if_fxp.c revision 129553
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 129553 2004-05-21 18:11:38Z yar $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/sysctl.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#include <net/bpf.h>
51#include <sys/sockio.h>
52#include <sys/bus.h>
53#include <machine/bus.h>
54#include <sys/rman.h>
55#include <machine/resource.h>
56
57#include <net/ethernet.h>
58#include <net/if_arp.h>
59
60#include <machine/clock.h>	/* for DELAY */
61
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#ifdef FXP_IP_CSUM_WAR
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <machine/in_cksum.h>
70#endif
71
72#include <dev/pci/pcivar.h>
73#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74
75#include <dev/mii/mii.h>
76#include <dev/mii/miivar.h>
77
78#include <dev/fxp/if_fxpreg.h>
79#include <dev/fxp/if_fxpvar.h>
80#include <dev/fxp/rcvbundl.h>
81
82MODULE_DEPEND(fxp, pci, 1, 1, 1);
83MODULE_DEPEND(fxp, ether, 1, 1, 1);
84MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85#include "miibus_if.h"
86
87/*
88 * NOTE!  On the Alpha, we have an alignment constraint.  The
89 * card DMAs the packet immediately following the RFA.  However,
90 * the first thing in the packet is a 14-byte Ethernet header.
91 * This means that the packet is misaligned.  To compensate,
92 * we actually offset the RFA 2 bytes into the cluster.  This
93 * alignes the packet after the Ethernet header at a 32-bit
94 * boundary.  HOWEVER!  This means that the RFA is misaligned!
95 */
96#define	RFA_ALIGNMENT_FUDGE	2
97
98/*
99 * Set initial transmit threshold at 64 (512 bytes). This is
100 * increased by 64 (512 bytes) at a time, to maximum of 192
101 * (1536 bytes), if an underrun occurs.
102 */
103static int tx_threshold = 64;
104
105/*
106 * The configuration byte map has several undefined fields which
107 * must be one or must be zero.  Set up a template for these bits
108 * only, (assuming a 82557 chip) leaving the actual configuration
109 * to fxp_init.
110 *
111 * See struct fxp_cb_config for the bit definitions.
112 */
113static u_char fxp_cb_config_template[] = {
114	0x0, 0x0,		/* cb_status */
115	0x0, 0x0,		/* cb_command */
116	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117	0x0,	/*  0 */
118	0x0,	/*  1 */
119	0x0,	/*  2 */
120	0x0,	/*  3 */
121	0x0,	/*  4 */
122	0x0,	/*  5 */
123	0x32,	/*  6 */
124	0x0,	/*  7 */
125	0x0,	/*  8 */
126	0x0,	/*  9 */
127	0x6,	/* 10 */
128	0x0,	/* 11 */
129	0x0,	/* 12 */
130	0x0,	/* 13 */
131	0xf2,	/* 14 */
132	0x48,	/* 15 */
133	0x0,	/* 16 */
134	0x40,	/* 17 */
135	0xf0,	/* 18 */
136	0x0,	/* 19 */
137	0x3f,	/* 20 */
138	0x5	/* 21 */
139};
140
141struct fxp_ident {
142	u_int16_t	devid;
143	int16_t		revid;		/* -1 matches anything */
144	char 		*name;
145};
146
147/*
148 * Claim various Intel PCI device identifiers for this driver.  The
149 * sub-vendor and sub-device field are extensively used to identify
150 * particular variants, but we don't currently differentiate between
151 * them.
152 */
153static struct fxp_ident fxp_ident_table[] = {
154    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
155    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
156    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
171    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
172    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
173    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190    { 0,	-1,	NULL },
191};
192
193#ifdef FXP_IP_CSUM_WAR
194#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
195#else
196#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
197#endif
198
199static int		fxp_probe(device_t dev);
200static int		fxp_attach(device_t dev);
201static int		fxp_detach(device_t dev);
202static int		fxp_shutdown(device_t dev);
203static int		fxp_suspend(device_t dev);
204static int		fxp_resume(device_t dev);
205
206static void		fxp_intr(void *xsc);
207static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
208			    u_int8_t statack, int count);
209static void 		fxp_init(void *xsc);
210static void 		fxp_init_body(struct fxp_softc *sc);
211static void 		fxp_tick(void *xsc);
212#ifndef BURN_BRIDGES
213static void		fxp_powerstate_d0(device_t dev);
214#endif
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static void		fxp_stop(struct fxp_softc *sc);
218static void 		fxp_release(struct fxp_softc *sc);
219static int		fxp_ioctl(struct ifnet *ifp, u_long command,
220			    caddr_t data);
221static void 		fxp_watchdog(struct ifnet *ifp);
222static int		fxp_add_rfabuf(struct fxp_softc *sc,
223    			    struct fxp_rx *rxp);
224static int		fxp_mc_addrs(struct fxp_softc *sc);
225static void		fxp_mc_setup(struct fxp_softc *sc);
226static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
227			    int autosize);
228static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
229			    u_int16_t data);
230static void		fxp_autosize_eeprom(struct fxp_softc *sc);
231static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
232			    int offset, int words);
233static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
234			    int offset, int words);
235static int		fxp_ifmedia_upd(struct ifnet *ifp);
236static void		fxp_ifmedia_sts(struct ifnet *ifp,
237			    struct ifmediareq *ifmr);
238static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
239static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
240			    struct ifmediareq *ifmr);
241static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
242static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
243			    int value);
244static void		fxp_load_ucode(struct fxp_softc *sc);
245static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
246			    int low, int high);
247static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
248static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
249static void 		fxp_scb_wait(struct fxp_softc *sc);
250static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
251static void		fxp_dma_wait(struct fxp_softc *sc,
252    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
253			    bus_dmamap_t map);
254
255static device_method_t fxp_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		fxp_probe),
258	DEVMETHOD(device_attach,	fxp_attach),
259	DEVMETHOD(device_detach,	fxp_detach),
260	DEVMETHOD(device_shutdown,	fxp_shutdown),
261	DEVMETHOD(device_suspend,	fxp_suspend),
262	DEVMETHOD(device_resume,	fxp_resume),
263
264	/* MII interface */
265	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
266	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
267
268	{ 0, 0 }
269};
270
271static driver_t fxp_driver = {
272	"fxp",
273	fxp_methods,
274	sizeof(struct fxp_softc),
275};
276
277static devclass_t fxp_devclass;
278
279DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
280DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
282
283static int fxp_rnr;
284SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
285
286static int fxp_noflow;
287SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
288TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
289
290/*
291 * Wait for the previous command to be accepted (but not necessarily
292 * completed).
293 */
294static void
295fxp_scb_wait(struct fxp_softc *sc)
296{
297	int i = 10000;
298
299	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
300		DELAY(2);
301	if (i == 0)
302		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
303		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
304		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
305		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
306		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
307}
308
309static void
310fxp_scb_cmd(struct fxp_softc *sc, int cmd)
311{
312
313	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
314		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
315		fxp_scb_wait(sc);
316	}
317	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
318}
319
320static void
321fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
322    bus_dma_tag_t dmat, bus_dmamap_t map)
323{
324	int i = 10000;
325
326	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
327	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
328		DELAY(2);
329		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
330	}
331	if (i == 0)
332		device_printf(sc->dev, "DMA timeout\n");
333}
334
335/*
336 * Return identification string if this device is ours.
337 */
338static int
339fxp_probe(device_t dev)
340{
341	u_int16_t devid;
342	u_int8_t revid;
343	struct fxp_ident *ident;
344
345	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
346		devid = pci_get_device(dev);
347		revid = pci_get_revid(dev);
348		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
349			if (ident->devid == devid &&
350			    (ident->revid == revid || ident->revid == -1)) {
351				device_set_desc(dev, ident->name);
352				return (0);
353			}
354		}
355	}
356	return (ENXIO);
357}
358
359#ifndef BURN_BRIDGES
360static void
361fxp_powerstate_d0(device_t dev)
362{
363#if __FreeBSD_version >= 430002
364	u_int32_t iobase, membase, irq;
365
366	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
367		/* Save important PCI config data. */
368		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
369		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
370		irq = pci_read_config(dev, PCIR_INTLINE, 4);
371
372		/* Reset the power state. */
373		device_printf(dev, "chip is in D%d power mode "
374		    "-- setting to D0\n", pci_get_powerstate(dev));
375
376		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
377
378		/* Restore PCI config data. */
379		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
380		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
381		pci_write_config(dev, PCIR_INTLINE, irq, 4);
382	}
383#endif
384}
385#endif
386
387static void
388fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
389{
390	u_int32_t *addr;
391
392	if (error)
393		return;
394
395	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
396	addr = arg;
397	*addr = segs->ds_addr;
398}
399
400static int
401fxp_attach(device_t dev)
402{
403	int error = 0;
404	struct fxp_softc *sc = device_get_softc(dev);
405	struct ifnet *ifp;
406	struct fxp_rx *rxp;
407	u_int32_t val;
408	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
409	int i, rid, m1, m2, prefer_iomap, maxtxseg;
410	int s, ipcbxmit_disable;
411
412	sc->dev = dev;
413	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
414	sysctl_ctx_init(&sc->sysctl_ctx);
415	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
416	    MTX_DEF);
417	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
418	    fxp_serial_ifmedia_sts);
419
420	s = splimp();
421
422	/*
423	 * Enable bus mastering.
