if_fxp.c revision 131255
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 131255 2004-06-28 20:26:21Z imp $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sysctl.h>
46
47#include <net/if.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50
51#include <net/bpf.h>
52#include <sys/sockio.h>
53#include <sys/bus.h>
54#include <machine/bus.h>
55#include <sys/rman.h>
56#include <machine/resource.h>
57
58#include <net/ethernet.h>
59#include <net/if_arp.h>
60
61#include <machine/clock.h>	/* for DELAY */
62
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef FXP_IP_CSUM_WAR
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <machine/in_cksum.h>
71#endif
72
73#include <dev/pci/pcivar.h>
74#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/fxp/if_fxpreg.h>
80#include <dev/fxp/if_fxpvar.h>
81#include <dev/fxp/rcvbundl.h>
82
83MODULE_DEPEND(fxp, pci, 1, 1, 1);
84MODULE_DEPEND(fxp, ether, 1, 1, 1);
85MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86#include "miibus_if.h"
87
88/*
89 * NOTE!  On the Alpha, we have an alignment constraint.  The
90 * card DMAs the packet immediately following the RFA.  However,
91 * the first thing in the packet is a 14-byte Ethernet header.
92 * This means that the packet is misaligned.  To compensate,
93 * we actually offset the RFA 2 bytes into the cluster.  This
94 * alignes the packet after the Ethernet header at a 32-bit
95 * boundary.  HOWEVER!  This means that the RFA is misaligned!
96 */
97#define	RFA_ALIGNMENT_FUDGE	2
98
99/*
100 * Set initial transmit threshold at 64 (512 bytes). This is
101 * increased by 64 (512 bytes) at a time, to maximum of 192
102 * (1536 bytes), if an underrun occurs.
103 */
104static int tx_threshold = 64;
105
106/*
107 * The configuration byte map has several undefined fields which
108 * must be one or must be zero.  Set up a template for these bits
109 * only, (assuming a 82557 chip) leaving the actual configuration
110 * to fxp_init.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static u_char fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5	/* 21 */
140};
141
142struct fxp_ident {
143	u_int16_t	devid;
144	int16_t		revid;		/* -1 matches anything */
145	char 		*name;
146};
147
148/*
149 * Claim various Intel PCI device identifiers for this driver.  The
150 * sub-vendor and sub-device field are extensively used to identify
151 * particular variants, but we don't currently differentiate between
152 * them.
153 */
154static struct fxp_ident fxp_ident_table[] = {
155    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
175    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
176    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
179    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
180    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
181    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
184    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
185    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
188    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
189    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
190    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
191    { 0,	-1,	NULL },
192};
193
194#ifdef FXP_IP_CSUM_WAR
195#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
196#else
197#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
198#endif
199
200static int		fxp_probe(device_t dev);
201static int		fxp_attach(device_t dev);
202static int		fxp_detach(device_t dev);
203static int		fxp_shutdown(device_t dev);
204static int		fxp_suspend(device_t dev);
205static int		fxp_resume(device_t dev);
206
207static void		fxp_intr(void *xsc);
208static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
209			    u_int8_t statack, int count);
210static void 		fxp_init(void *xsc);
211static void 		fxp_init_body(struct fxp_softc *sc);
212static void 		fxp_tick(void *xsc);
213static void 		fxp_start(struct ifnet *ifp);
214static void 		fxp_start_body(struct ifnet *ifp);
215static void		fxp_stop(struct fxp_softc *sc);
216static void 		fxp_release(struct fxp_softc *sc);
217static int		fxp_ioctl(struct ifnet *ifp, u_long command,
218			    caddr_t data);
219static void 		fxp_watchdog(struct ifnet *ifp);
220static int		fxp_add_rfabuf(struct fxp_softc *sc,
221    			    struct fxp_rx *rxp);
222static int		fxp_mc_addrs(struct fxp_softc *sc);
223static void		fxp_mc_setup(struct fxp_softc *sc);
224static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
225			    int autosize);
226static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
227			    u_int16_t data);
228static void		fxp_autosize_eeprom(struct fxp_softc *sc);
229static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
230			    int offset, int words);
231static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
232			    int offset, int words);
233static int		fxp_ifmedia_upd(struct ifnet *ifp);
234static void		fxp_ifmedia_sts(struct ifnet *ifp,
235			    struct ifmediareq *ifmr);
236static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
237static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
238			    struct ifmediareq *ifmr);
239static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
240static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
241			    int value);
242static void		fxp_load_ucode(struct fxp_softc *sc);
243static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
244			    int low, int high);
245static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
246static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
247static void 		fxp_scb_wait(struct fxp_softc *sc);
248static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
249static void		fxp_dma_wait(struct fxp_softc *sc,
250    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
251			    bus_dmamap_t map);
252
253static device_method_t fxp_methods[] = {
254	/* Device interface */
255	DEVMETHOD(device_probe,		fxp_probe),
256	DEVMETHOD(device_attach,	fxp_attach),
257	DEVMETHOD(device_detach,	fxp_detach),
258	DEVMETHOD(device_shutdown,	fxp_shutdown),
259	DEVMETHOD(device_suspend,	fxp_suspend),
260	DEVMETHOD(device_resume,	fxp_resume),
261
262	/* MII interface */
263	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
264	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
265
266	{ 0, 0 }
267};
268
269static driver_t fxp_driver = {
270	"fxp",
271	fxp_methods,
272	sizeof(struct fxp_softc),
273};
274
275static devclass_t fxp_devclass;
276
277DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
278DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
279DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
280
281/*
282 * Wait for the previous command to be accepted (but not necessarily
283 * completed).
284 */
285static void
286fxp_scb_wait(struct fxp_softc *sc)
287{
288	int i = 10000;
289
290	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
291		DELAY(2);
292	if (i == 0)
293		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
294		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
295		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
296		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
297		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
298}
299
300static void
301fxp_scb_cmd(struct fxp_softc *sc, int cmd)
302{
303
304	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
305		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
306		fxp_scb_wait(sc);
307	}
308	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
309}
310
311static void
312fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
313    bus_dma_tag_t dmat, bus_dmamap_t map)
314{
315	int i = 10000;
316
317	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
318	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
319		DELAY(2);
320		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	}
322	if (i == 0)
323		device_printf(sc->dev, "DMA timeout\n");
324}
325
326/*
327 * Return identification string if this device is ours.
328 */
329static int
330fxp_probe(device_t dev)
331{
332	u_int16_t devid;
333	u_int8_t revid;
334	struct fxp_ident *ident;
335
336	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
337		devid = pci_get_device(dev);
338		revid = pci_get_revid(dev);
339		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
340			if (ident->devid == devid &&
341			    (ident->revid == revid || ident->revid == -1)) {
342				device_set_desc(dev, ident->name);
343				return (0);
344			}
345		}
346	}
347	return (ENXIO);
348}
349
350static void
351fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
352{
353	u_int32_t *addr;
354
355	if (error)
356		return;
357
358	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
359	addr = arg;
360	*addr = segs->ds_addr;
361}
362
363static int
364fxp_attach(device_t dev)
365{
366	int error = 0;
367	struct fxp_softc *sc = device_get_softc(dev);
368	struct ifnet *ifp;
369	struct fxp_rx *rxp;
370	u_int32_t val;
371	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
372	int i, rid, m1, m2, prefer_iomap, maxtxseg;
373	int s, ipcbxmit_disable;
374
375	sc->dev = dev;
376	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
377	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
378	    MTX_DEF);
379	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
380	    fxp_serial_ifmedia_sts);
381
382	s = splimp();
383
384	/*
385	 * Enable bus mastering.
386	 */
387	pci_enable_busmaster(dev);
388	val = pci_read_config(dev, PCIR_COMMAND, 2);
389
390	/*
391	 * Figure out which we should try first - memory mapping or i/o mapping?
392	 * We default to memory mapping. Then we accept an override from the
393	 * command line. Then we check to see which one is enabled.
394	 */
395	m1 = PCIM_CMD_MEMEN;
396	m2 = PCIM_CMD_PORTEN;
397	prefer_iomap = 0;
398	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
399	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
400		m1 = PCIM_CMD_PORTEN;
401		m2 = PCIM_CMD_MEMEN;
402	}
403
404	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
407	if (sc->mem == NULL) {
408		sc->rtp =
409		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
410		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
411		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
412                                            RF_ACTIVE);
413	}
414
415	if (!sc->mem) {
416		error = ENXIO;
417		goto fail;
418        }
419	if (bootverbose) {
420		device_printf(dev, "using %s space register mapping\n",
421		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
422	}
423
424	sc->sc_st = rman_get_bustag(sc->mem);
425	sc->sc_sh = rman_get_bushandle(sc->mem);
426
427	/*
428	 * Allocate our interrupt.
429	 */
430	rid = 0;
431	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
432				 RF_SHAREABLE | RF_ACTIVE);
433	if (sc->irq == NULL) {
434		device_printf(dev, "could not map interrupt\n");
435		error = ENXIO;
436		goto fail;
437	}
438
439	/*
440	 * Reset to a stable state.
441	 */
442	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
443	DELAY(10);
444
445	/*
446	 * Find out how large of an SEEPROM we have.
447	 */
448	fxp_autosize_eeprom(sc);
449
450	/*
451	 * Determine whether we must use the 503 serial interface.
