if_fxp.c revision 139683
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 139683 2005-01-04 19:30:14Z mux $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	u_int16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192    { 0,	-1,	NULL },
193};
194
195#ifdef FXP_IP_CSUM_WAR
196#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197#else
198#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199#endif
200
201static int		fxp_probe(device_t dev);
202static int		fxp_attach(device_t dev);
203static int		fxp_detach(device_t dev);
204static int		fxp_shutdown(device_t dev);
205static int		fxp_suspend(device_t dev);
206static int		fxp_resume(device_t dev);
207
208static void		fxp_intr(void *xsc);
209static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210			    u_int8_t statack, int count);
211static void 		fxp_init(void *xsc);
212static void 		fxp_init_body(struct fxp_softc *sc);
213static void 		fxp_tick(void *xsc);
214static void 		fxp_start(struct ifnet *ifp);
215static void 		fxp_start_body(struct ifnet *ifp);
216static void		fxp_stop(struct fxp_softc *sc);
217static void 		fxp_release(struct fxp_softc *sc);
218static int		fxp_ioctl(struct ifnet *ifp, u_long command,
219			    caddr_t data);
220static void 		fxp_watchdog(struct ifnet *ifp);
221static int		fxp_add_rfabuf(struct fxp_softc *sc,
222    			    struct fxp_rx *rxp);
223static int		fxp_mc_addrs(struct fxp_softc *sc);
224static void		fxp_mc_setup(struct fxp_softc *sc);
225static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
226			    int autosize);
227static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
228			    u_int16_t data);
229static void		fxp_autosize_eeprom(struct fxp_softc *sc);
230static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
231			    int offset, int words);
232static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static int		fxp_ifmedia_upd(struct ifnet *ifp);
235static void		fxp_ifmedia_sts(struct ifnet *ifp,
236			    struct ifmediareq *ifmr);
237static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
241static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
242			    int value);
243static void		fxp_load_ucode(struct fxp_softc *sc);
244static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
245			    int low, int high);
246static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
247static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
248static void 		fxp_scb_wait(struct fxp_softc *sc);
249static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
250static void		fxp_dma_wait(struct fxp_softc *sc,
251    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
252			    bus_dmamap_t map);
253
254static device_method_t fxp_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		fxp_probe),
257	DEVMETHOD(device_attach,	fxp_attach),
258	DEVMETHOD(device_detach,	fxp_detach),
259	DEVMETHOD(device_shutdown,	fxp_shutdown),
260	DEVMETHOD(device_suspend,	fxp_suspend),
261	DEVMETHOD(device_resume,	fxp_resume),
262
263	/* MII interface */
264	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266
267	{ 0, 0 }
268};
269
270static driver_t fxp_driver = {
271	"fxp",
272	fxp_methods,
273	sizeof(struct fxp_softc),
274};
275
276static devclass_t fxp_devclass;
277
278DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
279DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
280DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
281
282/*
283 * Wait for the previous command to be accepted (but not necessarily
284 * completed).
285 */
286static void
287fxp_scb_wait(struct fxp_softc *sc)
288{
289	int i = 10000;
290
291	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
292		DELAY(2);
293	if (i == 0)
294		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
295		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
296		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
297		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
298		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
299}
300
301static void
302fxp_scb_cmd(struct fxp_softc *sc, int cmd)
303{
304
305	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
306		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
307		fxp_scb_wait(sc);
308	}
309	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
310}
311
312static void
313fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
314    bus_dma_tag_t dmat, bus_dmamap_t map)
315{
316	int i = 10000;
317
318	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
319	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
320		DELAY(2);
321		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
322	}
323	if (i == 0)
324		device_printf(sc->dev, "DMA timeout\n");
325}
326
327/*
328 * Return identification string if this device is ours.
329 */
330static int
331fxp_probe(device_t dev)
332{
333	u_int16_t devid;
334	u_int8_t revid;
335	struct fxp_ident *ident;
336
337	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
338		devid = pci_get_device(dev);
339		revid = pci_get_revid(dev);
340		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
341			if (ident->devid == devid &&
342			    (ident->revid == revid || ident->revid == -1)) {
343				device_set_desc(dev, ident->name);
344				return (0);
345			}
346		}
347	}
348	return (ENXIO);
349}
350
351static void
352fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
353{
354	u_int32_t *addr;
355
356	if (error)
357		return;
358
359	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
360	addr = arg;
361	*addr = segs->ds_addr;
362}
363
364static int
365fxp_attach(device_t dev)
366{
367	int error = 0;
368	struct fxp_softc *sc = device_get_softc(dev);
369	struct ifnet *ifp;
370	struct fxp_rx *rxp;
371	u_int32_t val;
372	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
373	int i, rid, m1, m2, prefer_iomap, maxtxseg;
374	int s;
375
376	sc->dev = dev;
377	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
378	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
379	    MTX_DEF);
380	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
381	    fxp_serial_ifmedia_sts);
382
383	s = splimp();
384
385	/*
386	 * Enable bus mastering.
387	 */
388	pci_enable_busmaster(dev);
389	val = pci_read_config(dev, PCIR_COMMAND, 2);
390
391	/*
392	 * Figure out which we should try first - memory mapping or i/o mapping?
393	 * We default to memory mapping. Then we accept an override from the
394	 * command line. Then we check to see which one is enabled.
395	 */
396	m1 = PCIM_CMD_MEMEN;
397	m2 = PCIM_CMD_PORTEN;
398	prefer_iomap = 0;
399	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
400	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
401		m1 = PCIM_CMD_PORTEN;
402		m2 = PCIM_CMD_MEMEN;
403	}
404
405	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
406	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
407	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
408	if (sc->mem == NULL) {
409		sc->rtp =
410		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
413                                            RF_ACTIVE);
414	}
415
416	if (!sc->mem) {
417		error = ENXIO;
418		goto fail;
419        }
420	if (bootverbose) {
421		device_printf(dev, "using %s space register mapping\n",
422		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
423	}
424
425	sc->sc_st = rman_get_bustag(sc->mem);
426	sc->sc_sh = rman_get_bushandle(sc->mem);
427
428	/*
429	 * Allocate our interrupt.
430	 */
431	rid = 0;
432	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
433				 RF_SHAREABLE | RF_ACTIVE);
434	if (sc->irq == NULL) {
435		device_printf(dev, "could not map interrupt\n");
436		error = ENXIO;
437		goto fail;
438	}
439
440	/*
441	 * Reset to a stable state.
442	 */
443	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
444	DELAY(10);
445
446	/*
447	 * Find out how large of an SEEPROM we have.
448	 */
449	fxp_autosize_eeprom(sc);
450
451	/*
452	 * Determine whether we must use the 503 serial interface.
453	 */
454	fxp_read_eeprom(sc, &data, 6, 1);
455	if (sc->revision <= FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
456	    && (data & FXP_PHY_SERIAL_ONLY))
457		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
458
459	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
460	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
461	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
462	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
463	    "FXP driver receive interrupt microcode bundling delay");
464	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
465	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
466	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
467	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
468	    "FXP driver receive interrupt microcode bundle size limit");
469	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
470	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
471	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
472	    "FXP RNR events");
473	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
474	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
476	    "FXP flow control disabled");
477
478	/*
479	 * Pull in device tunables.
480	 */
481	sc->tunable_int_delay = TUNABLE_INT_DELAY;
482	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
483	sc->tunable_noflow = 0;
484	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
485	    "int_delay", &sc->tunable_int_delay);
486	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
487	    "bundle_max", &sc->tunable_bundle_max);
488	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
489	    "noflow", &sc->tunable_noflow);
490	sc->rnr = 0;
491
492	/*
493	 * Find out the chip revision; lump all 82557 revs together.
494	 */
495	fxp_read_eeprom(sc, &data, 5, 1);
496	if ((data >> 8) == 1)
497		sc->revision = FXP_REV_82557;
498	else
499		sc->revision = pci_get_revid(dev);
500
501	/*
502	 * Enable workarounds for certain chip revision deficiencies.
503	 *
504	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
505	 * some systems based a normal 82559 design, have a defect where
506	 * the chip can cause a PCI protocol violation if it receives
507	 * a CU_RESUME command when it is entering the IDLE state.  The
508	 * workaround is to disable Dynamic Standby Mode, so the chip never
509	 * deasserts CLKRUN#, and always remains in an active state.
510	 *
511	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
512	 */
513	i = pci_get_device(dev);
514	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
515	    sc->revision >= FXP_REV_82559_A0) {
516		fxp_read_eeprom(sc, &data, 10, 1);
517		if (data & 0x02) {			/* STB enable */
518			u_int16_t cksum;
519			int i;
520
521			device_printf(dev,
522			    "Disabling dynamic standby mode in EEPROM\n");
523			data &= ~0x02;
524			fxp_write_eeprom(sc, &data, 10, 1);
525			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
526			cksum = 0;
527			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
528				fxp_read_eeprom(sc, &data, i, 1);
529				cksum += data;
530			}
531			i = (1 << sc->eeprom_size) - 1;
532			cksum = 0xBABA - cksum;
533			fxp_read_eeprom(sc, &data, i, 1);
534			fxp_write_eeprom(sc, &cksum, i, 1);
535			device_printf(dev,
536			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
537			    i, data, cksum);
538#if 1
539			/*
540			 * If the user elects to continue, try the software
541			 * workaround, as it is better than nothing.