424	 */
425	pci_enable_busmaster(dev);
426	val = pci_read_config(dev, PCIR_COMMAND, 2);
427#ifndef BURN_BRIDGES
428	fxp_powerstate_d0(dev);
429#endif
430	/*
431	 * Figure out which we should try first - memory mapping or i/o mapping?
432	 * We default to memory mapping. Then we accept an override from the
433	 * command line. Then we check to see which one is enabled.
434	 */
435	m1 = PCIM_CMD_MEMEN;
436	m2 = PCIM_CMD_PORTEN;
437	prefer_iomap = 0;
438	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
439	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
440		m1 = PCIM_CMD_PORTEN;
441		m2 = PCIM_CMD_MEMEN;
442	}
443
444	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
445	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
446	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
447	if (sc->mem == NULL) {
448		sc->rtp =
449		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
450		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
451		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
452                                            RF_ACTIVE);
453	}
454
455	if (!sc->mem) {
456		error = ENXIO;
457		goto fail;
458        }
459	if (bootverbose) {
460		device_printf(dev, "using %s space register mapping\n",
461		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
462	}
463
464	sc->sc_st = rman_get_bustag(sc->mem);
465	sc->sc_sh = rman_get_bushandle(sc->mem);
466
467	/*
468	 * Allocate our interrupt.
469	 */
470	rid = 0;
471	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
472				 RF_SHAREABLE | RF_ACTIVE);
473	if (sc->irq == NULL) {
474		device_printf(dev, "could not map interrupt\n");
475		error = ENXIO;
476		goto fail;
477	}
478
479	/*
480	 * Reset to a stable state.
481	 */
482	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
483	DELAY(10);
484
485	/*
486	 * Find out how large of an SEEPROM we have.
487	 */
488	fxp_autosize_eeprom(sc);
489
490	/*
491	 * Determine whether we must use the 503 serial interface.
492	 */
493	fxp_read_eeprom(sc, &data, 6, 1);
494	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
495	    (data & FXP_PHY_SERIAL_ONLY))
496		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
497
498	/*
499	 * Create the sysctl tree
500	 */
501	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
502	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
503	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
504	if (sc->sysctl_tree == NULL) {
505		error = ENXIO;
506		goto fail;
507	}
508	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
511	    "FXP driver receive interrupt microcode bundling delay");
512	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515	    "FXP driver receive interrupt microcode bundle size limit");
516
517	/*
518	 * Pull in device tunables.
519	 */
520	sc->tunable_int_delay = TUNABLE_INT_DELAY;
521	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
522	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
523	    "int_delay", &sc->tunable_int_delay);
524	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525	    "bundle_max", &sc->tunable_bundle_max);
526
527	/*
528	 * Find out the chip revision; lump all 82557 revs together.
529	 */
530	fxp_read_eeprom(sc, &data, 5, 1);
531	if ((data >> 8) == 1)
532		sc->revision = FXP_REV_82557;
533	else
534		sc->revision = pci_get_revid(dev);
535
536	/*
537	 * Enable workarounds for certain chip revision deficiencies.
538	 *
539	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
540	 * some systems based a normal 82559 design, have a defect where
541	 * the chip can cause a PCI protocol violation if it receives
542	 * a CU_RESUME command when it is entering the IDLE state.  The
543	 * workaround is to disable Dynamic Standby Mode, so the chip never
544	 * deasserts CLKRUN#, and always remains in an active state.
545	 *
546	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
547	 */
548	i = pci_get_device(dev);
549	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
550	    sc->revision >= FXP_REV_82559_A0) {
551		fxp_read_eeprom(sc, &data, 10, 1);
552		if (data & 0x02) {			/* STB enable */
553			u_int16_t cksum;
554			int i;
555
556			device_printf(dev,
557			    "Disabling dynamic standby mode in EEPROM\n");
558			data &= ~0x02;
559			fxp_write_eeprom(sc, &data, 10, 1);
560			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
561			cksum = 0;
562			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
563				fxp_read_eeprom(sc, &data, i, 1);
564				cksum += data;
565			}
566			i = (1 << sc->eeprom_size) - 1;
567			cksum = 0xBABA - cksum;
568			fxp_read_eeprom(sc, &data, i, 1);
569			fxp_write_eeprom(sc, &cksum, i, 1);
570			device_printf(dev,
571			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
572			    i, data, cksum);
573#if 1
574			/*
575			 * If the user elects to continue, try the software
576			 * workaround, as it is better than nothing.
577			 */
578			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
579#endif
580		}
581	}
582
583	/*
584	 * If we are not a 82557 chip, we can enable extended features.
585	 */
586	if (sc->revision != FXP_REV_82557) {
587		/*
588		 * If MWI is enabled in the PCI configuration, and there
589		 * is a valid cacheline size (8 or 16 dwords), then tell
590		 * the board to turn on MWI.
591		 */
592		if (val & PCIM_CMD_MWRICEN &&
593		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
594			sc->flags |= FXP_FLAG_MWI_ENABLE;
595
596		/* turn on the extended TxCB feature */
597		sc->flags |= FXP_FLAG_EXT_TXCB;
598
599		/* enable reception of long frames for VLAN */
600		sc->flags |= FXP_FLAG_LONG_PKT_EN;
601	}
602
603	/*
604	 * Enable use of extended RFDs and TCBs for 82550
605	 * and later chips. Note: we need extended TXCB support
606	 * too, but that's already enabled by the code above.
607	 * Be careful to do this only on the right devices.
608	 *
609	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
610	 * truncate packets that end with an mbuf containing 1 to 3 bytes
611	 * when used with this feature enabled in the previous version of the
612	 * driver.  This problem appears to be fixed now that the driver
613	 * always sets the hardware parse bit in the IPCB structure, which
614	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
615	 * Source Software Developer Manual" says is necessary in the
616	 * cases where packet truncation was observed.
617	 *
618	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
619	 * allows this feature to be disabled at boot time.
620	 *
621	 * If fxp is not compiled into the kernel, this feature may also
622	 * be disabled at run time:
623	 *    # kldunload fxp
624	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
625	 *    # kldload fxp
626	 */
627
628	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
629	    &ipcbxmit_disable) != 0)
630		ipcbxmit_disable = 0;
631	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
632	    sc->revision == FXP_REV_82550_C)) {
633		sc->rfa_size = sizeof (struct fxp_rfa);
634		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
635		sc->flags |= FXP_FLAG_EXT_RFA;
636	} else {
637		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
638		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
639	}
640
641	/*
642	 * Allocate DMA tags and DMA safe memory.
643	 */
644	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
645	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
646	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
647	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
648	if (error) {
649		device_printf(dev, "could not allocate dma tag\n");
650		goto fail;
651	}
652
653	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
654	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
655	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
656	    &sc->fxp_stag);
657	if (error) {
658		device_printf(dev, "could not allocate dma tag\n");
659		goto fail;
660	}
661
662	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
663	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
664	if (error)
665		goto fail;
666	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
667	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
668	if (error) {
669		device_printf(dev, "could not map the stats buffer\n");
670		goto fail;
671	}
672
673	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
675	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
676	if (error) {
677		device_printf(dev, "could not allocate dma tag\n");
678		goto fail;
679	}
680
681	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
682	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
683	if (error)
684		goto fail;
685
686	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
687	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
688	    &sc->fxp_desc.cbl_addr, 0);
689	if (error) {
690		device_printf(dev, "could not map DMA memory\n");
691		goto fail;
692	}
693
694	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
695	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
696	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
697	    &sc->mcs_tag);
698	if (error) {
699		device_printf(dev, "could not allocate dma tag\n");
700		goto fail;
701	}
702
703	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
704	    BUS_DMA_NOWAIT, &sc->mcs_map);
705	if (error)
706		goto fail;
707	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
708	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
709	if (error) {
710		device_printf(dev, "can't map the multicast setup command\n");
711		goto fail;
712	}
713
714	/*
715	 * Pre-allocate the TX DMA maps.
716	 */
717	for (i = 0; i < FXP_NTXCB; i++) {
718		error = bus_dmamap_create(sc->fxp_mtag, 0,
719		    &sc->fxp_desc.tx_list[i].tx_map);
720		if (error) {
721			device_printf(dev, "can't create DMA map for TX\n");
722			goto fail;
723		}
724	}
725	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726	if (error) {
727		device_printf(dev, "can't create spare DMA map\n");
728		goto fail;
729	}
730
731	/*
732	 * Pre-allocate our receive buffers.
733	 */
734	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735	for (i = 0; i < FXP_NRFABUFS; i++) {
736		rxp = &sc->fxp_desc.rx_list[i];
737		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738		if (error) {
739			device_printf(dev, "can't create DMA map for RX\n");
740			goto fail;
741		}
742		if (fxp_add_rfabuf(sc, rxp) != 0) {
743			error = ENOMEM;
744			goto fail;
745		}
746	}
747
748	/*
749	 * Read MAC address.
750	 */
751	fxp_read_eeprom(sc, myea, 0, 3);
752	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
753	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
754	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
755	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
756	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
757	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
758	if (bootverbose) {
759		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
760		    pci_get_vendor(dev), pci_get_device(dev),
761		    pci_get_subvendor(dev), pci_get_subdevice(dev),
762		    pci_get_revid(dev));
763		fxp_read_eeprom(sc, &data, 10, 1);
764		device_printf(dev, "Dynamic Standby mode is %s\n",
765		    data & 0x02 ? "enabled" : "disabled");
766	}
767
768	/*
769	 * If this is only a 10Mbps device, then there is no MII, and
770	 * the PHY will use a serial interface instead.
