if_fxp.c revision 121939
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 121939 2003-11-03 09:22:18Z dfr $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 121939 2003-11-03 09:22:18Z dfr $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/endian.h>
43#include <sys/mbuf.h>
44		/* #include <sys/mutex.h> */
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/if_dl.h>
51#include <net/if_media.h>
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <machine/clock.h>	/* for DELAY */
64
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67
68#ifdef FXP_IP_CSUM_WAR
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <machine/in_cksum.h>
73#endif
74
75#include <dev/pci/pcivar.h>
76#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
77
78#include <dev/mii/mii.h>
79#include <dev/mii/miivar.h>
80
81#include <dev/fxp/if_fxpreg.h>
82#include <dev/fxp/if_fxpvar.h>
83#include <dev/fxp/rcvbundl.h>
84
85MODULE_DEPEND(fxp, pci, 1, 1, 1);
86MODULE_DEPEND(fxp, ether, 1, 1, 1);
87MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88#include "miibus_if.h"
89
90/*
91 * NOTE!  On the Alpha, we have an alignment constraint.  The
92 * card DMAs the packet immediately following the RFA.  However,
93 * the first thing in the packet is a 14-byte Ethernet header.
94 * This means that the packet is misaligned.  To compensate,
95 * we actually offset the RFA 2 bytes into the cluster.  This
96 * alignes the packet after the Ethernet header at a 32-bit
97 * boundary.  HOWEVER!  This means that the RFA is misaligned!
98 */
99#define	RFA_ALIGNMENT_FUDGE	2
100
101/*
102 * Set initial transmit threshold at 64 (512 bytes). This is
103 * increased by 64 (512 bytes) at a time, to maximum of 192
104 * (1536 bytes), if an underrun occurs.
105 */
106static int tx_threshold = 64;
107
108/*
109 * The configuration byte map has several undefined fields which
110 * must be one or must be zero.  Set up a template for these bits
111 * only, (assuming a 82557 chip) leaving the actual configuration
112 * to fxp_init.
113 *
114 * See struct fxp_cb_config for the bit definitions.
115 */
116static u_char fxp_cb_config_template[] = {
117	0x0, 0x0,		/* cb_status */
118	0x0, 0x0,		/* cb_command */
119	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120	0x0,	/*  0 */
121	0x0,	/*  1 */
122	0x0,	/*  2 */
123	0x0,	/*  3 */
124	0x0,	/*  4 */
125	0x0,	/*  5 */
126	0x32,	/*  6 */
127	0x0,	/*  7 */
128	0x0,	/*  8 */
129	0x0,	/*  9 */
130	0x6,	/* 10 */
131	0x0,	/* 11 */
132	0x0,	/* 12 */
133	0x0,	/* 13 */
134	0xf2,	/* 14 */
135	0x48,	/* 15 */
136	0x0,	/* 16 */
137	0x40,	/* 17 */
138	0xf0,	/* 18 */
139	0x0,	/* 19 */
140	0x3f,	/* 20 */
141	0x5	/* 21 */
142};
143
144struct fxp_ident {
145	u_int16_t	devid;
146	int16_t		revid;		/* -1 matches anything */
147	char 		*name;
148};
149
150/*
151 * Claim various Intel PCI device identifiers for this driver.  The
152 * sub-vendor and sub-device field are extensively used to identify
153 * particular variants, but we don't currently differentiate between
154 * them.