542			 */
543			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
544#endif
545		}
546	}
547
548	/*
549	 * If we are not a 82557 chip, we can enable extended features.
550	 */
551	if (sc->revision != FXP_REV_82557) {
552		/*
553		 * If MWI is enabled in the PCI configuration, and there
554		 * is a valid cacheline size (8 or 16 dwords), then tell
555		 * the board to turn on MWI.
556		 */
557		if (val & PCIM_CMD_MWRICEN &&
558		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
559			sc->flags |= FXP_FLAG_MWI_ENABLE;
560
561		/* turn on the extended TxCB feature */
562		sc->flags |= FXP_FLAG_EXT_TXCB;
563
564		/* enable reception of long frames for VLAN */
565		sc->flags |= FXP_FLAG_LONG_PKT_EN;
566	} else {
567		/* a hack to get long VLAN frames on a 82557 */
568		sc->flags |= FXP_FLAG_SAVE_BAD;
569	}
570
571	/*
572	 * Enable use of extended RFDs and TCBs for 82550
573	 * and later chips. Note: we need extended TXCB support
574	 * too, but that's already enabled by the code above.
575	 * Be careful to do this only on the right devices.
576	 */
577
578	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
579		sc->rfa_size = sizeof (struct fxp_rfa);
580		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
581		sc->flags |= FXP_FLAG_EXT_RFA;
582	} else {
583		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
584		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
585	}
586
587	/*
588	 * Allocate DMA tags and DMA safe memory.
589	 */
590	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
591	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
592	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
593	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
594	if (error) {
595		device_printf(dev, "could not allocate dma tag\n");
596		goto fail;
597	}
598
599	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
600	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
601	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
602	    &sc->fxp_stag);
603	if (error) {
604		device_printf(dev, "could not allocate dma tag\n");
605		goto fail;
606	}
607
608	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
609	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
610	if (error)
611		goto fail;
612	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
613	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
614	if (error) {
615		device_printf(dev, "could not map the stats buffer\n");
616		goto fail;
617	}
618
619	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
620	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
621	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
622	if (error) {
623		device_printf(dev, "could not allocate dma tag\n");
624		goto fail;
625	}
626
627	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
628	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
629	if (error)
630		goto fail;
631
632	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
633	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
634	    &sc->fxp_desc.cbl_addr, 0);
635	if (error) {
636		device_printf(dev, "could not map DMA memory\n");
637		goto fail;
638	}
639
640	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
641	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
642	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
643	    &sc->mcs_tag);
644	if (error) {
645		device_printf(dev, "could not allocate dma tag\n");
646		goto fail;
647	}
648
649	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
650	    BUS_DMA_NOWAIT, &sc->mcs_map);
651	if (error)
652		goto fail;
653	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
654	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
655	if (error) {
656		device_printf(dev, "can't map the multicast setup command\n");
657		goto fail;
658	}
659
660	/*
661	 * Pre-allocate the TX DMA maps.
662	 */
663	for (i = 0; i < FXP_NTXCB; i++) {
664		error = bus_dmamap_create(sc->fxp_mtag, 0,
665		    &sc->fxp_desc.tx_list[i].tx_map);
666		if (error) {
667			device_printf(dev, "can't create DMA map for TX\n");
668			goto fail;
669		}
670	}
671	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
672	if (error) {
673		device_printf(dev, "can't create spare DMA map\n");
674		goto fail;
675	}
676
677	/*
678	 * Pre-allocate our receive buffers.
679	 */
680	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
681	for (i = 0; i < FXP_NRFABUFS; i++) {
682		rxp = &sc->fxp_desc.rx_list[i];
683		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
684		if (error) {
685			device_printf(dev, "can't create DMA map for RX\n");
686			goto fail;
687		}
688		if (fxp_add_rfabuf(sc, rxp) != 0) {
689			error = ENOMEM;
690			goto fail;
691		}
692	}
693
694	/*
695	 * Read MAC address.
696	 */
697	fxp_read_eeprom(sc, myea, 0, 3);
698	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
699	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
700	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
701	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
702	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
703	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
704	if (bootverbose) {
705		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
706		    pci_get_vendor(dev), pci_get_device(dev),
707		    pci_get_subvendor(dev), pci_get_subdevice(dev),
708		    pci_get_revid(dev));
709		fxp_read_eeprom(sc, &data, 10, 1);
710		device_printf(dev, "Dynamic Standby mode is %s\n",
711		    data & 0x02 ? "enabled" : "disabled");
712	}
713
714	/*
715	 * If this is only a 10Mbps device, then there is no MII, and
716	 * the PHY will use a serial interface instead.
717	 *
718	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
719	 * doesn't have a programming interface of any sort.  The
720	 * media is sensed automatically based on how the link partner
721	 * is configured.  This is, in essence, manual configuration.
722	 */
723	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
724		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
725		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
726	} else {
727		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
728		    fxp_ifmedia_sts)) {
729	                device_printf(dev, "MII without any PHY!\n");
730			error = ENXIO;
731			goto fail;
732		}
733	}
734
735	ifp = &sc->arpcom.ac_if;
736	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
737	ifp->if_baudrate = 100000000;
738	ifp->if_init = fxp_init;
739	ifp->if_softc = sc;
740	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
741	ifp->if_ioctl = fxp_ioctl;
742	ifp->if_start = fxp_start;
743	ifp->if_watchdog = fxp_watchdog;
744
745	ifp->if_capabilities = ifp->if_capenable = 0;
746
747	/* Enable checksum offload for 82550 or better chips */
748	if (sc->flags & FXP_FLAG_EXT_RFA) {
749		ifp->if_hwassist = FXP_CSUM_FEATURES;
750		ifp->if_capabilities |= IFCAP_HWCSUM;
751		ifp->if_capenable |= IFCAP_HWCSUM;
752	}
753
754#ifdef DEVICE_POLLING
755	/* Inform the world we support polling. */
756	ifp->if_capabilities |= IFCAP_POLLING;
757	ifp->if_capenable |= IFCAP_POLLING;
758#endif
759
760	/*
761	 * Attach the interface.
762	 */
763	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
764
765	/*
766	 * Tell the upper layer(s) we support long frames.
767	 * Must appear after the call to ether_ifattach() because
768	 * ether_ifattach() sets ifi_hdrlen to the default value.
769	 */
770	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
771	ifp->if_capabilities |= IFCAP_VLAN_MTU;
772	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
773
774	/*
775	 * Let the system queue as many packets as we have available
776	 * TX descriptors.
777	 */
778	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
779	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
780	IFQ_SET_READY(&ifp->if_snd);
781
782	/*
783	 * Hook our interrupt after all initialization is complete.
784	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
785	 * however, ifp and its functions are not fully locked so MPSAFE
786	 * should not be used unless you can handle potential data loss.
787	 */
788	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
789			       fxp_intr, sc, &sc->ih);
790	if (error) {
791		device_printf(dev, "could not setup irq\n");
792		ether_ifdetach(&sc->arpcom.ac_if);
793		goto fail;
794	}
795
796fail:
797	splx(s);
798	if (error)
799		fxp_release(sc);
800	return (error);
801}
802
803/*
804 * Release all resources.  The softc lock should not be held and the
805 * interrupt should already be torn down.
806 */
807static void
808fxp_release(struct fxp_softc *sc)
809{
810	struct fxp_rx *rxp;
811	struct fxp_tx *txp;
812	int i;
813
814	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
815	KASSERT(sc->ih == NULL,
816	    ("fxp_release() called with intr handle still active"));
817	if (sc->miibus)
818		device_delete_child(sc->dev, sc->miibus);
819	bus_generic_detach(sc->dev);
820	ifmedia_removeall(&sc->sc_media);
821	if (sc->fxp_desc.cbl_list) {
822		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
823		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
824		    sc->cbl_map);
825	}
826	if (sc->fxp_stats) {
827		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
828		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
829	}
830	if (sc->mcsp) {
831		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
832		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
833	}
834	if (sc->irq)
835		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
836	if (sc->mem)
837		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
838	if (sc->fxp_mtag) {
839		for (i = 0; i < FXP_NRFABUFS; i++) {
840			rxp = &sc->fxp_desc.rx_list[i];
841			if (rxp->rx_mbuf != NULL) {
842				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
843				    BUS_DMASYNC_POSTREAD);
844				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
845				m_freem(rxp->rx_mbuf);
846			}
847			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
848		}
849		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
850		bus_dma_tag_destroy(sc->fxp_mtag);
851	}
852	if (sc->fxp_stag) {
853		for (i = 0; i < FXP_NTXCB; i++) {
854			txp = &sc->fxp_desc.tx_list[i];
855			if (txp->tx_mbuf != NULL) {
856				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
857				    BUS_DMASYNC_POSTWRITE);
858				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
859				m_freem(txp->tx_mbuf);
860			}
861			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
862		}
863		bus_dma_tag_destroy(sc->fxp_stag);
864	}
865	if (sc->cbl_tag)
866		bus_dma_tag_destroy(sc->cbl_tag);
867	if (sc->mcs_tag)
868		bus_dma_tag_destroy(sc->mcs_tag);
869
870	mtx_destroy(&sc->sc_mtx);
871}
872
873/*
874 * Detach interface.