771	 *
772	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
773	 * doesn't have a programming interface of any sort.  The
774	 * media is sensed automatically based on how the link partner
775	 * is configured.  This is, in essence, manual configuration.
776	 */
777	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
778		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780	} else {
781		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782		    fxp_ifmedia_sts)) {
783	                device_printf(dev, "MII without any PHY!\n");
784			error = ENXIO;
785			goto fail;
786		}
787	}
788
789	ifp = &sc->arpcom.ac_if;
790	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
791	ifp->if_output = ether_output;
792	ifp->if_baudrate = 100000000;
793	ifp->if_init = fxp_init;
794	ifp->if_softc = sc;
795	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796	ifp->if_ioctl = fxp_ioctl;
797	ifp->if_start = fxp_start;
798	ifp->if_watchdog = fxp_watchdog;
799
800	/* Enable checksum offload for 82550 or better chips */
801	if (sc->flags & FXP_FLAG_EXT_RFA) {
802		ifp->if_hwassist = FXP_CSUM_FEATURES;
803		ifp->if_capabilities = IFCAP_HWCSUM;
804		ifp->if_capenable = ifp->if_capabilities;
805	}
806
807#ifdef DEVICE_POLLING
808	/* Inform the world we support polling. */
809	ifp->if_capabilities |= IFCAP_POLLING;
810	ifp->if_capenable |= IFCAP_POLLING;
811#endif
812
813	/*
814	 * Attach the interface.
815	 */
816	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
817
818	/*
819	 * Tell the upper layer(s) we support long frames.
820	 */
821	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
822	ifp->if_capabilities |= IFCAP_VLAN_MTU;
823	ifp->if_capenable |= IFCAP_VLAN_MTU;
824
825	/*
826	 * Let the system queue as many packets as we have available
827	 * TX descriptors.
828	 */
829	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
830
831	/*
832	 * Hook our interrupt after all initialization is complete.
833	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
834	 * however, ifp and its functions are not fully locked so MPSAFE
835	 * should not be used unless you can handle potential data loss.
836	 */
837	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
838			       fxp_intr, sc, &sc->ih);
839	if (error) {
840		device_printf(dev, "could not setup irq\n");
841		ether_ifdetach(&sc->arpcom.ac_if);
842		goto fail;
843	}
844
845fail:
846	splx(s);
847	if (error)
848		fxp_release(sc);
849	return (error);
850}
851
852/*
853 * Release all resources.  The softc lock should not be held and the
854 * interrupt should already be torn down.
855 */
856static void
857fxp_release(struct fxp_softc *sc)
858{
859	struct fxp_rx *rxp;
860	struct fxp_tx *txp;
861	int i;
862
863	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
864	if (sc->ih)
865		panic("fxp_release() called with intr handle still active");
866	if (sc->miibus)
867		device_delete_child(sc->dev, sc->miibus);
868	bus_generic_detach(sc->dev);
869	ifmedia_removeall(&sc->sc_media);
870	if (sc->fxp_desc.cbl_list) {
871		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
872		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
873		    sc->cbl_map);
874	}
875	if (sc->fxp_stats) {
876		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
877		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
878	}
879	if (sc->mcsp) {
880		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
881		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
882	}
883	if (sc->irq)
884		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
885	if (sc->mem)
886		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
887	if (sc->fxp_mtag) {
888		for (i = 0; i < FXP_NRFABUFS; i++) {
889			rxp = &sc->fxp_desc.rx_list[i];
890			if (rxp->rx_mbuf != NULL) {
891				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
892				    BUS_DMASYNC_POSTREAD);
893				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
894				m_freem(rxp->rx_mbuf);
895			}
896			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
897		}
898		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
899		bus_dma_tag_destroy(sc->fxp_mtag);
900	}
901	if (sc->fxp_stag) {
902		for (i = 0; i < FXP_NTXCB; i++) {
903			txp = &sc->fxp_desc.tx_list[i];
904			if (txp->tx_mbuf != NULL) {
905				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
906				    BUS_DMASYNC_POSTWRITE);
907				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
908				m_freem(txp->tx_mbuf);
909			}
910			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
911		}
912		bus_dma_tag_destroy(sc->fxp_stag);
913	}
914	if (sc->cbl_tag)
915		bus_dma_tag_destroy(sc->cbl_tag);
916	if (sc->mcs_tag)
917		bus_dma_tag_destroy(sc->mcs_tag);
918
919        sysctl_ctx_free(&sc->sysctl_ctx);
920
921	mtx_destroy(&sc->sc_mtx);
922}
923
924/*
925 * Detach interface.
926 */
927static int
928fxp_detach(device_t dev)
929{
930	struct fxp_softc *sc = device_get_softc(dev);
931	int s;
932
933	FXP_LOCK(sc);
934	s = splimp();
935
936	sc->suspended = 1;	/* Do same thing as we do for suspend */
937	/*
938	 * Close down routes etc.
939	 */
940	ether_ifdetach(&sc->arpcom.ac_if);
941
942	/*
943	 * Stop DMA and drop transmit queue, but disable interrupts first.
944	 */
945	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
946	fxp_stop(sc);
947	FXP_UNLOCK(sc);
948
949	/*
950	 * Unhook interrupt before dropping lock. This is to prevent
951	 * races with fxp_intr().
952	 */
953	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
954	sc->ih = NULL;
955
956	splx(s);
957
958	/* Release our allocated resources. */
959	fxp_release(sc);
960	return (0);
961}
962
963/*
964 * Device shutdown routine. Called at system shutdown after sync. The
965 * main purpose of this routine is to shut off receiver DMA so that
966 * kernel memory doesn't get clobbered during warmboot.
967 */
968static int
969fxp_shutdown(device_t dev)
970{
971	/*
972	 * Make sure that DMA is disabled prior to reboot. Not doing
973	 * do could allow DMA to corrupt kernel memory during the
974	 * reboot before the driver initializes.
975	 */
976	fxp_stop((struct fxp_softc *) device_get_softc(dev));
977	return (0);
978}
979
980/*
981 * Device suspend routine.  Stop the interface and save some PCI
982 * settings in case the BIOS doesn't restore them properly on
983 * resume.
984 */
985static int
986fxp_suspend(device_t dev)
987{
988	struct fxp_softc *sc = device_get_softc(dev);
989	int i, s;
990
991	FXP_LOCK(sc);
992	s = splimp();
993
994	fxp_stop(sc);
995
996	for (i = 0; i < 5; i++)
997		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
998	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
999	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1000	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1001	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1002
1003	sc->suspended = 1;
1004
1005	FXP_UNLOCK(sc);
1006	splx(s);
1007	return (0);
1008}
1009
1010/*
1011 * Device resume routine.  Restore some PCI settings in case the BIOS
1012 * doesn't, re-enable busmastering, and restart the interface if
1013 * appropriate.
1014 */
1015static int
1016fxp_resume(device_t dev)
1017{
1018	struct fxp_softc *sc = device_get_softc(dev);
1019	struct ifnet *ifp = &sc->sc_if;
1020	u_int16_t pci_command;
1021	int i, s;
1022
1023	FXP_LOCK(sc);
1024	s = splimp();
1025#ifndef BURN_BRIDGES
1026	fxp_powerstate_d0(dev);
1027#endif
1028	/* better way to do this? */
1029	for (i = 0; i < 5; i++)
1030		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1031	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1032	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1033	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1034	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1035
1036	/* reenable busmastering */
1037	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1038	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1039	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1040
1041	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1042	DELAY(10);
1043
1044	/* reinitialize interface if necessary */
1045	if (ifp->if_flags & IFF_UP)
1046		fxp_init_body(sc);
1047
1048	sc->suspended = 0;
1049
1050	FXP_UNLOCK(sc);
1051	splx(s);
1052	return (0);
1053}
1054
1055static void
1056fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1057{
1058	u_int16_t reg;
1059	int x;
1060
1061	/*
1062	 * Shift in data.
1063	 */
1064	for (x = 1 << (length - 1); x; x >>= 1) {
1065		if (data & x)
1066			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1067		else
1068			reg = FXP_EEPROM_EECS;
1069		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1070		DELAY(1);
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072		DELAY(1);
1073		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1074		DELAY(1);
1075	}
1076}
1077
1078/*
1079 * Read from the serial EEPROM. Basically, you manually shift in
1080 * the read opcode (one bit at a time) and then shift in the address,
1081 * and then you shift out the data (all of this one bit at a time).
1082 * The word size is 16 bits, so you have to provide the address for
1083 * every 16 bits of data.
1084 */
1085static u_int16_t
1086fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1087{
1088	u_int16_t reg, data;
1089	int x;
1090
1091	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1092	/*
1093	 * Shift in read opcode.
1094	 */
1095	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1096	/*
1097	 * Shift in address.
1098	 */
1099	data = 0;
1100	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1101		if (offset & x)
1102			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1103		else
1104			reg = FXP_EEPROM_EECS;
1105		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1106		DELAY(1);
1107		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1108		DELAY(1);
1109		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1110		DELAY(1);
1111		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1112		data++;
1113		if (autosize && reg == 0) {
1114			sc->eeprom_size = data;
1115			break;
1116		}
1117	}
1118	/*
1119	 * Shift out data.
1120	 */
1121	data = 0;
1122	reg = FXP_EEPROM_EECS;
1123	for (x = 1 << 15; x; x >>= 1) {
1124		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1125		DELAY(1);
1126		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1127			data |= x;
1128		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1129		DELAY(1);
1130	}
1131	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1132	DELAY(1);
1133
1134	return (data);
1135}
1136
1137static void
1138fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1139{
1140	int i;
1141
1142	/*
1143	 * Erase/write enable.