452	 */
453	fxp_read_eeprom(sc, &data, 6, 1);
454	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
455	    (data & FXP_PHY_SERIAL_ONLY))
456		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
457
458	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
459	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
460	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
461	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
462	    "FXP driver receive interrupt microcode bundling delay");
463	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
464	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
465	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
466	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
467	    "FXP driver receive interrupt microcode bundle size limit");
468	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
469	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
470	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
471	    "FXP RNR events");
472	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
473	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
474	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
475	    "FXP flow control disabled");
476
477	/*
478	 * Pull in device tunables.
479	 */
480	sc->tunable_int_delay = TUNABLE_INT_DELAY;
481	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
482	sc->tunable_noflow = 0;
483	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
484	    "int_delay", &sc->tunable_int_delay);
485	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
486	    "bundle_max", &sc->tunable_bundle_max);
487	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
488	    "noflow", &sc->tunable_noflow);
489	sc->rnr = 0;
490
491	/*
492	 * Find out the chip revision; lump all 82557 revs together.
493	 */
494	fxp_read_eeprom(sc, &data, 5, 1);
495	if ((data >> 8) == 1)
496		sc->revision = FXP_REV_82557;
497	else
498		sc->revision = pci_get_revid(dev);
499
500	/*
501	 * Enable workarounds for certain chip revision deficiencies.
502	 *
503	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
504	 * some systems based a normal 82559 design, have a defect where
505	 * the chip can cause a PCI protocol violation if it receives
506	 * a CU_RESUME command when it is entering the IDLE state.  The
507	 * workaround is to disable Dynamic Standby Mode, so the chip never
508	 * deasserts CLKRUN#, and always remains in an active state.
509	 *
510	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
511	 */
512	i = pci_get_device(dev);
513	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
514	    sc->revision >= FXP_REV_82559_A0) {
515		fxp_read_eeprom(sc, &data, 10, 1);
516		if (data & 0x02) {			/* STB enable */
517			u_int16_t cksum;
518			int i;
519
520			device_printf(dev,
521			    "Disabling dynamic standby mode in EEPROM\n");
522			data &= ~0x02;
523			fxp_write_eeprom(sc, &data, 10, 1);
524			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
525			cksum = 0;
526			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
527				fxp_read_eeprom(sc, &data, i, 1);
528				cksum += data;
529			}
530			i = (1 << sc->eeprom_size) - 1;
531			cksum = 0xBABA - cksum;
532			fxp_read_eeprom(sc, &data, i, 1);
533			fxp_write_eeprom(sc, &cksum, i, 1);
534			device_printf(dev,
535			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
536			    i, data, cksum);
537#if 1
538			/*
539			 * If the user elects to continue, try the software
540			 * workaround, as it is better than nothing.
541			 */
542			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
543#endif
544		}
545	}
546
547	/*
548	 * If we are not a 82557 chip, we can enable extended features.
549	 */
550	if (sc->revision != FXP_REV_82557) {
551		/*
552		 * If MWI is enabled in the PCI configuration, and there
553		 * is a valid cacheline size (8 or 16 dwords), then tell
554		 * the board to turn on MWI.
555		 */
556		if (val & PCIM_CMD_MWRICEN &&
557		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
558			sc->flags |= FXP_FLAG_MWI_ENABLE;
559
560		/* turn on the extended TxCB feature */
561		sc->flags |= FXP_FLAG_EXT_TXCB;
562
563		/* enable reception of long frames for VLAN */
564		sc->flags |= FXP_FLAG_LONG_PKT_EN;
565	} else {
566		/* a hack to get long VLAN frames on a 82557 */
567		sc->flags |= FXP_FLAG_SAVE_BAD;
568	}
569
570	/*
571	 * Enable use of extended RFDs and TCBs for 82550
572	 * and later chips. Note: we need extended TXCB support
573	 * too, but that's already enabled by the code above.
574	 * Be careful to do this only on the right devices.
575	 *
576	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
577	 * truncate packets that end with an mbuf containing 1 to 3 bytes
578	 * when used with this feature enabled in the previous version of the
579	 * driver.  This problem appears to be fixed now that the driver
580	 * always sets the hardware parse bit in the IPCB structure, which
581	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
582	 * Source Software Developer Manual" says is necessary in the
583	 * cases where packet truncation was observed.
584	 *
585	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
586	 * allows this feature to be disabled at boot time.
587	 *
588	 * If fxp is not compiled into the kernel, this feature may also
589	 * be disabled at run time:
590	 *    # kldunload fxp
591	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
592	 *    # kldload fxp
593	 */
594
595	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
596	    &ipcbxmit_disable) != 0)
597		ipcbxmit_disable = 0;
598	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
599	    sc->revision == FXP_REV_82550_C)) {
600		sc->rfa_size = sizeof (struct fxp_rfa);
601		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
602		sc->flags |= FXP_FLAG_EXT_RFA;
603	} else {
604		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
605		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
606	}
607
608	/*
609	 * Allocate DMA tags and DMA safe memory.
610	 */
611	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
612	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
613	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
614	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
615	if (error) {
616		device_printf(dev, "could not allocate dma tag\n");
617		goto fail;
618	}
619
620	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
621	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
622	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
623	    &sc->fxp_stag);
624	if (error) {
625		device_printf(dev, "could not allocate dma tag\n");
626		goto fail;
627	}
628
629	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
630	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
631	if (error)
632		goto fail;
633	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
634	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
635	if (error) {
636		device_printf(dev, "could not map the stats buffer\n");
637		goto fail;
638	}
639
640	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
641	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
642	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
643	if (error) {
644		device_printf(dev, "could not allocate dma tag\n");
645		goto fail;
646	}
647
648	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
649	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
650	if (error)
651		goto fail;
652
653	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
654	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
655	    &sc->fxp_desc.cbl_addr, 0);
656	if (error) {
657		device_printf(dev, "could not map DMA memory\n");
658		goto fail;
659	}
660
661	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
662	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
663	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
664	    &sc->mcs_tag);
665	if (error) {
666		device_printf(dev, "could not allocate dma tag\n");
667		goto fail;
668	}
669
670	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
671	    BUS_DMA_NOWAIT, &sc->mcs_map);
672	if (error)
673		goto fail;
674	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
675	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
676	if (error) {
677		device_printf(dev, "can't map the multicast setup command\n");
678		goto fail;
679	}
680
681	/*
682	 * Pre-allocate the TX DMA maps.
683	 */
684	for (i = 0; i < FXP_NTXCB; i++) {
685		error = bus_dmamap_create(sc->fxp_mtag, 0,
686		    &sc->fxp_desc.tx_list[i].tx_map);
687		if (error) {
688			device_printf(dev, "can't create DMA map for TX\n");
689			goto fail;
690		}
691	}
692	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
693	if (error) {
694		device_printf(dev, "can't create spare DMA map\n");
695		goto fail;
696	}
697
698	/*
699	 * Pre-allocate our receive buffers.
700	 */
701	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
702	for (i = 0; i < FXP_NRFABUFS; i++) {
703		rxp = &sc->fxp_desc.rx_list[i];
704		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
705		if (error) {
706			device_printf(dev, "can't create DMA map for RX\n");
707			goto fail;
708		}
709		if (fxp_add_rfabuf(sc, rxp) != 0) {
710			error = ENOMEM;
711			goto fail;
712		}
713	}
714
715	/*
716	 * Read MAC address.
717	 */
718	fxp_read_eeprom(sc, myea, 0, 3);
719	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
720	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
721	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
722	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
723	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
724	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
725	if (bootverbose) {
726		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
727		    pci_get_vendor(dev), pci_get_device(dev),
728		    pci_get_subvendor(dev), pci_get_subdevice(dev),
729		    pci_get_revid(dev));
730		fxp_read_eeprom(sc, &data, 10, 1);
731		device_printf(dev, "Dynamic Standby mode is %s\n",
732		    data & 0x02 ? "enabled" : "disabled");
733	}
734
735	/*
736	 * If this is only a 10Mbps device, then there is no MII, and
737	 * the PHY will use a serial interface instead.
738	 *
739	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
740	 * doesn't have a programming interface of any sort.  The
741	 * media is sensed automatically based on how the link partner
742	 * is configured.  This is, in essence, manual configuration.
743	 */
744	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
745		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
746		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
747	} else {
748		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
749		    fxp_ifmedia_sts)) {
750	                device_printf(dev, "MII without any PHY!\n");
751			error = ENXIO;
752			goto fail;
753		}
754	}
755
756	ifp = &sc->arpcom.ac_if;
757	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
758	ifp->if_baudrate = 100000000;
759	ifp->if_init = fxp_init;
760	ifp->if_softc = sc;
761	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
762	ifp->if_ioctl = fxp_ioctl;
763	ifp->if_start = fxp_start;
764	ifp->if_watchdog = fxp_watchdog;
765
766	ifp->if_capabilities = ifp->if_capenable = 0;
767
768	/* Enable checksum offload for 82550 or better chips */
769	if (sc->flags & FXP_FLAG_EXT_RFA) {
770		ifp->if_hwassist = FXP_CSUM_FEATURES;
771		ifp->if_capabilities |= IFCAP_HWCSUM;
772		ifp->if_capenable |= IFCAP_HWCSUM;
773	}
774
775#ifdef DEVICE_POLLING
776	/* Inform the world we support polling. */
777	ifp->if_capabilities |= IFCAP_POLLING;
778	ifp->if_capenable |= IFCAP_POLLING;
779#endif
780
781	/*
782	 * Attach the interface.
