if_fxp.c revision 130020
1321936Shselasky/*-
2321936Shselasky * Copyright (c) 1995, David Greenman
3321936Shselasky * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4321936Shselasky * All rights reserved.
5321936Shselasky *
6321936Shselasky * Redistribution and use in source and binary forms, with or without
7321936Shselasky * modification, are permitted provided that the following conditions
8321936Shselasky * are met:
9321936Shselasky * 1. Redistributions of source code must retain the above copyright
10321936Shselasky *    notice unmodified, this list of conditions, and the following
11321936Shselasky *    disclaimer.
12321936Shselasky * 2. Redistributions in binary form must reproduce the above copyright
13321936Shselasky *    notice, this list of conditions and the following disclaimer in the
14321936Shselasky *    documentation and/or other materials provided with the distribution.
15321936Shselasky *
16321936Shselasky * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17321936Shselasky * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18321936Shselasky * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19321936Shselasky * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20321936Shselasky * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21321936Shselasky * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22321936Shselasky * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23321936Shselasky * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24321936Shselasky * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25321936Shselasky * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26321936Shselasky * SUCH DAMAGE.
27321936Shselasky *
28321936Shselasky */
29321936Shselasky
30321936Shselasky#include <sys/cdefs.h>
31321936Shselasky__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 130020 2004-06-02 22:59:57Z mux $");
32321936Shselasky
33321936Shselasky/*
34321936Shselasky * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35321936Shselasky */
36321936Shselasky
37321936Shselasky#include <sys/param.h>
38321936Shselasky#include <sys/systm.h>
39321936Shselasky#include <sys/endian.h>
40321936Shselasky#include <sys/mbuf.h>
41321936Shselasky		/* #include <sys/mutex.h> */
42321936Shselasky#include <sys/kernel.h>
43321936Shselasky#include <sys/module.h>
44321936Shselasky#include <sys/socket.h>
45321936Shselasky#include <sys/sysctl.h>
46321936Shselasky
47321936Shselasky#include <net/if.h>
48321936Shselasky#include <net/if_dl.h>
49321936Shselasky#include <net/if_media.h>
50321936Shselasky
51321936Shselasky#include <net/bpf.h>
52321936Shselasky#include <sys/sockio.h>
53321936Shselasky#include <sys/bus.h>
54321936Shselasky#include <machine/bus.h>
55321936Shselasky#include <sys/rman.h>
56321936Shselasky#include <machine/resource.h>
57321936Shselasky
58321936Shselasky#include <net/ethernet.h>
59321936Shselasky#include <net/if_arp.h>
60321936Shselasky
61321936Shselasky#include <machine/clock.h>	/* for DELAY */
62321936Shselasky
63321936Shselasky#include <net/if_types.h>
64321936Shselasky#include <net/if_vlan_var.h>
65321936Shselasky
66321936Shselasky#ifdef FXP_IP_CSUM_WAR
67321936Shselasky#include <netinet/in.h>
68321936Shselasky#include <netinet/in_systm.h>
69321936Shselasky#include <netinet/ip.h>
70321936Shselasky#include <machine/in_cksum.h>
71321936Shselasky#endif
72321936Shselasky
73321936Shselasky#include <dev/pci/pcivar.h>
74321936Shselasky#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75321936Shselasky
76321936Shselasky#include <dev/mii/mii.h>
77321936Shselasky#include <dev/mii/miivar.h>
78321936Shselasky
79321936Shselasky#include <dev/fxp/if_fxpreg.h>
80321936Shselasky#include <dev/fxp/if_fxpvar.h>
81321936Shselasky#include <dev/fxp/rcvbundl.h>
82321936Shselasky
83321936ShselaskyMODULE_DEPEND(fxp, pci, 1, 1, 1);
84321936ShselaskyMODULE_DEPEND(fxp, ether, 1, 1, 1);
85321936ShselaskyMODULE_DEPEND(fxp, miibus, 1, 1, 1);
86321936Shselasky#include "miibus_if.h"
87321936Shselasky
88321936Shselasky/*
89321936Shselasky * NOTE!  On the Alpha, we have an alignment constraint.  The
90321936Shselasky * card DMAs the packet immediately following the RFA.  However,
91321936Shselasky * the first thing in the packet is a 14-byte Ethernet header.
92321936Shselasky * This means that the packet is misaligned.  To compensate,
93321936Shselasky * we actually offset the RFA 2 bytes into the cluster.  This
94321936Shselasky * alignes the packet after the Ethernet header at a 32-bit
95321936Shselasky * boundary.  HOWEVER!  This means that the RFA is misaligned!
96321936Shselasky */
97321936Shselasky#define	RFA_ALIGNMENT_FUDGE	2
98321936Shselasky
99321936Shselasky/*
100321936Shselasky * Set initial transmit threshold at 64 (512 bytes). This is
101321936Shselasky * increased by 64 (512 bytes) at a time, to maximum of 192
102321936Shselasky * (1536 bytes), if an underrun occurs.
103321936Shselasky */
104321936Shselaskystatic int tx_threshold = 64;
105321936Shselasky
106321936Shselasky/*
107321936Shselasky * The configuration byte map has several undefined fields which
108321936Shselasky * must be one or must be zero.  Set up a template for these bits
109321936Shselasky * only, (assuming a 82557 chip) leaving the actual configuration
110321936Shselasky * to fxp_init.
111321936Shselasky *
112321936Shselasky * See struct fxp_cb_config for the bit definitions.
113321936Shselasky */
114321936Shselaskystatic u_char fxp_cb_config_template[] = {
115321936Shselasky	0x0, 0x0,		/* cb_status */
116321936Shselasky	0x0, 0x0,		/* cb_command */
117321936Shselasky	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118321936Shselasky	0x0,	/*  0 */
119321936Shselasky	0x0,	/*  1 */
120321936Shselasky	0x0,	/*  2 */
121321936Shselasky	0x0,	/*  3 */
122321936Shselasky	0x0,	/*  4 */
123321936Shselasky	0x0,	/*  5 */
124321936Shselasky	0x32,	/*  6 */
125321936Shselasky	0x0,	/*  7 */
126321936Shselasky	0x0,	/*  8 */
127321936Shselasky	0x0,	/*  9 */
128321936Shselasky	0x6,	/* 10 */
129321936Shselasky	0x0,	/* 11 */
130321936Shselasky	0x0,	/* 12 */
131321936Shselasky	0x0,	/* 13 */
132321936Shselasky	0xf2,	/* 14 */
133321936Shselasky	0x48,	/* 15 */
134321936Shselasky	0x0,	/* 16 */
135321936Shselasky	0x40,	/* 17 */
136321936Shselasky	0xf0,	/* 18 */
137321936Shselasky	0x0,	/* 19 */
138321936Shselasky	0x3f,	/* 20 */
139321936Shselasky	0x5	/* 21 */
140321936Shselasky};
141321936Shselasky
142321936Shselaskystruct fxp_ident {
143321936Shselasky	u_int16_t	devid;
144321936Shselasky	int16_t		revid;		/* -1 matches anything */
145321936Shselasky	char 		*name;
146321936Shselasky};
147321936Shselasky
148321936Shselasky/*
149321936Shselasky * Claim various Intel PCI device identifiers for this driver.  The
150321936Shselasky * sub-vendor and sub-device field are extensively used to identify
151321936Shselasky * particular variants, but we don't currently differentiate between
152321936Shselasky * them.
153321936Shselasky */
154321936Shselaskystatic struct fxp_ident fxp_ident_table[] = {
155321936Shselasky    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156321936Shselasky    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157321936Shselasky    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158321936Shselasky    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159321936Shselasky    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160321936Shselasky    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161321936Shselasky    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162321936Shselasky    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163321936Shselasky    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164321936Shselasky    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165321936Shselasky    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166321936Shselasky    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167321936Shselasky    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168321936Shselasky    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169321936Shselasky    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170321936Shselasky    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171321936Shselasky    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172321936Shselasky    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173321936Shselasky    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174321936Shselasky    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
175321936Shselasky    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
176321936Shselasky    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
177321936Shselasky    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
178321936Shselasky    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
179321936Shselasky    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
180321936Shselasky    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
181321936Shselasky    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
182321936Shselasky    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
183321936Shselasky    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
184321936Shselasky    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
185321936Shselasky    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
186321936Shselasky    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
187321936Shselasky    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
188321936Shselasky    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
189321936Shselasky    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
190321936Shselasky    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
191321936Shselasky    { 0,	-1,	NULL },
192321936Shselasky};
193321936Shselasky
194321936Shselasky#ifdef FXP_IP_CSUM_WAR
195321936Shselasky#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
196321936Shselasky#else
197321936Shselasky#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
198321936Shselasky#endif
199321936Shselasky
200321936Shselaskystatic int		fxp_probe(device_t dev);
201321936Shselaskystatic int		fxp_attach(device_t dev);
202321936Shselaskystatic int		fxp_detach(device_t dev);
203321936Shselaskystatic int		fxp_shutdown(device_t dev);
204321936Shselaskystatic int		fxp_suspend(device_t dev);
205321936Shselaskystatic int		fxp_resume(device_t dev);
206321936Shselasky
207321936Shselaskystatic void		fxp_intr(void *xsc);
208321936Shselaskystatic void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
209321936Shselasky			    u_int8_t statack, int count);
210321936Shselaskystatic void 		fxp_init(void *xsc);
211321936Shselaskystatic void 		fxp_init_body(struct fxp_softc *sc);
212321936Shselaskystatic void 		fxp_tick(void *xsc);
213321936Shselasky#ifndef BURN_BRIDGES
214321936Shselaskystatic void		fxp_powerstate_d0(device_t dev);
215321936Shselasky#endif
216321936Shselaskystatic void 		fxp_start(struct ifnet *ifp);
217321936Shselaskystatic void 		fxp_start_body(struct ifnet *ifp);
218321936Shselaskystatic void		fxp_stop(struct fxp_softc *sc);
219321936Shselaskystatic void 		fxp_release(struct fxp_softc *sc);
220321936Shselaskystatic int		fxp_ioctl(struct ifnet *ifp, u_long command,
221321936Shselasky			    caddr_t data);
222321936Shselaskystatic void 		fxp_watchdog(struct ifnet *ifp);
223321936Shselaskystatic int		fxp_add_rfabuf(struct fxp_softc *sc,
224321936Shselasky    			    struct fxp_rx *rxp);
225321936Shselaskystatic int		fxp_mc_addrs(struct fxp_softc *sc);
226321936Shselaskystatic void		fxp_mc_setup(struct fxp_softc *sc);
227321936Shselaskystatic u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228321936Shselasky			    int autosize);
229321936Shselaskystatic void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230321936Shselasky			    u_int16_t data);
231321936Shselaskystatic void		fxp_autosize_eeprom(struct fxp_softc *sc);
232321936Shselaskystatic void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233321936Shselasky			    int offset, int words);
234321936Shselaskystatic void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235321936Shselasky			    int offset, int words);
236321936Shselaskystatic int		fxp_ifmedia_upd(struct ifnet *ifp);
237321936Shselaskystatic void		fxp_ifmedia_sts(struct ifnet *ifp,
238321936Shselasky			    struct ifmediareq *ifmr);
239321936Shselaskystatic int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240321936Shselaskystatic void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241321936Shselasky			    struct ifmediareq *ifmr);
242321936Shselaskystatic volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243321936Shselaskystatic void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244321936Shselasky			    int value);
245321936Shselaskystatic void		fxp_load_ucode(struct fxp_softc *sc);
246321936Shselaskystatic int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247321936Shselasky			    int low, int high);
248321936Shselaskystatic int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249321936Shselaskystatic int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250321936Shselaskystatic void 		fxp_scb_wait(struct fxp_softc *sc);
251321936Shselaskystatic void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252321936Shselaskystatic void		fxp_dma_wait(struct fxp_softc *sc,
253321936Shselasky    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
254321936Shselasky			    bus_dmamap_t map);
255321936Shselasky
256321936Shselaskystatic device_method_t fxp_methods[] = {
257321936Shselasky	/* Device interface */
258321936Shselasky	DEVMETHOD(device_probe,		fxp_probe),
259321936Shselasky	DEVMETHOD(device_attach,	fxp_attach),
260321936Shselasky	DEVMETHOD(device_detach,	fxp_detach),
261321936Shselasky	DEVMETHOD(device_shutdown,	fxp_shutdown),
262321936Shselasky	DEVMETHOD(device_suspend,	fxp_suspend),
263321936Shselasky	DEVMETHOD(device_resume,	fxp_resume),
264321936Shselasky
265321936Shselasky	/* MII interface */
266321936Shselasky	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267321936Shselasky	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268321936Shselasky
269321936Shselasky	{ 0, 0 }
270321936Shselasky};
271321936Shselasky
272321936Shselaskystatic driver_t fxp_driver = {
273321936Shselasky	"fxp",
274321936Shselasky	fxp_methods,
275321936Shselasky	sizeof(struct fxp_softc),
276321936Shselasky};
277321936Shselasky
278321936Shselaskystatic devclass_t fxp_devclass;
279321936Shselasky
280321936ShselaskyDRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281321936ShselaskyDRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282321936ShselaskyDRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283321936Shselasky
284321936Shselasky/*
285321936Shselasky * Wait for the previous command to be accepted (but not necessarily
286321936Shselasky * completed).