1144	 */
1145	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1146	fxp_eeprom_shiftin(sc, 0x4, 3);
1147	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1148	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1149	DELAY(1);
1150	/*
1151	 * Shift in write opcode, address, data.
1152	 */
1153	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1154	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1155	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1156	fxp_eeprom_shiftin(sc, data, 16);
1157	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1158	DELAY(1);
1159	/*
1160	 * Wait for EEPROM to finish up.
1161	 */
1162	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1163	DELAY(1);
1164	for (i = 0; i < 1000; i++) {
1165		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1166			break;
1167		DELAY(50);
1168	}
1169	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1170	DELAY(1);
1171	/*
1172	 * Erase/write disable.
1173	 */
1174	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1175	fxp_eeprom_shiftin(sc, 0x4, 3);
1176	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1177	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1178	DELAY(1);
1179}
1180
1181/*
1182 * From NetBSD:
1183 *
1184 * Figure out EEPROM size.
1185 *
1186 * 559's can have either 64-word or 256-word EEPROMs, the 558
1187 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1188 * talks about the existance of 16 to 256 word EEPROMs.
1189 *
1190 * The only known sizes are 64 and 256, where the 256 version is used
1191 * by CardBus cards to store CIS information.
1192 *
1193 * The address is shifted in msb-to-lsb, and after the last
1194 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1195 * after which follows the actual data. We try to detect this zero, by
1196 * probing the data-out bit in the EEPROM control register just after
1197 * having shifted in a bit. If the bit is zero, we assume we've
1198 * shifted enough address bits. The data-out should be tri-state,
1199 * before this, which should translate to a logical one.
1200 */
1201static void
1202fxp_autosize_eeprom(struct fxp_softc *sc)
1203{
1204
1205	/* guess maximum size of 256 words */
1206	sc->eeprom_size = 8;
1207
1208	/* autosize */
1209	(void) fxp_eeprom_getword(sc, 0, 1);
1210}
1211
1212static void
1213fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1214{
1215	int i;
1216
1217	for (i = 0; i < words; i++)
1218		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1219}
1220
1221static void
1222fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1223{
1224	int i;
1225
1226	for (i = 0; i < words; i++)
1227		fxp_eeprom_putword(sc, offset + i, data[i]);
1228}
1229
1230static void
1231fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1232    bus_size_t mapsize, int error)
1233{
1234	struct fxp_softc *sc;
1235	struct fxp_cb_tx *txp;
1236	int i;
1237
1238	if (error)
1239		return;
1240
1241	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1242
1243	sc = arg;
1244	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1245	for (i = 0; i < nseg; i++) {
1246		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1247		/*
1248		 * If this is an 82550/82551, then we're using extended
1249		 * TxCBs _and_ we're using checksum offload. This means
1250		 * that the TxCB is really an IPCB. One major difference
1251		 * between the two is that with plain extended TxCBs,
1252		 * the bottom half of the TxCB contains two entries from
1253		 * the TBD array, whereas IPCBs contain just one entry:
1254		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1255		 * checksum offload control bits. So to make things work
1256		 * right, we have to start filling in the TBD array
1257		 * starting from a different place depending on whether
1258		 * the chip is an 82550/82551 or not.
1259		 */
1260		if (sc->flags & FXP_FLAG_EXT_RFA) {
1261			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1262			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1263		} else {
1264			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1265			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1266		}
1267	}
1268	txp->tbd_number = nseg;
1269}
1270
1271/*
1272 * Grab the softc lock and call the real fxp_start_body() routine
1273 */
1274static void
1275fxp_start(struct ifnet *ifp)
1276{
1277	struct fxp_softc *sc = ifp->if_softc;
1278
1279	FXP_LOCK(sc);
1280	fxp_start_body(ifp);
1281	FXP_UNLOCK(sc);
1282}
1283
1284/*
1285 * Start packet transmission on the interface.
1286 * This routine must be called with the softc lock held, and is an
1287 * internal entry point only.
1288 */
1289static void
1290fxp_start_body(struct ifnet *ifp)
1291{
1292	struct fxp_softc *sc = ifp->if_softc;
1293	struct fxp_tx *txp;
1294	struct mbuf *mb_head;
1295	int error;
1296
1297	mtx_assert(&sc->sc_mtx, MA_OWNED);
1298	/*
1299	 * See if we need to suspend xmit until the multicast filter
1300	 * has been reprogrammed (which can only be done at the head
1301	 * of the command chain).
1302	 */
1303	if (sc->need_mcsetup) {
1304		return;
1305	}
1306
1307	txp = NULL;
1308
1309	/*
1310	 * We're finished if there is nothing more to add to the list or if
1311	 * we're all filled up with buffers to transmit.
1312	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1313	 *       a NOP command when needed.
1314	 */
1315	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1316
1317		/*
1318		 * Grab a packet to transmit.
1319		 */
1320		IF_DEQUEUE(&ifp->if_snd, mb_head);
1321
1322		/*
1323		 * Get pointer to next available tx desc.
1324		 */
1325		txp = sc->fxp_desc.tx_last->tx_next;
1326
1327		/*
1328		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1329		 * Ethernet Controller Family Open Source Software
1330		 * Developer Manual says:
1331		 *   Using software parsing is only allowed with legal
1332		 *   TCP/IP or UDP/IP packets.
1333		 *   ...
1334		 *   For all other datagrams, hardware parsing must
1335		 *   be used.
1336		 * Software parsing appears to truncate ICMP and
1337		 * fragmented UDP packets that contain one to three
1338		 * bytes in the second (and final) mbuf of the packet.
1339		 */
1340		if (sc->flags & FXP_FLAG_EXT_RFA)
1341			txp->tx_cb->ipcb_ip_activation_high =
1342			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1343
1344		/*
1345		 * Deal with TCP/IP checksum offload. Note that
1346		 * in order for TCP checksum offload to work,
1347		 * the pseudo header checksum must have already
1348		 * been computed and stored in the checksum field
1349		 * in the TCP header. The stack should have
1350		 * already done this for us.
1351		 */
1352
1353		if (mb_head->m_pkthdr.csum_flags) {
1354			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1355				txp->tx_cb->ipcb_ip_schedule =
1356				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1357				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1358					txp->tx_cb->ipcb_ip_schedule |=
1359					    FXP_IPCB_TCP_PACKET;
1360			}
1361#ifdef FXP_IP_CSUM_WAR
1362		/*
1363		 * XXX The 82550 chip appears to have trouble
1364		 * dealing with IP header checksums in very small
1365		 * datagrams, namely fragments from 1 to 3 bytes
1366		 * in size. For example, say you want to transmit
1367		 * a UDP packet of 1473 bytes. The packet will be
1368		 * fragmented over two IP datagrams, the latter
1369		 * containing only one byte of data. The 82550 will
1370		 * botch the header checksum on the 1-byte fragment.
1371		 * As long as the datagram contains 4 or more bytes
1372		 * of data, you're ok.
1373		 *
1374                 * The following code attempts to work around this
1375		 * problem: if the datagram is less than 38 bytes
1376		 * in size (14 bytes ether header, 20 bytes IP header,
1377		 * plus 4 bytes of data), we punt and compute the IP
1378		 * header checksum by hand. This workaround doesn't
1379		 * work very well, however, since it can be fooled
1380		 * by things like VLAN tags and IP options that make
1381		 * the header sizes/offsets vary.
1382		 */
1383
1384			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1385				if (mb_head->m_pkthdr.len < 38) {
1386					struct ip *ip;
1387					mb_head->m_data += ETHER_HDR_LEN;
1388					ip = mtod(mb_head, struct ip *);
1389					ip->ip_sum = in_cksum(mb_head,
1390					    ip->ip_hl << 2);
1391					mb_head->m_data -= ETHER_HDR_LEN;
1392				} else {
1393					txp->tx_cb->ipcb_ip_activation_high =
1394					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1395					txp->tx_cb->ipcb_ip_schedule |=
1396					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1397				}
1398			}
1399#endif
1400		}
1401
1402		/*
1403		 * Go through each of the mbufs in the chain and initialize
1404		 * the transmit buffer descriptors with the physical address
1405		 * and size of the mbuf.
1406		 */
1407		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1408		    mb_head, fxp_dma_map_txbuf, sc, 0);
1409
1410		if (error && error != EFBIG) {
1411			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1412			    error);
1413			m_freem(mb_head);
1414			break;
1415		}
1416
1417		if (error) {
1418			struct mbuf *mn;
1419
1420			/*
1421			 * We ran out of segments. We have to recopy this
1422			 * mbuf chain first. Bail out if we can't get the
1423			 * new buffers.
1424			 */
1425			mn = m_defrag(mb_head, M_DONTWAIT);
1426			if (mn == NULL) {
1427				m_freem(mb_head);
1428				break;
1429			} else {
1430				mb_head = mn;
1431			}
1432			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1433			    mb_head, fxp_dma_map_txbuf, sc, 0);
1434			if (error) {
1435				device_printf(sc->dev,
1436				    "can't map mbuf (error %d)\n", error);
1437				m_freem(mb_head);
1438				break;
1439			}
1440		}
1441
1442		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1443		    BUS_DMASYNC_PREWRITE);
1444
1445		txp->tx_mbuf = mb_head;
1446		txp->tx_cb->cb_status = 0;
1447		txp->tx_cb->byte_count = 0;
1448		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1449			txp->tx_cb->cb_command =
1450			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1451			    FXP_CB_COMMAND_S);
1452		} else {
1453			txp->tx_cb->cb_command =
1454			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1455			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1456			/*
1457			 * Set a 5 second timer just in case we don't hear
1458			 * from the card again.
