--)
2370		DELAY(10);
2371
2372	if (count <= 0)
2373		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2374}
2375
2376static int
2377fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2378{
2379	struct fxp_softc *sc = ifp->if_softc;
2380	struct ifreq *ifr = (struct ifreq *)data;
2381	struct mii_data *mii;
2382	int flag, mask, s, error = 0;
2383
2384	/*
2385	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2386	 * that by saying we're busy if the lock is already held.
2387	 */
2388	if (FXP_LOCKED(sc))
2389		return (EBUSY);
2390
2391	FXP_LOCK(sc);
2392	s = splimp();
2393
2394	switch (command) {
2395	case SIOCSIFFLAGS:
2396		if (ifp->if_flags & IFF_ALLMULTI)
2397			sc->flags |= FXP_FLAG_ALL_MCAST;
2398		else
2399			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2400
2401		/*
2402		 * If interface is marked up and not running, then start it.
2403		 * If it is marked down and running, stop it.
2404		 * XXX If it's up then re-initialize it. This is so flags
2405		 * such as IFF_PROMISC are handled.
2406		 */
2407		if (ifp->if_flags & IFF_UP) {
2408			fxp_init_body(sc);
2409		} else {
2410			if (ifp->if_flags & IFF_RUNNING)
2411				fxp_stop(sc);
2412		}
2413		break;
2414
2415	case SIOCADDMULTI:
2416	case SIOCDELMULTI:
2417		if (ifp->if_flags & IFF_ALLMULTI)
2418			sc->flags |= FXP_FLAG_ALL_MCAST;
2419		else
2420			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2421		/*
2422		 * Multicast list has changed; set the hardware filter
2423		 * accordingly.
2424		 */
2425		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2426			fxp_mc_setup(sc);
2427		/*
2428		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2429		 * again rather than else {}.
2430		 */
2431		if (sc->flags & FXP_FLAG_ALL_MCAST)
2432			fxp_init_body(sc);
2433		error = 0;
2434		break;
2435
2436	case SIOCSIFMEDIA:
2437	case SIOCGIFMEDIA:
2438		if (sc->miibus != NULL) {
2439			mii = device_get_softc(sc->miibus);
2440                        error = ifmedia_ioctl(ifp, ifr,
2441                            &mii->mii_media, command);
2442		} else {
2443                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2444		}
2445		break;
2446
2447	case SIOCSIFCAP:
2448		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2449		if (mask & IFCAP_POLLING)
2450			ifp->if_capenable ^= IFCAP_POLLING;
2451		if (mask & IFCAP_VLAN_MTU) {
2452			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2453			if (sc->revision != FXP_REV_82557)
2454				flag = FXP_FLAG_LONG_PKT_EN;
2455			else /* a hack to get long frames on the old chip */
2456				flag = FXP_FLAG_SAVE_BAD;
2457			sc->flags ^= flag;
2458			if (ifp->if_flags & IFF_UP)
2459				fxp_init_body(sc);
2460		}
2461		break;
2462
2463	default:
2464		/*
2465		 * ether_ioctl() will eventually call fxp_start() which
2466		 * will result in mutex recursion so drop it first.
2467		 */
2468		FXP_UNLOCK(sc);
2469		error = ether_ioctl(ifp, command, data);
2470	}
2471	if (FXP_LOCKED(sc))
2472		FXP_UNLOCK(sc);
2473	splx(s);
2474	return (error);
2475}
2476
2477/*
2478 * Fill in the multicast address list and return number of entries.
2479 */
2480static int
2481fxp_mc_addrs(struct fxp_softc *sc)
2482{
2483	struct fxp_cb_mcs *mcsp = sc->mcsp;
2484	struct ifnet *ifp = &sc->sc_if;
2485	struct ifmultiaddr *ifma;
2486	int nmcasts;
2487
2488	nmcasts = 0;
2489	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2490#if __FreeBSD_version < 500000
2491		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2492#else
2493		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2494#endif
2495			if (ifma->ifma_addr->sa_family != AF_LINK)
2496				continue;
2497			if (nmcasts >= MAXMCADDR) {
2498				sc->flags |= FXP_FLAG_ALL_MCAST;
2499				nmcasts = 0;
2500				break;
2501			}
2502			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2503			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2504			nmcasts++;
2505		}
2506	}
2507	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2508	return (nmcasts);
2509}
2510
2511/*
2512 * Program the multicast filter.
2513 *
2514 * We have an artificial restriction that the multicast setup command
2515 * must be the first command in the chain, so we take steps to ensure
2516 * this. By requiring this, it allows us to keep up the performance of
2517 * the pre-initialized command ring (esp. link pointers) by not actually
2518 * inserting the mcsetup command in the ring - i.e. its link pointer
2519 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2520 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2521 * lead into the regular TxCB ring when it completes.
2522 *
2523 * This function must be called at splimp.
