if_fxp.c revision 128119
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 128119 2004-04-11 15:35:49Z ru $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/sysctl.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#include <net/bpf.h>
51#include <sys/sockio.h>
52#include <sys/bus.h>
53#include <machine/bus.h>
54#include <sys/rman.h>
55#include <machine/resource.h>
56
57#include <net/ethernet.h>
58#include <net/if_arp.h>
59
60#include <machine/clock.h>	/* for DELAY */
61
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#ifdef FXP_IP_CSUM_WAR
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <machine/in_cksum.h>
70#endif
71
72#include <dev/pci/pcivar.h>
73#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74
75#include <dev/mii/mii.h>
76#include <dev/mii/miivar.h>
77
78#include <dev/fxp/if_fxpreg.h>
79#include <dev/fxp/if_fxpvar.h>
80#include <dev/fxp/rcvbundl.h>
81
82MODULE_DEPEND(fxp, pci, 1, 1, 1);
83MODULE_DEPEND(fxp, ether, 1, 1, 1);
84MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85#include "miibus_if.h"
86
87/*
88 * NOTE!  On the Alpha, we have an alignment constraint.  The
89 * card DMAs the packet immediately following the RFA.  However,
90 * the first thing in the packet is a 14-byte Ethernet header.
91 * This means that the packet is misaligned.  To compensate,
92 * we actually offset the RFA 2 bytes into the cluster.  This
93 * alignes the packet after the Ethernet header at a 32-bit
94 * boundary.  HOWEVER!  This means that the RFA is misaligned!
95 */
96#define	RFA_ALIGNMENT_FUDGE	2
97
98/*
99 * Set initial transmit threshold at 64 (512 bytes). This is
100 * increased by 64 (512 bytes) at a time, to maximum of 192
101 * (1536 bytes), if an underrun occurs.
102 */
103static int tx_threshold = 64;
104
105/*
106 * The configuration byte map has several undefined fields which
107 * must be one or must be zero.  Set up a template for these bits
108 * only, (assuming a 82557 chip) leaving the actual configuration
109 * to fxp_init.
110 *
111 * See struct fxp_cb_config for the bit definitions.
112 */
113static u_char fxp_cb_config_template[] = {
114	0x0, 0x0,		/* cb_status */
115	0x0, 0x0,		/* cb_command */
116	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117	0x0,	/*  0 */
118	0x0,	/*  1 */
119	0x0,	/*  2 */
120	0x0,	/*  3 */
121	0x0,	/*  4 */
122	0x0,	/*  5 */
123	0x32,	/*  6 */
124	0x0,	/*  7 */
125	0x0,	/*  8 */
126	0x0,	/*  9 */
127	0x6,	/* 10 */
128	0x0,	/* 11 */
129	0x0,	/* 12 */
130	0x0,	/* 13 */
131	0xf2,	/* 14 */
132	0x48,	/* 15 */
133	0x0,	/* 16 */
134	0x40,	/* 17 */
135	0xf0,	/* 18 */
136	0x0,	/* 19 */
137	0x3f,	/* 20 */
138	0x5	/* 21 */
139};
140
141struct fxp_ident {
142	u_int16_t	devid;
143	int16_t		revid;		/* -1 matches anything */
144	char 		*name;
145};
146
147/*
148 * Claim various Intel PCI device identifiers for this driver.  The
149 * sub-vendor and sub-device field are extensively used to identify
150 * particular variants, but we don't currently differentiate between
151 * them.
152 */
153static struct fxp_ident fxp_ident_table[] = {
154    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
155    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
156    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
171    { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
172    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
173    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190    { 0,	-1,	NULL },
191};
192
193#ifdef FXP_IP_CSUM_WAR
194#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
195#else
196#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
197#endif
198
199static int		fxp_probe(device_t dev);
200static int		fxp_attach(device_t dev);
201static int		fxp_detach(device_t dev);
202static int		fxp_shutdown(device_t dev);
203static int		fxp_suspend(device_t dev);
204static int		fxp_resume(device_t dev);
205
206static void		fxp_intr(void *xsc);
207static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
208			    u_int8_t statack, int count);
209static void 		fxp_init(void *xsc);
210static void 		fxp_init_body(struct fxp_softc *sc);
211static void 		fxp_tick(void *xsc);
212#ifndef BURN_BRIDGES
213static void		fxp_powerstate_d0(device_t dev);
214#endif
215static void 		fxp_start(struct ifnet *ifp);
216static void 		fxp_start_body(struct ifnet *ifp);
217static void		fxp_stop(struct fxp_softc *sc);
218static void 		fxp_release(struct fxp_softc *sc);
219static int		fxp_ioctl(struct ifnet *ifp, u_long command,
220			    caddr_t data);
221static void 		fxp_watchdog(struct ifnet *ifp);
222static int		fxp_add_rfabuf(struct fxp_softc *sc,
223    			    struct fxp_rx *rxp);
224static int		fxp_mc_addrs(struct fxp_softc *sc);
225static void		fxp_mc_setup(struct fxp_softc *sc);
226static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
227			    int autosize);
228static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
229			    u_int16_t data);
230static void		fxp_autosize_eeprom(struct fxp_softc *sc);
231static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
232			    int offset, int words);
233static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
234			    int offset, int words);
235static int		fxp_ifmedia_upd(struct ifnet *ifp);
236static void		fxp_ifmedia_sts(struct ifnet *ifp,
237			    struct ifmediareq *ifmr);
238static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
239static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
240			    struct ifmediareq *ifmr);
241static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
242static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
243			    int value);
244static void		fxp_load_ucode(struct fxp_softc *sc);
245static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
246			    int low, int high);
247static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
248static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
249static void 		fxp_scb_wait(struct fxp_softc *sc);
250static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
251static void		fxp_dma_wait(struct fxp_softc *sc,
252    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
253			    bus_dmamap_t map);
254
255static device_method_t fxp_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		fxp_probe),
258	DEVMETHOD(device_attach,	fxp_attach),
259	DEVMETHOD(device_detach,	fxp_detach),
260	DEVMETHOD(device_shutdown,	fxp_shutdown),
261	DEVMETHOD(device_suspend,	fxp_suspend),
262	DEVMETHOD(device_resume,	fxp_resume),
263
264	/* MII interface */
265	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
266	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
267
268	{ 0, 0 }
269};
270
271static driver_t fxp_driver = {
272	"fxp",
273	fxp_methods,
274	sizeof(struct fxp_softc),
275};
276
277static devclass_t fxp_devclass;
278
279DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
280DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
281DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
282
283static int fxp_rnr;
284SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
285
286static int fxp_noflow;
287SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
288TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
289
290/*
291 * Wait for the previous command to be accepted (but not necessarily
292 * completed).
293 */
294static void
295fxp_scb_wait(struct fxp_softc *sc)
296{
297	int i = 10000;
298
299	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
300		DELAY(2);
301	if (i == 0)
302		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
303		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
304		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
305		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
306		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
307}
308
309static void
310fxp_scb_cmd(struct fxp_softc *sc, int cmd)
311{
312
313	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
314		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
315		fxp_scb_wait(sc);
316	}
317	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
318}
319
320static void
321fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
322    bus_dma_tag_t dmat, bus_dmamap_t map)
323{
324	int i = 10000;
325
326	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
327	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
328		DELAY(2);
329		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
330	}
331	if (i == 0)
332		device_printf(sc->dev, "DMA timeout\n");
333}
334
335/*
336 * Return identification string if this device is ours.
337 */
338static int
339fxp_probe(device_t dev)
340{
341	u_int16_t devid;
342	u_int8_t revid;
343	struct fxp_ident *ident;
344
345	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
346		devid = pci_get_device(dev);
347		revid = pci_get_revid(dev);
348		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
349			if (ident->devid == devid &&
350			    (ident->revid == revid || ident->revid == -1)) {
351				device_set_desc(dev, ident->name);
352				return (0);
353			}
354		}
355	}
356	return (ENXIO);
357}
358
359#ifndef BURN_BRIDGES
360static void
361fxp_powerstate_d0(device_t dev)
362{
363#if __FreeBSD_version >= 430002
364	u_int32_t iobase, membase, irq;
365
366	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
367		/* Save important PCI config data. */
368		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
369		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
370		irq = pci_read_config(dev, PCIR_INTLINE, 4);
371
372		/* Reset the power state. */
373		device_printf(dev, "chip is in D%d power mode "
374		    "-- setting to D0\n", pci_get_powerstate(dev));
375
376		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
377
378		/* Restore PCI config data. */
379		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
380		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
381		pci_write_config(dev, PCIR_INTLINE, irq, 4);
382	}
383#endif
384}
385#endif
386
387static void
388fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
389{
390	u_int32_t *addr;
391
392	if (error)
393		return;
394
395	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
396	addr = arg;
397	*addr = segs->ds_addr;
398}
399
400static int
401fxp_attach(device_t dev)
402{
403	int error = 0;
404	struct fxp_softc *sc = device_get_softc(dev);
405	struct ifnet *ifp;
406	struct fxp_rx *rxp;
407	u_int32_t val;
408	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
409	int i, rid, m1, m2, prefer_iomap, maxtxseg;
410	int s, ipcbxmit_disable;
411
412	sc->dev = dev;
413	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
414	sysctl_ctx_init(&sc->sysctl_ctx);
415	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
416	    MTX_DEF);
417	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
418	    fxp_serial_ifmedia_sts);
419
420	s = splimp();
421
422	/*
423	 * Enable bus mastering.