875 */
876static int
877fxp_detach(device_t dev)
878{
879	struct fxp_softc *sc = device_get_softc(dev);
880	int s;
881
882	FXP_LOCK(sc);
883	s = splimp();
884
885	sc->suspended = 1;	/* Do same thing as we do for suspend */
886	/*
887	 * Close down routes etc.
888	 */
889	ether_ifdetach(&sc->arpcom.ac_if);
890
891	/*
892	 * Stop DMA and drop transmit queue, but disable interrupts first.
893	 */
894	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
895	fxp_stop(sc);
896	FXP_UNLOCK(sc);
897
898	/*
899	 * Unhook interrupt before dropping lock. This is to prevent
900	 * races with fxp_intr().
901	 */
902	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
903	sc->ih = NULL;
904
905	splx(s);
906
907	/* Release our allocated resources. */
908	fxp_release(sc);
909	return (0);
910}
911
912/*
913 * Device shutdown routine. Called at system shutdown after sync. The
914 * main purpose of this routine is to shut off receiver DMA so that
915 * kernel memory doesn't get clobbered during warmboot.
916 */
917static int
918fxp_shutdown(device_t dev)
919{
920	/*
921	 * Make sure that DMA is disabled prior to reboot. Not doing
922	 * do could allow DMA to corrupt kernel memory during the
923	 * reboot before the driver initializes.
924	 */
925	fxp_stop((struct fxp_softc *) device_get_softc(dev));
926	return (0);
927}
928
929/*
930 * Device suspend routine.  Stop the interface and save some PCI
931 * settings in case the BIOS doesn't restore them properly on
932 * resume.
933 */
934static int
935fxp_suspend(device_t dev)
936{
937	struct fxp_softc *sc = device_get_softc(dev);
938	int i, s;
939
940	FXP_LOCK(sc);
941	s = splimp();
942
943	fxp_stop(sc);
944
945	for (i = 0; i < 5; i++)
946		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
947	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
948	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
949	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
950	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
951
952	sc->suspended = 1;
953
954	FXP_UNLOCK(sc);
955	splx(s);
956	return (0);
957}
958
959/*
960 * Device resume routine.  Restore some PCI settings in case the BIOS
961 * doesn't, re-enable busmastering, and restart the interface if
962 * appropriate.
963 */
964static int
965fxp_resume(device_t dev)
966{
967	struct fxp_softc *sc = device_get_softc(dev);
968	struct ifnet *ifp = &sc->sc_if;
969	u_int16_t pci_command;
970	int i, s;
971
972	FXP_LOCK(sc);
973	s = splimp();
974
975	/* better way to do this? */
976	for (i = 0; i < 5; i++)
977		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
978	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
979	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
980	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
981	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
982
983	/* reenable busmastering */
984	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
985	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
986	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
987
988	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
989	DELAY(10);
990
991	/* reinitialize interface if necessary */
992	if (ifp->if_flags & IFF_UP)
993		fxp_init_body(sc);
994
995	sc->suspended = 0;
996
997	FXP_UNLOCK(sc);
998	splx(s);
999	return (0);
1000}
1001
1002static void
1003fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1004{
1005	u_int16_t reg;
1006	int x;
1007
1008	/*
1009	 * Shift in data.
1010	 */
1011	for (x = 1 << (length - 1); x; x >>= 1) {
1012		if (data & x)
1013			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1014		else
1015			reg = FXP_EEPROM_EECS;
1016		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1017		DELAY(1);
1018		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1019		DELAY(1);
1020		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1021		DELAY(1);
1022	}
1023}
1024
1025/*
1026 * Read from the serial EEPROM. Basically, you manually shift in
1027 * the read opcode (one bit at a time) and then shift in the address,
1028 * and then you shift out the data (all of this one bit at a time).
1029 * The word size is 16 bits, so you have to provide the address for
1030 * every 16 bits of data.
1031 */
1032static u_int16_t
1033fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1034{
1035	u_int16_t reg, data;
1036	int x;
1037
1038	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1039	/*
1040	 * Shift in read opcode.
1041	 */
1042	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1043	/*
1044	 * Shift in address.
1045	 */
1046	data = 0;
1047	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1048		if (offset & x)
1049			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1050		else
1051			reg = FXP_EEPROM_EECS;
1052		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1053		DELAY(1);
1054		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1055		DELAY(1);
1056		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1057		DELAY(1);
1058		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1059		data++;
1060		if (autosize && reg == 0) {
1061			sc->eeprom_size = data;
1062			break;
1063		}
1064	}
1065	/*
1066	 * Shift out data.
1067	 */
1068	data = 0;
1069	reg = FXP_EEPROM_EECS;
1070	for (x = 1 << 15; x; x >>= 1) {
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072		DELAY(1);
1073		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1074			data |= x;
1075		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1076		DELAY(1);
1077	}
1078	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1079	DELAY(1);
1080
1081	return (data);
1082}
1083
1084static void
1085fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1086{
1087	int i;
1088
1089	/*
1090	 * Erase/write enable.
1091	 */
1092	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1093	fxp_eeprom_shiftin(sc, 0x4, 3);
1094	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1095	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1096	DELAY(1);
1097	/*
1098	 * Shift in write opcode, address, data.
1099	 */
1100	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1102	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1103	fxp_eeprom_shiftin(sc, data, 16);
1104	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1105	DELAY(1);
1106	/*
1107	 * Wait for EEPROM to finish up.
1108	 */
1109	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1110	DELAY(1);
1111	for (i = 0; i < 1000; i++) {
1112		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1113			break;
1114		DELAY(50);
1115	}
1116	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1117	DELAY(1);
1118	/*
1119	 * Erase/write disable.
1120	 */
1121	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1122	fxp_eeprom_shiftin(sc, 0x4, 3);
1123	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1124	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125	DELAY(1);
1126}
1127
1128/*
1129 * From NetBSD:
1130 *
1131 * Figure out EEPROM size.
1132 *
1133 * 559's can have either 64-word or 256-word EEPROMs, the 558
1134 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1135 * talks about the existance of 16 to 256 word EEPROMs.
1136 *
1137 * The only known sizes are 64 and 256, where the 256 version is used
1138 * by CardBus cards to store CIS information.
1139 *
1140 * The address is shifted in msb-to-lsb, and after the last
1141 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1142 * after which follows the actual data. We try to detect this zero, by
1143 * probing the data-out bit in the EEPROM control register just after
1144 * having shifted in a bit. If the bit is zero, we assume we've
1145 * shifted enough address bits. The data-out should be tri-state,
1146 * before this, which should translate to a logical one.
1147 */
1148static void
1149fxp_autosize_eeprom(struct fxp_softc *sc)
1150{
1151
1152	/* guess maximum size of 256 words */
1153	sc->eeprom_size = 8;
1154
1155	/* autosize */
1156	(void) fxp_eeprom_getword(sc, 0, 1);
1157}
1158
1159static void
1160fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1161{
1162	int i;
1163
1164	for (i = 0; i < words; i++)
1165		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1166}
1167
1168static void
1169fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1170{
1171	int i;
1172
1173	for (i = 0; i < words; i++)
1174		fxp_eeprom_putword(sc, offset + i, data[i]);
1175}
1176
1177static void
1178fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1179    bus_size_t mapsize, int error)
1180{
1181	struct fxp_softc *sc;
1182	struct fxp_cb_tx *txp;
1183	int i;
1184
1185	if (error)
1186		return;
1187
1188	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1189
1190	sc = arg;
1191	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1192	for (i = 0; i < nseg; i++) {
1193		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1194		/*
1195		 * If this is an 82550/82551, then we're using extended
1196		 * TxCBs _and_ we're using checksum offload. This means
1197		 * that the TxCB is really an IPCB. One major difference
1198		 * between the two is that with plain extended TxCBs,
1199		 * the bottom half of the TxCB contains two entries from
1200		 * the TBD array, whereas IPCBs contain just one entry:
1201		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1202		 * checksum offload control bits. So to make things work
1203		 * right, we have to start filling in the TBD array
1204		 * starting from a different place depending on whether
1205		 * the chip is an 82550/82551 or not.