2524 */
2525static void
2526fxp_mc_setup(struct fxp_softc *sc)
2527{
2528	struct fxp_cb_mcs *mcsp = sc->mcsp;
2529	struct ifnet *ifp = &sc->sc_if;
2530	struct fxp_tx *txp;
2531	int count;
2532
2533	FXP_LOCK_ASSERT(sc, MA_OWNED);
2534	/*
2535	 * If there are queued commands, we must wait until they are all
2536	 * completed. If we are already waiting, then add a NOP command
2537	 * with interrupt option so that we're notified when all commands
2538	 * have been completed - fxp_start() ensures that no additional
2539	 * TX commands will be added when need_mcsetup is true.
2540	 */
2541	if (sc->tx_queued) {
2542		/*
2543		 * need_mcsetup will be true if we are already waiting for the
2544		 * NOP command to be completed (see below). In this case, bail.
2545		 */
2546		if (sc->need_mcsetup)
2547			return;
2548		sc->need_mcsetup = 1;
2549
2550		/*
2551		 * Add a NOP command with interrupt so that we are notified
2552		 * when all TX commands have been processed.
2553		 */
2554		txp = sc->fxp_desc.tx_last->tx_next;
2555		txp->tx_mbuf = NULL;
2556		txp->tx_cb->cb_status = 0;
2557		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2558		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2559		/*
2560		 * Advance the end of list forward.
2561		 */
2562		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2563		    htole16(~FXP_CB_COMMAND_S);
2564		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2565		sc->fxp_desc.tx_last = txp;
2566		sc->tx_queued++;
2567		/*
2568		 * Issue a resume in case the CU has just suspended.
2569		 */
2570		fxp_scb_wait(sc);
2571		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2572		/*
2573		 * Set a 5 second timer just in case we don't hear from the
2574		 * card again.
2575		 */
2576		ifp->if_timer = 5;
2577
2578		return;
2579	}
2580	sc->need_mcsetup = 0;
2581
2582	/*
2583	 * Initialize multicast setup descriptor.
2584	 */
2585	mcsp->cb_status = 0;
2586	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2587	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2588	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2589	txp = &sc->fxp_desc.mcs_tx;
2590	txp->tx_mbuf = NULL;
2591	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2592	txp->tx_next = sc->fxp_desc.tx_list;
2593	(void) fxp_mc_addrs(sc);
2594	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2595	sc->tx_queued = 1;
2596
2597	/*
2598	 * Wait until command unit is not active. This should never
2599	 * be the case when nothing is queued, but make sure anyway.
2600	 */
2601	count = 100;
2602	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2603	    FXP_SCB_CUS_ACTIVE && --count)
2604		DELAY(10);
2605	if (count == 0) {
2606		device_printf(sc->dev, "command queue timeout\n");
2607		return;
2608	}
2609
2610	/*
2611	 * Start the multicast setup command.
2612	 */
2613	fxp_scb_wait(sc);
2614	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2615	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2616	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2617
2618	ifp->if_timer = 2;
2619	return;
2620}
2621
2622static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2623static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2624static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2625static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2626static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2627static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2628
2629#define UCODE(x)	x, sizeof(x)/sizeof(u_int32_t)
2630
2631struct ucode {
2632	u_int32_t	revision;
2633	u_int32_t	*ucode;
2634	int		length;
2635	u_short		int_delay_offset;
2636	u_short		bundle_max_offset;
2637} ucode_table[] = {
2638	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2639	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2640	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2641	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2642	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2643	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2644	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2645	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2646	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2647	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2648	{ 0, NULL, 0, 0, 0 }
2649};
2650
2651static void
2652fxp_load_ucode(struct fxp_softc *sc)
2653{
2654	struct ucode *uc;
2655	struct fxp_cb_ucode *cbp;
2656	int i;
2657
2658	for (uc = ucode_table; uc->ucode != NULL; uc++)
2659		if (sc->revision == uc->revision)
2660			break;
2661	if (uc->ucode == NULL)
2662		return;
2663	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2664	cbp->cb_status = 0;
2665	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2666	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2667	for (i = 0; i < uc->length; i++)
2668		cbp->ucode[i] = htole32(uc->ucode[i]);
2669	if (uc->int_delay_offset)
2670		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2671		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2672	if (uc->bundle_max_offset)
2673		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2674		    htole16(sc->tunable_bundle_max);
2675	/*
2676	 * Download the ucode to the chip.
2677	 */
2678	fxp_scb_wait(sc);
2679	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2680	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2681	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2682	/* ...and wait for it to complete. */
2683	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2684	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2685	device_printf(sc->dev,
2686	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2687	    sc->tunable_int_delay,
2688	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2689	sc->flags |= FXP_FLAG_UCODE;
2690}
2691
2692static int
2693sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2694{
2695	int error, value;
2696
2697	value = *(int *)arg1;
2698	error = sysctl_handle_int(oidp, &value, 0, req);
2699	if (error || !req->newptr)
2700		return (error);
2701	if (value < low || value > high)
2702		return (EINVAL);
2703	*(int *)arg1 = value;
2704	return (0);
2705}
2706
2707/*
2708 * Interrupt delay is expressed in microseconds, a multiplier is used
2709 * to convert this to the appropriate clock ticks before using.
2710 */
2711static int
2712sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2713{
2714	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2715}
2716
2717static int
2718sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2719{
2720	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2721}
2722