1459			 */
1460			ifp->if_timer = 5;
1461		}
1462		txp->tx_cb->tx_threshold = tx_threshold;
1463
1464		/*
1465		 * Advance the end of list forward.
1466		 */
1467
1468#ifdef __alpha__
1469		/*
1470		 * On platforms which can't access memory in 16-bit
1471		 * granularities, we must prevent the card from DMA'ing
1472		 * up the status while we update the command field.
1473		 * This could cause us to overwrite the completion status.
1474		 * XXX This is probably bogus and we're _not_ looking
1475		 * for atomicity here.
1476		 */
1477		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1478		    htole16(FXP_CB_COMMAND_S));
1479#else
1480		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1481		    htole16(~FXP_CB_COMMAND_S);
1482#endif /*__alpha__*/
1483		sc->fxp_desc.tx_last = txp;
1484
1485		/*
1486		 * Advance the beginning of the list forward if there are
1487		 * no other packets queued (when nothing is queued, tx_first
1488		 * sits on the last TxCB that was sent out).
1489		 */
1490		if (sc->tx_queued == 0)
1491			sc->fxp_desc.tx_first = txp;
1492
1493		sc->tx_queued++;
1494
1495		/*
1496		 * Pass packet to bpf if there is a listener.
1497		 */
1498		BPF_MTAP(ifp, mb_head);
1499	}
1500	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1501
1502	/*
1503	 * We're finished. If we added to the list, issue a RESUME to get DMA
1504	 * going again if suspended.
1505	 */
1506	if (txp != NULL) {
1507		fxp_scb_wait(sc);
1508		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1509	}
1510}
1511
1512#ifdef DEVICE_POLLING
1513static poll_handler_t fxp_poll;
1514
1515static void
1516fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1517{
1518	struct fxp_softc *sc = ifp->if_softc;
1519	u_int8_t statack;
1520
1521	FXP_LOCK(sc);
1522	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1523		ether_poll_deregister(ifp);
1524		cmd = POLL_DEREGISTER;
1525	}
1526	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1527		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1528		FXP_UNLOCK(sc);
1529		return;
1530	}
1531	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1532	    FXP_SCB_STATACK_FR;
1533	if (cmd == POLL_AND_CHECK_STATUS) {
1534		u_int8_t tmp;
1535
1536		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1537		if (tmp == 0xff || tmp == 0) {
1538			FXP_UNLOCK(sc);
1539			return; /* nothing to do */
1540		}
1541		tmp &= ~statack;
1542		/* ack what we can */
1543		if (tmp != 0)
1544			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1545		statack |= tmp;
1546	}
1547	fxp_intr_body(sc, ifp, statack, count);
1548	FXP_UNLOCK(sc);
1549}
1550#endif /* DEVICE_POLLING */
1551
1552/*
1553 * Process interface interrupts.
1554 */
1555static void
1556fxp_intr(void *xsc)
1557{
1558	struct fxp_softc *sc = xsc;
1559	struct ifnet *ifp = &sc->sc_if;
1560	u_int8_t statack;
1561
1562	FXP_LOCK(sc);
1563	if (sc->suspended) {
1564		FXP_UNLOCK(sc);
1565		return;
1566	}
1567
1568#ifdef DEVICE_POLLING
1569	if (ifp->if_flags & IFF_POLLING) {
1570		FXP_UNLOCK(sc);
1571		return;
1572	}
1573	if ((ifp->if_capenable & IFCAP_POLLING) &&
1574	    ether_poll_register(fxp_poll, ifp)) {
1575		/* disable interrupts */
1576		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1577		FXP_UNLOCK(sc);
1578		fxp_poll(ifp, 0, 1);
1579		return;
1580	}
1581#endif
1582	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1583		/*
1584		 * It should not be possible to have all bits set; the
1585		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1586		 * all bits are set, this may indicate that the card has
1587		 * been physically ejected, so ignore it.
1588		 */
1589		if (statack == 0xff) {
1590			FXP_UNLOCK(sc);
1591			return;
1592		}
1593
1594		/*
1595		 * First ACK all the interrupts in this pass.
1596		 */
1597		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1598		fxp_intr_body(sc, ifp, statack, -1);
1599	}
1600	FXP_UNLOCK(sc);
1601}
1602
1603static void
1604fxp_txeof(struct fxp_softc *sc)
1605{
1606	struct fxp_tx *txp;
1607
1608	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1609	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1610	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1611	    txp = txp->tx_next) {
1612		if (txp->tx_mbuf != NULL) {
1613			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1614			    BUS_DMASYNC_POSTWRITE);
1615			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1616			m_freem(txp->tx_mbuf);
1617			txp->tx_mbuf = NULL;
1618			/* clear this to reset csum offload bits */
1619			txp->tx_cb->tbd[0].tb_addr = 0;
1620		}
1621		sc->tx_queued--;
1622	}
1623	sc->fxp_desc.tx_first = txp;
1624	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1625}
1626
1627static void
1628fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1629    int count)
1630{
1631	struct mbuf *m;
1632	struct fxp_rx *rxp;
1633	struct fxp_rfa *rfa;
1634	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1635
1636	mtx_assert(&sc->sc_mtx, MA_OWNED);
1637	if (rnr)
1638		fxp_rnr++;
1639#ifdef DEVICE_POLLING
1640	/* Pick up a deferred RNR condition if `count' ran out last time. */
1641	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1642		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1643		rnr = 1;
1644	}
1645#endif
1646
1647	/*
1648	 * Free any finished transmit mbuf chains.
1649	 *
1650	 * Handle the CNA event likt a CXTNO event. It used to
1651	 * be that this event (control unit not ready) was not
1652	 * encountered, but it is now with the SMPng modifications.
1653	 * The exact sequence of events that occur when the interface
1654	 * is brought up are different now, and if this event
1655	 * goes unhandled, the configuration/rxfilter setup sequence
1656	 * can stall for several seconds. The result is that no
1657	 * packets go out onto the wire for about 5 to 10 seconds
1658	 * after the interface is ifconfig'ed for the first time.
1659	 */
1660	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1661		fxp_txeof(sc);
1662
1663		ifp->if_timer = 0;
1664		if (sc->tx_queued == 0) {
1665			if (sc->need_mcsetup)
1666				fxp_mc_setup(sc);
1667		}
1668		/*
1669		 * Try to start more packets transmitting.
1670		 */
1671		if (ifp->if_snd.ifq_head != NULL)
1672			fxp_start_body(ifp);
1673	}
1674
1675	/*
1676	 * Just return if nothing happened on the receive side.
1677	 */
1678	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1679		return;
1680
1681	/*
1682	 * Process receiver interrupts. If a no-resource (RNR)
1683	 * condition exists, get whatever packets we can and
1684	 * re-start the receiver.
1685	 *
1686	 * When using polling, we do not process the list to completion,
1687	 * so when we get an RNR interrupt we must defer the restart
1688	 * until we hit the last buffer with the C bit set.
1689	 * If we run out of cycles and rfa_headm has the C bit set,
1690	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1691	 * that the info will be used in the subsequent polling cycle.
1692	 */
1693	for (;;) {
1694		rxp = sc->fxp_desc.rx_head;
1695		m = rxp->rx_mbuf;
1696		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1697		    RFA_ALIGNMENT_FUDGE);
1698		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1699		    BUS_DMASYNC_POSTREAD);
1700
1701#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1702		if (count >= 0 && count-- == 0) {
1703			if (rnr) {
1704				/* Defer RNR processing until the next time. */
1705				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1706				rnr = 0;
1707			}
1708			break;
1709		}
1710#endif /* DEVICE_POLLING */
1711
1712		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1713			break;
1714
1715		/*
1716		 * Advance head forward.
1717		 */
1718		sc->fxp_desc.rx_head = rxp->rx_next;
1719
1720		/*
1721		 * Add a new buffer to the receive chain.
1722		 * If this fails, the old buffer is recycled
1723		 * instead.
1724		 */
1725		if (fxp_add_rfabuf(sc, rxp) == 0) {
1726			int total_len;
1727
1728			/*
1729			 * Fetch packet length (the top 2 bits of
1730			 * actual_size are flags set by the controller
1731			 * upon completion), and drop the packet in case
1732			 * of bogus length or CRC errors.
1733			 */
1734			total_len = le16toh(rfa->actual_size) & 0x3fff;
1735			if (total_len < sizeof(struct ether_header) ||
1736			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1737				sc->rfa_size ||
1738			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1739				m_freem(m);
1740				continue;
1741			}
1742
1743                        /* Do IP checksum checking. */
1744			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1745				if (rfa->rfax_csum_sts &
1746				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1747					m->m_pkthdr.csum_flags |=
1748					    CSUM_IP_CHECKED;
1749				if (rfa->rfax_csum_sts &
1750				    FXP_RFDX_CS_IP_CSUM_VALID)
1751					m->m_pkthdr.csum_flags |=
1752					    CSUM_IP_VALID;
1753				if ((rfa->rfax_csum_sts &
1754				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1755				    (rfa->rfax_csum_sts &
1756				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1757					m->m_pkthdr.csum_flags |=
1758					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1759					m->m_pkthdr.csum_data = 0xffff;
1760				}
1761			}
1762
1763			m->m_pkthdr.len = m->m_len = total_len;
1764			m->m_pkthdr.rcvif = ifp;
1765
1766			/*
1767			 * Drop locks before calling if_input() since it
1768			 * may re-enter fxp_start() in the netisr case.