424	 */
425	pci_enable_busmaster(dev);
426	val = pci_read_config(dev, PCIR_COMMAND, 2);
427#ifndef BURN_BRIDGES
428	fxp_powerstate_d0(dev);
429#endif
430	/*
431	 * Figure out which we should try first - memory mapping or i/o mapping?
432	 * We default to memory mapping. Then we accept an override from the
433	 * command line. Then we check to see which one is enabled.
434	 */
435	m1 = PCIM_CMD_MEMEN;
436	m2 = PCIM_CMD_PORTEN;
437	prefer_iomap = 0;
438	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
439	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
440		m1 = PCIM_CMD_PORTEN;
441		m2 = PCIM_CMD_MEMEN;
442	}
443
444	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
445	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
446	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
447	if (sc->mem == NULL) {
448		sc->rtp =
449		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
450		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
451		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
452                                            RF_ACTIVE);
453	}
454
455	if (!sc->mem) {
456		error = ENXIO;
457		goto fail;
458        }
459	if (bootverbose) {
460		device_printf(dev, "using %s space register mapping\n",
461		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
462	}
463
464	sc->sc_st = rman_get_bustag(sc->mem);
465	sc->sc_sh = rman_get_bushandle(sc->mem);
466
467	/*
468	 * Allocate our interrupt.
469	 */
470	rid = 0;
471	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
472				 RF_SHAREABLE | RF_ACTIVE);
473	if (sc->irq == NULL) {
474		device_printf(dev, "could not map interrupt\n");
475		error = ENXIO;
476		goto fail;
477	}
478
479	/*
480	 * Reset to a stable state.
481	 */
482	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
483	DELAY(10);
484
485	/*
486	 * Find out how large of an SEEPROM we have.
487	 */
488	fxp_autosize_eeprom(sc);
489
490	/*
491	 * Determine whether we must use the 503 serial interface.
492	 */
493	fxp_read_eeprom(sc, &data, 6, 1);
494	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
495	    (data & FXP_PHY_SERIAL_ONLY))
496		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
497
498	/*
499	 * Create the sysctl tree
500	 */
501	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
502	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
503	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
504	if (sc->sysctl_tree == NULL) {
505		error = ENXIO;
506		goto fail;
507	}
508	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
511	    "FXP driver receive interrupt microcode bundling delay");
512	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515	    "FXP driver receive interrupt microcode bundle size limit");
516
517	/*
518	 * Pull in device tunables.
519	 */
520	sc->tunable_int_delay = TUNABLE_INT_DELAY;
521	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
522	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
523	    "int_delay", &sc->tunable_int_delay);
524	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525	    "bundle_max", &sc->tunable_bundle_max);
526
527	/*
528	 * Find out the chip revision; lump all 82557 revs together.
529	 */
530	fxp_read_eeprom(sc, &data, 5, 1);
531	if ((data >> 8) == 1)
532		sc->revision = FXP_REV_82557;
533	else
534		sc->revision = pci_get_revid(dev);
535
536	/*
537	 * Enable workarounds for certain chip revision deficiencies.
538	 *
539	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
540	 * some systems based a normal 82559 design, have a defect where
541	 * the chip can cause a PCI protocol violation if it receives
542	 * a CU_RESUME command when it is entering the IDLE state.  The
543	 * workaround is to disable Dynamic Standby Mode, so the chip never
544	 * deasserts CLKRUN#, and always remains in an active state.
545	 *
546	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
547	 */
548	i = pci_get_device(dev);
549	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
550	    sc->revision >= FXP_REV_82559_A0) {
551		fxp_read_eeprom(sc, &data, 10, 1);
552		if (data & 0x02) {			/* STB enable */
553			u_int16_t cksum;
554			int i;
555
556			device_printf(dev,
557			    "Disabling dynamic standby mode in EEPROM\n");
558			data &= ~0x02;
559			fxp_write_eeprom(sc, &data, 10, 1);
560			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
561			cksum = 0;
562			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
563				fxp_read_eeprom(sc, &data, i, 1);
564				cksum += data;
565			}
566			i = (1 << sc->eeprom_size) - 1;
567			cksum = 0xBABA - cksum;
568			fxp_read_eeprom(sc, &data, i, 1);
569			fxp_write_eeprom(sc, &cksum, i, 1);
570			device_printf(dev,
571			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
572			    i, data, cksum);
573#if 1
574			/*
575			 * If the user elects to continue, try the software
576			 * workaround, as it is better than nothing.
577			 */
578			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
579#endif
580		}
581	}
582
583	/*
584	 * If we are not a 82557 chip, we can enable extended features.
585	 */
586	if (sc->revision != FXP_REV_82557) {
587		/*
588		 * If MWI is enabled in the PCI configuration, and there
589		 * is a valid cacheline size (8 or 16 dwords), then tell
590		 * the board to turn on MWI.
591		 */
592		if (val & PCIM_CMD_MWRICEN &&
593		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
594			sc->flags |= FXP_FLAG_MWI_ENABLE;
595
596		/* turn on the extended TxCB feature */
597		sc->flags |= FXP_FLAG_EXT_TXCB;
598
599		/* enable reception of long frames for VLAN */
600		sc->flags |= FXP_FLAG_LONG_PKT_EN;
601	}
602
603	/*
604	 * Enable use of extended RFDs and TCBs for 82550
605	 * and later chips. Note: we need extended TXCB support
606	 * too, but that's already enabled by the code above.
607	 * Be careful to do this only on the right devices.
608	 *
609	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
610	 * truncate packets that end with an mbuf containing 1 to 3 bytes
611	 * when used with this feature enabled in the previous version of the
612	 * driver.  This problem appears to be fixed now that the driver
613	 * always sets the hardware parse bit in the IPCB structure, which
614	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
615	 * Source Software Developer Manual" says is necessary in the
616	 * cases where packet truncation was observed.
617	 *
618	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
619	 * allows this feature to be disabled at boot time.
620	 *
621	 * If fxp is not compiled into the kernel, this feature may also
622	 * be disabled at run time:
623	 *    # kldunload fxp
624	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
625	 *    # kldload fxp
626	 */
627
628	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
629	    &ipcbxmit_disable) != 0)
630		ipcbxmit_disable = 0;
631	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
632	    sc->revision == FXP_REV_82550_C)) {
633		sc->rfa_size = sizeof (struct fxp_rfa);
634		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
635		sc->flags |= FXP_FLAG_EXT_RFA;
636	} else {
637		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
638		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
639	}
640
641	/*
642	 * Allocate DMA tags and DMA safe memory.
643	 */
644	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
645	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
646	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
647	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
648	if (error) {
649		device_printf(dev, "could not allocate dma tag\n");
650		goto fail;
651	}
652
653	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
654	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
655	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
656	    &sc->fxp_stag);
657	if (error) {
658		device_printf(dev, "could not allocate dma tag\n");
659		goto fail;
660	}
661
662	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
663	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
664	if (error)
665		goto fail;
666	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
667	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
668	if (error) {
669		device_printf(dev, "could not map the stats buffer\n");
670		goto fail;
671	}
672
673	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
675	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
676	if (error) {
677		device_printf(dev, "could not allocate dma tag\n");
678		goto fail;
679	}
680
681	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
682	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
683	if (error)
684		goto fail;
685
686	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
687	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
688	    &sc->fxp_desc.cbl_addr, 0);
689	if (error) {
690		device_printf(dev, "could not map DMA memory\n");
691		goto fail;
692	}
693
694	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
695	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
696	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
697	    &sc->mcs_tag);
698	if (error) {
699		device_printf(dev, "could not allocate dma tag\n");
700		goto fail;
701	}
702
703	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
704	    BUS_DMA_NOWAIT, &sc->mcs_map);
705	if (error)
706		goto fail;
707	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
708	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
709	if (error) {
710		device_printf(dev, "can't map the multicast setup command\n");
711		goto fail;
712	}
713
714	/*
715	 * Pre-allocate the TX DMA maps.
716	 */
717	for (i = 0; i < FXP_NTXCB; i++) {
718		error = bus_dmamap_create(sc->fxp_mtag, 0,
719		    &sc->fxp_desc.tx_list[i].tx_map);
720		if (error) {
721			device_printf(dev, "can't create DMA map for TX\n");
722			goto fail;
723		}
724	}
725	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726	if (error) {
727		device_printf(dev, "can't create spare DMA map\n");
728		goto fail;
729	}
730
731	/*
732	 * Pre-allocate our receive buffers.
733	 */
734	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735	for (i = 0; i < FXP_NRFABUFS; i++) {
736		rxp = &sc->fxp_desc.rx_list[i];
737		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738		if (error) {
739			device_printf(dev, "can't create DMA map for RX\n");
740			goto fail;
741		}
742		if (fxp_add_rfabuf(sc, rxp) != 0) {
743			error = ENOMEM;
744			goto fail;
745		}
746	}
747
748	/*
749	 * Read MAC address.
750	 */
751	fxp_read_eeprom(sc, myea, 0, 3);
752	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
753	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
754	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
755	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
756	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
757	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
758	if (bootverbose) {
759		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
760		    pci_get_vendor(dev), pci_get_device(dev),
761		    pci_get_subvendor(dev), pci_get_subdevice(dev),
762		    pci_get_revid(dev));
763		fxp_read_eeprom(sc, &data, 10, 1);
764		device_printf(dev, "Dynamic Standby mode is %s\n",
765		    data & 0x02 ? "enabled" : "disabled");
766	}
767
768	/*
769	 * If this is only a 10Mbps device, then there is no MII, and
770	 * the PHY will use a serial interface instead.