287321936Shselasky */
288321936Shselaskystatic void
289321936Shselaskyfxp_scb_wait(struct fxp_softc *sc)
290321936Shselasky{
291321936Shselasky	int i = 10000;
292321936Shselasky
293321936Shselasky	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294321936Shselasky		DELAY(2);
295321936Shselasky	if (i == 0)
296321936Shselasky		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297321936Shselasky		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298321936Shselasky		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299321936Shselasky		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300321936Shselasky		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301321936Shselasky}
302321936Shselasky
303321936Shselaskystatic void
304321936Shselaskyfxp_scb_cmd(struct fxp_softc *sc, int cmd)
305321936Shselasky{
306
307	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309		fxp_scb_wait(sc);
310	}
311	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312}
313
314static void
315fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
316    bus_dma_tag_t dmat, bus_dmamap_t map)
317{
318	int i = 10000;
319
320	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322		DELAY(2);
323		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324	}
325	if (i == 0)
326		device_printf(sc->dev, "DMA timeout\n");
327}
328
329/*
330 * Return identification string if this device is ours.
331 */
332static int
333fxp_probe(device_t dev)
334{
335	u_int16_t devid;
336	u_int8_t revid;
337	struct fxp_ident *ident;
338
339	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340		devid = pci_get_device(dev);
341		revid = pci_get_revid(dev);
342		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343			if (ident->devid == devid &&
344			    (ident->revid == revid || ident->revid == -1)) {
345				device_set_desc(dev, ident->name);
346				return (0);
347			}
348		}
349	}
350	return (ENXIO);
351}
352
353#ifndef BURN_BRIDGES
354static void
355fxp_powerstate_d0(device_t dev)
356{
357#if __FreeBSD_version >= 430002
358	u_int32_t iobase, membase, irq;
359
360	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
361		/* Save important PCI config data. */
362		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
363		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
364		irq = pci_read_config(dev, PCIR_INTLINE, 4);
365
366		/* Reset the power state. */
367		device_printf(dev, "chip is in D%d power mode "
368		    "-- setting to D0\n", pci_get_powerstate(dev));
369
370		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
371
372		/* Restore PCI config data. */
373		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
374		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
375		pci_write_config(dev, PCIR_INTLINE, irq, 4);
376	}
377#endif
378}
379#endif
380
381static void
382fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
383{
384	u_int32_t *addr;
385
386	if (error)
387		return;
388
389	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
390	addr = arg;
391	*addr = segs->ds_addr;
392}
393
394static int
395fxp_attach(device_t dev)
396{
397	int error = 0;
398	struct fxp_softc *sc = device_get_softc(dev);
399	struct ifnet *ifp;
400	struct fxp_rx *rxp;
401	u_int32_t val;
402	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
403	int i, rid, m1, m2, prefer_iomap, maxtxseg;
404	int s, ipcbxmit_disable;
405
406	sc->dev = dev;
407	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
408	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
409	    MTX_DEF);
410	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
411	    fxp_serial_ifmedia_sts);
412
413	s = splimp();
414
415	/*
416	 * Enable bus mastering.
417	 */
418	pci_enable_busmaster(dev);
419	val = pci_read_config(dev, PCIR_COMMAND, 2);
420#ifndef BURN_BRIDGES
421	fxp_powerstate_d0(dev);
422#endif
423	/*
424	 * Figure out which we should try first - memory mapping or i/o mapping?
425	 * We default to memory mapping. Then we accept an override from the
426	 * command line. Then we check to see which one is enabled.
427	 */
428	m1 = PCIM_CMD_MEMEN;
429	m2 = PCIM_CMD_PORTEN;
430	prefer_iomap = 0;
431	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
432	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
433		m1 = PCIM_CMD_PORTEN;
434		m2 = PCIM_CMD_MEMEN;
435	}
436
437	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
438	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
439	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
440	if (sc->mem == NULL) {
441		sc->rtp =
442		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
443		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
444		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
445                                            RF_ACTIVE);
446	}
447
448	if (!sc->mem) {
449		error = ENXIO;
450		goto fail;
451        }
452	if (bootverbose) {
453		device_printf(dev, "using %s space register mapping\n",
454		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
455	}
456
457	sc->sc_st = rman_get_bustag(sc->mem);
458	sc->sc_sh = rman_get_bushandle(sc->mem);
459
460	/*
461	 * Allocate our interrupt.
462	 */
463	rid = 0;
464	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
465				 RF_SHAREABLE | RF_ACTIVE);
466	if (sc->irq == NULL) {
467		device_printf(dev, "could not map interrupt\n");
468		error = ENXIO;
469		goto fail;
470	}
471
472	/*
473	 * Reset to a stable state.
474	 */
475	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
476	DELAY(10);
477
478	/*
479	 * Find out how large of an SEEPROM we have.
480	 */
481	fxp_autosize_eeprom(sc);
482
483	/*
484	 * Determine whether we must use the 503 serial interface.
485	 */
486	fxp_read_eeprom(sc, &data, 6, 1);
487	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
488	    (data & FXP_PHY_SERIAL_ONLY))
489		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
490
491	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
492	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
494	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
495	    "FXP driver receive interrupt microcode bundling delay");
496	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
497	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
498	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
499	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
500	    "FXP driver receive interrupt microcode bundle size limit");
501	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
502	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
503	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
504	    "FXP RNR events");
505	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
506	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
507	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
508	    "FXP flow control disabled");
509
510	/*
511	 * Pull in device tunables.
512	 */
513	sc->tunable_int_delay = TUNABLE_INT_DELAY;
514	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
515	sc->tunable_noflow = 0;
516	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517	    "int_delay", &sc->tunable_int_delay);
518	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
519	    "bundle_max", &sc->tunable_bundle_max);
520	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
521	    "noflow", &sc->tunable_noflow);
522	sc->rnr = 0;
523
524	/*
525	 * Find out the chip revision; lump all 82557 revs together.
526	 */
527	fxp_read_eeprom(sc, &data, 5, 1);
528	if ((data >> 8) == 1)
529		sc->revision = FXP_REV_82557;
530	else
531		sc->revision = pci_get_revid(dev);
532
533	/*
534	 * Enable workarounds for certain chip revision deficiencies.
535	 *
536	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
537	 * some systems based a normal 82559 design, have a defect where
538	 * the chip can cause a PCI protocol violation if it receives
539	 * a CU_RESUME command when it is entering the IDLE state.  The
540	 * workaround is to disable Dynamic Standby Mode, so the chip never
541	 * deasserts CLKRUN#, and always remains in an active state.
542	 *
543	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
544	 */
545	i = pci_get_device(dev);
546	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
547	    sc->revision >= FXP_REV_82559_A0) {
548		fxp_read_eeprom(sc, &data, 10, 1);
549		if (data & 0x02) {			/* STB enable */
550			u_int16_t cksum;
551			int i;
552
553			device_printf(dev,
554			    "Disabling dynamic standby mode in EEPROM\n");
555			data &= ~0x02;
556			fxp_write_eeprom(sc, &data, 10, 1);
557			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
558			cksum = 0;
559			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
560				fxp_read_eeprom(sc, &data, i, 1);
561				cksum += data;
562			}
563			i = (1 << sc->eeprom_size) - 1;
564			cksum = 0xBABA - cksum;
565			fxp_read_eeprom(sc, &data, i, 1);
566			fxp_write_eeprom(sc, &cksum, i, 1);
567			device_printf(dev,
568			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
569			    i, data, cksum);
570#if 1
571			/*
572			 * If the user elects to continue, try the software
573			 * workaround, as it is better than nothing.