1206		 */
1207		if (sc->flags & FXP_FLAG_EXT_RFA) {
1208			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1209			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1210		} else {
1211			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1212			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1213		}
1214	}
1215	txp->tbd_number = nseg;
1216}
1217
1218/*
1219 * Grab the softc lock and call the real fxp_start_body() routine
1220 */
1221static void
1222fxp_start(struct ifnet *ifp)
1223{
1224	struct fxp_softc *sc = ifp->if_softc;
1225
1226	FXP_LOCK(sc);
1227	fxp_start_body(ifp);
1228	FXP_UNLOCK(sc);
1229}
1230
1231/*
1232 * Start packet transmission on the interface.
1233 * This routine must be called with the softc lock held, and is an
1234 * internal entry point only.
1235 */
1236static void
1237fxp_start_body(struct ifnet *ifp)
1238{
1239	struct fxp_softc *sc = ifp->if_softc;
1240	struct fxp_tx *txp;
1241	struct mbuf *mb_head;
1242	int error;
1243
1244	FXP_LOCK_ASSERT(sc, MA_OWNED);
1245	/*
1246	 * See if we need to suspend xmit until the multicast filter
1247	 * has been reprogrammed (which can only be done at the head
1248	 * of the command chain).
1249	 */
1250	if (sc->need_mcsetup) {
1251		return;
1252	}
1253
1254	txp = NULL;
1255
1256	/*
1257	 * We're finished if there is nothing more to add to the list or if
1258	 * we're all filled up with buffers to transmit.
1259	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1260	 *       a NOP command when needed.
1261	 */
1262	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1263	    sc->tx_queued < FXP_NTXCB - 1) {
1264
1265		/*
1266		 * Grab a packet to transmit.
1267		 */
1268		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1269		if (mb_head == NULL)
1270			break;
1271
1272		/*
1273		 * Get pointer to next available tx desc.
1274		 */
1275		txp = sc->fxp_desc.tx_last->tx_next;
1276
1277		/*
1278		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1279		 * Ethernet Controller Family Open Source Software
1280		 * Developer Manual says:
1281		 *   Using software parsing is only allowed with legal
1282		 *   TCP/IP or UDP/IP packets.
1283		 *   ...
1284		 *   For all other datagrams, hardware parsing must
1285		 *   be used.
1286		 * Software parsing appears to truncate ICMP and
1287		 * fragmented UDP packets that contain one to three
1288		 * bytes in the second (and final) mbuf of the packet.
1289		 */
1290		if (sc->flags & FXP_FLAG_EXT_RFA)
1291			txp->tx_cb->ipcb_ip_activation_high =
1292			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1293
1294		/*
1295		 * Deal with TCP/IP checksum offload. Note that
1296		 * in order for TCP checksum offload to work,
1297		 * the pseudo header checksum must have already
1298		 * been computed and stored in the checksum field
1299		 * in the TCP header. The stack should have
1300		 * already done this for us.
1301		 */
1302
1303		if (mb_head->m_pkthdr.csum_flags) {
1304			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1305				txp->tx_cb->ipcb_ip_schedule =
1306				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1307				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1308					txp->tx_cb->ipcb_ip_schedule |=
1309					    FXP_IPCB_TCP_PACKET;
1310			}
1311#ifdef FXP_IP_CSUM_WAR
1312		/*
1313		 * XXX The 82550 chip appears to have trouble
1314		 * dealing with IP header checksums in very small
1315		 * datagrams, namely fragments from 1 to 3 bytes
1316		 * in size. For example, say you want to transmit
1317		 * a UDP packet of 1473 bytes. The packet will be
1318		 * fragmented over two IP datagrams, the latter
1319		 * containing only one byte of data. The 82550 will
1320		 * botch the header checksum on the 1-byte fragment.
1321		 * As long as the datagram contains 4 or more bytes
1322		 * of data, you're ok.
1323		 *
1324                 * The following code attempts to work around this
1325		 * problem: if the datagram is less than 38 bytes
1326		 * in size (14 bytes ether header, 20 bytes IP header,
1327		 * plus 4 bytes of data), we punt and compute the IP
1328		 * header checksum by hand. This workaround doesn't
1329		 * work very well, however, since it can be fooled
1330		 * by things like VLAN tags and IP options that make
1331		 * the header sizes/offsets vary.
1332		 */
1333
1334			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1335				if (mb_head->m_pkthdr.len < 38) {
1336					struct ip *ip;
1337					mb_head->m_data += ETHER_HDR_LEN;
1338					ip = mtod(mb_head, struct ip *);
1339					ip->ip_sum = in_cksum(mb_head,
1340					    ip->ip_hl << 2);
1341					mb_head->m_data -= ETHER_HDR_LEN;
1342				} else {
1343					txp->tx_cb->ipcb_ip_activation_high =
1344					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1345					txp->tx_cb->ipcb_ip_schedule |=
1346					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1347				}
1348			}
1349#endif
1350		}
1351
1352		/*
1353		 * Go through each of the mbufs in the chain and initialize
1354		 * the transmit buffer descriptors with the physical address
1355		 * and size of the mbuf.
1356		 */
1357		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1358		    mb_head, fxp_dma_map_txbuf, sc, 0);
1359
1360		if (error && error != EFBIG) {
1361			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1362			    error);
1363			m_freem(mb_head);
1364			break;
1365		}
1366
1367		if (error) {
1368			struct mbuf *mn;
1369
1370			/*
1371			 * We ran out of segments. We have to recopy this
1372			 * mbuf chain first. Bail out if we can't get the
1373			 * new buffers.
1374			 */
1375			mn = m_defrag(mb_head, M_DONTWAIT);
1376			if (mn == NULL) {
1377				m_freem(mb_head);
1378				break;
1379			} else {
1380				mb_head = mn;
1381			}
1382			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1383			    mb_head, fxp_dma_map_txbuf, sc, 0);
1384			if (error) {
1385				device_printf(sc->dev,
1386				    "can't map mbuf (error %d)\n", error);
1387				m_freem(mb_head);
1388				break;
1389			}
1390		}
1391
1392		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1393		    BUS_DMASYNC_PREWRITE);
1394
1395		txp->tx_mbuf = mb_head;
1396		txp->tx_cb->cb_status = 0;
1397		txp->tx_cb->byte_count = 0;
1398		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1399			txp->tx_cb->cb_command =
1400			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1401			    FXP_CB_COMMAND_S);
1402		} else {
1403			txp->tx_cb->cb_command =
1404			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1405			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1406			/*
1407			 * Set a 5 second timer just in case we don't hear
1408			 * from the card again.
1409			 */
1410			ifp->if_timer = 5;
1411		}
1412		txp->tx_cb->tx_threshold = tx_threshold;
1413
1414		/*
1415		 * Advance the end of list forward.
1416		 */
1417
1418#ifdef __alpha__
1419		/*
1420		 * On platforms which can't access memory in 16-bit
1421		 * granularities, we must prevent the card from DMA'ing
1422		 * up the status while we update the command field.
1423		 * This could cause us to overwrite the completion status.
1424		 * XXX This is probably bogus and we're _not_ looking
1425		 * for atomicity here.
1426		 */
1427		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1428		    htole16(FXP_CB_COMMAND_S));
1429#else
1430		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1431		    htole16(~FXP_CB_COMMAND_S);
1432#endif /*__alpha__*/
1433		sc->fxp_desc.tx_last = txp;
1434
1435		/*
1436		 * Advance the beginning of the list forward if there are
1437		 * no other packets queued (when nothing is queued, tx_first
1438		 * sits on the last TxCB that was sent out).
1439		 */
1440		if (sc->tx_queued == 0)
1441			sc->fxp_desc.tx_first = txp;
1442
1443		sc->tx_queued++;
1444
1445		/*
1446		 * Pass packet to bpf if there is a listener.
1447		 */
1448		BPF_MTAP(ifp, mb_head);
1449	}
1450	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1451
1452	/*
1453	 * We're finished. If we added to the list, issue a RESUME to get DMA
1454	 * going again if suspended.
1455	 */
1456	if (txp != NULL) {
1457		fxp_scb_wait(sc);
1458		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1459	}
1460}
1461
1462#ifdef DEVICE_POLLING
1463static poll_handler_t fxp_poll;
1464
1465static void
1466fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1467{
1468	struct fxp_softc *sc = ifp->if_softc;
1469	u_int8_t statack;
1470
1471	FXP_LOCK(sc);
1472	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1473		ether_poll_deregister(ifp);
1474		cmd = POLL_DEREGISTER;
1475	}
1476	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1477		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1478		FXP_UNLOCK(sc);
1479		return;
1480	}
1481	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1482	    FXP_SCB_STATACK_FR;
1483	if (cmd == POLL_AND_CHECK_STATUS) {
1484		u_int8_t tmp;
1485
1486		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1487		if (tmp == 0xff || tmp == 0) {
1488			FXP_UNLOCK(sc);
1489			return; /* nothing to do */
1490		}
1491		tmp &= ~statack;
1492		/* ack what we can */
1493		if (tmp != 0)
1494			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1495		statack |= tmp;
1496	}
1497	fxp_intr_body(sc, ifp, statack, count);
1498	FXP_UNLOCK(sc);
1499}
1500#endif /* DEVICE_POLLING */
1501
1502/*
1503 * Process interface interrupts.