771	 *
772	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
773	 * doesn't have a programming interface of any sort.  The
774	 * media is sensed automatically based on how the link partner
775	 * is configured.  This is, in essence, manual configuration.
776	 */
777	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
778		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780	} else {
781		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782		    fxp_ifmedia_sts)) {
783	                device_printf(dev, "MII without any PHY!\n");
784			error = ENXIO;
785			goto fail;
786		}
787	}
788
789	ifp = &sc->arpcom.ac_if;
790	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
791	ifp->if_output = ether_output;
792	ifp->if_baudrate = 100000000;
793	ifp->if_init = fxp_init;
794	ifp->if_softc = sc;
795	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796	ifp->if_ioctl = fxp_ioctl;
797	ifp->if_start = fxp_start;
798	ifp->if_watchdog = fxp_watchdog;
799
800	/* Enable checksum offload for 82550 or better chips */
801	if (sc->flags & FXP_FLAG_EXT_RFA) {
802		ifp->if_hwassist = FXP_CSUM_FEATURES;
803		ifp->if_capabilities = IFCAP_HWCSUM;
804		ifp->if_capenable = ifp->if_capabilities;
805	}
806
807#ifdef DEVICE_POLLING
808	/* Inform the world we support polling. */
809	ifp->if_capabilities |= IFCAP_POLLING;
810	ifp->if_capenable |= IFCAP_POLLING;
811#endif
812
813	/*
814	 * Attach the interface.
815	 */
816	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
817
818	/*
819	 * Tell the upper layer(s) we support long frames.
820	 */
821	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
822	ifp->if_capabilities |= IFCAP_VLAN_MTU;
823
824	/*
825	 * Let the system queue as many packets as we have available
826	 * TX descriptors.
827	 */
828	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
829
830	/*
831	 * Hook our interrupt after all initialization is complete.
832	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
833	 * however, ifp and its functions are not fully locked so MPSAFE
834	 * should not be used unless you can handle potential data loss.
835	 */
836	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
837			       fxp_intr, sc, &sc->ih);
838	if (error) {
839		device_printf(dev, "could not setup irq\n");
840		ether_ifdetach(&sc->arpcom.ac_if);
841		goto fail;
842	}
843
844fail:
845	splx(s);
846	if (error)
847		fxp_release(sc);
848	return (error);
849}
850
851/*
852 * Release all resources.  The softc lock should not be held and the
853 * interrupt should already be torn down.
854 */
855static void
856fxp_release(struct fxp_softc *sc)
857{
858	struct fxp_rx *rxp;
859	struct fxp_tx *txp;
860	int i;
861
862	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
863	if (sc->ih)
864		panic("fxp_release() called with intr handle still active");
865	if (sc->miibus)
866		device_delete_child(sc->dev, sc->miibus);
867	bus_generic_detach(sc->dev);
868	ifmedia_removeall(&sc->sc_media);
869	if (sc->fxp_desc.cbl_list) {
870		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
871		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
872		    sc->cbl_map);
873	}
874	if (sc->fxp_stats) {
875		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
876		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
877	}
878	if (sc->mcsp) {
879		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
880		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
881	}
882	if (sc->irq)
883		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
884	if (sc->mem)
885		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
886	if (sc->fxp_mtag) {
887		for (i = 0; i < FXP_NRFABUFS; i++) {
888			rxp = &sc->fxp_desc.rx_list[i];
889			if (rxp->rx_mbuf != NULL) {
890				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
891				    BUS_DMASYNC_POSTREAD);
892				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
893				m_freem(rxp->rx_mbuf);
894			}
895			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
896		}
897		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
898		bus_dma_tag_destroy(sc->fxp_mtag);
899	}
900	if (sc->fxp_stag) {
901		for (i = 0; i < FXP_NTXCB; i++) {
902			txp = &sc->fxp_desc.tx_list[i];
903			if (txp->tx_mbuf != NULL) {
904				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
905				    BUS_DMASYNC_POSTWRITE);
906				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
907				m_freem(txp->tx_mbuf);
908			}
909			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
910		}
911		bus_dma_tag_destroy(sc->fxp_stag);
912	}
913	if (sc->cbl_tag)
914		bus_dma_tag_destroy(sc->cbl_tag);
915	if (sc->mcs_tag)
916		bus_dma_tag_destroy(sc->mcs_tag);
917
918        sysctl_ctx_free(&sc->sysctl_ctx);
919
920	mtx_destroy(&sc->sc_mtx);
921}
922
923/*
924 * Detach interface.
925 */
926static int
927fxp_detach(device_t dev)
928{
929	struct fxp_softc *sc = device_get_softc(dev);
930	int s;
931
932	FXP_LOCK(sc);
933	s = splimp();
934
935	sc->suspended = 1;	/* Do same thing as we do for suspend */
936	/*
937	 * Close down routes etc.
938	 */
939	ether_ifdetach(&sc->arpcom.ac_if);
940
941	/*
942	 * Stop DMA and drop transmit queue, but disable interrupts first.
943	 */
944	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
945	fxp_stop(sc);
946	FXP_UNLOCK(sc);
947
948	/*
949	 * Unhook interrupt before dropping lock. This is to prevent
950	 * races with fxp_intr().
951	 */
952	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
953	sc->ih = NULL;
954
955	splx(s);
956
957	/* Release our allocated resources. */
958	fxp_release(sc);
959	return (0);
960}
961
962/*
963 * Device shutdown routine. Called at system shutdown after sync. The
964 * main purpose of this routine is to shut off receiver DMA so that
965 * kernel memory doesn't get clobbered during warmboot.
966 */
967static int
968fxp_shutdown(device_t dev)
969{
970	/*
971	 * Make sure that DMA is disabled prior to reboot. Not doing
972	 * do could allow DMA to corrupt kernel memory during the
973	 * reboot before the driver initializes.
974	 */
975	fxp_stop((struct fxp_softc *) device_get_softc(dev));
976	return (0);
977}
978
979/*
980 * Device suspend routine.  Stop the interface and save some PCI
981 * settings in case the BIOS doesn't restore them properly on
982 * resume.
983 */
984static int
985fxp_suspend(device_t dev)
986{
987	struct fxp_softc *sc = device_get_softc(dev);
988	int i, s;
989
990	FXP_LOCK(sc);
991	s = splimp();
992
993	fxp_stop(sc);
994
995	for (i = 0; i < 5; i++)
996		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
997	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
998	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
999	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1000	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1001
1002	sc->suspended = 1;
1003
1004	FXP_UNLOCK(sc);
1005	splx(s);
1006	return (0);
1007}
1008
1009/*
1010 * Device resume routine.  Restore some PCI settings in case the BIOS
1011 * doesn't, re-enable busmastering, and restart the interface if
1012 * appropriate.
1013 */
1014static int
1015fxp_resume(device_t dev)
1016{
1017	struct fxp_softc *sc = device_get_softc(dev);
1018	struct ifnet *ifp = &sc->sc_if;
1019	u_int16_t pci_command;
1020	int i, s;
1021
1022	FXP_LOCK(sc);
1023	s = splimp();
1024#ifndef BURN_BRIDGES
1025	fxp_powerstate_d0(dev);
1026#endif
1027	/* better way to do this? */
1028	for (i = 0; i < 5; i++)
1029		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1030	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1031	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1032	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1033	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1034
1035	/* reenable busmastering */
1036	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1037	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1038	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1039
1040	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1041	DELAY(10);
1042
1043	/* reinitialize interface if necessary */
1044	if (ifp->if_flags & IFF_UP)
1045		fxp_init_body(sc);
1046
1047	sc->suspended = 0;
1048
1049	FXP_UNLOCK(sc);
1050	splx(s);
1051	return (0);
1052}
1053
1054static void
1055fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1056{
1057	u_int16_t reg;
1058	int x;
1059
1060	/*
1061	 * Shift in data.
1062	 */
1063	for (x = 1 << (length - 1); x; x >>= 1) {
1064		if (data & x)
1065			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1066		else
1067			reg = FXP_EEPROM_EECS;
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1069		DELAY(1);
1070		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1071		DELAY(1);
1072		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1073		DELAY(1);
1074	}
1075}
1076
1077/*
1078 * Read from the serial EEPROM. Basically, you manually shift in
1079 * the read opcode (one bit at a time) and then shift in the address,
1080 * and then you shift out the data (all of this one bit at a time).
1081 * The word size is 16 bits, so you have to provide the address for
1082 * every 16 bits of data.
1083 */
1084static u_int16_t
1085fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1086{
1087	u_int16_t reg, data;
1088	int x;
1089
1090	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1091	/*
1092	 * Shift in read opcode.
1093	 */
1094	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1095	/*
1096	 * Shift in address.
1097	 */
1098	data = 0;
1099	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1100		if (offset & x)
1101			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1102		else
1103			reg = FXP_EEPROM_EECS;
1104		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1105		DELAY(1);
1106		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1107		DELAY(1);
1108		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1109		DELAY(1);
1110		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1111		data++;
1112		if (autosize && reg == 0) {
1113			sc->eeprom_size = data;
1114			break;
1115		}
1116	}
1117	/*
1118	 * Shift out data.
1119	 */
1120	data = 0;
1121	reg = FXP_EEPROM_EECS;
1122	for (x = 1 << 15; x; x >>= 1) {
1123		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1124		DELAY(1);
1125		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1126			data |= x;
1127		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128		DELAY(1);
1129	}
1130	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1131	DELAY(1);
1132
1133	return (data);
1134}
1135
1136static void
1137fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1138{
1139	int i;
1140
1141	/*
1142	 * Erase/write enable.