783	 */
784	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
785
786	/*
787	 * Tell the upper layer(s) we support long frames.
788	 * Must appear after the call to ether_ifattach() because
789	 * ether_ifattach() sets ifi_hdrlen to the default value.
790	 */
791	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
792	ifp->if_capabilities |= IFCAP_VLAN_MTU;
793	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
794
795	/*
796	 * Let the system queue as many packets as we have available
797	 * TX descriptors.
798	 */
799	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
800
801	/*
802	 * Hook our interrupt after all initialization is complete.
803	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
804	 * however, ifp and its functions are not fully locked so MPSAFE
805	 * should not be used unless you can handle potential data loss.
806	 */
807	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
808			       fxp_intr, sc, &sc->ih);
809	if (error) {
810		device_printf(dev, "could not setup irq\n");
811		ether_ifdetach(&sc->arpcom.ac_if);
812		goto fail;
813	}
814
815fail:
816	splx(s);
817	if (error)
818		fxp_release(sc);
819	return (error);
820}
821
822/*
823 * Release all resources.  The softc lock should not be held and the
824 * interrupt should already be torn down.
825 */
826static void
827fxp_release(struct fxp_softc *sc)
828{
829	struct fxp_rx *rxp;
830	struct fxp_tx *txp;
831	int i;
832
833	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
834	KASSERT(sc->ih == NULL,
835	    ("fxp_release() called with intr handle still active"));
836	if (sc->miibus)
837		device_delete_child(sc->dev, sc->miibus);
838	bus_generic_detach(sc->dev);
839	ifmedia_removeall(&sc->sc_media);
840	if (sc->fxp_desc.cbl_list) {
841		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
842		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
843		    sc->cbl_map);
844	}
845	if (sc->fxp_stats) {
846		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
847		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
848	}
849	if (sc->mcsp) {
850		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
851		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
852	}
853	if (sc->irq)
854		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
855	if (sc->mem)
856		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
857	if (sc->fxp_mtag) {
858		for (i = 0; i < FXP_NRFABUFS; i++) {
859			rxp = &sc->fxp_desc.rx_list[i];
860			if (rxp->rx_mbuf != NULL) {
861				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
862				    BUS_DMASYNC_POSTREAD);
863				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
864				m_freem(rxp->rx_mbuf);
865			}
866			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
867		}
868		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
869		bus_dma_tag_destroy(sc->fxp_mtag);
870	}
871	if (sc->fxp_stag) {
872		for (i = 0; i < FXP_NTXCB; i++) {
873			txp = &sc->fxp_desc.tx_list[i];
874			if (txp->tx_mbuf != NULL) {
875				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
876				    BUS_DMASYNC_POSTWRITE);
877				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
878				m_freem(txp->tx_mbuf);
879			}
880			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
881		}
882		bus_dma_tag_destroy(sc->fxp_stag);
883	}
884	if (sc->cbl_tag)
885		bus_dma_tag_destroy(sc->cbl_tag);
886	if (sc->mcs_tag)
887		bus_dma_tag_destroy(sc->mcs_tag);
888
889	mtx_destroy(&sc->sc_mtx);
890}
891
892/*
893 * Detach interface.
894 */
895static int
896fxp_detach(device_t dev)
897{
898	struct fxp_softc *sc = device_get_softc(dev);
899	int s;
900
901	FXP_LOCK(sc);
902	s = splimp();
903
904	sc->suspended = 1;	/* Do same thing as we do for suspend */
905	/*
906	 * Close down routes etc.
907	 */
908	ether_ifdetach(&sc->arpcom.ac_if);
909
910	/*
911	 * Stop DMA and drop transmit queue, but disable interrupts first.
912	 */
913	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
914	fxp_stop(sc);
915	FXP_UNLOCK(sc);
916
917	/*
918	 * Unhook interrupt before dropping lock. This is to prevent
919	 * races with fxp_intr().
920	 */
921	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
922	sc->ih = NULL;
923
924	splx(s);
925
926	/* Release our allocated resources. */
927	fxp_release(sc);
928	return (0);
929}
930
931/*
932 * Device shutdown routine. Called at system shutdown after sync. The
933 * main purpose of this routine is to shut off receiver DMA so that
934 * kernel memory doesn't get clobbered during warmboot.
935 */
936static int
937fxp_shutdown(device_t dev)
938{
939	/*
940	 * Make sure that DMA is disabled prior to reboot. Not doing
941	 * do could allow DMA to corrupt kernel memory during the
942	 * reboot before the driver initializes.
943	 */
944	fxp_stop((struct fxp_softc *) device_get_softc(dev));
945	return (0);
946}
947
948/*
949 * Device suspend routine.  Stop the interface and save some PCI
950 * settings in case the BIOS doesn't restore them properly on
951 * resume.
952 */
953static int
954fxp_suspend(device_t dev)
955{
956	struct fxp_softc *sc = device_get_softc(dev);
957	int i, s;
958
959	FXP_LOCK(sc);
960	s = splimp();
961
962	fxp_stop(sc);
963
964	for (i = 0; i < 5; i++)
965		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
966	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
967	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
968	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
969	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
970
971	sc->suspended = 1;
972
973	FXP_UNLOCK(sc);
974	splx(s);
975	return (0);
976}
977
978/*
979 * Device resume routine.  Restore some PCI settings in case the BIOS
980 * doesn't, re-enable busmastering, and restart the interface if
981 * appropriate.
982 */
983static int
984fxp_resume(device_t dev)
985{
986	struct fxp_softc *sc = device_get_softc(dev);
987	struct ifnet *ifp = &sc->sc_if;
988	u_int16_t pci_command;
989	int i, s;
990
991	FXP_LOCK(sc);
992	s = splimp();
993
994	/* better way to do this? */
995	for (i = 0; i < 5; i++)
996		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
997	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
998	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
999	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1000	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1001
1002	/* reenable busmastering */
1003	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1004	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1005	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1006
1007	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1008	DELAY(10);
1009
1010	/* reinitialize interface if necessary */
1011	if (ifp->if_flags & IFF_UP)
1012		fxp_init_body(sc);
1013
1014	sc->suspended = 0;
1015
1016	FXP_UNLOCK(sc);
1017	splx(s);
1018	return (0);
1019}
1020
1021static void
1022fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1023{
1024	u_int16_t reg;
1025	int x;
1026
1027	/*
1028	 * Shift in data.
1029	 */
1030	for (x = 1 << (length - 1); x; x >>= 1) {
1031		if (data & x)
1032			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1033		else
1034			reg = FXP_EEPROM_EECS;
1035		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1036		DELAY(1);
1037		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1038		DELAY(1);
1039		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1040		DELAY(1);
1041	}
1042}
1043
1044/*
1045 * Read from the serial EEPROM. Basically, you manually shift in
1046 * the read opcode (one bit at a time) and then shift in the address,
1047 * and then you shift out the data (all of this one bit at a time).
1048 * The word size is 16 bits, so you have to provide the address for
1049 * every 16 bits of data.
1050 */
1051static u_int16_t
1052fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1053{
1054	u_int16_t reg, data;
1055	int x;
1056
1057	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1058	/*
1059	 * Shift in read opcode.
1060	 */
1061	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1062	/*
1063	 * Shift in address.
1064	 */
1065	data = 0;
1066	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1067		if (offset & x)
1068			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1069		else
1070			reg = FXP_EEPROM_EECS;
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1072		DELAY(1);
1073		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1074		DELAY(1);
1075		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1076		DELAY(1);
1077		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1078		data++;
1079		if (autosize && reg == 0) {
1080			sc->eeprom_size = data;
1081			break;
1082		}
1083	}
1084	/*
1085	 * Shift out data.
1086	 */
1087	data = 0;
1088	reg = FXP_EEPROM_EECS;
1089	for (x = 1 << 15; x; x >>= 1) {
1090		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1091		DELAY(1);
1092		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1093			data |= x;
1094		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1095		DELAY(1);
1096	}
1097	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1098	DELAY(1);
1099
1100	return (data);
1101}
1102
1103static void
1104fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1105{
1106	int i;
1107
1108	/*
1109	 * Erase/write enable.
1110	 */
1111	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1112	fxp_eeprom_shiftin(sc, 0x4, 3);
1113	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1114	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1115	DELAY(1);
1116	/*
1117	 * Shift in write opcode, address, data.
1118	 */
1119	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1120	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1121	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1122	fxp_eeprom_shiftin(sc, data, 16);
1123	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1124	DELAY(1);
1125	/*
1126	 * Wait for EEPROM to finish up.
1127	 */
1128	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1129	DELAY(1);
1130	for (i = 0; i < 1000; i++) {
1131		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1132			break;
1133		DELAY(50);
1134	}
1135	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1136	DELAY(1);
1137	/*
1138	 * Erase/write disable.
1139	 */
1140	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1141	fxp_eeprom_shiftin(sc, 0x4, 3);
1142	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1143	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1144	DELAY(1);
1145}
1146
1147/*
1148 * From NetBSD:
1149 *
1150 * Figure out EEPROM size.
1151 *
1152 * 559's can have either 64-word or 256-word EEPROMs, the 558
1153 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1154 * talks about the existance of 16 to 256 word EEPROMs.
1155 *
1156 * The only known sizes are 64 and 256, where the 256 version is used
1157 * by CardBus cards to store CIS information.