574			 */
575			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
576#endif
577		}
578	}
579
580	/*
581	 * If we are not a 82557 chip, we can enable extended features.
582	 */
583	if (sc->revision != FXP_REV_82557) {
584		/*
585		 * If MWI is enabled in the PCI configuration, and there
586		 * is a valid cacheline size (8 or 16 dwords), then tell
587		 * the board to turn on MWI.
588		 */
589		if (val & PCIM_CMD_MWRICEN &&
590		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
591			sc->flags |= FXP_FLAG_MWI_ENABLE;
592
593		/* turn on the extended TxCB feature */
594		sc->flags |= FXP_FLAG_EXT_TXCB;
595
596		/* enable reception of long frames for VLAN */
597		sc->flags |= FXP_FLAG_LONG_PKT_EN;
598	} else {
599		/* a hack to get long VLAN frames on a 82557 */
600		sc->flags |= FXP_FLAG_SAVE_BAD;
601	}
602
603	/*
604	 * Enable use of extended RFDs and TCBs for 82550
605	 * and later chips. Note: we need extended TXCB support
606	 * too, but that's already enabled by the code above.
607	 * Be careful to do this only on the right devices.
608	 *
609	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
610	 * truncate packets that end with an mbuf containing 1 to 3 bytes
611	 * when used with this feature enabled in the previous version of the
612	 * driver.  This problem appears to be fixed now that the driver
613	 * always sets the hardware parse bit in the IPCB structure, which
614	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
615	 * Source Software Developer Manual" says is necessary in the
616	 * cases where packet truncation was observed.
617	 *
618	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
619	 * allows this feature to be disabled at boot time.
620	 *
621	 * If fxp is not compiled into the kernel, this feature may also
622	 * be disabled at run time:
623	 *    # kldunload fxp
624	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
625	 *    # kldload fxp
626	 */
627
628	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
629	    &ipcbxmit_disable) != 0)
630		ipcbxmit_disable = 0;
631	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
632	    sc->revision == FXP_REV_82550_C)) {
633		sc->rfa_size = sizeof (struct fxp_rfa);
634		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
635		sc->flags |= FXP_FLAG_EXT_RFA;
636	} else {
637		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
638		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
639	}
640
641	/*
642	 * Allocate DMA tags and DMA safe memory.
643	 */
644	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
645	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
646	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
647	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
648	if (error) {
649		device_printf(dev, "could not allocate dma tag\n");
650		goto fail;
651	}
652
653	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
654	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
655	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
656	    &sc->fxp_stag);
657	if (error) {
658		device_printf(dev, "could not allocate dma tag\n");
659		goto fail;
660	}
661
662	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
663	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
664	if (error)
665		goto fail;
666	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
667	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
668	if (error) {
669		device_printf(dev, "could not map the stats buffer\n");
670		goto fail;
671	}
672
673	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
675	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
676	if (error) {
677		device_printf(dev, "could not allocate dma tag\n");
678		goto fail;
679	}
680
681	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
682	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
683	if (error)
684		goto fail;
685
686	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
687	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
688	    &sc->fxp_desc.cbl_addr, 0);
689	if (error) {
690		device_printf(dev, "could not map DMA memory\n");
691		goto fail;
692	}
693
694	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
695	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
696	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
697	    &sc->mcs_tag);
698	if (error) {
699		device_printf(dev, "could not allocate dma tag\n");
700		goto fail;
701	}
702
703	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
704	    BUS_DMA_NOWAIT, &sc->mcs_map);
705	if (error)
706		goto fail;
707	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
708	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
709	if (error) {
710		device_printf(dev, "can't map the multicast setup command\n");
711		goto fail;
712	}
713
714	/*
715	 * Pre-allocate the TX DMA maps.
716	 */
717	for (i = 0; i < FXP_NTXCB; i++) {
718		error = bus_dmamap_create(sc->fxp_mtag, 0,
719		    &sc->fxp_desc.tx_list[i].tx_map);
720		if (error) {
721			device_printf(dev, "can't create DMA map for TX\n");
722			goto fail;
723		}
724	}
725	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726	if (error) {
727		device_printf(dev, "can't create spare DMA map\n");
728		goto fail;
729	}
730
731	/*
732	 * Pre-allocate our receive buffers.
733	 */
734	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735	for (i = 0; i < FXP_NRFABUFS; i++) {
736		rxp = &sc->fxp_desc.rx_list[i];
737		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738		if (error) {
739			device_printf(dev, "can't create DMA map for RX\n");
740			goto fail;
741		}
742		if (fxp_add_rfabuf(sc, rxp) != 0) {
743			error = ENOMEM;
744			goto fail;
745		}
746	}
747
748	/*
749	 * Read MAC address.
750	 */
751	fxp_read_eeprom(sc, myea, 0, 3);
752	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
753	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
754	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
755	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
756	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
757	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
758	if (bootverbose) {
759		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
760		    pci_get_vendor(dev), pci_get_device(dev),
761		    pci_get_subvendor(dev), pci_get_subdevice(dev),
762		    pci_get_revid(dev));
763		fxp_read_eeprom(sc, &data, 10, 1);
764		device_printf(dev, "Dynamic Standby mode is %s\n",
765		    data & 0x02 ? "enabled" : "disabled");
766	}
767
768	/*
769	 * If this is only a 10Mbps device, then there is no MII, and
770	 * the PHY will use a serial interface instead.
771	 *
772	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
773	 * doesn't have a programming interface of any sort.  The
774	 * media is sensed automatically based on how the link partner
775	 * is configured.  This is, in essence, manual configuration.
776	 */
777	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
778		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780	} else {
781		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782		    fxp_ifmedia_sts)) {
783	                device_printf(dev, "MII without any PHY!\n");
784			error = ENXIO;
785			goto fail;
786		}
787	}
788
789	ifp = &sc->arpcom.ac_if;
790	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
791	ifp->if_baudrate = 100000000;
792	ifp->if_init = fxp_init;
793	ifp->if_softc = sc;
794	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
795	ifp->if_ioctl = fxp_ioctl;
796	ifp->if_start = fxp_start;
797	ifp->if_watchdog = fxp_watchdog;
798
799	ifp->if_capabilities = ifp->if_capenable = 0;
800
801	/* Enable checksum offload for 82550 or better chips */
802	if (sc->flags & FXP_FLAG_EXT_RFA) {
803		ifp->if_hwassist = FXP_CSUM_FEATURES;
804		ifp->if_capabilities |= IFCAP_HWCSUM;
805		ifp->if_capenable |= IFCAP_HWCSUM;
806	}
807
808#ifdef DEVICE_POLLING
809	/* Inform the world we support polling. */
810	ifp->if_capabilities |= IFCAP_POLLING;
811	ifp->if_capenable |= IFCAP_POLLING;
812#endif
813
814	/*
815	 * Attach the interface.
816	 */
817	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
818
819	/*
820	 * Tell the upper layer(s) we support long frames.
821	 * Must appear after the call to ether_ifattach() because
822	 * ether_ifattach() sets ifi_hdrlen to the default value.
823	 */
824	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
825	ifp->if_capabilities |= IFCAP_VLAN_MTU;
826	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
827
828	/*
829	 * Let the system queue as many packets as we have available
830	 * TX descriptors.
831	 */
832	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
833
834	/*
835	 * Hook our interrupt after all initialization is complete.
836	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
837	 * however, ifp and its functions are not fully locked so MPSAFE
838	 * should not be used unless you can handle potential data loss.
839	 */
840	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
841			       fxp_intr, sc, &sc->ih);
842	if (error) {
843		device_printf(dev, "could not setup irq\n");
844		ether_ifdetach(&sc->arpcom.ac_if);
845		goto fail;
846	}
847
848fail:
849	splx(s);
850	if (error)
851		fxp_release(sc);
852	return (error);
853}
854
855/*
856 * Release all resources.  The softc lock should not be held and the
857 * interrupt should already be torn down.
858 */
859static void
860fxp_release(struct fxp_softc *sc)
861{
862	struct fxp_rx *rxp;
863	struct fxp_tx *txp;
864	int i;
865
866	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
867	KASSERT(sc->ih == NULL,
868	    ("fxp_release() called with intr handle still active"));
869	if (sc->miibus)
870		device_delete_child(sc->dev, sc->miibus);
871	bus_generic_detach(sc->dev);
872	ifmedia_removeall(&sc->sc_media);
873	if (sc->fxp_desc.cbl_list) {
874		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
875		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
876		    sc->cbl_map);
877	}
878	if (sc->fxp_stats) {
879		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
880		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
881	}
882	if (sc->mcsp) {
883		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
884		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
885	}
886	if (sc->irq)
887		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
888	if (sc->mem)
889		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
890	if (sc->fxp_mtag) {
891		for (i = 0; i < FXP_NRFABUFS; i++) {
892			rxp = &sc->fxp_desc.rx_list[i];
893			if (rxp->rx_mbuf != NULL) {
894				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
895				    BUS_DMASYNC_POSTREAD);
896				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
897				m_freem(rxp->rx_mbuf);
898			}
899			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
900		}
901		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
902		bus_dma_tag_destroy(sc->fxp_mtag);
903	}
904	if (sc->fxp_stag) {
905		for (i = 0; i < FXP_NTXCB; i++) {
906			txp = &sc->fxp_desc.tx_list[i];
907			if (txp->tx_mbuf != NULL) {
908				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
909				    BUS_DMASYNC_POSTWRITE);
910				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
911				m_freem(txp->tx_mbuf);
912			}
913			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
914		}
915		bus_dma_tag_destroy(sc->fxp_stag);
916	}
917	if (sc->cbl_tag)
918		bus_dma_tag_destroy(sc->cbl_tag);
919	if (sc->mcs_tag)
920		bus_dma_tag_destroy(sc->mcs_tag);
921
922	mtx_destroy(&sc->sc_mtx);
923}
924
925/*
926 * Detach interface.
927 */
928static int
929fxp_detach(device_t dev)
930{
931	struct fxp_softc *sc = device_get_softc(dev);
932	int s;
933
934	FXP_LOCK(sc);
935	s = splimp();
936
937	sc->suspended = 1;	/* Do same thing as we do for suspend */
938	/*
939	 * Close down routes etc.
940	 */
941	ether_ifdetach(&sc->arpcom.ac_if);
942
943	/*
944	 * Stop DMA and drop transmit queue, but disable interrupts first.
945	 */
946	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
947	fxp_stop(sc);
948	FXP_UNLOCK(sc);
949
950	/*
951	 * Unhook interrupt before dropping lock. This is to prevent
952	 * races with fxp_intr().