1143	 */
1144	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1145	fxp_eeprom_shiftin(sc, 0x4, 3);
1146	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1147	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1148	DELAY(1);
1149	/*
1150	 * Shift in write opcode, address, data.
1151	 */
1152	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1153	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1154	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1155	fxp_eeprom_shiftin(sc, data, 16);
1156	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1157	DELAY(1);
1158	/*
1159	 * Wait for EEPROM to finish up.
1160	 */
1161	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1162	DELAY(1);
1163	for (i = 0; i < 1000; i++) {
1164		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1165			break;
1166		DELAY(50);
1167	}
1168	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1169	DELAY(1);
1170	/*
1171	 * Erase/write disable.
1172	 */
1173	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174	fxp_eeprom_shiftin(sc, 0x4, 3);
1175	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1176	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1177	DELAY(1);
1178}
1179
1180/*
1181 * From NetBSD:
1182 *
1183 * Figure out EEPROM size.
1184 *
1185 * 559's can have either 64-word or 256-word EEPROMs, the 558
1186 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1187 * talks about the existance of 16 to 256 word EEPROMs.
1188 *
1189 * The only known sizes are 64 and 256, where the 256 version is used
1190 * by CardBus cards to store CIS information.
1191 *
1192 * The address is shifted in msb-to-lsb, and after the last
1193 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1194 * after which follows the actual data. We try to detect this zero, by
1195 * probing the data-out bit in the EEPROM control register just after
1196 * having shifted in a bit. If the bit is zero, we assume we've
1197 * shifted enough address bits. The data-out should be tri-state,
1198 * before this, which should translate to a logical one.
1199 */
1200static void
1201fxp_autosize_eeprom(struct fxp_softc *sc)
1202{
1203
1204	/* guess maximum size of 256 words */
1205	sc->eeprom_size = 8;
1206
1207	/* autosize */
1208	(void) fxp_eeprom_getword(sc, 0, 1);
1209}
1210
1211static void
1212fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1213{
1214	int i;
1215
1216	for (i = 0; i < words; i++)
1217		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1218}
1219
1220static void
1221fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1222{
1223	int i;
1224
1225	for (i = 0; i < words; i++)
1226		fxp_eeprom_putword(sc, offset + i, data[i]);
1227}
1228
1229static void
1230fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1231    bus_size_t mapsize, int error)
1232{
1233	struct fxp_softc *sc;
1234	struct fxp_cb_tx *txp;
1235	int i;
1236
1237	if (error)
1238		return;
1239
1240	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1241
1242	sc = arg;
1243	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1244	for (i = 0; i < nseg; i++) {
1245		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1246		/*
1247		 * If this is an 82550/82551, then we're using extended
1248		 * TxCBs _and_ we're using checksum offload. This means
1249		 * that the TxCB is really an IPCB. One major difference
1250		 * between the two is that with plain extended TxCBs,
1251		 * the bottom half of the TxCB contains two entries from
1252		 * the TBD array, whereas IPCBs contain just one entry:
1253		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1254		 * checksum offload control bits. So to make things work
1255		 * right, we have to start filling in the TBD array
1256		 * starting from a different place depending on whether
1257		 * the chip is an 82550/82551 or not.
1258		 */
1259		if (sc->flags & FXP_FLAG_EXT_RFA) {
1260			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1261			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1262		} else {
1263			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1264			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1265		}
1266	}
1267	txp->tbd_number = nseg;
1268}
1269
1270/*
1271 * Grab the softc lock and call the real fxp_start_body() routine
1272 */
1273static void
1274fxp_start(struct ifnet *ifp)
1275{
1276	struct fxp_softc *sc = ifp->if_softc;
1277
1278	FXP_LOCK(sc);
1279	fxp_start_body(ifp);
1280	FXP_UNLOCK(sc);
1281}
1282
1283/*
1284 * Start packet transmission on the interface.
1285 * This routine must be called with the softc lock held, and is an
1286 * internal entry point only.
1287 */
1288static void
1289fxp_start_body(struct ifnet *ifp)
1290{
1291	struct fxp_softc *sc = ifp->if_softc;
1292	struct fxp_tx *txp;
1293	struct mbuf *mb_head;
1294	int error;
1295
1296	mtx_assert(&sc->sc_mtx, MA_OWNED);
1297	/*
1298	 * See if we need to suspend xmit until the multicast filter
1299	 * has been reprogrammed (which can only be done at the head
1300	 * of the command chain).
1301	 */
1302	if (sc->need_mcsetup) {
1303		return;
1304	}
1305
1306	txp = NULL;
1307
1308	/*
1309	 * We're finished if there is nothing more to add to the list or if
1310	 * we're all filled up with buffers to transmit.
1311	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1312	 *       a NOP command when needed.
1313	 */
1314	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1315
1316		/*
1317		 * Grab a packet to transmit.
1318		 */
1319		IF_DEQUEUE(&ifp->if_snd, mb_head);
1320
1321		/*
1322		 * Get pointer to next available tx desc.
1323		 */
1324		txp = sc->fxp_desc.tx_last->tx_next;
1325
1326		/*
1327		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1328		 * Ethernet Controller Family Open Source Software
1329		 * Developer Manual says:
1330		 *   Using software parsing is only allowed with legal
1331		 *   TCP/IP or UDP/IP packets.
1332		 *   ...
1333		 *   For all other datagrams, hardware parsing must
1334		 *   be used.
1335		 * Software parsing appears to truncate ICMP and
1336		 * fragmented UDP packets that contain one to three
1337		 * bytes in the second (and final) mbuf of the packet.
1338		 */
1339		if (sc->flags & FXP_FLAG_EXT_RFA)
1340			txp->tx_cb->ipcb_ip_activation_high =
1341			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1342
1343		/*
1344		 * Deal with TCP/IP checksum offload. Note that
1345		 * in order for TCP checksum offload to work,
1346		 * the pseudo header checksum must have already
1347		 * been computed and stored in the checksum field
1348		 * in the TCP header. The stack should have
1349		 * already done this for us.
1350		 */
1351
1352		if (mb_head->m_pkthdr.csum_flags) {
1353			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1354				txp->tx_cb->ipcb_ip_schedule =
1355				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1356				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1357					txp->tx_cb->ipcb_ip_schedule |=
1358					    FXP_IPCB_TCP_PACKET;
1359			}
1360#ifdef FXP_IP_CSUM_WAR
1361		/*
1362		 * XXX The 82550 chip appears to have trouble
1363		 * dealing with IP header checksums in very small
1364		 * datagrams, namely fragments from 1 to 3 bytes
1365		 * in size. For example, say you want to transmit
1366		 * a UDP packet of 1473 bytes. The packet will be
1367		 * fragmented over two IP datagrams, the latter
1368		 * containing only one byte of data. The 82550 will
1369		 * botch the header checksum on the 1-byte fragment.
1370		 * As long as the datagram contains 4 or more bytes
1371		 * of data, you're ok.
1372		 *
1373                 * The following code attempts to work around this
1374		 * problem: if the datagram is less than 38 bytes
1375		 * in size (14 bytes ether header, 20 bytes IP header,
1376		 * plus 4 bytes of data), we punt and compute the IP
1377		 * header checksum by hand. This workaround doesn't
1378		 * work very well, however, since it can be fooled
1379		 * by things like VLAN tags and IP options that make
1380		 * the header sizes/offsets vary.
1381		 */
1382
1383			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1384				if (mb_head->m_pkthdr.len < 38) {
1385					struct ip *ip;
1386					mb_head->m_data += ETHER_HDR_LEN;
1387					ip = mtod(mb_head, struct ip *);
1388					ip->ip_sum = in_cksum(mb_head,
1389					    ip->ip_hl << 2);
1390					mb_head->m_data -= ETHER_HDR_LEN;
1391				} else {
1392					txp->tx_cb->ipcb_ip_activation_high =
1393					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1394					txp->tx_cb->ipcb_ip_schedule |=
1395					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1396				}
1397			}
1398#endif
1399		}
1400
1401		/*
1402		 * Go through each of the mbufs in the chain and initialize
1403		 * the transmit buffer descriptors with the physical address
1404		 * and size of the mbuf.
1405		 */
1406		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1407		    mb_head, fxp_dma_map_txbuf, sc, 0);
1408
1409		if (error && error != EFBIG) {
1410			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1411			    error);
1412			m_freem(mb_head);
1413			break;
1414		}
1415
1416		if (error) {
1417			struct mbuf *mn;
1418
1419			/*
1420			 * We ran out of segments. We have to recopy this
1421			 * mbuf chain first. Bail out if we can't get the
1422			 * new buffers.
1423			 */
1424			mn = m_defrag(mb_head, M_DONTWAIT);
1425			if (mn == NULL) {
1426				m_freem(mb_head);
1427				break;
1428			} else {
1429				mb_head = mn;
1430			}
1431			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1432			    mb_head, fxp_dma_map_txbuf, sc, 0);
1433			if (error) {
1434				device_printf(sc->dev,
1435				    "can't map mbuf (error %d)\n", error);
1436				m_freem(mb_head);
1437				break;
1438			}
1439		}
1440
1441		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1442		    BUS_DMASYNC_PREWRITE);
1443
1444		txp->tx_mbuf = mb_head;
1445		txp->tx_cb->cb_status = 0;
1446		txp->tx_cb->byte_count = 0;
1447		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1448			txp->tx_cb->cb_command =
1449			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1450			    FXP_CB_COMMAND_S);
1451		} else {
1452			txp->tx_cb->cb_command =
1453			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1454			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1455			/*
1456			 * Set a 5 second timer just in case we don't hear
1457			 * from the card again.