1769			 * This would result in a lock reversal.  Better
1770			 * performance might be obtained by chaining all
1771			 * packets received, dropping the lock, and then
1772			 * calling if_input() on each one.
1773			 */
1774			FXP_UNLOCK(sc);
1775			(*ifp->if_input)(ifp, m);
1776			FXP_LOCK(sc);
1777		}
1778	}
1779	if (rnr) {
1780		fxp_scb_wait(sc);
1781		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1782		    sc->fxp_desc.rx_head->rx_addr);
1783		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1784	}
1785}
1786
1787/*
1788 * Update packet in/out/collision statistics. The i82557 doesn't
1789 * allow you to access these counters without doing a fairly
1790 * expensive DMA to get _all_ of the statistics it maintains, so
1791 * we do this operation here only once per second. The statistics
1792 * counters in the kernel are updated from the previous dump-stats
1793 * DMA and then a new dump-stats DMA is started. The on-chip
1794 * counters are zeroed when the DMA completes. If we can't start
1795 * the DMA immediately, we don't wait - we just prepare to read
1796 * them again next time.
1797 */
1798static void
1799fxp_tick(void *xsc)
1800{
1801	struct fxp_softc *sc = xsc;
1802	struct ifnet *ifp = &sc->sc_if;
1803	struct fxp_stats *sp = sc->fxp_stats;
1804	int s;
1805
1806	FXP_LOCK(sc);
1807	s = splimp();
1808	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1809	ifp->if_opackets += le32toh(sp->tx_good);
1810	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1811	if (sp->rx_good) {
1812		ifp->if_ipackets += le32toh(sp->rx_good);
1813		sc->rx_idle_secs = 0;
1814	} else {
1815		/*
1816		 * Receiver's been idle for another second.
1817		 */
1818		sc->rx_idle_secs++;
1819	}
1820	ifp->if_ierrors +=
1821	    le32toh(sp->rx_crc_errors) +
1822	    le32toh(sp->rx_alignment_errors) +
1823	    le32toh(sp->rx_rnr_errors) +
1824	    le32toh(sp->rx_overrun_errors);
1825	/*
1826	 * If any transmit underruns occured, bump up the transmit
1827	 * threshold by another 512 bytes (64 * 8).
1828	 */
1829	if (sp->tx_underruns) {
1830		ifp->if_oerrors += le32toh(sp->tx_underruns);
1831		if (tx_threshold < 192)
1832			tx_threshold += 64;
1833	}
1834
1835	/*
1836	 * Release any xmit buffers that have completed DMA. This isn't
1837	 * strictly necessary to do here, but it's advantagous for mbufs
1838	 * with external storage to be released in a timely manner rather
1839	 * than being defered for a potentially long time. This limits
1840	 * the delay to a maximum of one second.
1841	 */
1842	fxp_txeof(sc);
1843
1844	/*
1845	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1846	 * then assume the receiver has locked up and attempt to clear
1847	 * the condition by reprogramming the multicast filter. This is
1848	 * a work-around for a bug in the 82557 where the receiver locks
1849	 * up if it gets certain types of garbage in the syncronization
1850	 * bits prior to the packet header. This bug is supposed to only
1851	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1852	 * mode as well (perhaps due to a 10/100 speed transition).
1853	 */
1854	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1855		sc->rx_idle_secs = 0;
1856		fxp_mc_setup(sc);
1857	}
1858	/*
1859	 * If there is no pending command, start another stats
1860	 * dump. Otherwise punt for now.
1861	 */
1862	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1863		/*
1864		 * Start another stats dump.
1865		 */
1866		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1867		    BUS_DMASYNC_PREREAD);
1868		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1869	} else {
1870		/*
1871		 * A previous command is still waiting to be accepted.
1872		 * Just zero our copy of the stats and wait for the
1873		 * next timer event to update them.
1874		 */
1875		sp->tx_good = 0;
1876		sp->tx_underruns = 0;
1877		sp->tx_total_collisions = 0;
1878
1879		sp->rx_good = 0;
1880		sp->rx_crc_errors = 0;
1881		sp->rx_alignment_errors = 0;
1882		sp->rx_rnr_errors = 0;
1883		sp->rx_overrun_errors = 0;
1884	}
1885	if (sc->miibus != NULL)
1886		mii_tick(device_get_softc(sc->miibus));
1887
1888	/*
1889	 * Schedule another timeout one second from now.
1890	 */
1891	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1892	FXP_UNLOCK(sc);
1893	splx(s);
1894}
1895
1896/*
1897 * Stop the interface. Cancels the statistics updater and resets
1898 * the interface.
1899 */
1900static void
1901fxp_stop(struct fxp_softc *sc)
1902{
1903	struct ifnet *ifp = &sc->sc_if;
1904	struct fxp_tx *txp;
1905	int i;
1906
1907	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1908	ifp->if_timer = 0;
1909
1910#ifdef DEVICE_POLLING
1911	ether_poll_deregister(ifp);
1912#endif
1913	/*
1914	 * Cancel stats updater.
1915	 */
1916	callout_stop(&sc->stat_ch);
1917
1918	/*
1919	 * Issue software reset, which also unloads the microcode.
1920	 */
1921	sc->flags &= ~FXP_FLAG_UCODE;
1922	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1923	DELAY(50);
1924
1925	/*
1926	 * Release any xmit buffers.
1927	 */
1928	txp = sc->fxp_desc.tx_list;
1929	if (txp != NULL) {
1930		for (i = 0; i < FXP_NTXCB; i++) {
1931 			if (txp[i].tx_mbuf != NULL) {
1932				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1933				    BUS_DMASYNC_POSTWRITE);
1934				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1935				m_freem(txp[i].tx_mbuf);
1936				txp[i].tx_mbuf = NULL;
1937				/* clear this to reset csum offload bits */
1938				txp[i].tx_cb->tbd[0].tb_addr = 0;
1939			}
1940		}
1941	}
1942	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1943	sc->tx_queued = 0;
1944}
1945
1946/*
1947 * Watchdog/transmission transmit timeout handler. Called when a
1948 * transmission is started on the interface, but no interrupt is
1949 * received before the timeout. This usually indicates that the
1950 * card has wedged for some reason.
1951 */
1952static void
1953fxp_watchdog(struct ifnet *ifp)
1954{
1955	struct fxp_softc *sc = ifp->if_softc;
1956
1957	FXP_LOCK(sc);
1958	device_printf(sc->dev, "device timeout\n");
1959	ifp->if_oerrors++;
1960
1961	fxp_init_body(sc);
1962	FXP_UNLOCK(sc);
1963}
1964
1965/*
1966 * Acquire locks and then call the real initialization function.  This
1967 * is necessary because ether_ioctl() calls if_init() and this would
1968 * result in mutex recursion if the mutex was held.
1969 */
1970static void
1971fxp_init(void *xsc)
1972{
1973	struct fxp_softc *sc = xsc;
1974
1975	FXP_LOCK(sc);
1976	fxp_init_body(sc);
1977	FXP_UNLOCK(sc);
1978}
1979
1980/*
1981 * Perform device initialization. This routine must be called with the
1982 * softc lock held.
1983 */
1984static void
1985fxp_init_body(struct fxp_softc *sc)
1986{
1987	struct ifnet *ifp = &sc->sc_if;
1988	struct fxp_cb_config *cbp;
1989	struct fxp_cb_ias *cb_ias;
1990	struct fxp_cb_tx *tcbp;
1991	struct fxp_tx *txp;
1992	struct fxp_cb_mcs *mcsp;
1993	int i, prm, s;
1994
1995	mtx_assert(&sc->sc_mtx, MA_OWNED);
1996	s = splimp();
1997	/*
1998	 * Cancel any pending I/O
1999	 */
2000	fxp_stop(sc);
2001
2002	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2003
2004	/*
2005	 * Initialize base of CBL and RFA memory. Loading with zero
2006	 * sets it up for regular linear addressing.
2007	 */
2008	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2009	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2010
2011	fxp_scb_wait(sc);
2012	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2013
2014	/*
2015	 * Initialize base of dump-stats buffer.
2016	 */
2017	fxp_scb_wait(sc);
2018	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2019	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2020	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2021
2022	/*
2023	 * Attempt to load microcode if requested.
2024	 */
2025	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2026		fxp_load_ucode(sc);
2027
2028	/*
2029	 * Initialize the multicast address list.
2030	 */
2031	if (fxp_mc_addrs(sc)) {
2032		mcsp = sc->mcsp;
2033		mcsp->cb_status = 0;
2034		mcsp->cb_command =
2035		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2036		mcsp->link_addr = 0xffffffff;
2037		/*
2038	 	 * Start the multicast setup command.
2039		 */
2040		fxp_scb_wait(sc);
2041		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2042		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2043		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2044		/* ...and wait for it to complete. */
2045		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2046		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2047		    BUS_DMASYNC_POSTWRITE);
2048	}
2049
2050	/*
2051	 * We temporarily use memory that contains the TxCB list to
2052	 * construct the config CB. The TxCB list memory is rebuilt
2053	 * later.
2054	 */
2055	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2056
2057	/*
2058	 * This bcopy is kind of disgusting, but there are a bunch of must be
2059	 * zero and must be one bits in this structure and this is the easiest
2060	 * way to initialize them all to proper values.