953	 */
954	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
955	sc->ih = NULL;
956
957	splx(s);
958
959	/* Release our allocated resources. */
960	fxp_release(sc);
961	return (0);
962}
963
964/*
965 * Device shutdown routine. Called at system shutdown after sync. The
966 * main purpose of this routine is to shut off receiver DMA so that
967 * kernel memory doesn't get clobbered during warmboot.
968 */
969static int
970fxp_shutdown(device_t dev)
971{
972	/*
973	 * Make sure that DMA is disabled prior to reboot. Not doing
974	 * do could allow DMA to corrupt kernel memory during the
975	 * reboot before the driver initializes.
976	 */
977	fxp_stop((struct fxp_softc *) device_get_softc(dev));
978	return (0);
979}
980
981/*
982 * Device suspend routine.  Stop the interface and save some PCI
983 * settings in case the BIOS doesn't restore them properly on
984 * resume.
985 */
986static int
987fxp_suspend(device_t dev)
988{
989	struct fxp_softc *sc = device_get_softc(dev);
990	int i, s;
991
992	FXP_LOCK(sc);
993	s = splimp();
994
995	fxp_stop(sc);
996
997	for (i = 0; i < 5; i++)
998		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
999	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1000	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1001	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1002	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1003
1004	sc->suspended = 1;
1005
1006	FXP_UNLOCK(sc);
1007	splx(s);
1008	return (0);
1009}
1010
1011/*
1012 * Device resume routine.  Restore some PCI settings in case the BIOS
1013 * doesn't, re-enable busmastering, and restart the interface if
1014 * appropriate.
1015 */
1016static int
1017fxp_resume(device_t dev)
1018{
1019	struct fxp_softc *sc = device_get_softc(dev);
1020	struct ifnet *ifp = &sc->sc_if;
1021	u_int16_t pci_command;
1022	int i, s;
1023
1024	FXP_LOCK(sc);
1025	s = splimp();
1026#ifndef BURN_BRIDGES
1027	fxp_powerstate_d0(dev);
1028#endif
1029	/* better way to do this? */
1030	for (i = 0; i < 5; i++)
1031		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1032	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1033	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1034	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1035	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1036
1037	/* reenable busmastering */
1038	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1039	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1040	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1041
1042	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1043	DELAY(10);
1044
1045	/* reinitialize interface if necessary */
1046	if (ifp->if_flags & IFF_UP)
1047		fxp_init_body(sc);
1048
1049	sc->suspended = 0;
1050
1051	FXP_UNLOCK(sc);
1052	splx(s);
1053	return (0);
1054}
1055
1056static void
1057fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1058{
1059	u_int16_t reg;
1060	int x;
1061
1062	/*
1063	 * Shift in data.
1064	 */
1065	for (x = 1 << (length - 1); x; x >>= 1) {
1066		if (data & x)
1067			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1068		else
1069			reg = FXP_EEPROM_EECS;
1070		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1071		DELAY(1);
1072		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1073		DELAY(1);
1074		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1075		DELAY(1);
1076	}
1077}
1078
1079/*
1080 * Read from the serial EEPROM. Basically, you manually shift in
1081 * the read opcode (one bit at a time) and then shift in the address,
1082 * and then you shift out the data (all of this one bit at a time).
1083 * The word size is 16 bits, so you have to provide the address for
1084 * every 16 bits of data.
1085 */
1086static u_int16_t
1087fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1088{
1089	u_int16_t reg, data;
1090	int x;
1091
1092	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1093	/*
1094	 * Shift in read opcode.
1095	 */
1096	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1097	/*
1098	 * Shift in address.
1099	 */
1100	data = 0;
1101	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1102		if (offset & x)
1103			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1104		else
1105			reg = FXP_EEPROM_EECS;
1106		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1107		DELAY(1);
1108		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1109		DELAY(1);
1110		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1111		DELAY(1);
1112		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1113		data++;
1114		if (autosize && reg == 0) {
1115			sc->eeprom_size = data;
1116			break;
1117		}
1118	}
1119	/*
1120	 * Shift out data.
1121	 */
1122	data = 0;
1123	reg = FXP_EEPROM_EECS;
1124	for (x = 1 << 15; x; x >>= 1) {
1125		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1126		DELAY(1);
1127		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1128			data |= x;
1129		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1130		DELAY(1);
1131	}
1132	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1133	DELAY(1);
1134
1135	return (data);
1136}
1137
1138static void
1139fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1140{
1141	int i;
1142
1143	/*
1144	 * Erase/write enable.
1145	 */
1146	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1147	fxp_eeprom_shiftin(sc, 0x4, 3);
1148	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1149	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1150	DELAY(1);
1151	/*
1152	 * Shift in write opcode, address, data.
1153	 */
1154	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1155	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1156	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1157	fxp_eeprom_shiftin(sc, data, 16);
1158	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1159	DELAY(1);
1160	/*
1161	 * Wait for EEPROM to finish up.
1162	 */
1163	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1164	DELAY(1);
1165	for (i = 0; i < 1000; i++) {
1166		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1167			break;
1168		DELAY(50);
1169	}
1170	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1171	DELAY(1);
1172	/*
1173	 * Erase/write disable.
1174	 */
1175	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1176	fxp_eeprom_shiftin(sc, 0x4, 3);
1177	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1178	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1179	DELAY(1);
1180}
1181
1182/*
1183 * From NetBSD:
1184 *
1185 * Figure out EEPROM size.
1186 *
1187 * 559's can have either 64-word or 256-word EEPROMs, the 558
1188 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1189 * talks about the existance of 16 to 256 word EEPROMs.
1190 *
1191 * The only known sizes are 64 and 256, where the 256 version is used
1192 * by CardBus cards to store CIS information.
1193 *
1194 * The address is shifted in msb-to-lsb, and after the last
1195 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1196 * after which follows the actual data. We try to detect this zero, by
1197 * probing the data-out bit in the EEPROM control register just after
1198 * having shifted in a bit. If the bit is zero, we assume we've
1199 * shifted enough address bits. The data-out should be tri-state,
1200 * before this, which should translate to a logical one.
1201 */
1202static void
1203fxp_autosize_eeprom(struct fxp_softc *sc)
1204{
1205
1206	/* guess maximum size of 256 words */
1207	sc->eeprom_size = 8;
1208
1209	/* autosize */
1210	(void) fxp_eeprom_getword(sc, 0, 1);
1211}
1212
1213static void
1214fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1215{
1216	int i;
1217
1218	for (i = 0; i < words; i++)
1219		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1220}
1221
1222static void
1223fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1224{
1225	int i;
1226
1227	for (i = 0; i < words; i++)
1228		fxp_eeprom_putword(sc, offset + i, data[i]);
1229}
1230
1231static void
1232fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1233    bus_size_t mapsize, int error)
1234{
1235	struct fxp_softc *sc;
1236	struct fxp_cb_tx *txp;
1237	int i;
1238
1239	if (error)
1240		return;
1241
1242	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1243
1244	sc = arg;
1245	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1246	for (i = 0; i < nseg; i++) {
1247		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1248		/*
1249		 * If this is an 82550/82551, then we're using extended
1250		 * TxCBs _and_ we're using checksum offload. This means
1251		 * that the TxCB is really an IPCB. One major difference
1252		 * between the two is that with plain extended TxCBs,
1253		 * the bottom half of the TxCB contains two entries from
1254		 * the TBD array, whereas IPCBs contain just one entry:
1255		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1256		 * checksum offload control bits. So to make things work
1257		 * right, we have to start filling in the TBD array
1258		 * starting from a different place depending on whether
1259		 * the chip is an 82550/82551 or not.
1260		 */
1261		if (sc->flags & FXP_FLAG_EXT_RFA) {
1262			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1263			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1264		} else {
1265			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1266			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1267		}
1268	}
1269	txp->tbd_number = nseg;
1270}
1271
1272/*
1273 * Grab the softc lock and call the real fxp_start_body() routine
1274 */
1275static void
1276fxp_start(struct ifnet *ifp)
1277{
1278	struct fxp_softc *sc = ifp->if_softc;
1279
1280	FXP_LOCK(sc);
1281	fxp_start_body(ifp);
1282	FXP_UNLOCK(sc);
1283}
1284
1285/*
1286 * Start packet transmission on the interface.
1287 * This routine must be called with the softc lock held, and is an
1288 * internal entry point only.
1289 */
1290static void
1291fxp_start_body(struct ifnet *ifp)
1292{
1293	struct fxp_softc *sc = ifp->if_softc;
1294	struct fxp_tx *txp;
1295	struct mbuf *mb_head;
1296	int error;
1297
1298	FXP_LOCK_ASSERT(sc, MA_OWNED);
1299	/*
1300	 * See if we need to suspend xmit until the multicast filter
1301	 * has been reprogrammed (which can only be done at the head
1302	 * of the command chain).
1303	 */
1304	if (sc->need_mcsetup) {
1305		return;
1306	}
1307
1308	txp = NULL;
1309
1310	/*
1311	 * We're finished if there is nothing more to add to the list or if
1312	 * we're all filled up with buffers to transmit.
1313	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1314	 *       a NOP command when needed.
1315	 */
1316	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1317
1318		/*
1319		 * Grab a packet to transmit.
1320		 */
1321		IF_DEQUEUE(&ifp->if_snd, mb_head);
1322
1323		/*
1324		 * Get pointer to next available tx desc.
1325		 */
1326		txp = sc->fxp_desc.tx_last->tx_next;
1327
1328		/*
1329		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1330		 * Ethernet Controller Family Open Source Software
1331		 * Developer Manual says:
1332		 *   Using software parsing is only allowed with legal
1333		 *   TCP/IP or UDP/IP packets.
1334		 *   ...
1335		 *   For all other datagrams, hardware parsing must
1336		 *   be used.
1337		 * Software parsing appears to truncate ICMP and
1338		 * fragmented UDP packets that contain one to three
1339		 * bytes in the second (and final) mbuf of the packet.
1340		 */
1341		if (sc->flags & FXP_FLAG_EXT_RFA)
1342			txp->tx_cb->ipcb_ip_activation_high =
1343			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1344
1345		/*
1346		 * Deal with TCP/IP checksum offload. Note that
1347		 * in order for TCP checksum offload to work,
1348		 * the pseudo header checksum must have already
1349		 * been computed and stored in the checksum field
1350		 * in the TCP header. The stack should have
1351		 * already done this for us.