1504 */
1505static void
1506fxp_intr(void *xsc)
1507{
1508	struct fxp_softc *sc = xsc;
1509	struct ifnet *ifp = &sc->sc_if;
1510	u_int8_t statack;
1511
1512	FXP_LOCK(sc);
1513	if (sc->suspended) {
1514		FXP_UNLOCK(sc);
1515		return;
1516	}
1517
1518#ifdef DEVICE_POLLING
1519	if (ifp->if_flags & IFF_POLLING) {
1520		FXP_UNLOCK(sc);
1521		return;
1522	}
1523	if ((ifp->if_capenable & IFCAP_POLLING) &&
1524	    ether_poll_register(fxp_poll, ifp)) {
1525		/* disable interrupts */
1526		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1527		FXP_UNLOCK(sc);
1528		fxp_poll(ifp, 0, 1);
1529		return;
1530	}
1531#endif
1532	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1533		/*
1534		 * It should not be possible to have all bits set; the
1535		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1536		 * all bits are set, this may indicate that the card has
1537		 * been physically ejected, so ignore it.
1538		 */
1539		if (statack == 0xff) {
1540			FXP_UNLOCK(sc);
1541			return;
1542		}
1543
1544		/*
1545		 * First ACK all the interrupts in this pass.
1546		 */
1547		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1548		fxp_intr_body(sc, ifp, statack, -1);
1549	}
1550	FXP_UNLOCK(sc);
1551}
1552
1553static void
1554fxp_txeof(struct fxp_softc *sc)
1555{
1556	struct fxp_tx *txp;
1557
1558	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1559	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1560	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1561	    txp = txp->tx_next) {
1562		if (txp->tx_mbuf != NULL) {
1563			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1564			    BUS_DMASYNC_POSTWRITE);
1565			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1566			m_freem(txp->tx_mbuf);
1567			txp->tx_mbuf = NULL;
1568			/* clear this to reset csum offload bits */
1569			txp->tx_cb->tbd[0].tb_addr = 0;
1570		}
1571		sc->tx_queued--;
1572	}
1573	sc->fxp_desc.tx_first = txp;
1574	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1575}
1576
1577static void
1578fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1579    int count)
1580{
1581	struct mbuf *m;
1582	struct fxp_rx *rxp;
1583	struct fxp_rfa *rfa;
1584	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1585
1586	FXP_LOCK_ASSERT(sc, MA_OWNED);
1587	if (rnr)
1588		sc->rnr++;
1589#ifdef DEVICE_POLLING
1590	/* Pick up a deferred RNR condition if `count' ran out last time. */
1591	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1592		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1593		rnr = 1;
1594	}
1595#endif
1596
1597	/*
1598	 * Free any finished transmit mbuf chains.
1599	 *
1600	 * Handle the CNA event likt a CXTNO event. It used to
1601	 * be that this event (control unit not ready) was not
1602	 * encountered, but it is now with the SMPng modifications.
1603	 * The exact sequence of events that occur when the interface
1604	 * is brought up are different now, and if this event
1605	 * goes unhandled, the configuration/rxfilter setup sequence
1606	 * can stall for several seconds. The result is that no
1607	 * packets go out onto the wire for about 5 to 10 seconds
1608	 * after the interface is ifconfig'ed for the first time.
1609	 */
1610	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1611		fxp_txeof(sc);
1612
1613		ifp->if_timer = 0;
1614		if (sc->tx_queued == 0) {
1615			if (sc->need_mcsetup)
1616				fxp_mc_setup(sc);
1617		}
1618		/*
1619		 * Try to start more packets transmitting.
1620		 */
1621		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1622			fxp_start_body(ifp);
1623	}
1624
1625	/*
1626	 * Just return if nothing happened on the receive side.
1627	 */
1628	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1629		return;
1630
1631	/*
1632	 * Process receiver interrupts. If a no-resource (RNR)
1633	 * condition exists, get whatever packets we can and
1634	 * re-start the receiver.
1635	 *
1636	 * When using polling, we do not process the list to completion,
1637	 * so when we get an RNR interrupt we must defer the restart
1638	 * until we hit the last buffer with the C bit set.
1639	 * If we run out of cycles and rfa_headm has the C bit set,
1640	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1641	 * that the info will be used in the subsequent polling cycle.
1642	 */
1643	for (;;) {
1644		rxp = sc->fxp_desc.rx_head;
1645		m = rxp->rx_mbuf;
1646		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1647		    RFA_ALIGNMENT_FUDGE);
1648		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1649		    BUS_DMASYNC_POSTREAD);
1650
1651#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1652		if (count >= 0 && count-- == 0) {
1653			if (rnr) {
1654				/* Defer RNR processing until the next time. */
1655				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1656				rnr = 0;
1657			}
1658			break;
1659		}
1660#endif /* DEVICE_POLLING */
1661
1662		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1663			break;
1664
1665		/*
1666		 * Advance head forward.
1667		 */
1668		sc->fxp_desc.rx_head = rxp->rx_next;
1669
1670		/*
1671		 * Add a new buffer to the receive chain.
1672		 * If this fails, the old buffer is recycled
1673		 * instead.
1674		 */
1675		if (fxp_add_rfabuf(sc, rxp) == 0) {
1676			int total_len;
1677
1678			/*
1679			 * Fetch packet length (the top 2 bits of
1680			 * actual_size are flags set by the controller
1681			 * upon completion), and drop the packet in case
1682			 * of bogus length or CRC errors.
1683			 */
1684			total_len = le16toh(rfa->actual_size) & 0x3fff;
1685			if (total_len < sizeof(struct ether_header) ||
1686			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1687				sc->rfa_size ||
1688			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1689				m_freem(m);
1690				continue;
1691			}
1692
1693                        /* Do IP checksum checking. */
1694			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1695				if (rfa->rfax_csum_sts &
1696				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1697					m->m_pkthdr.csum_flags |=
1698					    CSUM_IP_CHECKED;
1699				if (rfa->rfax_csum_sts &
1700				    FXP_RFDX_CS_IP_CSUM_VALID)
1701					m->m_pkthdr.csum_flags |=
1702					    CSUM_IP_VALID;
1703				if ((rfa->rfax_csum_sts &
1704				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1705				    (rfa->rfax_csum_sts &
1706				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1707					m->m_pkthdr.csum_flags |=
1708					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1709					m->m_pkthdr.csum_data = 0xffff;
1710				}
1711			}
1712
1713			m->m_pkthdr.len = m->m_len = total_len;
1714			m->m_pkthdr.rcvif = ifp;
1715
1716			/*
1717			 * Drop locks before calling if_input() since it
1718			 * may re-enter fxp_start() in the netisr case.
1719			 * This would result in a lock reversal.  Better
1720			 * performance might be obtained by chaining all
1721			 * packets received, dropping the lock, and then
1722			 * calling if_input() on each one.
1723			 */
1724			FXP_UNLOCK(sc);
1725			(*ifp->if_input)(ifp, m);
1726			FXP_LOCK(sc);
1727		}
1728	}
1729	if (rnr) {
1730		fxp_scb_wait(sc);
1731		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1732		    sc->fxp_desc.rx_head->rx_addr);
1733		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1734	}
1735}
1736
1737/*
1738 * Update packet in/out/collision statistics. The i82557 doesn't
1739 * allow you to access these counters without doing a fairly
1740 * expensive DMA to get _all_ of the statistics it maintains, so
1741 * we do this operation here only once per second. The statistics
1742 * counters in the kernel are updated from the previous dump-stats
1743 * DMA and then a new dump-stats DMA is started. The on-chip
1744 * counters are zeroed when the DMA completes. If we can't start
1745 * the DMA immediately, we don't wait - we just prepare to read
1746 * them again next time.
1747 */
1748static void
1749fxp_tick(void *xsc)
1750{
1751	struct fxp_softc *sc = xsc;
1752	struct ifnet *ifp = &sc->sc_if;
1753	struct fxp_stats *sp = sc->fxp_stats;
1754	int s;
1755
1756	FXP_LOCK(sc);
1757	s = splimp();
1758	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1759	ifp->if_opackets += le32toh(sp->tx_good);
1760	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1761	if (sp->rx_good) {
1762		ifp->if_ipackets += le32toh(sp->rx_good);
1763		sc->rx_idle_secs = 0;
1764	} else {
1765		/*
1766		 * Receiver's been idle for another second.
1767		 */
1768		sc->rx_idle_secs++;
1769	}
1770	ifp->if_ierrors +=
1771	    le32toh(sp->rx_crc_errors) +
1772	    le32toh(sp->rx_alignment_errors) +
1773	    le32toh(sp->rx_rnr_errors) +
1774	    le32toh(sp->rx_overrun_errors);
1775	/*
1776	 * If any transmit underruns occured, bump up the transmit
1777	 * threshold by another 512 bytes (64 * 8).