1158 *
1159 * The address is shifted in msb-to-lsb, and after the last
1160 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1161 * after which follows the actual data. We try to detect this zero, by
1162 * probing the data-out bit in the EEPROM control register just after
1163 * having shifted in a bit. If the bit is zero, we assume we've
1164 * shifted enough address bits. The data-out should be tri-state,
1165 * before this, which should translate to a logical one.
1166 */
1167static void
1168fxp_autosize_eeprom(struct fxp_softc *sc)
1169{
1170
1171	/* guess maximum size of 256 words */
1172	sc->eeprom_size = 8;
1173
1174	/* autosize */
1175	(void) fxp_eeprom_getword(sc, 0, 1);
1176}
1177
1178static void
1179fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1180{
1181	int i;
1182
1183	for (i = 0; i < words; i++)
1184		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1185}
1186
1187static void
1188fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1189{
1190	int i;
1191
1192	for (i = 0; i < words; i++)
1193		fxp_eeprom_putword(sc, offset + i, data[i]);
1194}
1195
1196static void
1197fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1198    bus_size_t mapsize, int error)
1199{
1200	struct fxp_softc *sc;
1201	struct fxp_cb_tx *txp;
1202	int i;
1203
1204	if (error)
1205		return;
1206
1207	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1208
1209	sc = arg;
1210	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1211	for (i = 0; i < nseg; i++) {
1212		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1213		/*
1214		 * If this is an 82550/82551, then we're using extended
1215		 * TxCBs _and_ we're using checksum offload. This means
1216		 * that the TxCB is really an IPCB. One major difference
1217		 * between the two is that with plain extended TxCBs,
1218		 * the bottom half of the TxCB contains two entries from
1219		 * the TBD array, whereas IPCBs contain just one entry:
1220		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1221		 * checksum offload control bits. So to make things work
1222		 * right, we have to start filling in the TBD array
1223		 * starting from a different place depending on whether
1224		 * the chip is an 82550/82551 or not.
1225		 */
1226		if (sc->flags & FXP_FLAG_EXT_RFA) {
1227			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1228			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1229		} else {
1230			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1231			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1232		}
1233	}
1234	txp->tbd_number = nseg;
1235}
1236
1237/*
1238 * Grab the softc lock and call the real fxp_start_body() routine
1239 */
1240static void
1241fxp_start(struct ifnet *ifp)
1242{
1243	struct fxp_softc *sc = ifp->if_softc;
1244
1245	FXP_LOCK(sc);
1246	fxp_start_body(ifp);
1247	FXP_UNLOCK(sc);
1248}
1249
1250/*
1251 * Start packet transmission on the interface.
1252 * This routine must be called with the softc lock held, and is an
1253 * internal entry point only.
1254 */
1255static void
1256fxp_start_body(struct ifnet *ifp)
1257{
1258	struct fxp_softc *sc = ifp->if_softc;
1259	struct fxp_tx *txp;
1260	struct mbuf *mb_head;
1261	int error;
1262
1263	FXP_LOCK_ASSERT(sc, MA_OWNED);
1264	/*
1265	 * See if we need to suspend xmit until the multicast filter
1266	 * has been reprogrammed (which can only be done at the head
1267	 * of the command chain).
1268	 */
1269	if (sc->need_mcsetup) {
1270		return;
1271	}
1272
1273	txp = NULL;
1274
1275	/*
1276	 * We're finished if there is nothing more to add to the list or if
1277	 * we're all filled up with buffers to transmit.
1278	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1279	 *       a NOP command when needed.
1280	 */
1281	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1282
1283		/*
1284		 * Grab a packet to transmit.
1285		 */
1286		IF_DEQUEUE(&ifp->if_snd, mb_head);
1287
1288		/*
1289		 * Get pointer to next available tx desc.
1290		 */
1291		txp = sc->fxp_desc.tx_last->tx_next;
1292
1293		/*
1294		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1295		 * Ethernet Controller Family Open Source Software
1296		 * Developer Manual says:
1297		 *   Using software parsing is only allowed with legal
1298		 *   TCP/IP or UDP/IP packets.
1299		 *   ...
1300		 *   For all other datagrams, hardware parsing must
1301		 *   be used.
1302		 * Software parsing appears to truncate ICMP and
1303		 * fragmented UDP packets that contain one to three
1304		 * bytes in the second (and final) mbuf of the packet.
1305		 */
1306		if (sc->flags & FXP_FLAG_EXT_RFA)
1307			txp->tx_cb->ipcb_ip_activation_high =
1308			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1309
1310		/*
1311		 * Deal with TCP/IP checksum offload. Note that
1312		 * in order for TCP checksum offload to work,
1313		 * the pseudo header checksum must have already
1314		 * been computed and stored in the checksum field
1315		 * in the TCP header. The stack should have
1316		 * already done this for us.
1317		 */
1318
1319		if (mb_head->m_pkthdr.csum_flags) {
1320			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1321				txp->tx_cb->ipcb_ip_schedule =
1322				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1323				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1324					txp->tx_cb->ipcb_ip_schedule |=
1325					    FXP_IPCB_TCP_PACKET;
1326			}
1327#ifdef FXP_IP_CSUM_WAR
1328		/*
1329		 * XXX The 82550 chip appears to have trouble
1330		 * dealing with IP header checksums in very small
1331		 * datagrams, namely fragments from 1 to 3 bytes
1332		 * in size. For example, say you want to transmit
1333		 * a UDP packet of 1473 bytes. The packet will be
1334		 * fragmented over two IP datagrams, the latter
1335		 * containing only one byte of data. The 82550 will
1336		 * botch the header checksum on the 1-byte fragment.
1337		 * As long as the datagram contains 4 or more bytes
1338		 * of data, you're ok.
1339		 *
1340                 * The following code attempts to work around this
1341		 * problem: if the datagram is less than 38 bytes
1342		 * in size (14 bytes ether header, 20 bytes IP header,
1343		 * plus 4 bytes of data), we punt and compute the IP
1344		 * header checksum by hand. This workaround doesn't
1345		 * work very well, however, since it can be fooled
1346		 * by things like VLAN tags and IP options that make
1347		 * the header sizes/offsets vary.
1348		 */
1349
1350			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1351				if (mb_head->m_pkthdr.len < 38) {
1352					struct ip *ip;
1353					mb_head->m_data += ETHER_HDR_LEN;
1354					ip = mtod(mb_head, struct ip *);
1355					ip->ip_sum = in_cksum(mb_head,
1356					    ip->ip_hl << 2);
1357					mb_head->m_data -= ETHER_HDR_LEN;
1358				} else {
1359					txp->tx_cb->ipcb_ip_activation_high =
1360					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1361					txp->tx_cb->ipcb_ip_schedule |=
1362					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1363				}
1364			}
1365#endif
1366		}
1367
1368		/*
1369		 * Go through each of the mbufs in the chain and initialize
1370		 * the transmit buffer descriptors with the physical address
1371		 * and size of the mbuf.
1372		 */
1373		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1374		    mb_head, fxp_dma_map_txbuf, sc, 0);
1375
1376		if (error && error != EFBIG) {
1377			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1378			    error);
1379			m_freem(mb_head);
1380			break;
1381		}
1382
1383		if (error) {
1384			struct mbuf *mn;
1385
1386			/*
1387			 * We ran out of segments. We have to recopy this
1388			 * mbuf chain first. Bail out if we can't get the
1389			 * new buffers.
1390			 */
1391			mn = m_defrag(mb_head, M_DONTWAIT);
1392			if (mn == NULL) {
1393				m_freem(mb_head);
1394				break;
1395			} else {
1396				mb_head = mn;
1397			}
1398			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1399			    mb_head, fxp_dma_map_txbuf, sc, 0);
1400			if (error) {
1401				device_printf(sc->dev,
1402				    "can't map mbuf (error %d)\n", error);
1403				m_freem(mb_head);
1404				break;
1405			}
1406		}
1407
1408		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1409		    BUS_DMASYNC_PREWRITE);
1410
1411		txp->tx_mbuf = mb_head;
1412		txp->tx_cb->cb_status = 0;
1413		txp->tx_cb->byte_count = 0;
1414		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1415			txp->tx_cb->cb_command =
1416			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1417			    FXP_CB_COMMAND_S);
1418		} else {
1419			txp->tx_cb->cb_command =
1420			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1421			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1422			/*
1423			 * Set a 5 second timer just in case we don't hear
1424			 * from the card again.
1425			 */
1426			ifp->if_timer = 5;
1427		}
1428		txp->tx_cb->tx_threshold = tx_threshold;
1429
1430		/*
1431		 * Advance the end of list forward.
1432		 */
1433
1434#ifdef __alpha__
1435		/*
1436		 * On platforms which can't access memory in 16-bit
1437		 * granularities, we must prevent the card from DMA'ing
1438		 * up the status while we update the command field.
1439		 * This could cause us to overwrite the completion status.
1440		 * XXX This is probably bogus and we're _not_ looking
1441		 * for atomicity here.
1442		 */
1443		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1444		    htole16(FXP_CB_COMMAND_S));
1445#else
1446		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1447		    htole16(~FXP_CB_COMMAND_S);
1448#endif /*__alpha__*/
1449		sc->fxp_desc.tx_last = txp;
1450
1451		/*
1452		 * Advance the beginning of the list forward if there are
1453		 * no other packets queued (when nothing is queued, tx_first
1454		 * sits on the last TxCB that was sent out).