1352		 */
1353
1354		if (mb_head->m_pkthdr.csum_flags) {
1355			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1356				txp->tx_cb->ipcb_ip_schedule =
1357				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1358				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1359					txp->tx_cb->ipcb_ip_schedule |=
1360					    FXP_IPCB_TCP_PACKET;
1361			}
1362#ifdef FXP_IP_CSUM_WAR
1363		/*
1364		 * XXX The 82550 chip appears to have trouble
1365		 * dealing with IP header checksums in very small
1366		 * datagrams, namely fragments from 1 to 3 bytes
1367		 * in size. For example, say you want to transmit
1368		 * a UDP packet of 1473 bytes. The packet will be
1369		 * fragmented over two IP datagrams, the latter
1370		 * containing only one byte of data. The 82550 will
1371		 * botch the header checksum on the 1-byte fragment.
1372		 * As long as the datagram contains 4 or more bytes
1373		 * of data, you're ok.
1374		 *
1375                 * The following code attempts to work around this
1376		 * problem: if the datagram is less than 38 bytes
1377		 * in size (14 bytes ether header, 20 bytes IP header,
1378		 * plus 4 bytes of data), we punt and compute the IP
1379		 * header checksum by hand. This workaround doesn't
1380		 * work very well, however, since it can be fooled
1381		 * by things like VLAN tags and IP options that make
1382		 * the header sizes/offsets vary.
1383		 */
1384
1385			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1386				if (mb_head->m_pkthdr.len < 38) {
1387					struct ip *ip;
1388					mb_head->m_data += ETHER_HDR_LEN;
1389					ip = mtod(mb_head, struct ip *);
1390					ip->ip_sum = in_cksum(mb_head,
1391					    ip->ip_hl << 2);
1392					mb_head->m_data -= ETHER_HDR_LEN;
1393				} else {
1394					txp->tx_cb->ipcb_ip_activation_high =
1395					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1396					txp->tx_cb->ipcb_ip_schedule |=
1397					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1398				}
1399			}
1400#endif
1401		}
1402
1403		/*
1404		 * Go through each of the mbufs in the chain and initialize
1405		 * the transmit buffer descriptors with the physical address
1406		 * and size of the mbuf.
1407		 */
1408		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1409		    mb_head, fxp_dma_map_txbuf, sc, 0);
1410
1411		if (error && error != EFBIG) {
1412			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1413			    error);
1414			m_freem(mb_head);
1415			break;
1416		}
1417
1418		if (error) {
1419			struct mbuf *mn;
1420
1421			/*
1422			 * We ran out of segments. We have to recopy this
1423			 * mbuf chain first. Bail out if we can't get the
1424			 * new buffers.
1425			 */
1426			mn = m_defrag(mb_head, M_DONTWAIT);
1427			if (mn == NULL) {
1428				m_freem(mb_head);
1429				break;
1430			} else {
1431				mb_head = mn;
1432			}
1433			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1434			    mb_head, fxp_dma_map_txbuf, sc, 0);
1435			if (error) {
1436				device_printf(sc->dev,
1437				    "can't map mbuf (error %d)\n", error);
1438				m_freem(mb_head);
1439				break;
1440			}
1441		}
1442
1443		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1444		    BUS_DMASYNC_PREWRITE);
1445
1446		txp->tx_mbuf = mb_head;
1447		txp->tx_cb->cb_status = 0;
1448		txp->tx_cb->byte_count = 0;
1449		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1450			txp->tx_cb->cb_command =
1451			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1452			    FXP_CB_COMMAND_S);
1453		} else {
1454			txp->tx_cb->cb_command =
1455			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1456			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1457			/*
1458			 * Set a 5 second timer just in case we don't hear
1459			 * from the card again.
1460			 */
1461			ifp->if_timer = 5;
1462		}
1463		txp->tx_cb->tx_threshold = tx_threshold;
1464
1465		/*
1466		 * Advance the end of list forward.
1467		 */
1468
1469#ifdef __alpha__
1470		/*
1471		 * On platforms which can't access memory in 16-bit
1472		 * granularities, we must prevent the card from DMA'ing
1473		 * up the status while we update the command field.
1474		 * This could cause us to overwrite the completion status.
1475		 * XXX This is probably bogus and we're _not_ looking
1476		 * for atomicity here.
1477		 */
1478		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1479		    htole16(FXP_CB_COMMAND_S));
1480#else
1481		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1482		    htole16(~FXP_CB_COMMAND_S);
1483#endif /*__alpha__*/
1484		sc->fxp_desc.tx_last = txp;
1485
1486		/*
1487		 * Advance the beginning of the list forward if there are
1488		 * no other packets queued (when nothing is queued, tx_first
1489		 * sits on the last TxCB that was sent out).
1490		 */
1491		if (sc->tx_queued == 0)
1492			sc->fxp_desc.tx_first = txp;
1493
1494		sc->tx_queued++;
1495
1496		/*
1497		 * Pass packet to bpf if there is a listener.
1498		 */
1499		BPF_MTAP(ifp, mb_head);
1500	}
1501	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1502
1503	/*
1504	 * We're finished. If we added to the list, issue a RESUME to get DMA
1505	 * going again if suspended.
1506	 */
1507	if (txp != NULL) {
1508		fxp_scb_wait(sc);
1509		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1510	}
1511}
1512
1513#ifdef DEVICE_POLLING
1514static poll_handler_t fxp_poll;
1515
1516static void
1517fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1518{
1519	struct fxp_softc *sc = ifp->if_softc;
1520	u_int8_t statack;
1521
1522	FXP_LOCK(sc);
1523	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1524		ether_poll_deregister(ifp);
1525		cmd = POLL_DEREGISTER;
1526	}
1527	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1528		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1529		FXP_UNLOCK(sc);
1530		return;
1531	}
1532	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1533	    FXP_SCB_STATACK_FR;
1534	if (cmd == POLL_AND_CHECK_STATUS) {
1535		u_int8_t tmp;
1536
1537		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1538		if (tmp == 0xff || tmp == 0) {
1539			FXP_UNLOCK(sc);
1540			return; /* nothing to do */
1541		}
1542		tmp &= ~statack;
1543		/* ack what we can */
1544		if (tmp != 0)
1545			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1546		statack |= tmp;
1547	}
1548	fxp_intr_body(sc, ifp, statack, count);
1549	FXP_UNLOCK(sc);
1550}
1551#endif /* DEVICE_POLLING */
1552
1553/*
1554 * Process interface interrupts.
1555 */
1556static void
1557fxp_intr(void *xsc)
1558{
1559	struct fxp_softc *sc = xsc;
1560	struct ifnet *ifp = &sc->sc_if;
1561	u_int8_t statack;
1562
1563	FXP_LOCK(sc);
1564	if (sc->suspended) {
1565		FXP_UNLOCK(sc);
1566		return;
1567	}
1568
1569#ifdef DEVICE_POLLING
1570	if (ifp->if_flags & IFF_POLLING) {
1571		FXP_UNLOCK(sc);
1572		return;
1573	}
1574	if ((ifp->if_capenable & IFCAP_POLLING) &&
1575	    ether_poll_register(fxp_poll, ifp)) {
1576		/* disable interrupts */
1577		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1578		FXP_UNLOCK(sc);
1579		fxp_poll(ifp, 0, 1);
1580		return;
1581	}
1582#endif
1583	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1584		/*
1585		 * It should not be possible to have all bits set; the
1586		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1587		 * all bits are set, this may indicate that the card has
1588		 * been physically ejected, so ignore it.
1589		 */
1590		if (statack == 0xff) {
1591			FXP_UNLOCK(sc);
1592			return;
1593		}
1594
1595		/*
1596		 * First ACK all the interrupts in this pass.
1597		 */
1598		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1599		fxp_intr_body(sc, ifp, statack, -1);
1600	}
1601	FXP_UNLOCK(sc);
1602}
1603
1604static void
1605fxp_txeof(struct fxp_softc *sc)
1606{
1607	struct fxp_tx *txp;
1608
1609	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1610	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1611	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1612	    txp = txp->tx_next) {
1613		if (txp->tx_mbuf != NULL) {
1614			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1615			    BUS_DMASYNC_POSTWRITE);
1616			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1617			m_freem(txp->tx_mbuf);
1618			txp->tx_mbuf = NULL;
1619			/* clear this to reset csum offload bits */
1620			txp->tx_cb->tbd[0].tb_addr = 0;
1621		}
1622		sc->tx_queued--;
1623	}
1624	sc->fxp_desc.tx_first = txp;
1625	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1626}
1627
1628static void
1629fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1630    int count)
1631{
1632	struct mbuf *m;
1633	struct fxp_rx *rxp;
1634	struct fxp_rfa *rfa;
1635	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1636
1637	FXP_LOCK_ASSERT(sc, MA_OWNED);
1638	if (rnr)
1639		sc->rnr++;
1640#ifdef DEVICE_POLLING
1641	/* Pick up a deferred RNR condition if `count' ran out last time. */
1642	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1643		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1644		rnr = 1;
1645	}
1646#endif
1647
1648	/*
1649	 * Free any finished transmit mbuf chains.
1650	 *
1651	 * Handle the CNA event likt a CXTNO event. It used to
1652	 * be that this event (control unit not ready) was not
1653	 * encountered, but it is now with the SMPng modifications.
1654	 * The exact sequence of events that occur when the interface
1655	 * is brought up are different now, and if this event
1656	 * goes unhandled, the configuration/rxfilter setup sequence
1657	 * can stall for several seconds. The result is that no
1658	 * packets go out onto the wire for about 5 to 10 seconds
1659	 * after the interface is ifconfig'ed for the first time.
1660	 */
1661	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1662		fxp_txeof(sc);
1663
1664		ifp->if_timer = 0;
1665		if (sc->tx_queued == 0) {
1666			if (sc->need_mcsetup)
1667				fxp_mc_setup(sc);
1668		}
1669		/*
1670		 * Try to start more packets transmitting.
1671		 */
1672		if (ifp->if_snd.ifq_head != NULL)
1673			fxp_start_body(ifp);
1674	}
1675
1676	/*
1677	 * Just return if nothing happened on the receive side.
1678	 */
1679	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1680		return;
1681
1682	/*
1683	 * Process receiver interrupts. If a no-resource (RNR)
1684	 * condition exists, get whatever packets we can and
1685	 * re-start the receiver.
1686	 *
1687	 * When using polling, we do not process the list to completion,
1688	 * so when we get an RNR interrupt we must defer the restart
1689	 * until we hit the last buffer with the C bit set.