1458			 */
1459			ifp->if_timer = 5;
1460		}
1461		txp->tx_cb->tx_threshold = tx_threshold;
1462
1463		/*
1464		 * Advance the end of list forward.
1465		 */
1466
1467#ifdef __alpha__
1468		/*
1469		 * On platforms which can't access memory in 16-bit
1470		 * granularities, we must prevent the card from DMA'ing
1471		 * up the status while we update the command field.
1472		 * This could cause us to overwrite the completion status.
1473		 * XXX This is probably bogus and we're _not_ looking
1474		 * for atomicity here.
1475		 */
1476		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1477		    htole16(FXP_CB_COMMAND_S));
1478#else
1479		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1480		    htole16(~FXP_CB_COMMAND_S);
1481#endif /*__alpha__*/
1482		sc->fxp_desc.tx_last = txp;
1483
1484		/*
1485		 * Advance the beginning of the list forward if there are
1486		 * no other packets queued (when nothing is queued, tx_first
1487		 * sits on the last TxCB that was sent out).
1488		 */
1489		if (sc->tx_queued == 0)
1490			sc->fxp_desc.tx_first = txp;
1491
1492		sc->tx_queued++;
1493
1494		/*
1495		 * Pass packet to bpf if there is a listener.
1496		 */
1497		BPF_MTAP(ifp, mb_head);
1498	}
1499	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1500
1501	/*
1502	 * We're finished. If we added to the list, issue a RESUME to get DMA
1503	 * going again if suspended.
1504	 */
1505	if (txp != NULL) {
1506		fxp_scb_wait(sc);
1507		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1508	}
1509}
1510
1511#ifdef DEVICE_POLLING
1512static poll_handler_t fxp_poll;
1513
1514static void
1515fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1516{
1517	struct fxp_softc *sc = ifp->if_softc;
1518	u_int8_t statack;
1519
1520	FXP_LOCK(sc);
1521	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1522		ether_poll_deregister(ifp);
1523		cmd = POLL_DEREGISTER;
1524	}
1525	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1526		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1527		FXP_UNLOCK(sc);
1528		return;
1529	}
1530	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1531	    FXP_SCB_STATACK_FR;
1532	if (cmd == POLL_AND_CHECK_STATUS) {
1533		u_int8_t tmp;
1534
1535		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1536		if (tmp == 0xff || tmp == 0) {
1537			FXP_UNLOCK(sc);
1538			return; /* nothing to do */
1539		}
1540		tmp &= ~statack;
1541		/* ack what we can */
1542		if (tmp != 0)
1543			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1544		statack |= tmp;
1545	}
1546	fxp_intr_body(sc, ifp, statack, count);
1547	FXP_UNLOCK(sc);
1548}
1549#endif /* DEVICE_POLLING */
1550
1551/*
1552 * Process interface interrupts.
1553 */
1554static void
1555fxp_intr(void *xsc)
1556{
1557	struct fxp_softc *sc = xsc;
1558	struct ifnet *ifp = &sc->sc_if;
1559	u_int8_t statack;
1560
1561	FXP_LOCK(sc);
1562	if (sc->suspended) {
1563		FXP_UNLOCK(sc);
1564		return;
1565	}
1566
1567#ifdef DEVICE_POLLING
1568	if (ifp->if_flags & IFF_POLLING) {
1569		FXP_UNLOCK(sc);
1570		return;
1571	}
1572	if ((ifp->if_capenable & IFCAP_POLLING) &&
1573	    ether_poll_register(fxp_poll, ifp)) {
1574		/* disable interrupts */
1575		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1576		FXP_UNLOCK(sc);
1577		fxp_poll(ifp, 0, 1);
1578		return;
1579	}
1580#endif
1581	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1582		/*
1583		 * It should not be possible to have all bits set; the
1584		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1585		 * all bits are set, this may indicate that the card has
1586		 * been physically ejected, so ignore it.
1587		 */
1588		if (statack == 0xff) {
1589			FXP_UNLOCK(sc);
1590			return;
1591		}
1592
1593		/*
1594		 * First ACK all the interrupts in this pass.
1595		 */
1596		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1597		fxp_intr_body(sc, ifp, statack, -1);
1598	}
1599	FXP_UNLOCK(sc);
1600}
1601
1602static void
1603fxp_txeof(struct fxp_softc *sc)
1604{
1605	struct fxp_tx *txp;
1606
1607	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1608	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1609	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1610	    txp = txp->tx_next) {
1611		if (txp->tx_mbuf != NULL) {
1612			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1613			    BUS_DMASYNC_POSTWRITE);
1614			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1615			m_freem(txp->tx_mbuf);
1616			txp->tx_mbuf = NULL;
1617			/* clear this to reset csum offload bits */
1618			txp->tx_cb->tbd[0].tb_addr = 0;
1619		}
1620		sc->tx_queued--;
1621	}
1622	sc->fxp_desc.tx_first = txp;
1623	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1624}
1625
1626static void
1627fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1628    int count)
1629{
1630	struct mbuf *m;
1631	struct fxp_rx *rxp;
1632	struct fxp_rfa *rfa;
1633	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1634
1635	mtx_assert(&sc->sc_mtx, MA_OWNED);
1636	if (rnr)
1637		fxp_rnr++;
1638#ifdef DEVICE_POLLING
1639	/* Pick up a deferred RNR condition if `count' ran out last time. */
1640	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1641		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1642		rnr = 1;
1643	}
1644#endif
1645
1646	/*
1647	 * Free any finished transmit mbuf chains.
1648	 *
1649	 * Handle the CNA event likt a CXTNO event. It used to
1650	 * be that this event (control unit not ready) was not
1651	 * encountered, but it is now with the SMPng modifications.
1652	 * The exact sequence of events that occur when the interface
1653	 * is brought up are different now, and if this event
1654	 * goes unhandled, the configuration/rxfilter setup sequence
1655	 * can stall for several seconds. The result is that no
1656	 * packets go out onto the wire for about 5 to 10 seconds
1657	 * after the interface is ifconfig'ed for the first time.
1658	 */
1659	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1660		fxp_txeof(sc);
1661
1662		ifp->if_timer = 0;
1663		if (sc->tx_queued == 0) {
1664			if (sc->need_mcsetup)
1665				fxp_mc_setup(sc);
1666		}
1667		/*
1668		 * Try to start more packets transmitting.
1669		 */
1670		if (ifp->if_snd.ifq_head != NULL)
1671			fxp_start_body(ifp);
1672	}
1673
1674	/*
1675	 * Just return if nothing happened on the receive side.
1676	 */
1677	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1678		return;
1679
1680	/*
1681	 * Process receiver interrupts. If a no-resource (RNR)
1682	 * condition exists, get whatever packets we can and
1683	 * re-start the receiver.
1684	 *
1685	 * When using polling, we do not process the list to completion,
1686	 * so when we get an RNR interrupt we must defer the restart
1687	 * until we hit the last buffer with the C bit set.
1688	 * If we run out of cycles and rfa_headm has the C bit set,
1689	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1690	 * that the info will be used in the subsequent polling cycle.
1691	 */
1692	for (;;) {
1693		rxp = sc->fxp_desc.rx_head;
1694		m = rxp->rx_mbuf;
1695		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1696		    RFA_ALIGNMENT_FUDGE);
1697		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1698		    BUS_DMASYNC_POSTREAD);
1699
1700#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1701		if (count >= 0 && count-- == 0) {
1702			if (rnr) {
1703				/* Defer RNR processing until the next time. */
1704				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1705				rnr = 0;
1706			}
1707			break;
1708		}
1709#endif /* DEVICE_POLLING */
1710
1711		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1712			break;
1713
1714		/*
1715		 * Advance head forward.
1716		 */
1717		sc->fxp_desc.rx_head = rxp->rx_next;
1718
1719		/*
1720		 * Add a new buffer to the receive chain.
1721		 * If this fails, the old buffer is recycled
1722		 * instead.
1723		 */
1724		if (fxp_add_rfabuf(sc, rxp) == 0) {
1725			int total_len;
1726
1727			/*
1728			 * Fetch packet length (the top 2 bits of
1729			 * actual_size are flags set by the controller
1730			 * upon completion), and drop the packet in case
1731			 * of bogus length or CRC errors.
1732			 */
1733			total_len = le16toh(rfa->actual_size) & 0x3fff;
1734			if (total_len < sizeof(struct ether_header) ||
1735			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1736				sc->rfa_size ||
1737			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1738				m_freem(m);
1739				continue;
1740			}
1741
1742                        /* Do IP checksum checking. */
1743			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1744				if (rfa->rfax_csum_sts &
1745				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1746					m->m_pkthdr.csum_flags |=
1747					    CSUM_IP_CHECKED;
1748				if (rfa->rfax_csum_sts &
1749				    FXP_RFDX_CS_IP_CSUM_VALID)
1750					m->m_pkthdr.csum_flags |=
1751					    CSUM_IP_VALID;
1752				if ((rfa->rfax_csum_sts &
1753				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1754				    (rfa->rfax_csum_sts &
1755				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1756					m->m_pkthdr.csum_flags |=
1757					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1758					m->m_pkthdr.csum_data = 0xffff;
1759				}
1760			}
1761
1762			m->m_pkthdr.len = m->m_len = total_len;
1763			m->m_pkthdr.rcvif = ifp;
1764
1765			/*
1766			 * Drop locks before calling if_input() since it
1767			 * may re-enter fxp_start() in the netisr case.