1455		 */
1456		if (sc->tx_queued == 0)
1457			sc->fxp_desc.tx_first = txp;
1458
1459		sc->tx_queued++;
1460
1461		/*
1462		 * Pass packet to bpf if there is a listener.
1463		 */
1464		BPF_MTAP(ifp, mb_head);
1465	}
1466	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1467
1468	/*
1469	 * We're finished. If we added to the list, issue a RESUME to get DMA
1470	 * going again if suspended.
1471	 */
1472	if (txp != NULL) {
1473		fxp_scb_wait(sc);
1474		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1475	}
1476}
1477
1478#ifdef DEVICE_POLLING
1479static poll_handler_t fxp_poll;
1480
1481static void
1482fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1483{
1484	struct fxp_softc *sc = ifp->if_softc;
1485	u_int8_t statack;
1486
1487	FXP_LOCK(sc);
1488	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1489		ether_poll_deregister(ifp);
1490		cmd = POLL_DEREGISTER;
1491	}
1492	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1493		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1494		FXP_UNLOCK(sc);
1495		return;
1496	}
1497	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1498	    FXP_SCB_STATACK_FR;
1499	if (cmd == POLL_AND_CHECK_STATUS) {
1500		u_int8_t tmp;
1501
1502		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1503		if (tmp == 0xff || tmp == 0) {
1504			FXP_UNLOCK(sc);
1505			return; /* nothing to do */
1506		}
1507		tmp &= ~statack;
1508		/* ack what we can */
1509		if (tmp != 0)
1510			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1511		statack |= tmp;
1512	}
1513	fxp_intr_body(sc, ifp, statack, count);
1514	FXP_UNLOCK(sc);
1515}
1516#endif /* DEVICE_POLLING */
1517
1518/*
1519 * Process interface interrupts.
1520 */
1521static void
1522fxp_intr(void *xsc)
1523{
1524	struct fxp_softc *sc = xsc;
1525	struct ifnet *ifp = &sc->sc_if;
1526	u_int8_t statack;
1527
1528	FXP_LOCK(sc);
1529	if (sc->suspended) {
1530		FXP_UNLOCK(sc);
1531		return;
1532	}
1533
1534#ifdef DEVICE_POLLING
1535	if (ifp->if_flags & IFF_POLLING) {
1536		FXP_UNLOCK(sc);
1537		return;
1538	}
1539	if ((ifp->if_capenable & IFCAP_POLLING) &&
1540	    ether_poll_register(fxp_poll, ifp)) {
1541		/* disable interrupts */
1542		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1543		FXP_UNLOCK(sc);
1544		fxp_poll(ifp, 0, 1);
1545		return;
1546	}
1547#endif
1548	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1549		/*
1550		 * It should not be possible to have all bits set; the
1551		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1552		 * all bits are set, this may indicate that the card has
1553		 * been physically ejected, so ignore it.
1554		 */
1555		if (statack == 0xff) {
1556			FXP_UNLOCK(sc);
1557			return;
1558		}
1559
1560		/*
1561		 * First ACK all the interrupts in this pass.
1562		 */
1563		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1564		fxp_intr_body(sc, ifp, statack, -1);
1565	}
1566	FXP_UNLOCK(sc);
1567}
1568
1569static void
1570fxp_txeof(struct fxp_softc *sc)
1571{
1572	struct fxp_tx *txp;
1573
1574	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1575	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1576	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1577	    txp = txp->tx_next) {
1578		if (txp->tx_mbuf != NULL) {
1579			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1580			    BUS_DMASYNC_POSTWRITE);
1581			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1582			m_freem(txp->tx_mbuf);
1583			txp->tx_mbuf = NULL;
1584			/* clear this to reset csum offload bits */
1585			txp->tx_cb->tbd[0].tb_addr = 0;
1586		}
1587		sc->tx_queued--;
1588	}
1589	sc->fxp_desc.tx_first = txp;
1590	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1591}
1592
1593static void
1594fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1595    int count)
1596{
1597	struct mbuf *m;
1598	struct fxp_rx *rxp;
1599	struct fxp_rfa *rfa;
1600	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1601
1602	FXP_LOCK_ASSERT(sc, MA_OWNED);
1603	if (rnr)
1604		sc->rnr++;
1605#ifdef DEVICE_POLLING
1606	/* Pick up a deferred RNR condition if `count' ran out last time. */
1607	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1608		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1609		rnr = 1;
1610	}
1611#endif
1612
1613	/*
1614	 * Free any finished transmit mbuf chains.
1615	 *
1616	 * Handle the CNA event likt a CXTNO event. It used to
1617	 * be that this event (control unit not ready) was not
1618	 * encountered, but it is now with the SMPng modifications.
1619	 * The exact sequence of events that occur when the interface
1620	 * is brought up are different now, and if this event
1621	 * goes unhandled, the configuration/rxfilter setup sequence
1622	 * can stall for several seconds. The result is that no
1623	 * packets go out onto the wire for about 5 to 10 seconds
1624	 * after the interface is ifconfig'ed for the first time.
1625	 */
1626	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1627		fxp_txeof(sc);
1628
1629		ifp->if_timer = 0;
1630		if (sc->tx_queued == 0) {
1631			if (sc->need_mcsetup)
1632				fxp_mc_setup(sc);
1633		}
1634		/*
1635		 * Try to start more packets transmitting.
1636		 */
1637		if (ifp->if_snd.ifq_head != NULL)
1638			fxp_start_body(ifp);
1639	}
1640
1641	/*
1642	 * Just return if nothing happened on the receive side.
1643	 */
1644	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1645		return;
1646
1647	/*
1648	 * Process receiver interrupts. If a no-resource (RNR)
1649	 * condition exists, get whatever packets we can and
1650	 * re-start the receiver.
1651	 *
1652	 * When using polling, we do not process the list to completion,
1653	 * so when we get an RNR interrupt we must defer the restart
1654	 * until we hit the last buffer with the C bit set.
1655	 * If we run out of cycles and rfa_headm has the C bit set,
1656	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1657	 * that the info will be used in the subsequent polling cycle.
1658	 */
1659	for (;;) {
1660		rxp = sc->fxp_desc.rx_head;
1661		m = rxp->rx_mbuf;
1662		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1663		    RFA_ALIGNMENT_FUDGE);
1664		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1665		    BUS_DMASYNC_POSTREAD);
1666
1667#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1668		if (count >= 0 && count-- == 0) {
1669			if (rnr) {
1670				/* Defer RNR processing until the next time. */
1671				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1672				rnr = 0;
1673			}
1674			break;
1675		}
1676#endif /* DEVICE_POLLING */
1677
1678		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1679			break;
1680
1681		/*
1682		 * Advance head forward.
1683		 */
1684		sc->fxp_desc.rx_head = rxp->rx_next;
1685
1686		/*
1687		 * Add a new buffer to the receive chain.
1688		 * If this fails, the old buffer is recycled
1689		 * instead.
1690		 */
1691		if (fxp_add_rfabuf(sc, rxp) == 0) {
1692			int total_len;
1693
1694			/*
1695			 * Fetch packet length (the top 2 bits of
1696			 * actual_size are flags set by the controller
1697			 * upon completion), and drop the packet in case
1698			 * of bogus length or CRC errors.
1699			 */
1700			total_len = le16toh(rfa->actual_size) & 0x3fff;
1701			if (total_len < sizeof(struct ether_header) ||
1702			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1703				sc->rfa_size ||
1704			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1705				m_freem(m);
1706				continue;
1707			}
1708
1709                        /* Do IP checksum checking. */
1710			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1711				if (rfa->rfax_csum_sts &
1712				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1713					m->m_pkthdr.csum_flags |=
1714					    CSUM_IP_CHECKED;
1715				if (rfa->rfax_csum_sts &
1716				    FXP_RFDX_CS_IP_CSUM_VALID)
1717					m->m_pkthdr.csum_flags |=
1718					    CSUM_IP_VALID;
1719				if ((rfa->rfax_csum_sts &
1720				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1721				    (rfa->rfax_csum_sts &
1722				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1723					m->m_pkthdr.csum_flags |=
1724					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1725					m->m_pkthdr.csum_data = 0xffff;
1726				}
1727			}
1728
1729			m->m_pkthdr.len = m->m_len = total_len;
1730			m->m_pkthdr.rcvif = ifp;
1731
1732			/*
1733			 * Drop locks before calling if_input() since it
1734			 * may re-enter fxp_start() in the netisr case.
1735			 * This would result in a lock reversal.  Better
1736			 * performance might be obtained by chaining all
1737			 * packets received, dropping the lock, and then
1738			 * calling if_input() on each one.
1739			 */
1740			FXP_UNLOCK(sc);
1741			(*ifp->if_input)(ifp, m);
1742			FXP_LOCK(sc);
1743		}
1744	}
1745	if (rnr) {
1746		fxp_scb_wait(sc);
1747		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1748		    sc->fxp_desc.rx_head->rx_addr);
1749		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1750	}
1751}
1752
1753/*
1754 * Update packet in/out/collision statistics. The i82557 doesn't
1755 * allow you to access these counters without doing a fairly
1756 * expensive DMA to get _all_ of the statistics it maintains, so
1757 * we do this operation here only once per second. The statistics
1758 * counters in the kernel are updated from the previous dump-stats
1759 * DMA and then a new dump-stats DMA is started. The on-chip
1760 * counters are zeroed when the DMA completes. If we can't start
1761 * the DMA immediately, we don't wait - we just prepare to read
1762 * them again next time.