1690	 * If we run out of cycles and rfa_headm has the C bit set,
1691	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1692	 * that the info will be used in the subsequent polling cycle.
1693	 */
1694	for (;;) {
1695		rxp = sc->fxp_desc.rx_head;
1696		m = rxp->rx_mbuf;
1697		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1698		    RFA_ALIGNMENT_FUDGE);
1699		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1700		    BUS_DMASYNC_POSTREAD);
1701
1702#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1703		if (count >= 0 && count-- == 0) {
1704			if (rnr) {
1705				/* Defer RNR processing until the next time. */
1706				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1707				rnr = 0;
1708			}
1709			break;
1710		}
1711#endif /* DEVICE_POLLING */
1712
1713		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1714			break;
1715
1716		/*
1717		 * Advance head forward.
1718		 */
1719		sc->fxp_desc.rx_head = rxp->rx_next;
1720
1721		/*
1722		 * Add a new buffer to the receive chain.
1723		 * If this fails, the old buffer is recycled
1724		 * instead.
1725		 */
1726		if (fxp_add_rfabuf(sc, rxp) == 0) {
1727			int total_len;
1728
1729			/*
1730			 * Fetch packet length (the top 2 bits of
1731			 * actual_size are flags set by the controller
1732			 * upon completion), and drop the packet in case
1733			 * of bogus length or CRC errors.
1734			 */
1735			total_len = le16toh(rfa->actual_size) & 0x3fff;
1736			if (total_len < sizeof(struct ether_header) ||
1737			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1738				sc->rfa_size ||
1739			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1740				m_freem(m);
1741				continue;
1742			}
1743
1744                        /* Do IP checksum checking. */
1745			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1746				if (rfa->rfax_csum_sts &
1747				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1748					m->m_pkthdr.csum_flags |=
1749					    CSUM_IP_CHECKED;
1750				if (rfa->rfax_csum_sts &
1751				    FXP_RFDX_CS_IP_CSUM_VALID)
1752					m->m_pkthdr.csum_flags |=
1753					    CSUM_IP_VALID;
1754				if ((rfa->rfax_csum_sts &
1755				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1756				    (rfa->rfax_csum_sts &
1757				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1758					m->m_pkthdr.csum_flags |=
1759					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1760					m->m_pkthdr.csum_data = 0xffff;
1761				}
1762			}
1763
1764			m->m_pkthdr.len = m->m_len = total_len;
1765			m->m_pkthdr.rcvif = ifp;
1766
1767			/*
1768			 * Drop locks before calling if_input() since it
1769			 * may re-enter fxp_start() in the netisr case.
1770			 * This would result in a lock reversal.  Better
1771			 * performance might be obtained by chaining all
1772			 * packets received, dropping the lock, and then
1773			 * calling if_input() on each one.
1774			 */
1775			FXP_UNLOCK(sc);
1776			(*ifp->if_input)(ifp, m);
1777			FXP_LOCK(sc);
1778		}
1779	}
1780	if (rnr) {
1781		fxp_scb_wait(sc);
1782		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1783		    sc->fxp_desc.rx_head->rx_addr);
1784		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1785	}
1786}
1787
1788/*
1789 * Update packet in/out/collision statistics. The i82557 doesn't
1790 * allow you to access these counters without doing a fairly
1791 * expensive DMA to get _all_ of the statistics it maintains, so
1792 * we do this operation here only once per second. The statistics
1793 * counters in the kernel are updated from the previous dump-stats
1794 * DMA and then a new dump-stats DMA is started. The on-chip
1795 * counters are zeroed when the DMA completes. If we can't start
1796 * the DMA immediately, we don't wait - we just prepare to read
1797 * them again next time.
1798 */
1799static void
1800fxp_tick(void *xsc)
1801{
1802	struct fxp_softc *sc = xsc;
1803	struct ifnet *ifp = &sc->sc_if;
1804	struct fxp_stats *sp = sc->fxp_stats;
1805	int s;
1806
1807	FXP_LOCK(sc);
1808	s = splimp();
1809	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1810	ifp->if_opackets += le32toh(sp->tx_good);
1811	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1812	if (sp->rx_good) {
1813		ifp->if_ipackets += le32toh(sp->rx_good);
1814		sc->rx_idle_secs = 0;
1815	} else {
1816		/*
1817		 * Receiver's been idle for another second.
1818		 */
1819		sc->rx_idle_secs++;
1820	}
1821	ifp->if_ierrors +=
1822	    le32toh(sp->rx_crc_errors) +
1823	    le32toh(sp->rx_alignment_errors) +
1824	    le32toh(sp->rx_rnr_errors) +
1825	    le32toh(sp->rx_overrun_errors);
1826	/*
1827	 * If any transmit underruns occured, bump up the transmit
1828	 * threshold by another 512 bytes (64 * 8).
1829	 */
1830	if (sp->tx_underruns) {
1831		ifp->if_oerrors += le32toh(sp->tx_underruns);
1832		if (tx_threshold < 192)
1833			tx_threshold += 64;
1834	}
1835
1836	/*
1837	 * Release any xmit buffers that have completed DMA. This isn't
1838	 * strictly necessary to do here, but it's advantagous for mbufs
1839	 * with external storage to be released in a timely manner rather
1840	 * than being defered for a potentially long time. This limits
1841	 * the delay to a maximum of one second.
1842	 */
1843	fxp_txeof(sc);
1844
1845	/*
1846	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1847	 * then assume the receiver has locked up and attempt to clear
1848	 * the condition by reprogramming the multicast filter. This is
1849	 * a work-around for a bug in the 82557 where the receiver locks
1850	 * up if it gets certain types of garbage in the syncronization
1851	 * bits prior to the packet header. This bug is supposed to only
1852	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1853	 * mode as well (perhaps due to a 10/100 speed transition).
1854	 */
1855	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1856		sc->rx_idle_secs = 0;
1857		fxp_mc_setup(sc);
1858	}
1859	/*
1860	 * If there is no pending command, start another stats
1861	 * dump. Otherwise punt for now.
1862	 */
1863	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1864		/*
1865		 * Start another stats dump.
1866		 */
1867		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1868		    BUS_DMASYNC_PREREAD);
1869		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1870	} else {
1871		/*
1872		 * A previous command is still waiting to be accepted.
1873		 * Just zero our copy of the stats and wait for the
1874		 * next timer event to update them.
1875		 */
1876		sp->tx_good = 0;
1877		sp->tx_underruns = 0;
1878		sp->tx_total_collisions = 0;
1879
1880		sp->rx_good = 0;
1881		sp->rx_crc_errors = 0;
1882		sp->rx_alignment_errors = 0;
1883		sp->rx_rnr_errors = 0;
1884		sp->rx_overrun_errors = 0;
1885	}
1886	if (sc->miibus != NULL)
1887		mii_tick(device_get_softc(sc->miibus));
1888
1889	/*
1890	 * Schedule another timeout one second from now.
1891	 */
1892	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1893	FXP_UNLOCK(sc);
1894	splx(s);
1895}
1896
1897/*
1898 * Stop the interface. Cancels the statistics updater and resets
1899 * the interface.
1900 */
1901static void
1902fxp_stop(struct fxp_softc *sc)
1903{
1904	struct ifnet *ifp = &sc->sc_if;
1905	struct fxp_tx *txp;
1906	int i;
1907
1908	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1909	ifp->if_timer = 0;
1910
1911#ifdef DEVICE_POLLING
1912	ether_poll_deregister(ifp);
1913#endif
1914	/*
1915	 * Cancel stats updater.
1916	 */
1917	callout_stop(&sc->stat_ch);
1918
1919	/*
1920	 * Issue software reset, which also unloads the microcode.
1921	 */
1922	sc->flags &= ~FXP_FLAG_UCODE;
1923	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1924	DELAY(50);
1925
1926	/*
1927	 * Release any xmit buffers.
1928	 */
1929	txp = sc->fxp_desc.tx_list;
1930	if (txp != NULL) {
1931		for (i = 0; i < FXP_NTXCB; i++) {
1932 			if (txp[i].tx_mbuf != NULL) {
1933				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1934				    BUS_DMASYNC_POSTWRITE);
1935				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1936				m_freem(txp[i].tx_mbuf);
1937				txp[i].tx_mbuf = NULL;
1938				/* clear this to reset csum offload bits */
1939				txp[i].tx_cb->tbd[0].tb_addr = 0;
1940			}
1941		}
1942	}
1943	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1944	sc->tx_queued = 0;
1945}
1946
1947/*
1948 * Watchdog/transmission transmit timeout handler. Called when a
1949 * transmission is started on the interface, but no interrupt is
1950 * received before the timeout. This usually indicates that the
1951 * card has wedged for some reason.
1952 */
1953static void
1954fxp_watchdog(struct ifnet *ifp)
1955{
1956	struct fxp_softc *sc = ifp->if_softc;
1957
1958	FXP_LOCK(sc);
1959	device_printf(sc->dev, "device timeout\n");
1960	ifp->if_oerrors++;
1961
1962	fxp_init_body(sc);
1963	FXP_UNLOCK(sc);
1964}
1965
1966/*
1967 * Acquire locks and then call the real initialization function.  This
1968 * is necessary because ether_ioctl() calls if_init() and this would
1969 * result in mutex recursion if the mutex was held.
1970 */
1971static void
1972fxp_init(void *xsc)
1973{
1974	struct fxp_softc *sc = xsc;
1975
1976	FXP_LOCK(sc);
1977	fxp_init_body(sc);
1978	FXP_UNLOCK(sc);
1979}
1980
1981/*
1982 * Perform device initialization. This routine must be called with the
1983 * softc lock held.
1984 */
1985static void
1986fxp_init_body(struct fxp_softc *sc)
1987{
1988	struct ifnet *ifp = &sc->sc_if;
1989	struct fxp_cb_config *cbp;
1990	struct fxp_cb_ias *cb_ias;
1991	struct fxp_cb_tx *tcbp;
1992	struct fxp_tx *txp;
1993	struct fxp_cb_mcs *mcsp;
1994	int i, prm, s;
1995
1996	FXP_LOCK_ASSERT(sc, MA_OWNED);
1997	s = splimp();
1998	/*
1999	 * Cancel any pending I/O
2000	 */
2001	fxp_stop(sc);
2002
2003	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2004
2005	/*
2006	 * Initialize base of CBL and RFA memory. Loading with zero
2007	 * sets it up for regular linear addressing.