1778	 */
1779	if (sp->tx_underruns) {
1780		ifp->if_oerrors += le32toh(sp->tx_underruns);
1781		if (tx_threshold < 192)
1782			tx_threshold += 64;
1783	}
1784
1785	/*
1786	 * Release any xmit buffers that have completed DMA. This isn't
1787	 * strictly necessary to do here, but it's advantagous for mbufs
1788	 * with external storage to be released in a timely manner rather
1789	 * than being defered for a potentially long time. This limits
1790	 * the delay to a maximum of one second.
1791	 */
1792	fxp_txeof(sc);
1793
1794	/*
1795	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1796	 * then assume the receiver has locked up and attempt to clear
1797	 * the condition by reprogramming the multicast filter. This is
1798	 * a work-around for a bug in the 82557 where the receiver locks
1799	 * up if it gets certain types of garbage in the syncronization
1800	 * bits prior to the packet header. This bug is supposed to only
1801	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1802	 * mode as well (perhaps due to a 10/100 speed transition).
1803	 */
1804	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1805		sc->rx_idle_secs = 0;
1806		fxp_mc_setup(sc);
1807	}
1808	/*
1809	 * If there is no pending command, start another stats
1810	 * dump. Otherwise punt for now.
1811	 */
1812	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1813		/*
1814		 * Start another stats dump.
1815		 */
1816		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1817		    BUS_DMASYNC_PREREAD);
1818		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1819	} else {
1820		/*
1821		 * A previous command is still waiting to be accepted.
1822		 * Just zero our copy of the stats and wait for the
1823		 * next timer event to update them.
1824		 */
1825		sp->tx_good = 0;
1826		sp->tx_underruns = 0;
1827		sp->tx_total_collisions = 0;
1828
1829		sp->rx_good = 0;
1830		sp->rx_crc_errors = 0;
1831		sp->rx_alignment_errors = 0;
1832		sp->rx_rnr_errors = 0;
1833		sp->rx_overrun_errors = 0;
1834	}
1835	if (sc->miibus != NULL)
1836		mii_tick(device_get_softc(sc->miibus));
1837
1838	/*
1839	 * Schedule another timeout one second from now.
1840	 */
1841	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1842	FXP_UNLOCK(sc);
1843	splx(s);
1844}
1845
1846/*
1847 * Stop the interface. Cancels the statistics updater and resets
1848 * the interface.
1849 */
1850static void
1851fxp_stop(struct fxp_softc *sc)
1852{
1853	struct ifnet *ifp = &sc->sc_if;
1854	struct fxp_tx *txp;
1855	int i;
1856
1857	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1858	ifp->if_timer = 0;
1859
1860#ifdef DEVICE_POLLING
1861	ether_poll_deregister(ifp);
1862#endif
1863	/*
1864	 * Cancel stats updater.
1865	 */
1866	callout_stop(&sc->stat_ch);
1867
1868	/*
1869	 * Issue software reset, which also unloads the microcode.
1870	 */
1871	sc->flags &= ~FXP_FLAG_UCODE;
1872	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1873	DELAY(50);
1874
1875	/*
1876	 * Release any xmit buffers.
1877	 */
1878	txp = sc->fxp_desc.tx_list;
1879	if (txp != NULL) {
1880		for (i = 0; i < FXP_NTXCB; i++) {
1881 			if (txp[i].tx_mbuf != NULL) {
1882				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1883				    BUS_DMASYNC_POSTWRITE);
1884				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1885				m_freem(txp[i].tx_mbuf);
1886				txp[i].tx_mbuf = NULL;
1887				/* clear this to reset csum offload bits */
1888				txp[i].tx_cb->tbd[0].tb_addr = 0;
1889			}
1890		}
1891	}
1892	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1893	sc->tx_queued = 0;
1894}
1895
1896/*
1897 * Watchdog/transmission transmit timeout handler. Called when a
1898 * transmission is started on the interface, but no interrupt is
1899 * received before the timeout. This usually indicates that the
1900 * card has wedged for some reason.
1901 */
1902static void
1903fxp_watchdog(struct ifnet *ifp)
1904{
1905	struct fxp_softc *sc = ifp->if_softc;
1906
1907	FXP_LOCK(sc);
1908	device_printf(sc->dev, "device timeout\n");
1909	ifp->if_oerrors++;
1910
1911	fxp_init_body(sc);
1912	FXP_UNLOCK(sc);
1913}
1914
1915/*
1916 * Acquire locks and then call the real initialization function.  This
1917 * is necessary because ether_ioctl() calls if_init() and this would
1918 * result in mutex recursion if the mutex was held.
1919 */
1920static void
1921fxp_init(void *xsc)
1922{
1923	struct fxp_softc *sc = xsc;
1924
1925	FXP_LOCK(sc);
1926	fxp_init_body(sc);
1927	FXP_UNLOCK(sc);
1928}
1929
1930/*
1931 * Perform device initialization. This routine must be called with the
1932 * softc lock held.
1933 */
1934static void
1935fxp_init_body(struct fxp_softc *sc)
1936{
1937	struct ifnet *ifp = &sc->sc_if;
1938	struct fxp_cb_config *cbp;
1939	struct fxp_cb_ias *cb_ias;
1940	struct fxp_cb_tx *tcbp;
1941	struct fxp_tx *txp;
1942	struct fxp_cb_mcs *mcsp;
1943	int i, prm, s;
1944
1945	FXP_LOCK_ASSERT(sc, MA_OWNED);
1946	s = splimp();
1947	/*
1948	 * Cancel any pending I/O
1949	 */
1950	fxp_stop(sc);
1951
1952	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1953
1954	/*
1955	 * Initialize base of CBL and RFA memory. Loading with zero
1956	 * sets it up for regular linear addressing.
1957	 */
1958	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1959	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1960
1961	fxp_scb_wait(sc);
1962	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1963
1964	/*
1965	 * Initialize base of dump-stats buffer.
1966	 */
1967	fxp_scb_wait(sc);
1968	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1969	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1970	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1971
1972	/*
1973	 * Attempt to load microcode if requested.
1974	 */
1975	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1976		fxp_load_ucode(sc);
1977
1978	/*
1979	 * Initialize the multicast address list.
1980	 */
1981	if (fxp_mc_addrs(sc)) {
1982		mcsp = sc->mcsp;
1983		mcsp->cb_status = 0;
1984		mcsp->cb_command =
1985		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1986		mcsp->link_addr = 0xffffffff;
1987		/*
1988	 	 * Start the multicast setup command.
1989		 */
1990		fxp_scb_wait(sc);
1991		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1992		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1993		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1994		/* ...and wait for it to complete. */
1995		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1996		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1997		    BUS_DMASYNC_POSTWRITE);
1998	}
1999
2000	/*
2001	 * We temporarily use memory that contains the TxCB list to
2002	 * construct the config CB. The TxCB list memory is rebuilt
2003	 * later.
2004	 */
2005	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2006
2007	/*
2008	 * This bcopy is kind of disgusting, but there are a bunch of must be
2009	 * zero and must be one bits in this structure and this is the easiest
2010	 * way to initialize them all to proper values.
2011	 */
2012	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2013
2014	cbp->cb_status =	0;
2015	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2016	    FXP_CB_COMMAND_EL);
2017	cbp->link_addr =	0xffffffff;	/* (no) next command */
2018	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2019	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2020	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2021	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2022	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2023	cbp->type_enable =	0;	/* actually reserved */
2024	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2025	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2026	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2027	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2028	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2029	cbp->late_scb =		0;	/* (don't) defer SCB update */
2030	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2031	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2032	cbp->ci_int =		1;	/* interrupt on CU idle */
2033	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2034	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2035	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2036	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2037	cbp->disc_short_rx =	!prm;	/* discard short packets */
2038	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2039	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2040	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2041	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2042	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2043	cbp->csma_dis =		0;	/* (don't) disable link */
2044	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2045	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2046	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2047	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2048	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2049	cbp->nsai =		1;	/* (don't) disable source addr insert */
2050	cbp->preamble_length =	2;	/* (7 byte) preamble */
2051	cbp->loopback =		0;	/* (don't) loopback */
2052	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2053	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2054	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2055	cbp->promiscuous =	prm;	/* promiscuous mode */
2056	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2057	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2058	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2059	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2060	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2061
2062	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2063	cbp->padding =		1;	/* (do) pad short tx packets */
2064	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2065	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2066	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2067	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2068					/* must set wake_en in PMCSR also */
2069	cbp->force_fdx =	0;	/* (don't) force full duplex */
2070	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2071	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2072	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2073	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2074
2075	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2076		/*
2077		 * The 82557 has no hardware flow control, the values
2078		 * below are the defaults for the chip.