2061	 */
2062	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2063
2064	cbp->cb_status =	0;
2065	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2066	    FXP_CB_COMMAND_EL);
2067	cbp->link_addr =	0xffffffff;	/* (no) next command */
2068	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2069	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2070	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2071	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2072	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2073	cbp->type_enable =	0;	/* actually reserved */
2074	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2075	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2076	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2077	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2078	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2079	cbp->late_scb =		0;	/* (don't) defer SCB update */
2080	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2081	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2082	cbp->ci_int =		1;	/* interrupt on CU idle */
2083	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2084	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2085	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2086	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2087	cbp->disc_short_rx =	!prm;	/* discard short packets */
2088	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2089	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2090	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2091	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2092	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2093	cbp->csma_dis =		0;	/* (don't) disable link */
2094	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2095	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2096	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2097	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2098	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2099	cbp->nsai =		1;	/* (don't) disable source addr insert */
2100	cbp->preamble_length =	2;	/* (7 byte) preamble */
2101	cbp->loopback =		0;	/* (don't) loopback */
2102	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2103	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2104	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2105	cbp->promiscuous =	prm;	/* promiscuous mode */
2106	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2107	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2108	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2109	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2110	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2111
2112	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2113	cbp->padding =		1;	/* (do) pad short tx packets */
2114	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2115	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2116	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2117	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2118					/* must set wake_en in PMCSR also */
2119	cbp->force_fdx =	0;	/* (don't) force full duplex */
2120	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2121	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2122	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2123	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2124
2125	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2126		/*
2127		 * The 82557 has no hardware flow control, the values
2128		 * below are the defaults for the chip.
2129		 */
2130		cbp->fc_delay_lsb =	0;
2131		cbp->fc_delay_msb =	0x40;
2132		cbp->pri_fc_thresh =	3;
2133		cbp->tx_fc_dis =	0;
2134		cbp->rx_fc_restop =	0;
2135		cbp->rx_fc_restart =	0;
2136		cbp->fc_filter =	0;
2137		cbp->pri_fc_loc =	1;
2138	} else {
2139		cbp->fc_delay_lsb =	0x1f;
2140		cbp->fc_delay_msb =	0x01;
2141		cbp->pri_fc_thresh =	3;
2142		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2143		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2144		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2145		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2146		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2147	}
2148
2149	/*
2150	 * Start the config command/DMA.
2151	 */
2152	fxp_scb_wait(sc);
2153	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2154	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2155	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2156	/* ...and wait for it to complete. */
2157	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2158	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2159
2160	/*
2161	 * Now initialize the station address. Temporarily use the TxCB
2162	 * memory area like we did above for the config CB.
2163	 */
2164	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2165	cb_ias->cb_status = 0;
2166	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2167	cb_ias->link_addr = 0xffffffff;
2168	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2169	    sizeof(sc->arpcom.ac_enaddr));
2170
2171	/*
2172	 * Start the IAS (Individual Address Setup) command/DMA.
2173	 */
2174	fxp_scb_wait(sc);
2175	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2176	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2177	/* ...and wait for it to complete. */
2178	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2179	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2180
2181	/*
2182	 * Initialize transmit control block (TxCB) list.
2183	 */
2184	txp = sc->fxp_desc.tx_list;
2185	tcbp = sc->fxp_desc.cbl_list;
2186	bzero(tcbp, FXP_TXCB_SZ);
2187	for (i = 0; i < FXP_NTXCB; i++) {
2188		txp[i].tx_cb = tcbp + i;
2189		txp[i].tx_mbuf = NULL;
2190		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2191		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2192		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2193		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2194		if (sc->flags & FXP_FLAG_EXT_TXCB)
2195			tcbp[i].tbd_array_addr =
2196			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2197		else
2198			tcbp[i].tbd_array_addr =
2199			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2200		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2201	}
2202	/*
2203	 * Set the suspend flag on the first TxCB and start the control
2204	 * unit. It will execute the NOP and then suspend.
2205	 */
2206	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2207	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2208	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2209	sc->tx_queued = 1;
2210
2211	fxp_scb_wait(sc);
2212	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2213
2214	/*
2215	 * Initialize receiver buffer area - RFA.
2216	 */
2217	fxp_scb_wait(sc);
2218	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2219	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2220
2221	/*
2222	 * Set current media.
2223	 */
2224	if (sc->miibus != NULL)
2225		mii_mediachg(device_get_softc(sc->miibus));
2226
2227	ifp->if_flags |= IFF_RUNNING;
2228	ifp->if_flags &= ~IFF_OACTIVE;
2229
2230	/*
2231	 * Enable interrupts.
2232	 */
2233#ifdef DEVICE_POLLING
2234	/*
2235	 * ... but only do that if we are not polling. And because (presumably)
2236	 * the default is interrupts on, we need to disable them explicitly!
2237	 */
2238	if ( ifp->if_flags & IFF_POLLING )
2239		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2240	else
2241#endif /* DEVICE_POLLING */
2242	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2243
2244	/*
2245	 * Start stats updater.
2246	 */
2247	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2248	splx(s);
2249}
2250
2251static int
2252fxp_serial_ifmedia_upd(struct ifnet *ifp)
2253{
2254
2255	return (0);
2256}
2257
2258static void
2259fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2260{
2261
2262	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2263}
2264
2265/*
2266 * Change media according to request.
2267 */
2268static int
2269fxp_ifmedia_upd(struct ifnet *ifp)
2270{
2271	struct fxp_softc *sc = ifp->if_softc;
2272	struct mii_data *mii;
2273
2274	mii = device_get_softc(sc->miibus);
2275	mii_mediachg(mii);
2276	return (0);
2277}
2278
2279/*
2280 * Notify the world which media we're using.
2281 */
2282static void
2283fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2284{
2285	struct fxp_softc *sc = ifp->if_softc;
2286	struct mii_data *mii;
2287
2288	mii = device_get_softc(sc->miibus);
2289	mii_pollstat(mii);
2290	ifmr->ifm_active = mii->mii_media_active;
2291	ifmr->ifm_status = mii->mii_media_status;
2292
2293	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2294		sc->cu_resume_bug = 1;
2295	else
2296		sc->cu_resume_bug = 0;
2297}
2298
2299/*
2300 * Add a buffer to the end of the RFA buffer list.
2301 * Return 0 if successful, 1 for failure. A failure results in
2302 * adding the 'oldm' (if non-NULL) on to the end of the list -
2303 * tossing out its old contents and recycling it.
2304 * The RFA struct is stuck at the beginning of mbuf cluster and the
2305 * data pointer is fixed up to point just past it.
2306 */
2307static int
2308fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2309{
2310	struct mbuf *m;
2311	struct fxp_rfa *rfa, *p_rfa;
2312	struct fxp_rx *p_rx;
2313	bus_dmamap_t tmp_map;
2314	int error;
2315
2316	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2317	if (m == NULL)
2318		return (ENOBUFS);
2319
2320	/*
2321	 * Move the data pointer up so that the incoming data packet
2322	 * will be 32-bit aligned.
2323	 */
2324	m->m_data += RFA_ALIGNMENT_FUDGE;
2325
2326	/*
2327	 * Get a pointer to the base of the mbuf cluster and move
2328	 * data start past it.
2329	 */
2330	rfa = mtod(m, struct fxp_rfa *);
2331	m->m_data += sc->rfa_size;
2332	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2333
2334	rfa->rfa_status = 0;
2335	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2336	rfa->actual_size = 0;
2337
2338	/*
2339	 * Initialize the rest of the RFA.  Note that since the RFA
2340	 * is misaligned, we cannot store values directly.  We're thus
2341	 * using the le32enc() function which handles endianness and
2342	 * is also alignment-safe.
2343	 */
2344	le32enc(&rfa->link_addr, 0xffffffff);
2345	le32enc(&rfa->rbd_addr, 0xffffffff);
2346
2347	/* Map the RFA into DMA memory. */
2348	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2349	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2350	    &rxp->rx_addr, 0);
2351	if (error) {
2352		m_freem(m);
2353		return (error);
2354	}
2355
2356	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2357	tmp_map = sc->spare_map;
2358	sc->spare_map = rxp->rx_map;
2359	rxp->rx_map = tmp_map;
2360	rxp->rx_mbuf = m;
2361
2362	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2363	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2364
2365	/*
2366	 * If there are other buffers already on the list, attach this
2367	 * one to the end by fixing up the tail to point to this one.
2368	 */
2369	if (sc->fxp_desc.rx_head != NULL) {
2370		p_rx = sc->fxp_desc.rx_tail;
2371		p_rfa = (struct fxp_rfa *)
2372		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2373		p_rx->rx_next = rxp;
2374		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2375		p_rfa->rfa_control = 0;
2376		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2377		    BUS_DMASYNC_PREWRITE);
2378	} else {
2379		rxp->rx_next = NULL;
2380		sc->fxp_desc.rx_head = rxp;
2381	}
2382	sc->fxp_desc.rx_tail = rxp;
2383	return (0);
2384}
2385
2386static volatile int
2387fxp_miibus_readreg(device_t dev, int phy, int reg)
2388{
2389	struct fxp_softc *sc = device_get_softc(dev);
2390	int count = 10000;
2391	int value;
2392
2393	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2394	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2395
2396	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2397	    && count--)
2398		DELAY(10);
2399
2400	if (count <= 0)
2401		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2402
2403	return (value & 0xffff);
2404}
2405
2406static void
2407fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2408{
2409	struct fxp_softc *sc = device_get_softc(dev);
2410	int count = 10000;
2411
2412	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2413	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2414	    (value & 0xffff));
2415
2416	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2417	    count--)
2418		DELAY(10);
2419
2420	if (count <= 0)
2421		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2422}
2423
2424static int
2425fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2426{
2427	struct fxp_softc *sc = ifp->if_softc;
2428	struct ifreq *ifr = (struct ifreq *)data;
2429	struct mii_data *mii;
2430	int s, error = 0;
2431
2432	/*
2433	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2434	 * that by saying we're busy if the lock is already held.