2008	 */
2009	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2010	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2011
2012	fxp_scb_wait(sc);
2013	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2014
2015	/*
2016	 * Initialize base of dump-stats buffer.
2017	 */
2018	fxp_scb_wait(sc);
2019	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2020	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2021	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2022
2023	/*
2024	 * Attempt to load microcode if requested.
2025	 */
2026	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2027		fxp_load_ucode(sc);
2028
2029	/*
2030	 * Initialize the multicast address list.
2031	 */
2032	if (fxp_mc_addrs(sc)) {
2033		mcsp = sc->mcsp;
2034		mcsp->cb_status = 0;
2035		mcsp->cb_command =
2036		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2037		mcsp->link_addr = 0xffffffff;
2038		/*
2039	 	 * Start the multicast setup command.
2040		 */
2041		fxp_scb_wait(sc);
2042		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2043		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2044		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2045		/* ...and wait for it to complete. */
2046		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2047		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2048		    BUS_DMASYNC_POSTWRITE);
2049	}
2050
2051	/*
2052	 * We temporarily use memory that contains the TxCB list to
2053	 * construct the config CB. The TxCB list memory is rebuilt
2054	 * later.
2055	 */
2056	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2057
2058	/*
2059	 * This bcopy is kind of disgusting, but there are a bunch of must be
2060	 * zero and must be one bits in this structure and this is the easiest
2061	 * way to initialize them all to proper values.
2062	 */
2063	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2064
2065	cbp->cb_status =	0;
2066	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2067	    FXP_CB_COMMAND_EL);
2068	cbp->link_addr =	0xffffffff;	/* (no) next command */
2069	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2070	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2071	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2072	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2073	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2074	cbp->type_enable =	0;	/* actually reserved */
2075	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2076	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2077	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2078	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2079	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2080	cbp->late_scb =		0;	/* (don't) defer SCB update */
2081	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2082	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2083	cbp->ci_int =		1;	/* interrupt on CU idle */
2084	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2085	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2086	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2087	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2088	cbp->disc_short_rx =	!prm;	/* discard short packets */
2089	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2090	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2091	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2092	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2093	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2094	cbp->csma_dis =		0;	/* (don't) disable link */
2095	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2096	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2097	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2098	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2099	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2100	cbp->nsai =		1;	/* (don't) disable source addr insert */
2101	cbp->preamble_length =	2;	/* (7 byte) preamble */
2102	cbp->loopback =		0;	/* (don't) loopback */
2103	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2104	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2105	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2106	cbp->promiscuous =	prm;	/* promiscuous mode */
2107	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2108	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2109	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2110	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2111	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2112
2113	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2114	cbp->padding =		1;	/* (do) pad short tx packets */
2115	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2116	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2117	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2118	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2119					/* must set wake_en in PMCSR also */
2120	cbp->force_fdx =	0;	/* (don't) force full duplex */
2121	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2122	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2123	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2124	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2125
2126	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2127		/*
2128		 * The 82557 has no hardware flow control, the values
2129		 * below are the defaults for the chip.
2130		 */
2131		cbp->fc_delay_lsb =	0;
2132		cbp->fc_delay_msb =	0x40;
2133		cbp->pri_fc_thresh =	3;
2134		cbp->tx_fc_dis =	0;
2135		cbp->rx_fc_restop =	0;
2136		cbp->rx_fc_restart =	0;
2137		cbp->fc_filter =	0;
2138		cbp->pri_fc_loc =	1;
2139	} else {
2140		cbp->fc_delay_lsb =	0x1f;
2141		cbp->fc_delay_msb =	0x01;
2142		cbp->pri_fc_thresh =	3;
2143		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2144		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2145		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2146		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2147		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2148	}
2149
2150	/*
2151	 * Start the config command/DMA.
2152	 */
2153	fxp_scb_wait(sc);
2154	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2155	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2156	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2157	/* ...and wait for it to complete. */
2158	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2159	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2160
2161	/*
2162	 * Now initialize the station address. Temporarily use the TxCB
2163	 * memory area like we did above for the config CB.
2164	 */
2165	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2166	cb_ias->cb_status = 0;
2167	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2168	cb_ias->link_addr = 0xffffffff;
2169	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2170	    sizeof(sc->arpcom.ac_enaddr));
2171
2172	/*
2173	 * Start the IAS (Individual Address Setup) command/DMA.
2174	 */
2175	fxp_scb_wait(sc);
2176	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2177	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2178	/* ...and wait for it to complete. */
2179	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2180	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2181
2182	/*
2183	 * Initialize transmit control block (TxCB) list.
2184	 */
2185	txp = sc->fxp_desc.tx_list;
2186	tcbp = sc->fxp_desc.cbl_list;
2187	bzero(tcbp, FXP_TXCB_SZ);
2188	for (i = 0; i < FXP_NTXCB; i++) {
2189		txp[i].tx_cb = tcbp + i;
2190		txp[i].tx_mbuf = NULL;
2191		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2192		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2193		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2194		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2195		if (sc->flags & FXP_FLAG_EXT_TXCB)
2196			tcbp[i].tbd_array_addr =
2197			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2198		else
2199			tcbp[i].tbd_array_addr =
2200			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2201		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2202	}
2203	/*
2204	 * Set the suspend flag on the first TxCB and start the control
2205	 * unit. It will execute the NOP and then suspend.
2206	 */
2207	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2208	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2209	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2210	sc->tx_queued = 1;
2211
2212	fxp_scb_wait(sc);
2213	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2214
2215	/*
2216	 * Initialize receiver buffer area - RFA.
2217	 */
2218	fxp_scb_wait(sc);
2219	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2220	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2221
2222	/*
2223	 * Set current media.
2224	 */
2225	if (sc->miibus != NULL)
2226		mii_mediachg(device_get_softc(sc->miibus));
2227
2228	ifp->if_flags |= IFF_RUNNING;
2229	ifp->if_flags &= ~IFF_OACTIVE;
2230
2231	/*
2232	 * Enable interrupts.
2233	 */
2234#ifdef DEVICE_POLLING
2235	/*
2236	 * ... but only do that if we are not polling. And because (presumably)
2237	 * the default is interrupts on, we need to disable them explicitly!
2238	 */
2239	if ( ifp->if_flags & IFF_POLLING )
2240		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2241	else
2242#endif /* DEVICE_POLLING */
2243	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2244
2245	/*
2246	 * Start stats updater.
2247	 */
2248	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2249	splx(s);
2250}
2251
2252static int
2253fxp_serial_ifmedia_upd(struct ifnet *ifp)
2254{
2255
2256	return (0);
2257}
2258
2259static void
2260fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2261{
2262
2263	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2264}
2265
2266/*
2267 * Change media according to request.
2268 */
2269static int
2270fxp_ifmedia_upd(struct ifnet *ifp)
2271{
2272	struct fxp_softc *sc = ifp->if_softc;
2273	struct mii_data *mii;
2274
2275	mii = device_get_softc(sc->miibus);
2276	mii_mediachg(mii);
2277	return (0);
2278}
2279
2280/*
2281 * Notify the world which media we're using.
2282 */
2283static void
2284fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2285{
2286	struct fxp_softc *sc = ifp->if_softc;
2287	struct mii_data *mii;
2288
2289	mii = device_get_softc(sc->miibus);
2290	mii_pollstat(mii);
2291	ifmr->ifm_active = mii->mii_media_active;
2292	ifmr->ifm_status = mii->mii_media_status;
2293
2294	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2295		sc->cu_resume_bug = 1;
2296	else
2297		sc->cu_resume_bug = 0;
2298}
2299
2300/*
2301 * Add a buffer to the end of the RFA buffer list.
2302 * Return 0 if successful, 1 for failure. A failure results in
2303 * adding the 'oldm' (if non-NULL) on to the end of the list -
2304 * tossing out its old contents and recycling it.
2305 * The RFA struct is stuck at the beginning of mbuf cluster and the
2306 * data pointer is fixed up to point just past it.
2307 */
2308static int
2309fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2310{
2311	struct mbuf *m;
2312	struct fxp_rfa *rfa, *p_rfa;
2313	struct fxp_rx *p_rx;
2314	bus_dmamap_t tmp_map;
2315	int error;
2316
2317	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2318	if (m == NULL)
2319		return (ENOBUFS);
2320
2321	/*
2322	 * Move the data pointer up so that the incoming data packet
2323	 * will be 32-bit aligned.
2324	 */
2325	m->m_data += RFA_ALIGNMENT_FUDGE;
2326
2327	/*
2328	 * Get a pointer to the base of the mbuf cluster and move
2329	 * data start past it.
2330	 */
2331	rfa = mtod(m, struct fxp_rfa *);
2332	m->m_data += sc->rfa_size;
2333	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2334
2335	rfa->rfa_status = 0;
2336	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2337	rfa->actual_size = 0;
2338
2339	/*
2340	 * Initialize the rest of the RFA.  Note that since the RFA
2341	 * is misaligned, we cannot store values directly.  We're thus
2342	 * using the le32enc() function which handles endianness and
2343	 * is also alignment-safe.
2344	 */
2345	le32enc(&rfa->link_addr, 0xffffffff);
2346	le32enc(&rfa->rbd_addr, 0xffffffff);
2347
2348	/* Map the RFA into DMA memory. */
2349	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2350	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2351	    &rxp->rx_addr, 0);
2352	if (error) {
2353		m_freem(m);
2354		return (error);
2355	}
2356
2357	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2358	tmp_map = sc->spare_map;
2359	sc->spare_map = rxp->rx_map;
2360	rxp->rx_map = tmp_map;
2361	rxp->rx_mbuf = m;
2362
2363	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2364	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2365
2366	/*
2367	 * If there are other buffers already on the list, attach this
2368	 * one to the end by fixing up the tail to point to this one.