2079		 */
2080		cbp->fc_delay_lsb =	0;
2081		cbp->fc_delay_msb =	0x40;
2082		cbp->pri_fc_thresh =	3;
2083		cbp->tx_fc_dis =	0;
2084		cbp->rx_fc_restop =	0;
2085		cbp->rx_fc_restart =	0;
2086		cbp->fc_filter =	0;
2087		cbp->pri_fc_loc =	1;
2088	} else {
2089		cbp->fc_delay_lsb =	0x1f;
2090		cbp->fc_delay_msb =	0x01;
2091		cbp->pri_fc_thresh =	3;
2092		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2093		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2094		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2095		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2096		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2097	}
2098
2099	/*
2100	 * Start the config command/DMA.
2101	 */
2102	fxp_scb_wait(sc);
2103	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2104	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2105	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2106	/* ...and wait for it to complete. */
2107	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2108	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2109
2110	/*
2111	 * Now initialize the station address. Temporarily use the TxCB
2112	 * memory area like we did above for the config CB.
2113	 */
2114	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2115	cb_ias->cb_status = 0;
2116	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2117	cb_ias->link_addr = 0xffffffff;
2118	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2119	    sizeof(sc->arpcom.ac_enaddr));
2120
2121	/*
2122	 * Start the IAS (Individual Address Setup) command/DMA.
2123	 */
2124	fxp_scb_wait(sc);
2125	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2126	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2127	/* ...and wait for it to complete. */
2128	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2129	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2130
2131	/*
2132	 * Initialize transmit control block (TxCB) list.
2133	 */
2134	txp = sc->fxp_desc.tx_list;
2135	tcbp = sc->fxp_desc.cbl_list;
2136	bzero(tcbp, FXP_TXCB_SZ);
2137	for (i = 0; i < FXP_NTXCB; i++) {
2138		txp[i].tx_cb = tcbp + i;
2139		txp[i].tx_mbuf = NULL;
2140		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2141		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2142		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2143		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2144		if (sc->flags & FXP_FLAG_EXT_TXCB)
2145			tcbp[i].tbd_array_addr =
2146			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2147		else
2148			tcbp[i].tbd_array_addr =
2149			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2150		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2151	}
2152	/*
2153	 * Set the suspend flag on the first TxCB and start the control
2154	 * unit. It will execute the NOP and then suspend.
2155	 */
2156	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2157	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2158	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2159	sc->tx_queued = 1;
2160
2161	fxp_scb_wait(sc);
2162	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2163
2164	/*
2165	 * Initialize receiver buffer area - RFA.
2166	 */
2167	fxp_scb_wait(sc);
2168	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2169	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2170
2171	/*
2172	 * Set current media.
2173	 */
2174	if (sc->miibus != NULL)
2175		mii_mediachg(device_get_softc(sc->miibus));
2176
2177	ifp->if_flags |= IFF_RUNNING;
2178	ifp->if_flags &= ~IFF_OACTIVE;
2179
2180	/*
2181	 * Enable interrupts.
2182	 */
2183#ifdef DEVICE_POLLING
2184	/*
2185	 * ... but only do that if we are not polling. And because (presumably)
2186	 * the default is interrupts on, we need to disable them explicitly!
2187	 */
2188	if ( ifp->if_flags & IFF_POLLING )
2189		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2190	else
2191#endif /* DEVICE_POLLING */
2192	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2193
2194	/*
2195	 * Start stats updater.
2196	 */
2197	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2198	splx(s);
2199}
2200
2201static int
2202fxp_serial_ifmedia_upd(struct ifnet *ifp)
2203{
2204
2205	return (0);
2206}
2207
2208static void
2209fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2210{
2211
2212	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2213}
2214
2215/*
2216 * Change media according to request.
2217 */
2218static int
2219fxp_ifmedia_upd(struct ifnet *ifp)
2220{
2221	struct fxp_softc *sc = ifp->if_softc;
2222	struct mii_data *mii;
2223
2224	mii = device_get_softc(sc->miibus);
2225	mii_mediachg(mii);
2226	return (0);
2227}
2228
2229/*
2230 * Notify the world which media we're using.
2231 */
2232static void
2233fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2234{
2235	struct fxp_softc *sc = ifp->if_softc;
2236	struct mii_data *mii;
2237
2238	mii = device_get_softc(sc->miibus);
2239	mii_pollstat(mii);
2240	ifmr->ifm_active = mii->mii_media_active;
2241	ifmr->ifm_status = mii->mii_media_status;
2242
2243	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2244		sc->cu_resume_bug = 1;
2245	else
2246		sc->cu_resume_bug = 0;
2247}
2248
2249/*
2250 * Add a buffer to the end of the RFA buffer list.
2251 * Return 0 if successful, 1 for failure. A failure results in
2252 * adding the 'oldm' (if non-NULL) on to the end of the list -
2253 * tossing out its old contents and recycling it.
2254 * The RFA struct is stuck at the beginning of mbuf cluster and the
2255 * data pointer is fixed up to point just past it.
2256 */
2257static int
2258fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2259{
2260	struct mbuf *m;
2261	struct fxp_rfa *rfa, *p_rfa;
2262	struct fxp_rx *p_rx;
2263	bus_dmamap_t tmp_map;
2264	int error;
2265
2266	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2267	if (m == NULL)
2268		return (ENOBUFS);
2269
2270	/*
2271	 * Move the data pointer up so that the incoming data packet
2272	 * will be 32-bit aligned.
2273	 */
2274	m->m_data += RFA_ALIGNMENT_FUDGE;
2275
2276	/*
2277	 * Get a pointer to the base of the mbuf cluster and move
2278	 * data start past it.
2279	 */
2280	rfa = mtod(m, struct fxp_rfa *);
2281	m->m_data += sc->rfa_size;
2282	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2283
2284	rfa->rfa_status = 0;
2285	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2286	rfa->actual_size = 0;
2287
2288	/*
2289	 * Initialize the rest of the RFA.  Note that since the RFA
2290	 * is misaligned, we cannot store values directly.  We're thus
2291	 * using the le32enc() function which handles endianness and
2292	 * is also alignment-safe.
2293	 */
2294	le32enc(&rfa->link_addr, 0xffffffff);
2295	le32enc(&rfa->rbd_addr, 0xffffffff);
2296
2297	/* Map the RFA into DMA memory. */
2298	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2299	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2300	    &rxp->rx_addr, 0);
2301	if (error) {
2302		m_freem(m);
2303		return (error);
2304	}
2305
2306	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2307	tmp_map = sc->spare_map;
2308	sc->spare_map = rxp->rx_map;
2309	rxp->rx_map = tmp_map;
2310	rxp->rx_mbuf = m;
2311
2312	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2313	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314
2315	/*
2316	 * If there are other buffers already on the list, attach this
2317	 * one to the end by fixing up the tail to point to this one.
2318	 */
2319	if (sc->fxp_desc.rx_head != NULL) {
2320		p_rx = sc->fxp_desc.rx_tail;
2321		p_rfa = (struct fxp_rfa *)
2322		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2323		p_rx->rx_next = rxp;
2324		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2325		p_rfa->rfa_control = 0;
2326		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2327		    BUS_DMASYNC_PREWRITE);
2328	} else {
2329		rxp->rx_next = NULL;
2330		sc->fxp_desc.rx_head = rxp;
2331	}
2332	sc->fxp_desc.rx_tail = rxp;
2333	return (0);
2334}
2335
2336static volatile int
2337fxp_miibus_readreg(device_t dev, int phy, int reg)
2338{
2339	struct fxp_softc *sc = device_get_softc(dev);
2340	int count = 10000;
2341	int value;
2342
2343	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2345
2346	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2347	    && count--)
2348		DELAY(10);
2349
2350	if (count <= 0)
2351		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2352
2353	return (value & 0xffff);
2354}
2355
2356static void
2357fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2358{
2359	struct fxp_softc *sc = device_get_softc(dev);
2360	int count = 10000;
2361
2362	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2363	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2364	    (value & 0xffff));
2365
2366	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2367	    count--)
2368		DELAY(10);
2369
2370	if (count <= 0)
2371		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2372}
2373
2374static int
2375fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2376{
2377	struct fxp_softc *sc = ifp->if_softc;
2378	struct ifreq *ifr = (struct ifreq *)data;
2379	struct mii_data *mii;
2380	int flag, mask, s, error = 0;
2381
2382	/*
2383	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2384	 * that by saying we're busy if the lock is already held.
2385	 */
2386	if (FXP_LOCKED(sc))
2387		return (EBUSY);
2388
2389	FXP_LOCK(sc);
2390	s = splimp();
2391
2392	switch (command) {
2393	case SIOCSIFFLAGS:
2394		if (ifp->if_flags & IFF_ALLMULTI)
2395			sc->flags |= FXP_FLAG_ALL_MCAST;
2396		else
2397			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2398
2399		/*
2400		 * If interface is marked up and not running, then start it.
2401		 * If it is marked down and running, stop it.
2402		 * XXX If it's up then re-initialize it. This is so flags
2403		 * such as IFF_PROMISC are handled.