1768			 * This would result in a lock reversal.  Better
1769			 * performance might be obtained by chaining all
1770			 * packets received, dropping the lock, and then
1771			 * calling if_input() on each one.
1772			 */
1773			FXP_UNLOCK(sc);
1774			(*ifp->if_input)(ifp, m);
1775			FXP_LOCK(sc);
1776		}
1777	}
1778	if (rnr) {
1779		fxp_scb_wait(sc);
1780		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1781		    sc->fxp_desc.rx_head->rx_addr);
1782		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1783	}
1784}
1785
1786/*
1787 * Update packet in/out/collision statistics. The i82557 doesn't
1788 * allow you to access these counters without doing a fairly
1789 * expensive DMA to get _all_ of the statistics it maintains, so
1790 * we do this operation here only once per second. The statistics
1791 * counters in the kernel are updated from the previous dump-stats
1792 * DMA and then a new dump-stats DMA is started. The on-chip
1793 * counters are zeroed when the DMA completes. If we can't start
1794 * the DMA immediately, we don't wait - we just prepare to read
1795 * them again next time.
1796 */
1797static void
1798fxp_tick(void *xsc)
1799{
1800	struct fxp_softc *sc = xsc;
1801	struct ifnet *ifp = &sc->sc_if;
1802	struct fxp_stats *sp = sc->fxp_stats;
1803	int s;
1804
1805	FXP_LOCK(sc);
1806	s = splimp();
1807	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1808	ifp->if_opackets += le32toh(sp->tx_good);
1809	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1810	if (sp->rx_good) {
1811		ifp->if_ipackets += le32toh(sp->rx_good);
1812		sc->rx_idle_secs = 0;
1813	} else {
1814		/*
1815		 * Receiver's been idle for another second.
1816		 */
1817		sc->rx_idle_secs++;
1818	}
1819	ifp->if_ierrors +=
1820	    le32toh(sp->rx_crc_errors) +
1821	    le32toh(sp->rx_alignment_errors) +
1822	    le32toh(sp->rx_rnr_errors) +
1823	    le32toh(sp->rx_overrun_errors);
1824	/*
1825	 * If any transmit underruns occured, bump up the transmit
1826	 * threshold by another 512 bytes (64 * 8).
1827	 */
1828	if (sp->tx_underruns) {
1829		ifp->if_oerrors += le32toh(sp->tx_underruns);
1830		if (tx_threshold < 192)
1831			tx_threshold += 64;
1832	}
1833
1834	/*
1835	 * Release any xmit buffers that have completed DMA. This isn't
1836	 * strictly necessary to do here, but it's advantagous for mbufs
1837	 * with external storage to be released in a timely manner rather
1838	 * than being defered for a potentially long time. This limits
1839	 * the delay to a maximum of one second.
1840	 */
1841	fxp_txeof(sc);
1842
1843	/*
1844	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1845	 * then assume the receiver has locked up and attempt to clear
1846	 * the condition by reprogramming the multicast filter. This is
1847	 * a work-around for a bug in the 82557 where the receiver locks
1848	 * up if it gets certain types of garbage in the syncronization
1849	 * bits prior to the packet header. This bug is supposed to only
1850	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1851	 * mode as well (perhaps due to a 10/100 speed transition).
1852	 */
1853	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1854		sc->rx_idle_secs = 0;
1855		fxp_mc_setup(sc);
1856	}
1857	/*
1858	 * If there is no pending command, start another stats
1859	 * dump. Otherwise punt for now.
1860	 */
1861	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1862		/*
1863		 * Start another stats dump.
1864		 */
1865		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1866		    BUS_DMASYNC_PREREAD);
1867		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1868	} else {
1869		/*
1870		 * A previous command is still waiting to be accepted.
1871		 * Just zero our copy of the stats and wait for the
1872		 * next timer event to update them.
1873		 */
1874		sp->tx_good = 0;
1875		sp->tx_underruns = 0;
1876		sp->tx_total_collisions = 0;
1877
1878		sp->rx_good = 0;
1879		sp->rx_crc_errors = 0;
1880		sp->rx_alignment_errors = 0;
1881		sp->rx_rnr_errors = 0;
1882		sp->rx_overrun_errors = 0;
1883	}
1884	if (sc->miibus != NULL)
1885		mii_tick(device_get_softc(sc->miibus));
1886
1887	/*
1888	 * Schedule another timeout one second from now.
1889	 */
1890	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1891	FXP_UNLOCK(sc);
1892	splx(s);
1893}
1894
1895/*
1896 * Stop the interface. Cancels the statistics updater and resets
1897 * the interface.
1898 */
1899static void
1900fxp_stop(struct fxp_softc *sc)
1901{
1902	struct ifnet *ifp = &sc->sc_if;
1903	struct fxp_tx *txp;
1904	int i;
1905
1906	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907	ifp->if_timer = 0;
1908
1909#ifdef DEVICE_POLLING
1910	ether_poll_deregister(ifp);
1911#endif
1912	/*
1913	 * Cancel stats updater.
1914	 */
1915	callout_stop(&sc->stat_ch);
1916
1917	/*
1918	 * Issue software reset, which also unloads the microcode.
1919	 */
1920	sc->flags &= ~FXP_FLAG_UCODE;
1921	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1922	DELAY(50);
1923
1924	/*
1925	 * Release any xmit buffers.
1926	 */
1927	txp = sc->fxp_desc.tx_list;
1928	if (txp != NULL) {
1929		for (i = 0; i < FXP_NTXCB; i++) {
1930 			if (txp[i].tx_mbuf != NULL) {
1931				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1932				    BUS_DMASYNC_POSTWRITE);
1933				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1934				m_freem(txp[i].tx_mbuf);
1935				txp[i].tx_mbuf = NULL;
1936				/* clear this to reset csum offload bits */
1937				txp[i].tx_cb->tbd[0].tb_addr = 0;
1938			}
1939		}
1940	}
1941	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1942	sc->tx_queued = 0;
1943}
1944
1945/*
1946 * Watchdog/transmission transmit timeout handler. Called when a
1947 * transmission is started on the interface, but no interrupt is
1948 * received before the timeout. This usually indicates that the
1949 * card has wedged for some reason.
1950 */
1951static void
1952fxp_watchdog(struct ifnet *ifp)
1953{
1954	struct fxp_softc *sc = ifp->if_softc;
1955
1956	FXP_LOCK(sc);
1957	device_printf(sc->dev, "device timeout\n");
1958	ifp->if_oerrors++;
1959
1960	fxp_init_body(sc);
1961	FXP_UNLOCK(sc);
1962}
1963
1964/*
1965 * Acquire locks and then call the real initialization function.  This
1966 * is necessary because ether_ioctl() calls if_init() and this would
1967 * result in mutex recursion if the mutex was held.
1968 */
1969static void
1970fxp_init(void *xsc)
1971{
1972	struct fxp_softc *sc = xsc;
1973
1974	FXP_LOCK(sc);
1975	fxp_init_body(sc);
1976	FXP_UNLOCK(sc);
1977}
1978
1979/*
1980 * Perform device initialization. This routine must be called with the
1981 * softc lock held.
1982 */
1983static void
1984fxp_init_body(struct fxp_softc *sc)
1985{
1986	struct ifnet *ifp = &sc->sc_if;
1987	struct fxp_cb_config *cbp;
1988	struct fxp_cb_ias *cb_ias;
1989	struct fxp_cb_tx *tcbp;
1990	struct fxp_tx *txp;
1991	struct fxp_cb_mcs *mcsp;
1992	int i, prm, s;
1993
1994	mtx_assert(&sc->sc_mtx, MA_OWNED);
1995	s = splimp();
1996	/*
1997	 * Cancel any pending I/O
1998	 */
1999	fxp_stop(sc);
2000
2001	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2002
2003	/*
2004	 * Initialize base of CBL and RFA memory. Loading with zero
2005	 * sets it up for regular linear addressing.
2006	 */
2007	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2008	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2009
2010	fxp_scb_wait(sc);
2011	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2012
2013	/*
2014	 * Initialize base of dump-stats buffer.
2015	 */
2016	fxp_scb_wait(sc);
2017	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2018	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2019	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2020
2021	/*
2022	 * Attempt to load microcode if requested.
2023	 */
2024	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2025		fxp_load_ucode(sc);
2026
2027	/*
2028	 * Initialize the multicast address list.
2029	 */
2030	if (fxp_mc_addrs(sc)) {
2031		mcsp = sc->mcsp;
2032		mcsp->cb_status = 0;
2033		mcsp->cb_command =
2034		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2035		mcsp->link_addr = 0xffffffff;
2036		/*
2037	 	 * Start the multicast setup command.
2038		 */
2039		fxp_scb_wait(sc);
2040		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2041		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2042		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2043		/* ...and wait for it to complete. */
2044		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2045		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2046		    BUS_DMASYNC_POSTWRITE);
2047	}
2048
2049	/*
2050	 * We temporarily use memory that contains the TxCB list to
2051	 * construct the config CB. The TxCB list memory is rebuilt
2052	 * later.
2053	 */
2054	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2055
2056	/*
2057	 * This bcopy is kind of disgusting, but there are a bunch of must be
2058	 * zero and must be one bits in this structure and this is the easiest
2059	 * way to initialize them all to proper values.