1763 */
1764static void
1765fxp_tick(void *xsc)
1766{
1767	struct fxp_softc *sc = xsc;
1768	struct ifnet *ifp = &sc->sc_if;
1769	struct fxp_stats *sp = sc->fxp_stats;
1770	int s;
1771
1772	FXP_LOCK(sc);
1773	s = splimp();
1774	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1775	ifp->if_opackets += le32toh(sp->tx_good);
1776	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1777	if (sp->rx_good) {
1778		ifp->if_ipackets += le32toh(sp->rx_good);
1779		sc->rx_idle_secs = 0;
1780	} else {
1781		/*
1782		 * Receiver's been idle for another second.
1783		 */
1784		sc->rx_idle_secs++;
1785	}
1786	ifp->if_ierrors +=
1787	    le32toh(sp->rx_crc_errors) +
1788	    le32toh(sp->rx_alignment_errors) +
1789	    le32toh(sp->rx_rnr_errors) +
1790	    le32toh(sp->rx_overrun_errors);
1791	/*
1792	 * If any transmit underruns occured, bump up the transmit
1793	 * threshold by another 512 bytes (64 * 8).
1794	 */
1795	if (sp->tx_underruns) {
1796		ifp->if_oerrors += le32toh(sp->tx_underruns);
1797		if (tx_threshold < 192)
1798			tx_threshold += 64;
1799	}
1800
1801	/*
1802	 * Release any xmit buffers that have completed DMA. This isn't
1803	 * strictly necessary to do here, but it's advantagous for mbufs
1804	 * with external storage to be released in a timely manner rather
1805	 * than being defered for a potentially long time. This limits
1806	 * the delay to a maximum of one second.
1807	 */
1808	fxp_txeof(sc);
1809
1810	/*
1811	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1812	 * then assume the receiver has locked up and attempt to clear
1813	 * the condition by reprogramming the multicast filter. This is
1814	 * a work-around for a bug in the 82557 where the receiver locks
1815	 * up if it gets certain types of garbage in the syncronization
1816	 * bits prior to the packet header. This bug is supposed to only
1817	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1818	 * mode as well (perhaps due to a 10/100 speed transition).
1819	 */
1820	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1821		sc->rx_idle_secs = 0;
1822		fxp_mc_setup(sc);
1823	}
1824	/*
1825	 * If there is no pending command, start another stats
1826	 * dump. Otherwise punt for now.
1827	 */
1828	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1829		/*
1830		 * Start another stats dump.
1831		 */
1832		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1833		    BUS_DMASYNC_PREREAD);
1834		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1835	} else {
1836		/*
1837		 * A previous command is still waiting to be accepted.
1838		 * Just zero our copy of the stats and wait for the
1839		 * next timer event to update them.
1840		 */
1841		sp->tx_good = 0;
1842		sp->tx_underruns = 0;
1843		sp->tx_total_collisions = 0;
1844
1845		sp->rx_good = 0;
1846		sp->rx_crc_errors = 0;
1847		sp->rx_alignment_errors = 0;
1848		sp->rx_rnr_errors = 0;
1849		sp->rx_overrun_errors = 0;
1850	}
1851	if (sc->miibus != NULL)
1852		mii_tick(device_get_softc(sc->miibus));
1853
1854	/*
1855	 * Schedule another timeout one second from now.
1856	 */
1857	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1858	FXP_UNLOCK(sc);
1859	splx(s);
1860}
1861
1862/*
1863 * Stop the interface. Cancels the statistics updater and resets
1864 * the interface.
1865 */
1866static void
1867fxp_stop(struct fxp_softc *sc)
1868{
1869	struct ifnet *ifp = &sc->sc_if;
1870	struct fxp_tx *txp;
1871	int i;
1872
1873	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1874	ifp->if_timer = 0;
1875
1876#ifdef DEVICE_POLLING
1877	ether_poll_deregister(ifp);
1878#endif
1879	/*
1880	 * Cancel stats updater.
1881	 */
1882	callout_stop(&sc->stat_ch);
1883
1884	/*
1885	 * Issue software reset, which also unloads the microcode.
1886	 */
1887	sc->flags &= ~FXP_FLAG_UCODE;
1888	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1889	DELAY(50);
1890
1891	/*
1892	 * Release any xmit buffers.
1893	 */
1894	txp = sc->fxp_desc.tx_list;
1895	if (txp != NULL) {
1896		for (i = 0; i < FXP_NTXCB; i++) {
1897 			if (txp[i].tx_mbuf != NULL) {
1898				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1899				    BUS_DMASYNC_POSTWRITE);
1900				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1901				m_freem(txp[i].tx_mbuf);
1902				txp[i].tx_mbuf = NULL;
1903				/* clear this to reset csum offload bits */
1904				txp[i].tx_cb->tbd[0].tb_addr = 0;
1905			}
1906		}
1907	}
1908	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1909	sc->tx_queued = 0;
1910}
1911
1912/*
1913 * Watchdog/transmission transmit timeout handler. Called when a
1914 * transmission is started on the interface, but no interrupt is
1915 * received before the timeout. This usually indicates that the
1916 * card has wedged for some reason.
1917 */
1918static void
1919fxp_watchdog(struct ifnet *ifp)
1920{
1921	struct fxp_softc *sc = ifp->if_softc;
1922
1923	FXP_LOCK(sc);
1924	device_printf(sc->dev, "device timeout\n");
1925	ifp->if_oerrors++;
1926
1927	fxp_init_body(sc);
1928	FXP_UNLOCK(sc);
1929}
1930
1931/*
1932 * Acquire locks and then call the real initialization function.  This
1933 * is necessary because ether_ioctl() calls if_init() and this would
1934 * result in mutex recursion if the mutex was held.
1935 */
1936static void
1937fxp_init(void *xsc)
1938{
1939	struct fxp_softc *sc = xsc;
1940
1941	FXP_LOCK(sc);
1942	fxp_init_body(sc);
1943	FXP_UNLOCK(sc);
1944}
1945
1946/*
1947 * Perform device initialization. This routine must be called with the
1948 * softc lock held.
1949 */
1950static void
1951fxp_init_body(struct fxp_softc *sc)
1952{
1953	struct ifnet *ifp = &sc->sc_if;
1954	struct fxp_cb_config *cbp;
1955	struct fxp_cb_ias *cb_ias;
1956	struct fxp_cb_tx *tcbp;
1957	struct fxp_tx *txp;
1958	struct fxp_cb_mcs *mcsp;
1959	int i, prm, s;
1960
1961	FXP_LOCK_ASSERT(sc, MA_OWNED);
1962	s = splimp();
1963	/*
1964	 * Cancel any pending I/O
1965	 */
1966	fxp_stop(sc);
1967
1968	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1969
1970	/*
1971	 * Initialize base of CBL and RFA memory. Loading with zero
1972	 * sets it up for regular linear addressing.
1973	 */
1974	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1975	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1976
1977	fxp_scb_wait(sc);
1978	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1979
1980	/*
1981	 * Initialize base of dump-stats buffer.
1982	 */
1983	fxp_scb_wait(sc);
1984	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1985	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1986	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1987
1988	/*
1989	 * Attempt to load microcode if requested.
1990	 */
1991	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1992		fxp_load_ucode(sc);
1993
1994	/*
1995	 * Initialize the multicast address list.
1996	 */
1997	if (fxp_mc_addrs(sc)) {
1998		mcsp = sc->mcsp;
1999		mcsp->cb_status = 0;
2000		mcsp->cb_command =
2001		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2002		mcsp->link_addr = 0xffffffff;
2003		/*
2004	 	 * Start the multicast setup command.
2005		 */
2006		fxp_scb_wait(sc);
2007		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2008		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2009		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2010		/* ...and wait for it to complete. */
2011		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2012		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2013		    BUS_DMASYNC_POSTWRITE);
2014	}
2015
2016	/*
2017	 * We temporarily use memory that contains the TxCB list to
2018	 * construct the config CB. The TxCB list memory is rebuilt
2019	 * later.
2020	 */
2021	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2022
2023	/*
2024	 * This bcopy is kind of disgusting, but there are a bunch of must be
2025	 * zero and must be one bits in this structure and this is the easiest
2026	 * way to initialize them all to proper values.
2027	 */
2028	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2029
2030	cbp->cb_status =	0;
2031	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2032	    FXP_CB_COMMAND_EL);
2033	cbp->link_addr =	0xffffffff;	/* (no) next command */
2034	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2035	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2036	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2037	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2038	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2039	cbp->type_enable =	0;	/* actually reserved */
2040	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2041	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2042	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2043	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2044	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2045	cbp->late_scb =		0;	/* (don't) defer SCB update */
2046	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2047	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2048	cbp->ci_int =		1;	/* interrupt on CU idle */
2049	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2050	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2051	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2052	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2053	cbp->disc_short_rx =	!prm;	/* discard short packets */
2054	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2055	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2056	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2057	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2058	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2059	cbp->csma_dis =		0;	/* (don't) disable link */
2060	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2061	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2062	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2063	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2064	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2065	cbp->nsai =		1;	/* (don't) disable source addr insert */
2066	cbp->preamble_length =	2;	/* (7 byte) preamble */
2067	cbp->loopback =		0;	/* (don't) loopback */
2068	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2069	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2070	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2071	cbp->promiscuous =	prm;	/* promiscuous mode */
2072	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2073	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2074	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2075	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2076	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2077
2078	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2079	cbp->padding =		1;	/* (do) pad short tx packets */
2080	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2081	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2082	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2083	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2084					/* must set wake_en in PMCSR also */
2085	cbp->force_fdx =	0;	/* (don't) force full duplex */
2086	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2087	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2088	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2089	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2090
2091	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2092		/*
2093		 * The 82557 has no hardware flow control, the values
2094		 * below are the defaults for the chip.