2435	 */
2436	if (mtx_owned(&sc->sc_mtx))
2437		return (EBUSY);
2438
2439	FXP_LOCK(sc);
2440	s = splimp();
2441
2442	switch (command) {
2443	case SIOCSIFFLAGS:
2444		if (ifp->if_flags & IFF_ALLMULTI)
2445			sc->flags |= FXP_FLAG_ALL_MCAST;
2446		else
2447			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2448
2449		/*
2450		 * If interface is marked up and not running, then start it.
2451		 * If it is marked down and running, stop it.
2452		 * XXX If it's up then re-initialize it. This is so flags
2453		 * such as IFF_PROMISC are handled.
2454		 */
2455		if (ifp->if_flags & IFF_UP) {
2456			fxp_init_body(sc);
2457		} else {
2458			if (ifp->if_flags & IFF_RUNNING)
2459				fxp_stop(sc);
2460		}
2461		break;
2462
2463	case SIOCADDMULTI:
2464	case SIOCDELMULTI:
2465		if (ifp->if_flags & IFF_ALLMULTI)
2466			sc->flags |= FXP_FLAG_ALL_MCAST;
2467		else
2468			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2469		/*
2470		 * Multicast list has changed; set the hardware filter
2471		 * accordingly.
2472		 */
2473		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2474			fxp_mc_setup(sc);
2475		/*
2476		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2477		 * again rather than else {}.
2478		 */
2479		if (sc->flags & FXP_FLAG_ALL_MCAST)
2480			fxp_init_body(sc);
2481		error = 0;
2482		break;
2483
2484	case SIOCSIFMEDIA:
2485	case SIOCGIFMEDIA:
2486		if (sc->miibus != NULL) {
2487			mii = device_get_softc(sc->miibus);
2488                        error = ifmedia_ioctl(ifp, ifr,
2489                            &mii->mii_media, command);
2490		} else {
2491                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2492		}
2493		break;
2494
2495	case SIOCSIFCAP:
2496		ifp->if_capenable = ifr->ifr_reqcap;
2497		break;
2498
2499	default:
2500		/*
2501		 * ether_ioctl() will eventually call fxp_start() which
2502		 * will result in mutex recursion so drop it first.
2503		 */
2504		FXP_UNLOCK(sc);
2505		error = ether_ioctl(ifp, command, data);
2506	}
2507	if (mtx_owned(&sc->sc_mtx))
2508		FXP_UNLOCK(sc);
2509	splx(s);
2510	return (error);
2511}
2512
2513/*
2514 * Fill in the multicast address list and return number of entries.
2515 */
2516static int
2517fxp_mc_addrs(struct fxp_softc *sc)
2518{
2519	struct fxp_cb_mcs *mcsp = sc->mcsp;
2520	struct ifnet *ifp = &sc->sc_if;
2521	struct ifmultiaddr *ifma;
2522	int nmcasts;
2523
2524	nmcasts = 0;
2525	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2526#if __FreeBSD_version < 500000
2527		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2528#else
2529		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2530#endif
2531			if (ifma->ifma_addr->sa_family != AF_LINK)
2532				continue;
2533			if (nmcasts >= MAXMCADDR) {
2534				sc->flags |= FXP_FLAG_ALL_MCAST;
2535				nmcasts = 0;
2536				break;
2537			}
2538			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2539			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2540			nmcasts++;
2541		}
2542	}
2543	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2544	return (nmcasts);
2545}
2546
2547/*
2548 * Program the multicast filter.
2549 *
2550 * We have an artificial restriction that the multicast setup command
2551 * must be the first command in the chain, so we take steps to ensure
2552 * this. By requiring this, it allows us to keep up the performance of
2553 * the pre-initialized command ring (esp. link pointers) by not actually
2554 * inserting the mcsetup command in the ring - i.e. its link pointer
2555 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2556 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2557 * lead into the regular TxCB ring when it completes.
2558 *
2559 * This function must be called at splimp.
2560 */
2561static void
2562fxp_mc_setup(struct fxp_softc *sc)
2563{
2564	struct fxp_cb_mcs *mcsp = sc->mcsp;
2565	struct ifnet *ifp = &sc->sc_if;
2566	struct fxp_tx *txp;
2567	int count;
2568
2569	/*
2570	 * If there are queued commands, we must wait until they are all
2571	 * completed. If we are already waiting, then add a NOP command
2572	 * with interrupt option so that we're notified when all commands
2573	 * have been completed - fxp_start() ensures that no additional
2574	 * TX commands will be added when need_mcsetup is true.
2575	 */
2576	if (sc->tx_queued) {
2577		/*
2578		 * need_mcsetup will be true if we are already waiting for the
2579		 * NOP command to be completed (see below). In this case, bail.
2580		 */
2581		if (sc->need_mcsetup)
2582			return;
2583		sc->need_mcsetup = 1;
2584
2585		/*
2586		 * Add a NOP command with interrupt so that we are notified
2587		 * when all TX commands have been processed.
2588		 */
2589		txp = sc->fxp_desc.tx_last->tx_next;
2590		txp->tx_mbuf = NULL;
2591		txp->tx_cb->cb_status = 0;
2592		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2593		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2594		/*
2595		 * Advance the end of list forward.
2596		 */
2597		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2598		    htole16(~FXP_CB_COMMAND_S);
2599		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2600		sc->fxp_desc.tx_last = txp;
2601		sc->tx_queued++;
2602		/*
2603		 * Issue a resume in case the CU has just suspended.
2604		 */
2605		fxp_scb_wait(sc);
2606		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2607		/*
2608		 * Set a 5 second timer just in case we don't hear from the
2609		 * card again.
2610		 */
2611		ifp->if_timer = 5;
2612
2613		return;
2614	}
2615	sc->need_mcsetup = 0;
2616
2617	/*
2618	 * Initialize multicast setup descriptor.
2619	 */
2620	mcsp->cb_status = 0;
2621	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2622	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2623	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2624	txp = &sc->fxp_desc.mcs_tx;
2625	txp->tx_mbuf = NULL;
2626	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2627	txp->tx_next = sc->fxp_desc.tx_list;
2628	(void) fxp_mc_addrs(sc);
2629	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2630	sc->tx_queued = 1;
2631
2632	/*
2633	 * Wait until command unit is not active. This should never
2634	 * be the case when nothing is queued, but make sure anyway.
2635	 */
2636	count = 100;
2637	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2638	    FXP_SCB_CUS_ACTIVE && --count)
2639		DELAY(10);
2640	if (count == 0) {
2641		device_printf(sc->dev, "command queue timeout\n");
2642		return;
2643	}
2644
2645	/*
2646	 * Start the multicast setup command.
2647	 */
2648	fxp_scb_wait(sc);
2649	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2650	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2651	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2652
2653	ifp->if_timer = 2;
2654	return;
2655}
2656
2657static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2658static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2659static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2660static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2661static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2662static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2663
2664#define UCODE(x)	x, sizeof(x)
2665
2666struct ucode {
2667	u_int32_t	revision;
2668	u_int32_t	*ucode;
2669	int		length;
2670	u_short		int_delay_offset;
2671	u_short		bundle_max_offset;
2672} ucode_table[] = {
2673	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2674	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2675	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2676	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2677	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2678	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2679	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2680	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2681	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2682	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2683	{ 0, NULL, 0, 0, 0 }
2684};
2685
2686static void
2687fxp_load_ucode(struct fxp_softc *sc)
2688{
2689	struct ucode *uc;
2690	struct fxp_cb_ucode *cbp;
2691
2692	for (uc = ucode_table; uc->ucode != NULL; uc++)
2693		if (sc->revision == uc->revision)
2694			break;
2695	if (uc->ucode == NULL)
2696		return;
2697	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2698	cbp->cb_status = 0;
2699	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2700	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2701	memcpy(cbp->ucode, uc->ucode, uc->length);
2702	if (uc->int_delay_offset)
2703		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2704		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2705	if (uc->bundle_max_offset)
2706		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2707		    htole16(sc->tunable_bundle_max);
2708	/*
2709	 * Download the ucode to the chip.
2710	 */
2711	fxp_scb_wait(sc);
2712	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2713	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2714	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2715	/* ...and wait for it to complete. */
2716	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2717	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2718	device_printf(sc->dev,
2719	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2720	    sc->tunable_int_delay,
2721	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2722	sc->flags |= FXP_FLAG_UCODE;
2723}
2724
2725static int
2726sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2727{
2728	int error, value;
2729
2730	value = *(int *)arg1;
2731	error = sysctl_handle_int(oidp, &value, 0, req);
2732	if (error || !req->newptr)
2733		return (error);
2734	if (value < low || value > high)
2735		return (EINVAL);
2736	*(int *)arg1 = value;
2737	return (0);
2738}
2739
2740/*
2741 * Interrupt delay is expressed in microseconds, a multiplier is used
2742 * to convert this to the appropriate clock ticks before using.
2743 */
2744static int
2745sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2746{
2747	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2748}
2749
2750static int
2751sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2752{
2753	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2754}
2755