2060	 */
2061	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2062
2063	cbp->cb_status =	0;
2064	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2065	    FXP_CB_COMMAND_EL);
2066	cbp->link_addr =	0xffffffff;	/* (no) next command */
2067	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2068	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2069	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2070	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2071	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2072	cbp->type_enable =	0;	/* actually reserved */
2073	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2074	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2075	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2076	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2077	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2078	cbp->late_scb =		0;	/* (don't) defer SCB update */
2079	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2080	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2081	cbp->ci_int =		1;	/* interrupt on CU idle */
2082	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2083	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2084	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2085	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2086	cbp->disc_short_rx =	!prm;	/* discard short packets */
2087	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2088	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2089	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2090	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2091	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2092	cbp->csma_dis =		0;	/* (don't) disable link */
2093	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2094	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2095	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2096	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2097	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2098	cbp->nsai =		1;	/* (don't) disable source addr insert */
2099	cbp->preamble_length =	2;	/* (7 byte) preamble */
2100	cbp->loopback =		0;	/* (don't) loopback */
2101	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2102	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2103	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2104	cbp->promiscuous =	prm;	/* promiscuous mode */
2105	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2106	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2107	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2108	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2109	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2110
2111	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2112	cbp->padding =		1;	/* (do) pad short tx packets */
2113	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2114	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2115	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2116	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2117					/* must set wake_en in PMCSR also */
2118	cbp->force_fdx =	0;	/* (don't) force full duplex */
2119	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2120	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2121	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2122	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2123
2124	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2125		/*
2126		 * The 82557 has no hardware flow control, the values
2127		 * below are the defaults for the chip.
2128		 */
2129		cbp->fc_delay_lsb =	0;
2130		cbp->fc_delay_msb =	0x40;
2131		cbp->pri_fc_thresh =	3;
2132		cbp->tx_fc_dis =	0;
2133		cbp->rx_fc_restop =	0;
2134		cbp->rx_fc_restart =	0;
2135		cbp->fc_filter =	0;
2136		cbp->pri_fc_loc =	1;
2137	} else {
2138		cbp->fc_delay_lsb =	0x1f;
2139		cbp->fc_delay_msb =	0x01;
2140		cbp->pri_fc_thresh =	3;
2141		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2142		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2143		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2144		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2145		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2146	}
2147
2148	/*
2149	 * Start the config command/DMA.
2150	 */
2151	fxp_scb_wait(sc);
2152	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2153	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2154	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2155	/* ...and wait for it to complete. */
2156	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2157	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2158
2159	/*
2160	 * Now initialize the station address. Temporarily use the TxCB
2161	 * memory area like we did above for the config CB.
2162	 */
2163	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2164	cb_ias->cb_status = 0;
2165	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2166	cb_ias->link_addr = 0xffffffff;
2167	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2168	    sizeof(sc->arpcom.ac_enaddr));
2169
2170	/*
2171	 * Start the IAS (Individual Address Setup) command/DMA.
2172	 */
2173	fxp_scb_wait(sc);
2174	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2175	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2176	/* ...and wait for it to complete. */
2177	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2178	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2179
2180	/*
2181	 * Initialize transmit control block (TxCB) list.
2182	 */
2183	txp = sc->fxp_desc.tx_list;
2184	tcbp = sc->fxp_desc.cbl_list;
2185	bzero(tcbp, FXP_TXCB_SZ);
2186	for (i = 0; i < FXP_NTXCB; i++) {
2187		txp[i].tx_cb = tcbp + i;
2188		txp[i].tx_mbuf = NULL;
2189		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2190		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2191		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2192		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2193		if (sc->flags & FXP_FLAG_EXT_TXCB)
2194			tcbp[i].tbd_array_addr =
2195			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2196		else
2197			tcbp[i].tbd_array_addr =
2198			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2199		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2200	}
2201	/*
2202	 * Set the suspend flag on the first TxCB and start the control
2203	 * unit. It will execute the NOP and then suspend.
2204	 */
2205	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2206	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2207	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2208	sc->tx_queued = 1;
2209
2210	fxp_scb_wait(sc);
2211	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2212
2213	/*
2214	 * Initialize receiver buffer area - RFA.
2215	 */
2216	fxp_scb_wait(sc);
2217	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2218	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2219
2220	/*
2221	 * Set current media.
2222	 */
2223	if (sc->miibus != NULL)
2224		mii_mediachg(device_get_softc(sc->miibus));
2225
2226	ifp->if_flags |= IFF_RUNNING;
2227	ifp->if_flags &= ~IFF_OACTIVE;
2228
2229	/*
2230	 * Enable interrupts.
2231	 */
2232#ifdef DEVICE_POLLING
2233	/*
2234	 * ... but only do that if we are not polling. And because (presumably)
2235	 * the default is interrupts on, we need to disable them explicitly!
2236	 */
2237	if ( ifp->if_flags & IFF_POLLING )
2238		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2239	else
2240#endif /* DEVICE_POLLING */
2241	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2242
2243	/*
2244	 * Start stats updater.
2245	 */
2246	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2247	splx(s);
2248}
2249
2250static int
2251fxp_serial_ifmedia_upd(struct ifnet *ifp)
2252{
2253
2254	return (0);
2255}
2256
2257static void
2258fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2259{
2260
2261	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2262}
2263
2264/*
2265 * Change media according to request.
2266 */
2267static int
2268fxp_ifmedia_upd(struct ifnet *ifp)
2269{
2270	struct fxp_softc *sc = ifp->if_softc;
2271	struct mii_data *mii;
2272
2273	mii = device_get_softc(sc->miibus);
2274	mii_mediachg(mii);
2275	return (0);
2276}
2277
2278/*
2279 * Notify the world which media we're using.
2280 */
2281static void
2282fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2283{
2284	struct fxp_softc *sc = ifp->if_softc;
2285	struct mii_data *mii;
2286
2287	mii = device_get_softc(sc->miibus);
2288	mii_pollstat(mii);
2289	ifmr->ifm_active = mii->mii_media_active;
2290	ifmr->ifm_status = mii->mii_media_status;
2291
2292	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2293		sc->cu_resume_bug = 1;
2294	else
2295		sc->cu_resume_bug = 0;
2296}
2297
2298/*
2299 * Add a buffer to the end of the RFA buffer list.
2300 * Return 0 if successful, 1 for failure. A failure results in
2301 * adding the 'oldm' (if non-NULL) on to the end of the list -
2302 * tossing out its old contents and recycling it.
2303 * The RFA struct is stuck at the beginning of mbuf cluster and the
2304 * data pointer is fixed up to point just past it.
2305 */
2306static int
2307fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2308{
2309	struct mbuf *m;
2310	struct fxp_rfa *rfa, *p_rfa;
2311	struct fxp_rx *p_rx;
2312	bus_dmamap_t tmp_map;
2313	int error;
2314
2315	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2316	if (m == NULL)
2317		return (ENOBUFS);
2318
2319	/*
2320	 * Move the data pointer up so that the incoming data packet
2321	 * will be 32-bit aligned.
2322	 */
2323	m->m_data += RFA_ALIGNMENT_FUDGE;
2324
2325	/*
2326	 * Get a pointer to the base of the mbuf cluster and move
2327	 * data start past it.
2328	 */
2329	rfa = mtod(m, struct fxp_rfa *);
2330	m->m_data += sc->rfa_size;
2331	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2332
2333	rfa->rfa_status = 0;
2334	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2335	rfa->actual_size = 0;
2336
2337	/*
2338	 * Initialize the rest of the RFA.  Note that since the RFA
2339	 * is misaligned, we cannot store values directly.  We're thus
2340	 * using the le32enc() function which handles endianness and
2341	 * is also alignment-safe.
2342	 */
2343	le32enc(&rfa->link_addr, 0xffffffff);
2344	le32enc(&rfa->rbd_addr, 0xffffffff);
2345
2346	/* Map the RFA into DMA memory. */
2347	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2348	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2349	    &rxp->rx_addr, 0);
2350	if (error) {
2351		m_freem(m);
2352		return (error);
2353	}
2354
2355	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2356	tmp_map = sc->spare_map;
2357	sc->spare_map = rxp->rx_map;
2358	rxp->rx_map = tmp_map;
2359	rxp->rx_mbuf = m;
2360
2361	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2362	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2363
2364	/*
2365	 * If there are other buffers already on the list, attach this
2366	 * one to the end by fixing up the tail to point to this one.
2367	 */
2368	if (sc->fxp_desc.rx_head != NULL) {
2369		p_rx = sc->fxp_desc.rx_tail;
2370		p_rfa = (struct fxp_rfa *)
2371		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2372		p_rx->rx_next = rxp;
2373		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2374		p_rfa->rfa_control = 0;
2375		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2376		    BUS_DMASYNC_PREWRITE);
2377	} else {
2378		rxp->rx_next = NULL;
2379		sc->fxp_desc.rx_head = rxp;
2380	}
2381	sc->fxp_desc.rx_tail = rxp;
2382	return (0);
2383}
2384
2385static volatile int
2386fxp_miibus_readreg(device_t dev, int phy, int reg)
2387{
2388	struct fxp_softc *sc = device_get_softc(dev);
2389	int count = 10000;
2390	int value;
2391
2392	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2393	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2394
2395	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2396	    && count--)
2397		DELAY(10);
2398
2399	if (count <= 0)
2400		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2401
2402	return (value & 0xffff);
2403}
2404
2405static void
2406fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2407{
2408	struct fxp_softc *sc = device_get_softc(dev);
2409	int count = 10000;
2410
2411	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2412	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2413	    (value & 0xffff));
2414
2415	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2416	    count--)
2417		DELAY(10);
2418
2419	if (count <= 0)
2420		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2421}
2422
2423static int
2424fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2425{
2426	struct fxp_softc *sc = ifp->if_softc;
2427	struct ifreq *ifr = (struct ifreq *)data;
2428	struct mii_data *mii;
2429	int s, error = 0;
2430
2431	/*
2432	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2433	 * that by saying we're busy if the lock is already held.