2369	 */
2370	if (sc->fxp_desc.rx_head != NULL) {
2371		p_rx = sc->fxp_desc.rx_tail;
2372		p_rfa = (struct fxp_rfa *)
2373		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2374		p_rx->rx_next = rxp;
2375		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2376		p_rfa->rfa_control = 0;
2377		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2378		    BUS_DMASYNC_PREWRITE);
2379	} else {
2380		rxp->rx_next = NULL;
2381		sc->fxp_desc.rx_head = rxp;
2382	}
2383	sc->fxp_desc.rx_tail = rxp;
2384	return (0);
2385}
2386
2387static volatile int
2388fxp_miibus_readreg(device_t dev, int phy, int reg)
2389{
2390	struct fxp_softc *sc = device_get_softc(dev);
2391	int count = 10000;
2392	int value;
2393
2394	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2395	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2396
2397	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2398	    && count--)
2399		DELAY(10);
2400
2401	if (count <= 0)
2402		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2403
2404	return (value & 0xffff);
2405}
2406
2407static void
2408fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2409{
2410	struct fxp_softc *sc = device_get_softc(dev);
2411	int count = 10000;
2412
2413	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2414	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2415	    (value & 0xffff));
2416
2417	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2418	    count--)
2419		DELAY(10);
2420
2421	if (count <= 0)
2422		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2423}
2424
2425static int
2426fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2427{
2428	struct fxp_softc *sc = ifp->if_softc;
2429	struct ifreq *ifr = (struct ifreq *)data;
2430	struct mii_data *mii;
2431	int flag, mask, s, error = 0;
2432
2433	/*
2434	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2435	 * that by saying we're busy if the lock is already held.
2436	 */
2437	if (FXP_LOCKED(sc))
2438		return (EBUSY);
2439
2440	FXP_LOCK(sc);
2441	s = splimp();
2442
2443	switch (command) {
2444	case SIOCSIFFLAGS:
2445		if (ifp->if_flags & IFF_ALLMULTI)
2446			sc->flags |= FXP_FLAG_ALL_MCAST;
2447		else
2448			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2449
2450		/*
2451		 * If interface is marked up and not running, then start it.
2452		 * If it is marked down and running, stop it.
2453		 * XXX If it's up then re-initialize it. This is so flags
2454		 * such as IFF_PROMISC are handled.
2455		 */
2456		if (ifp->if_flags & IFF_UP) {
2457			fxp_init_body(sc);
2458		} else {
2459			if (ifp->if_flags & IFF_RUNNING)
2460				fxp_stop(sc);
2461		}
2462		break;
2463
2464	case SIOCADDMULTI:
2465	case SIOCDELMULTI:
2466		if (ifp->if_flags & IFF_ALLMULTI)
2467			sc->flags |= FXP_FLAG_ALL_MCAST;
2468		else
2469			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2470		/*
2471		 * Multicast list has changed; set the hardware filter
2472		 * accordingly.
2473		 */
2474		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2475			fxp_mc_setup(sc);
2476		/*
2477		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2478		 * again rather than else {}.
2479		 */
2480		if (sc->flags & FXP_FLAG_ALL_MCAST)
2481			fxp_init_body(sc);
2482		error = 0;
2483		break;
2484
2485	case SIOCSIFMEDIA:
2486	case SIOCGIFMEDIA:
2487		if (sc->miibus != NULL) {
2488			mii = device_get_softc(sc->miibus);
2489                        error = ifmedia_ioctl(ifp, ifr,
2490                            &mii->mii_media, command);
2491		} else {
2492                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2493		}
2494		break;
2495
2496	case SIOCSIFCAP:
2497		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2498		if (mask & IFCAP_POLLING)
2499			ifp->if_capenable ^= IFCAP_POLLING;
2500		if (mask & IFCAP_VLAN_MTU) {
2501			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2502			if (sc->revision != FXP_REV_82557)
2503				flag = FXP_FLAG_LONG_PKT_EN;
2504			else /* a hack to get long frames on the old chip */
2505				flag = FXP_FLAG_SAVE_BAD;
2506			sc->flags ^= flag;
2507			if (ifp->if_flags & IFF_UP)
2508				fxp_init_body(sc);
2509		}
2510		break;
2511
2512	default:
2513		/*
2514		 * ether_ioctl() will eventually call fxp_start() which
2515		 * will result in mutex recursion so drop it first.
2516		 */
2517		FXP_UNLOCK(sc);
2518		error = ether_ioctl(ifp, command, data);
2519	}
2520	if (FXP_LOCKED(sc))
2521		FXP_UNLOCK(sc);
2522	splx(s);
2523	return (error);
2524}
2525
2526/*
2527 * Fill in the multicast address list and return number of entries.
2528 */
2529static int
2530fxp_mc_addrs(struct fxp_softc *sc)
2531{
2532	struct fxp_cb_mcs *mcsp = sc->mcsp;
2533	struct ifnet *ifp = &sc->sc_if;
2534	struct ifmultiaddr *ifma;
2535	int nmcasts;
2536
2537	nmcasts = 0;
2538	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2539#if __FreeBSD_version < 500000
2540		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2541#else
2542		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2543#endif
2544			if (ifma->ifma_addr->sa_family != AF_LINK)
2545				continue;
2546			if (nmcasts >= MAXMCADDR) {
2547				sc->flags |= FXP_FLAG_ALL_MCAST;
2548				nmcasts = 0;
2549				break;
2550			}
2551			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2552			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2553			nmcasts++;
2554		}
2555	}
2556	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2557	return (nmcasts);
2558}
2559
2560/*
2561 * Program the multicast filter.
2562 *
2563 * We have an artificial restriction that the multicast setup command
2564 * must be the first command in the chain, so we take steps to ensure
2565 * this. By requiring this, it allows us to keep up the performance of
2566 * the pre-initialized command ring (esp. link pointers) by not actually
2567 * inserting the mcsetup command in the ring - i.e. its link pointer
2568 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2569 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2570 * lead into the regular TxCB ring when it completes.
2571 *
2572 * This function must be called at splimp.
2573 */
2574static void
2575fxp_mc_setup(struct fxp_softc *sc)
2576{
2577	struct fxp_cb_mcs *mcsp = sc->mcsp;
2578	struct ifnet *ifp = &sc->sc_if;
2579	struct fxp_tx *txp;
2580	int count;
2581
2582	FXP_LOCK_ASSERT(sc, MA_OWNED);
2583	/*
2584	 * If there are queued commands, we must wait until they are all
2585	 * completed. If we are already waiting, then add a NOP command
2586	 * with interrupt option so that we're notified when all commands
2587	 * have been completed - fxp_start() ensures that no additional
2588	 * TX commands will be added when need_mcsetup is true.
2589	 */
2590	if (sc->tx_queued) {
2591		/*
2592		 * need_mcsetup will be true if we are already waiting for the
2593		 * NOP command to be completed (see below). In this case, bail.
2594		 */
2595		if (sc->need_mcsetup)
2596			return;
2597		sc->need_mcsetup = 1;
2598
2599		/*
2600		 * Add a NOP command with interrupt so that we are notified
2601		 * when all TX commands have been processed.
2602		 */
2603		txp = sc->fxp_desc.tx_last->tx_next;
2604		txp->tx_mbuf = NULL;
2605		txp->tx_cb->cb_status = 0;
2606		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2607		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2608		/*
2609		 * Advance the end of list forward.
2610		 */
2611		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2612		    htole16(~FXP_CB_COMMAND_S);
2613		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2614		sc->fxp_desc.tx_last = txp;
2615		sc->tx_queued++;
2616		/*
2617		 * Issue a resume in case the CU has just suspended.
2618		 */
2619		fxp_scb_wait(sc);
2620		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2621		/*
2622		 * Set a 5 second timer just in case we don't hear from the
2623		 * card again.
2624		 */
2625		ifp->if_timer = 5;
2626
2627		return;
2628	}
2629	sc->need_mcsetup = 0;
2630
2631	/*
2632	 * Initialize multicast setup descriptor.
2633	 */
2634	mcsp->cb_status = 0;
2635	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2636	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2637	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2638	txp = &sc->fxp_desc.mcs_tx;
2639	txp->tx_mbuf = NULL;
2640	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2641	txp->tx_next = sc->fxp_desc.tx_list;
2642	(void) fxp_mc_addrs(sc);
2643	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2644	sc->tx_queued = 1;
2645
2646	/*
2647	 * Wait until command unit is not active. This should never
2648	 * be the case when nothing is queued, but make sure anyway.
2649	 */
2650	count = 100;
2651	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2652	    FXP_SCB_CUS_ACTIVE && --count)
2653		DELAY(10);
2654	if (count == 0) {
2655		device_printf(sc->dev, "command queue timeout\n");
2656		return;
2657	}
2658
2659	/*
2660	 * Start the multicast setup command.
2661	 */
2662	fxp_scb_wait(sc);
2663	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2664	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2665	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2666
2667	ifp->if_timer = 2;
2668	return;
2669}
2670
2671static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2672static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2673static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2674static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2675static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2676static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2677
2678#define UCODE(x)	x, sizeof(x)
2679
2680struct ucode {
2681	u_int32_t	revision;
2682	u_int32_t	*ucode;
2683	int		length;
2684	u_short		int_delay_offset;
2685	u_short		bundle_max_offset;
2686} ucode_table[] = {
2687	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2688	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2689	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2690	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2691	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2692	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2693	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2694	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2695	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2696	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2697	{ 0, NULL, 0, 0, 0 }
2698};
2699
2700static void
2701fxp_load_ucode(struct fxp_softc *sc)
2702{
2703	struct ucode *uc;
2704	struct fxp_cb_ucode *cbp;
2705
2706	for (uc = ucode_table; uc->ucode != NULL; uc++)
2707		if (sc->revision == uc->revision)
2708			break;
2709	if (uc->ucode == NULL)
2710		return;
2711	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2712	cbp->cb_status = 0;
2713	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2714	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2715	memcpy(cbp->ucode, uc->ucode, uc->length);
2716	if (uc->int_delay_offset)
2717		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2718		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2719	if (uc->bundle_max_offset)
2720		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2721		    htole16(sc->tunable_bundle_max);
2722	/*
2723	 * Download the ucode to the chip.
2724	 */
2725	fxp_scb_wait(sc);
2726	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2727	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2728	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2729	/* ...and wait for it to complete. */
2730	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2731	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2732	device_printf(sc->dev,
2733	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2734	    sc->tunable_int_delay,
2735	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2736	sc->flags |= FXP_FLAG_UCODE;
2737}
2738
2739static int
2740sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2741{
2742	int error, value;
2743
2744	value = *(int *)arg1;
2745	error = sysctl_handle_int(oidp, &value, 0, req);
2746	if (error || !req->newptr)
2747		return (error);
2748	if (value < low || value > high)
2749		return (EINVAL);
2750	*(int *)arg1 = value;
2751	return (0);
2752}
2753
2754/*
2755 * Interrupt delay is expressed in microseconds, a multiplier is used
2756 * to convert this to the appropriate clock ticks before using.
2757 */
2758static int
2759sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2760{
2761	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2762}
2763
2764static int
2765sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2766{
2767	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2768}
2769