155 */
156static struct fxp_ident fxp_ident_table[] = {
157    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
158    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
159    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
174    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192    { 0,	-1,	NULL },
193};
194
195#ifdef FXP_IP_CSUM_WAR
196#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197#else
198#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199#endif
200
201static int		fxp_probe(device_t dev);
202static int		fxp_attach(device_t dev);
203static int		fxp_detach(device_t dev);
204static int		fxp_shutdown(device_t dev);
205static int		fxp_suspend(device_t dev);
206static int		fxp_resume(device_t dev);
207
208static void		fxp_intr(void *xsc);
209static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210			    u_int8_t statack, int count);
211static void 		fxp_init(void *xsc);
212static void 		fxp_init_body(struct fxp_softc *sc);
213static void 		fxp_tick(void *xsc);
214#ifndef BURN_BRIDGES
215static void		fxp_powerstate_d0(device_t dev);
216#endif
217static void 		fxp_start(struct ifnet *ifp);
218static void 		fxp_start_body(struct ifnet *ifp);
219static void		fxp_stop(struct fxp_softc *sc);
220static void 		fxp_release(struct fxp_softc *sc);
221static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222			    caddr_t data);
223static void 		fxp_watchdog(struct ifnet *ifp);
224static int		fxp_add_rfabuf(struct fxp_softc *sc,
225    			    struct fxp_rx *rxp);
226static int		fxp_mc_addrs(struct fxp_softc *sc);
227static void		fxp_mc_setup(struct fxp_softc *sc);
228static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229			    int autosize);
230static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231			    u_int16_t data);
232static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234			    int offset, int words);
235static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236			    int offset, int words);
237static int		fxp_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242			    struct ifmediareq *ifmr);
243static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245			    int value);
246static void		fxp_load_ucode(struct fxp_softc *sc);
247static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248			    int low, int high);
249static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251static void 		fxp_scb_wait(struct fxp_softc *sc);
252static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253static void		fxp_dma_wait(struct fxp_softc *sc,
254    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
255			    bus_dmamap_t map);
256
257static device_method_t fxp_methods[] = {
258	/* Device interface */
259	DEVMETHOD(device_probe,		fxp_probe),
260	DEVMETHOD(device_attach,	fxp_attach),
261	DEVMETHOD(device_detach,	fxp_detach),
262	DEVMETHOD(device_shutdown,	fxp_shutdown),
263	DEVMETHOD(device_suspend,	fxp_suspend),
264	DEVMETHOD(device_resume,	fxp_resume),
265
266	/* MII interface */
267	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269
270	{ 0, 0 }
271};
272
273static driver_t fxp_driver = {
274	"fxp",
275	fxp_methods,
276	sizeof(struct fxp_softc),
277};
278
279static devclass_t fxp_devclass;
280
281DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283
284static int fxp_rnr;
285SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
286
287static int fxp_noflow;
288SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
289TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
290
291/*
292 * Wait for the previous command to be accepted (but not necessarily
293 * completed).
294 */
295static void
296fxp_scb_wait(struct fxp_softc *sc)
297{
298	int i = 10000;
299
300	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
301		DELAY(2);
302	if (i == 0)
303		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
304		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
305		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
306		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
307		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
308}
309
310static void
311fxp_scb_cmd(struct fxp_softc *sc, int cmd)
312{
313
314	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
315		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
316		fxp_scb_wait(sc);
317	}
318	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
319}
320
321static void
322fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
323    bus_dma_tag_t dmat, bus_dmamap_t map)
324{
325	int i = 10000;
326
327	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
328	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
329		DELAY(2);
330		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
331	}
332	if (i == 0)
333		device_printf(sc->dev, "DMA timeout\n");
334}
335
336/*
337 * Return identification string if this device is ours.
338 */
339static int
340fxp_probe(device_t dev)
341{
342	u_int16_t devid;
343	u_int8_t revid;
344	struct fxp_ident *ident;
345
346	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
347		devid = pci_get_device(dev);
348		revid = pci_get_revid(dev);
349		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
350			if (ident->devid == devid &&
351			    (ident->revid == revid || ident->revid == -1)) {
352				device_set_desc(dev, ident->name);
353				return (0);
354			}
355		}
356	}
357	return (ENXIO);
358}
359
360#ifndef BURN_BRIDGES
361static void
362fxp_powerstate_d0(device_t dev)
363{
364#if __FreeBSD_version >= 430002
365	u_int32_t iobase, membase, irq;
366
367	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
368		/* Save important PCI config data. */
369		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
370		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
371		irq = pci_read_config(dev, PCIR_INTLINE, 4);
372
373		/* Reset the power state. */
374		device_printf(dev, "chip is in D%d power mode "
375		    "-- setting to D0\n", pci_get_powerstate(dev));
376
377		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
378
379		/* Restore PCI config data. */
380		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
381		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
382		pci_write_config(dev, PCIR_INTLINE, irq, 4);
383	}
384#endif
385}
386#endif
387
388static void
389fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
390{
391	u_int32_t *addr;
392
393	if (error)
394		return;
395
396	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
397	addr = arg;
398	*addr = segs->ds_addr;
399}
400
401static int
402fxp_attach(device_t dev)
403{
404	int error = 0;
405	struct fxp_softc *sc = device_get_softc(dev);
406	struct ifnet *ifp;
407	struct fxp_rx *rxp;
408	u_int32_t val;
409	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
410	int i, rid, m1, m2, prefer_iomap, maxtxseg;
411	int s, ipcbxmit_disable;
412
413	sc->dev = dev;
414	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
415	sysctl_ctx_init(&sc->sysctl_ctx);
416	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
417	    MTX_DEF);
418	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
419	    fxp_serial_ifmedia_sts);
420
421	s = splimp();
422
423	/*
424	 * Enable bus mastering.
425	 */
426	pci_enable_busmaster(dev);
427	val = pci_read_config(dev, PCIR_COMMAND, 2);
428#ifndef BURN_BRIDGES
429	fxp_powerstate_d0(dev);
430#endif
431	/*
432	 * Figure out which we should try first - memory mapping or i/o mapping?