2434	 */
2435	if (mtx_owned(&sc->sc_mtx))
2436		return (EBUSY);
2437
2438	FXP_LOCK(sc);
2439	s = splimp();
2440
2441	switch (command) {
2442	case SIOCSIFFLAGS:
2443		if (ifp->if_flags & IFF_ALLMULTI)
2444			sc->flags |= FXP_FLAG_ALL_MCAST;
2445		else
2446			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2447
2448		/*
2449		 * If interface is marked up and not running, then start it.
2450		 * If it is marked down and running, stop it.
2451		 * XXX If it's up then re-initialize it. This is so flags
2452		 * such as IFF_PROMISC are handled.
2453		 */
2454		if (ifp->if_flags & IFF_UP) {
2455			fxp_init_body(sc);
2456		} else {
2457			if (ifp->if_flags & IFF_RUNNING)
2458				fxp_stop(sc);
2459		}
2460		break;
2461
2462	case SIOCADDMULTI:
2463	case SIOCDELMULTI:
2464		if (ifp->if_flags & IFF_ALLMULTI)
2465			sc->flags |= FXP_FLAG_ALL_MCAST;
2466		else
2467			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2468		/*
2469		 * Multicast list has changed; set the hardware filter
2470		 * accordingly.
2471		 */
2472		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2473			fxp_mc_setup(sc);
2474		/*
2475		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2476		 * again rather than else {}.
2477		 */
2478		if (sc->flags & FXP_FLAG_ALL_MCAST)
2479			fxp_init_body(sc);
2480		error = 0;
2481		break;
2482
2483	case SIOCSIFMEDIA:
2484	case SIOCGIFMEDIA:
2485		if (sc->miibus != NULL) {
2486			mii = device_get_softc(sc->miibus);
2487                        error = ifmedia_ioctl(ifp, ifr,
2488                            &mii->mii_media, command);
2489		} else {
2490                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2491		}
2492		break;
2493
2494	case SIOCSIFCAP:
2495		ifp->if_capenable = ifr->ifr_reqcap;
2496		break;
2497
2498	default:
2499		/*
2500		 * ether_ioctl() will eventually call fxp_start() which
2501		 * will result in mutex recursion so drop it first.
2502		 */
2503		FXP_UNLOCK(sc);
2504		error = ether_ioctl(ifp, command, data);
2505	}
2506	if (mtx_owned(&sc->sc_mtx))
2507		FXP_UNLOCK(sc);
2508	splx(s);
2509	return (error);
2510}
2511
2512/*
2513 * Fill in the multicast address list and return number of entries.
2514 */
2515static int
2516fxp_mc_addrs(struct fxp_softc *sc)
2517{
2518	struct fxp_cb_mcs *mcsp = sc->mcsp;
2519	struct ifnet *ifp = &sc->sc_if;
2520	struct ifmultiaddr *ifma;
2521	int nmcasts;
2522
2523	nmcasts = 0;
2524	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2525#if __FreeBSD_version < 500000
2526		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2527#else
2528		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2529#endif
2530			if (ifma->ifma_addr->sa_family != AF_LINK)
2531				continue;
2532			if (nmcasts >= MAXMCADDR) {
2533				sc->flags |= FXP_FLAG_ALL_MCAST;
2534				nmcasts = 0;
2535				break;
2536			}
2537			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2538			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2539			nmcasts++;
2540		}
2541	}
2542	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2543	return (nmcasts);
2544}
2545
2546/*
2547 * Program the multicast filter.
2548 *
2549 * We have an artificial restriction that the multicast setup command
2550 * must be the first command in the chain, so we take steps to ensure
2551 * this. By requiring this, it allows us to keep up the performance of
2552 * the pre-initialized command ring (esp. link pointers) by not actually
2553 * inserting the mcsetup command in the ring - i.e. its link pointer
2554 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2555 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2556 * lead into the regular TxCB ring when it completes.
2557 *
2558 * This function must be called at splimp.
2559 */
2560static void
2561fxp_mc_setup(struct fxp_softc *sc)
2562{
2563	struct fxp_cb_mcs *mcsp = sc->mcsp;
2564	struct ifnet *ifp = &sc->sc_if;
2565	struct fxp_tx *txp;
2566	int count;
2567
2568	/*
2569	 * If there are queued commands, we must wait until they are all
2570	 * completed. If we are already waiting, then add a NOP command
2571	 * with interrupt option so that we're notified when all commands
2572	 * have been completed - fxp_start() ensures that no additional
2573	 * TX commands will be added when need_mcsetup is true.
2574	 */
2575	if (sc->tx_queued) {
2576		/*
2577		 * need_mcsetup will be true if we are already waiting for the
2578		 * NOP command to be completed (see below). In this case, bail.
2579		 */
2580		if (sc->need_mcsetup)
2581			return;
2582		sc->need_mcsetup = 1;
2583
2584		/*
2585		 * Add a NOP command with interrupt so that we are notified
2586		 * when all TX commands have been processed.
2587		 */
2588		txp = sc->fxp_desc.tx_last->tx_next;
2589		txp->tx_mbuf = NULL;
2590		txp->tx_cb->cb_status = 0;
2591		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2592		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2593		/*
2594		 * Advance the end of list forward.
2595		 */
2596		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2597		    htole16(~FXP_CB_COMMAND_S);
2598		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2599		sc->fxp_desc.tx_last = txp;
2600		sc->tx_queued++;
2601		/*
2602		 * Issue a resume in case the CU has just suspended.
2603		 */
2604		fxp_scb_wait(sc);
2605		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2606		/*
2607		 * Set a 5 second timer just in case we don't hear from the
2608		 * card again.
2609		 */
2610		ifp->if_timer = 5;
2611
2612		return;
2613	}
2614	sc->need_mcsetup = 0;
2615
2616	/*
2617	 * Initialize multicast setup descriptor.
2618	 */
2619	mcsp->cb_status = 0;
2620	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2621	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2622	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2623	txp = &sc->fxp_desc.mcs_tx;
2624	txp->tx_mbuf = NULL;
2625	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2626	txp->tx_next = sc->fxp_desc.tx_list;
2627	(void) fxp_mc_addrs(sc);
2628	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2629	sc->tx_queued = 1;
2630
2631	/*
2632	 * Wait until command unit is not active. This should never
2633	 * be the case when nothing is queued, but make sure anyway.
2634	 */
2635	count = 100;
2636	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2637	    FXP_SCB_CUS_ACTIVE && --count)
2638		DELAY(10);
2639	if (count == 0) {
2640		device_printf(sc->dev, "command queue timeout\n");
2641		return;
2642	}
2643
2644	/*
2645	 * Start the multicast setup command.
2646	 */
2647	fxp_scb_wait(sc);
2648	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2649	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2650	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2651
2652	ifp->if_timer = 2;
2653	return;
2654}
2655
2656static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2657static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2658static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2659static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2660static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2661static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2662
2663#define UCODE(x)	x, sizeof(x)
2664
2665struct ucode {
2666	u_int32_t	revision;
2667	u_int32_t	*ucode;
2668	int		length;
2669	u_short		int_delay_offset;
2670	u_short		bundle_max_offset;
2671} ucode_table[] = {
2672	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2673	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2674	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2675	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2676	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2677	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2678	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2679	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2680	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2681	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2682	{ 0, NULL, 0, 0, 0 }
2683};
2684
2685static void
2686fxp_load_ucode(struct fxp_softc *sc)
2687{
2688	struct ucode *uc;
2689	struct fxp_cb_ucode *cbp;
2690
2691	for (uc = ucode_table; uc->ucode != NULL; uc++)
2692		if (sc->revision == uc->revision)
2693			break;
2694	if (uc->ucode == NULL)
2695		return;
2696	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2697	cbp->cb_status = 0;
2698	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2699	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2700	memcpy(cbp->ucode, uc->ucode, uc->length);
2701	if (uc->int_delay_offset)
2702		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2703		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2704	if (uc->bundle_max_offset)
2705		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2706		    htole16(sc->tunable_bundle_max);
2707	/*
2708	 * Download the ucode to the chip.
2709	 */
2710	fxp_scb_wait(sc);
2711	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2712	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2713	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2714	/* ...and wait for it to complete. */
2715	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2716	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2717	device_printf(sc->dev,
2718	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2719	    sc->tunable_int_delay,
2720	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2721	sc->flags |= FXP_FLAG_UCODE;
2722}
2723
2724static int
2725sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2726{
2727	int error, value;
2728
2729	value = *(int *)arg1;
2730	error = sysctl_handle_int(oidp, &value, 0, req);
2731	if (error || !req->newptr)
2732		return (error);
2733	if (value < low || value > high)
2734		return (EINVAL);
2735	*(int *)arg1 = value;
2736	return (0);
2737}
2738
2739/*
2740 * Interrupt delay is expressed in microseconds, a multiplier is used
2741 * to convert this to the appropriate clock ticks before using.
2742 */
2743static int
2744sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2745{
2746	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2747}
2748
2749static int
2750sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2751{
2752	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2753}
2754