2095		 */
2096		cbp->fc_delay_lsb =	0;
2097		cbp->fc_delay_msb =	0x40;
2098		cbp->pri_fc_thresh =	3;
2099		cbp->tx_fc_dis =	0;
2100		cbp->rx_fc_restop =	0;
2101		cbp->rx_fc_restart =	0;
2102		cbp->fc_filter =	0;
2103		cbp->pri_fc_loc =	1;
2104	} else {
2105		cbp->fc_delay_lsb =	0x1f;
2106		cbp->fc_delay_msb =	0x01;
2107		cbp->pri_fc_thresh =	3;
2108		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2109		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2110		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2111		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2112		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2113	}
2114
2115	/*
2116	 * Start the config command/DMA.
2117	 */
2118	fxp_scb_wait(sc);
2119	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2120	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2121	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2122	/* ...and wait for it to complete. */
2123	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2124	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2125
2126	/*
2127	 * Now initialize the station address. Temporarily use the TxCB
2128	 * memory area like we did above for the config CB.
2129	 */
2130	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2131	cb_ias->cb_status = 0;
2132	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2133	cb_ias->link_addr = 0xffffffff;
2134	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2135	    sizeof(sc->arpcom.ac_enaddr));
2136
2137	/*
2138	 * Start the IAS (Individual Address Setup) command/DMA.
2139	 */
2140	fxp_scb_wait(sc);
2141	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2142	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2143	/* ...and wait for it to complete. */
2144	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2145	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2146
2147	/*
2148	 * Initialize transmit control block (TxCB) list.
2149	 */
2150	txp = sc->fxp_desc.tx_list;
2151	tcbp = sc->fxp_desc.cbl_list;
2152	bzero(tcbp, FXP_TXCB_SZ);
2153	for (i = 0; i < FXP_NTXCB; i++) {
2154		txp[i].tx_cb = tcbp + i;
2155		txp[i].tx_mbuf = NULL;
2156		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2157		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2158		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2159		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2160		if (sc->flags & FXP_FLAG_EXT_TXCB)
2161			tcbp[i].tbd_array_addr =
2162			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2163		else
2164			tcbp[i].tbd_array_addr =
2165			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2166		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2167	}
2168	/*
2169	 * Set the suspend flag on the first TxCB and start the control
2170	 * unit. It will execute the NOP and then suspend.
2171	 */
2172	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2173	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2174	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2175	sc->tx_queued = 1;
2176
2177	fxp_scb_wait(sc);
2178	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2179
2180	/*
2181	 * Initialize receiver buffer area - RFA.
2182	 */
2183	fxp_scb_wait(sc);
2184	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2185	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2186
2187	/*
2188	 * Set current media.
2189	 */
2190	if (sc->miibus != NULL)
2191		mii_mediachg(device_get_softc(sc->miibus));
2192
2193	ifp->if_flags |= IFF_RUNNING;
2194	ifp->if_flags &= ~IFF_OACTIVE;
2195
2196	/*
2197	 * Enable interrupts.
2198	 */
2199#ifdef DEVICE_POLLING
2200	/*
2201	 * ... but only do that if we are not polling. And because (presumably)
2202	 * the default is interrupts on, we need to disable them explicitly!
2203	 */
2204	if ( ifp->if_flags & IFF_POLLING )
2205		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2206	else
2207#endif /* DEVICE_POLLING */
2208	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2209
2210	/*
2211	 * Start stats updater.
2212	 */
2213	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2214	splx(s);
2215}
2216
2217static int
2218fxp_serial_ifmedia_upd(struct ifnet *ifp)
2219{
2220
2221	return (0);
2222}
2223
2224static void
2225fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2226{
2227
2228	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2229}
2230
2231/*
2232 * Change media according to request.
2233 */
2234static int
2235fxp_ifmedia_upd(struct ifnet *ifp)
2236{
2237	struct fxp_softc *sc = ifp->if_softc;
2238	struct mii_data *mii;
2239
2240	mii = device_get_softc(sc->miibus);
2241	mii_mediachg(mii);
2242	return (0);
2243}
2244
2245/*
2246 * Notify the world which media we're using.
2247 */
2248static void
2249fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2250{
2251	struct fxp_softc *sc = ifp->if_softc;
2252	struct mii_data *mii;
2253
2254	mii = device_get_softc(sc->miibus);
2255	mii_pollstat(mii);
2256	ifmr->ifm_active = mii->mii_media_active;
2257	ifmr->ifm_status = mii->mii_media_status;
2258
2259	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2260		sc->cu_resume_bug = 1;
2261	else
2262		sc->cu_resume_bug = 0;
2263}
2264
2265/*
2266 * Add a buffer to the end of the RFA buffer list.
2267 * Return 0 if successful, 1 for failure. A failure results in
2268 * adding the 'oldm' (if non-NULL) on to the end of the list -
2269 * tossing out its old contents and recycling it.
2270 * The RFA struct is stuck at the beginning of mbuf cluster and the
2271 * data pointer is fixed up to point just past it.
2272 */
2273static int
2274fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2275{
2276	struct mbuf *m;
2277	struct fxp_rfa *rfa, *p_rfa;
2278	struct fxp_rx *p_rx;
2279	bus_dmamap_t tmp_map;
2280	int error;
2281
2282	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2283	if (m == NULL)
2284		return (ENOBUFS);
2285
2286	/*
2287	 * Move the data pointer up so that the incoming data packet
2288	 * will be 32-bit aligned.
2289	 */
2290	m->m_data += RFA_ALIGNMENT_FUDGE;
2291
2292	/*
2293	 * Get a pointer to the base of the mbuf cluster and move
2294	 * data start past it.
2295	 */
2296	rfa = mtod(m, struct fxp_rfa *);
2297	m->m_data += sc->rfa_size;
2298	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2299
2300	rfa->rfa_status = 0;
2301	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2302	rfa->actual_size = 0;
2303
2304	/*
2305	 * Initialize the rest of the RFA.  Note that since the RFA
2306	 * is misaligned, we cannot store values directly.  We're thus
2307	 * using the le32enc() function which handles endianness and
2308	 * is also alignment-safe.
2309	 */
2310	le32enc(&rfa->link_addr, 0xffffffff);
2311	le32enc(&rfa->rbd_addr, 0xffffffff);
2312
2313	/* Map the RFA into DMA memory. */
2314	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2315	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2316	    &rxp->rx_addr, 0);
2317	if (error) {
2318		m_freem(m);
2319		return (error);
2320	}
2321
2322	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2323	tmp_map = sc->spare_map;
2324	sc->spare_map = rxp->rx_map;
2325	rxp->rx_map = tmp_map;
2326	rxp->rx_mbuf = m;
2327
2328	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2329	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2330
2331	/*
2332	 * If there are other buffers already on the list, attach this
2333	 * one to the end by fixing up the tail to point to this one.
2334	 */
2335	if (sc->fxp_desc.rx_head != NULL) {
2336		p_rx = sc->fxp_desc.rx_tail;
2337		p_rfa = (struct fxp_rfa *)
2338		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2339		p_rx->rx_next = rxp;
2340		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2341		p_rfa->rfa_control = 0;
2342		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2343		    BUS_DMASYNC_PREWRITE);
2344	} else {
2345		rxp->rx_next = NULL;
2346		sc->fxp_desc.rx_head = rxp;
2347	}
2348	sc->fxp_desc.rx_tail = rxp;
2349	return (0);
2350}
2351
2352static volatile int
2353fxp_miibus_readreg(device_t dev, int phy, int reg)
2354{
2355	struct fxp_softc *sc = device_get_softc(dev);
2356	int count = 10000;
2357	int value;
2358
2359	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2360	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2361
2362	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2363	    && count--)
2364		DELAY(10);
2365
2366	if (count <= 0)
2367		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2368
2369	return (value & 0xffff);
2370}
2371
2372static void
2373fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2374{
2375	struct fxp_softc *sc = device_get_softc(dev);
2376	int count = 10000;
2377
2378	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2379	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2380	    (value & 0xffff));
2381
2382	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2383	    count--)
2384		DELAY(10);
2385
2386	if (count <= 0)
2387		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2388}
2389
2390static int
2391fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2392{
2393	struct fxp_softc *sc = ifp->if_softc;
2394	struct ifreq *ifr = (struct ifreq *)data;
2395	struct mii_data *mii;
2396	int flag, mask, s, error = 0;
2397
2398	/*
2399	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2400	 * that by saying we're busy if the lock is already held.