2404		 */
2405		if (ifp->if_flags & IFF_UP) {
2406			fxp_init_body(sc);
2407		} else {
2408			if (ifp->if_flags & IFF_RUNNING)
2409				fxp_stop(sc);
2410		}
2411		break;
2412
2413	case SIOCADDMULTI:
2414	case SIOCDELMULTI:
2415		if (ifp->if_flags & IFF_ALLMULTI)
2416			sc->flags |= FXP_FLAG_ALL_MCAST;
2417		else
2418			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2419		/*
2420		 * Multicast list has changed; set the hardware filter
2421		 * accordingly.
2422		 */
2423		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2424			fxp_mc_setup(sc);
2425		/*
2426		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2427		 * again rather than else {}.
2428		 */
2429		if (sc->flags & FXP_FLAG_ALL_MCAST)
2430			fxp_init_body(sc);
2431		error = 0;
2432		break;
2433
2434	case SIOCSIFMEDIA:
2435	case SIOCGIFMEDIA:
2436		if (sc->miibus != NULL) {
2437			mii = device_get_softc(sc->miibus);
2438                        error = ifmedia_ioctl(ifp, ifr,
2439                            &mii->mii_media, command);
2440		} else {
2441                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2442		}
2443		break;
2444
2445	case SIOCSIFCAP:
2446		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2447		if (mask & IFCAP_POLLING)
2448			ifp->if_capenable ^= IFCAP_POLLING;
2449		if (mask & IFCAP_VLAN_MTU) {
2450			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2451			if (sc->revision != FXP_REV_82557)
2452				flag = FXP_FLAG_LONG_PKT_EN;
2453			else /* a hack to get long frames on the old chip */
2454				flag = FXP_FLAG_SAVE_BAD;
2455			sc->flags ^= flag;
2456			if (ifp->if_flags & IFF_UP)
2457				fxp_init_body(sc);
2458		}
2459		break;
2460
2461	default:
2462		/*
2463		 * ether_ioctl() will eventually call fxp_start() which
2464		 * will result in mutex recursion so drop it first.
2465		 */
2466		FXP_UNLOCK(sc);
2467		error = ether_ioctl(ifp, command, data);
2468	}
2469	if (FXP_LOCKED(sc))
2470		FXP_UNLOCK(sc);
2471	splx(s);
2472	return (error);
2473}
2474
2475/*
2476 * Fill in the multicast address list and return number of entries.
2477 */
2478static int
2479fxp_mc_addrs(struct fxp_softc *sc)
2480{
2481	struct fxp_cb_mcs *mcsp = sc->mcsp;
2482	struct ifnet *ifp = &sc->sc_if;
2483	struct ifmultiaddr *ifma;
2484	int nmcasts;
2485
2486	nmcasts = 0;
2487	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2488#if __FreeBSD_version < 500000
2489		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2490#else
2491		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2492#endif
2493			if (ifma->ifma_addr->sa_family != AF_LINK)
2494				continue;
2495			if (nmcasts >= MAXMCADDR) {
2496				sc->flags |= FXP_FLAG_ALL_MCAST;
2497				nmcasts = 0;
2498				break;
2499			}
2500			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2501			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2502			nmcasts++;
2503		}
2504	}
2505	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2506	return (nmcasts);
2507}
2508
2509/*
2510 * Program the multicast filter.
2511 *
2512 * We have an artificial restriction that the multicast setup command
2513 * must be the first command in the chain, so we take steps to ensure
2514 * this. By requiring this, it allows us to keep up the performance of
2515 * the pre-initialized command ring (esp. link pointers) by not actually
2516 * inserting the mcsetup command in the ring - i.e. its link pointer
2517 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2518 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2519 * lead into the regular TxCB ring when it completes.
2520 *
2521 * This function must be called at splimp.
2522 */
2523static void
2524fxp_mc_setup(struct fxp_softc *sc)
2525{
2526	struct fxp_cb_mcs *mcsp = sc->mcsp;
2527	struct ifnet *ifp = &sc->sc_if;
2528	struct fxp_tx *txp;
2529	int count;
2530
2531	FXP_LOCK_ASSERT(sc, MA_OWNED);
2532	/*
2533	 * If there are queued commands, we must wait until they are all
2534	 * completed. If we are already waiting, then add a NOP command
2535	 * with interrupt option so that we're notified when all commands
2536	 * have been completed - fxp_start() ensures that no additional
2537	 * TX commands will be added when need_mcsetup is true.
2538	 */
2539	if (sc->tx_queued) {
2540		/*
2541		 * need_mcsetup will be true if we are already waiting for the
2542		 * NOP command to be completed (see below). In this case, bail.
2543		 */
2544		if (sc->need_mcsetup)
2545			return;
2546		sc->need_mcsetup = 1;
2547
2548		/*
2549		 * Add a NOP command with interrupt so that we are notified
2550		 * when all TX commands have been processed.
2551		 */
2552		txp = sc->fxp_desc.tx_last->tx_next;
2553		txp->tx_mbuf = NULL;
2554		txp->tx_cb->cb_status = 0;
2555		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2556		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2557		/*
2558		 * Advance the end of list forward.
2559		 */
2560		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2561		    htole16(~FXP_CB_COMMAND_S);
2562		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2563		sc->fxp_desc.tx_last = txp;
2564		sc->tx_queued++;
2565		/*
2566		 * Issue a resume in case the CU has just suspended.
2567		 */
2568		fxp_scb_wait(sc);
2569		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2570		/*
2571		 * Set a 5 second timer just in case we don't hear from the
2572		 * card again.
2573		 */
2574		ifp->if_timer = 5;
2575
2576		return;
2577	}
2578	sc->need_mcsetup = 0;
2579
2580	/*
2581	 * Initialize multicast setup descriptor.
2582	 */
2583	mcsp->cb_status = 0;
2584	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2585	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2586	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2587	txp = &sc->fxp_desc.mcs_tx;
2588	txp->tx_mbuf = NULL;
2589	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2590	txp->tx_next = sc->fxp_desc.tx_list;
2591	(void) fxp_mc_addrs(sc);
2592	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2593	sc->tx_queued = 1;
2594
2595	/*
2596	 * Wait until command unit is not active. This should never
2597	 * be the case when nothing is queued, but make sure anyway.
2598	 */
2599	count = 100;
2600	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2601	    FXP_SCB_CUS_ACTIVE && --count)
2602		DELAY(10);
2603	if (count == 0) {
2604		device_printf(sc->dev, "command queue timeout\n");
2605		return;
2606	}
2607
2608	/*
2609	 * Start the multicast setup command.
2610	 */
2611	fxp_scb_wait(sc);
2612	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2613	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2614	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2615
2616	ifp->if_timer = 2;
2617	return;
2618}
2619
2620static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2621static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2622static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2623static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2624static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2625static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2626
2627#define UCODE(x)	x, sizeof(x)/sizeof(u_int32_t)
2628
2629struct ucode {
2630	u_int32_t	revision;
2631	u_int32_t	*ucode;
2632	int		length;
2633	u_short		int_delay_offset;
2634	u_short		bundle_max_offset;
2635} ucode_table[] = {
2636	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646	{ 0, NULL, 0, 0, 0 }
2647};
2648
2649static void
2650fxp_load_ucode(struct fxp_softc *sc)
2651{
2652	struct ucode *uc;
2653	struct fxp_cb_ucode *cbp;
2654	int i;
2655
2656	for (uc = ucode_table; uc->ucode != NULL; uc++)
2657		if (sc->revision == uc->revision)
2658			break;
2659	if (uc->ucode == NULL)
2660		return;
2661	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2662	cbp->cb_status = 0;
2663	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2664	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2665	for (i = 0; i < uc->length; i++)
2666		cbp->ucode[i] = htole32(uc->ucode[i]);
2667	if (uc->int_delay_offset)
2668		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2669		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2670	if (uc->bundle_max_offset)
2671		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2672		    htole16(sc->tunable_bundle_max);
2673	/*
2674	 * Download the ucode to the chip.
2675	 */
2676	fxp_scb_wait(sc);
2677	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2678	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2679	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2680	/* ...and wait for it to complete. */
2681	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2682	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2683	device_printf(sc->dev,
2684	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2685	    sc->tunable_int_delay,
2686	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2687	sc->flags |= FXP_FLAG_UCODE;
2688}
2689
2690static int
2691sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2692{
2693	int error, value;
2694
2695	value = *(int *)arg1;
2696	error = sysctl_handle_int(oidp, &value, 0, req);
2697	if (error || !req->newptr)
2698		return (error);
2699	if (value < low || value > high)
2700		return (EINVAL);
2701	*(int *)arg1 = value;
2702	return (0);
2703}
2704
2705/*
2706 * Interrupt delay is expressed in microseconds, a multiplier is used
2707 * to convert this to the appropriate clock ticks before using.
2708 */
2709static int
2710sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2711{
2712	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2713}
2714
2715static int
2716sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2717{
2718	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2719}
2720