2401	 */
2402	if (FXP_LOCKED(sc))
2403		return (EBUSY);
2404
2405	FXP_LOCK(sc);
2406	s = splimp();
2407
2408	switch (command) {
2409	case SIOCSIFFLAGS:
2410		if (ifp->if_flags & IFF_ALLMULTI)
2411			sc->flags |= FXP_FLAG_ALL_MCAST;
2412		else
2413			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2414
2415		/*
2416		 * If interface is marked up and not running, then start it.
2417		 * If it is marked down and running, stop it.
2418		 * XXX If it's up then re-initialize it. This is so flags
2419		 * such as IFF_PROMISC are handled.
2420		 */
2421		if (ifp->if_flags & IFF_UP) {
2422			fxp_init_body(sc);
2423		} else {
2424			if (ifp->if_flags & IFF_RUNNING)
2425				fxp_stop(sc);
2426		}
2427		break;
2428
2429	case SIOCADDMULTI:
2430	case SIOCDELMULTI:
2431		if (ifp->if_flags & IFF_ALLMULTI)
2432			sc->flags |= FXP_FLAG_ALL_MCAST;
2433		else
2434			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2435		/*
2436		 * Multicast list has changed; set the hardware filter
2437		 * accordingly.
2438		 */
2439		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2440			fxp_mc_setup(sc);
2441		/*
2442		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2443		 * again rather than else {}.
2444		 */
2445		if (sc->flags & FXP_FLAG_ALL_MCAST)
2446			fxp_init_body(sc);
2447		error = 0;
2448		break;
2449
2450	case SIOCSIFMEDIA:
2451	case SIOCGIFMEDIA:
2452		if (sc->miibus != NULL) {
2453			mii = device_get_softc(sc->miibus);
2454                        error = ifmedia_ioctl(ifp, ifr,
2455                            &mii->mii_media, command);
2456		} else {
2457                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2458		}
2459		break;
2460
2461	case SIOCSIFCAP:
2462		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2463		if (mask & IFCAP_POLLING)
2464			ifp->if_capenable ^= IFCAP_POLLING;
2465		if (mask & IFCAP_VLAN_MTU) {
2466			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2467			if (sc->revision != FXP_REV_82557)
2468				flag = FXP_FLAG_LONG_PKT_EN;
2469			else /* a hack to get long frames on the old chip */
2470				flag = FXP_FLAG_SAVE_BAD;
2471			sc->flags ^= flag;
2472			if (ifp->if_flags & IFF_UP)
2473				fxp_init_body(sc);
2474		}
2475		break;
2476
2477	default:
2478		/*
2479		 * ether_ioctl() will eventually call fxp_start() which
2480		 * will result in mutex recursion so drop it first.
2481		 */
2482		FXP_UNLOCK(sc);
2483		error = ether_ioctl(ifp, command, data);
2484	}
2485	if (FXP_LOCKED(sc))
2486		FXP_UNLOCK(sc);
2487	splx(s);
2488	return (error);
2489}
2490
2491/*
2492 * Fill in the multicast address list and return number of entries.
2493 */
2494static int
2495fxp_mc_addrs(struct fxp_softc *sc)
2496{
2497	struct fxp_cb_mcs *mcsp = sc->mcsp;
2498	struct ifnet *ifp = &sc->sc_if;
2499	struct ifmultiaddr *ifma;
2500	int nmcasts;
2501
2502	nmcasts = 0;
2503	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2504#if __FreeBSD_version < 500000
2505		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2506#else
2507		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2508#endif
2509			if (ifma->ifma_addr->sa_family != AF_LINK)
2510				continue;
2511			if (nmcasts >= MAXMCADDR) {
2512				sc->flags |= FXP_FLAG_ALL_MCAST;
2513				nmcasts = 0;
2514				break;
2515			}
2516			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2517			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2518			nmcasts++;
2519		}
2520	}
2521	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2522	return (nmcasts);
2523}
2524
2525/*
2526 * Program the multicast filter.
2527 *
2528 * We have an artificial restriction that the multicast setup command
2529 * must be the first command in the chain, so we take steps to ensure
2530 * this. By requiring this, it allows us to keep up the performance of
2531 * the pre-initialized command ring (esp. link pointers) by not actually
2532 * inserting the mcsetup command in the ring - i.e. its link pointer
2533 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2534 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2535 * lead into the regular TxCB ring when it completes.
2536 *
2537 * This function must be called at splimp.
2538 */
2539static void
2540fxp_mc_setup(struct fxp_softc *sc)
2541{
2542	struct fxp_cb_mcs *mcsp = sc->mcsp;
2543	struct ifnet *ifp = &sc->sc_if;
2544	struct fxp_tx *txp;
2545	int count;
2546
2547	FXP_LOCK_ASSERT(sc, MA_OWNED);
2548	/*
2549	 * If there are queued commands, we must wait until they are all
2550	 * completed. If we are already waiting, then add a NOP command
2551	 * with interrupt option so that we're notified when all commands
2552	 * have been completed - fxp_start() ensures that no additional
2553	 * TX commands will be added when need_mcsetup is true.
2554	 */
2555	if (sc->tx_queued) {
2556		/*
2557		 * need_mcsetup will be true if we are already waiting for the
2558		 * NOP command to be completed (see below). In this case, bail.
2559		 */
2560		if (sc->need_mcsetup)
2561			return;
2562		sc->need_mcsetup = 1;
2563
2564		/*
2565		 * Add a NOP command with interrupt so that we are notified
2566		 * when all TX commands have been processed.
2567		 */
2568		txp = sc->fxp_desc.tx_last->tx_next;
2569		txp->tx_mbuf = NULL;
2570		txp->tx_cb->cb_status = 0;
2571		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2572		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2573		/*
2574		 * Advance the end of list forward.
2575		 */
2576		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2577		    htole16(~FXP_CB_COMMAND_S);
2578		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2579		sc->fxp_desc.tx_last = txp;
2580		sc->tx_queued++;
2581		/*
2582		 * Issue a resume in case the CU has just suspended.
2583		 */
2584		fxp_scb_wait(sc);
2585		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2586		/*
2587		 * Set a 5 second timer just in case we don't hear from the
2588		 * card again.
2589		 */
2590		ifp->if_timer = 5;
2591
2592		return;
2593	}
2594	sc->need_mcsetup = 0;
2595
2596	/*
2597	 * Initialize multicast setup descriptor.
2598	 */
2599	mcsp->cb_status = 0;
2600	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2601	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2602	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2603	txp = &sc->fxp_desc.mcs_tx;
2604	txp->tx_mbuf = NULL;
2605	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2606	txp->tx_next = sc->fxp_desc.tx_list;
2607	(void) fxp_mc_addrs(sc);
2608	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2609	sc->tx_queued = 1;
2610
2611	/*
2612	 * Wait until command unit is not active. This should never
2613	 * be the case when nothing is queued, but make sure anyway.
2614	 */
2615	count = 100;
2616	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2617	    FXP_SCB_CUS_ACTIVE && --count)
2618		DELAY(10);
2619	if (count == 0) {
2620		device_printf(sc->dev, "command queue timeout\n");
2621		return;
2622	}
2623
2624	/*
2625	 * Start the multicast setup command.
2626	 */
2627	fxp_scb_wait(sc);
2628	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2629	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2630	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2631
2632	ifp->if_timer = 2;
2633	return;
2634}
2635
2636static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2637static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2638static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2639static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2640static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2641static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2642
2643#define UCODE(x)	x, sizeof(x)
2644
2645struct ucode {
2646	u_int32_t	revision;
2647	u_int32_t	*ucode;
2648	int		length;
2649	u_short		int_delay_offset;
2650	u_short		bundle_max_offset;
2651} ucode_table[] = {
2652	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2653	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2654	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2655	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2656	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2657	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2658	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2659	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2660	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2661	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2662	{ 0, NULL, 0, 0, 0 }
2663};
2664
2665static void
2666fxp_load_ucode(struct fxp_softc *sc)
2667{
2668	struct ucode *uc;
2669	struct fxp_cb_ucode *cbp;
2670
2671	for (uc = ucode_table; uc->ucode != NULL; uc++)
2672		if (sc->revision == uc->revision)
2673			break;
2674	if (uc->ucode == NULL)
2675		return;
2676	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2677	cbp->cb_status = 0;
2678	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2679	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2680	memcpy(cbp->ucode, uc->ucode, uc->length);
2681	if (uc->int_delay_offset)
2682		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2683		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2684	if (uc->bundle_max_offset)
2685		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2686		    htole16(sc->tunable_bundle_max);
2687	/*
2688	 * Download the ucode to the chip.
2689	 */
2690	fxp_scb_wait(sc);
2691	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2692	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2693	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2694	/* ...and wait for it to complete. */
2695	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2696	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2697	device_printf(sc->dev,
2698	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2699	    sc->tunable_int_delay,
2700	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2701	sc->flags |= FXP_FLAG_UCODE;
2702}
2703
2704static int
2705sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2706{
2707	int error, value;
2708
2709	value = *(int *)arg1;
2710	error = sysctl_handle_int(oidp, &value, 0, req);
2711	if (error || !req->newptr)
2712		return (error);
2713	if (value < low || value > high)
2714		return (EINVAL);
2715	*(int *)arg1 = value;
2716	return (0);
2717}
2718
2719/*
2720 * Interrupt delay is expressed in microseconds, a multiplier is used
2721 * to convert this to the appropriate clock ticks before using.
2722 */
2723static int
2724sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2725{
2726	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2727}
2728
2729static int
2730sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2731{
2732	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2733}
2734