433	 * We default to memory mapping. Then we accept an override from the
434	 * command line. Then we check to see which one is enabled.
435	 */
436	m1 = PCIM_CMD_MEMEN;
437	m2 = PCIM_CMD_PORTEN;
438	prefer_iomap = 0;
439	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
440	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
441		m1 = PCIM_CMD_PORTEN;
442		m2 = PCIM_CMD_MEMEN;
443	}
444
445	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
446	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
447	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
448	                                     0, ~0, 1, RF_ACTIVE);
449	if (sc->mem == NULL) {
450		sc->rtp =
451		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
452		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
453		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
454                                            0, ~0, 1, RF_ACTIVE);
455	}
456
457	if (!sc->mem) {
458		error = ENXIO;
459		goto fail;
460        }
461	if (bootverbose) {
462		device_printf(dev, "using %s space register mapping\n",
463		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
464	}
465
466	sc->sc_st = rman_get_bustag(sc->mem);
467	sc->sc_sh = rman_get_bushandle(sc->mem);
468
469	/*
470	 * Allocate our interrupt.
471	 */
472	rid = 0;
473	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
474				 RF_SHAREABLE | RF_ACTIVE);
475	if (sc->irq == NULL) {
476		device_printf(dev, "could not map interrupt\n");
477		error = ENXIO;
478		goto fail;
479	}
480
481	/*
482	 * Reset to a stable state.
483	 */
484	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
485	DELAY(10);
486
487	/*
488	 * Find out how large of an SEEPROM we have.
489	 */
490	fxp_autosize_eeprom(sc);
491
492	/*
493	 * Determine whether we must use the 503 serial interface.
494	 */
495	fxp_read_eeprom(sc, &data, 6, 1);
496	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
497	    (data & FXP_PHY_SERIAL_ONLY))
498		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
499
500	/*
501	 * Create the sysctl tree
502	 */
503	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
504	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
505	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
506	if (sc->sysctl_tree == NULL) {
507		error = ENXIO;
508		goto fail;
509	}
510	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
511	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
512	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
513	    "FXP driver receive interrupt microcode bundling delay");
514	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
515	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
516	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
517	    "FXP driver receive interrupt microcode bundle size limit");
518
519	/*
520	 * Pull in device tunables.
521	 */
522	sc->tunable_int_delay = TUNABLE_INT_DELAY;
523	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
524	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525	    "int_delay", &sc->tunable_int_delay);
526	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
527	    "bundle_max", &sc->tunable_bundle_max);
528
529	/*
530	 * Find out the chip revision; lump all 82557 revs together.
531	 */
532	fxp_read_eeprom(sc, &data, 5, 1);
533	if ((data >> 8) == 1)
534		sc->revision = FXP_REV_82557;
535	else
536		sc->revision = pci_get_revid(dev);
537
538	/*
539	 * Enable workarounds for certain chip revision deficiencies.
540	 *
541	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
542	 * some systems based a normal 82559 design, have a defect where
543	 * the chip can cause a PCI protocol violation if it receives
544	 * a CU_RESUME command when it is entering the IDLE state.  The
545	 * workaround is to disable Dynamic Standby Mode, so the chip never
546	 * deasserts CLKRUN#, and always remains in an active state.
547	 *
548	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
549	 */
550	i = pci_get_device(dev);
551	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
552	    sc->revision >= FXP_REV_82559_A0) {
553		fxp_read_eeprom(sc, &data, 10, 1);
554		if (data & 0x02) {			/* STB enable */
555			u_int16_t cksum;
556			int i;
557
558			device_printf(dev,
559			    "Disabling dynamic standby mode in EEPROM\n");
560			data &= ~0x02;
561			fxp_write_eeprom(sc, &data, 10, 1);
562			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
563			cksum = 0;
564			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
565				fxp_read_eeprom(sc, &data, i, 1);
566				cksum += data;
567			}
568			i = (1 << sc->eeprom_size) - 1;
569			cksum = 0xBABA - cksum;
570			fxp_read_eeprom(sc, &data, i, 1);
571			fxp_write_eeprom(sc, &cksum, i, 1);
572			device_printf(dev,
573			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
574			    i, data, cksum);
575#if 1
576			/*
577			 * If the user elects to continue, try the software
578			 * workaround, as it is better than nothing.
579			 */
580			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
581#endif
582		}
583	}
584
585	/*
586	 * If we are not a 82557 chip, we can enable extended features.
587	 */
588	if (sc->revision != FXP_REV_82557) {
589		/*
590		 * If MWI is enabled in the PCI configuration, and there
591		 * is a valid cacheline size (8 or 16 dwords), then tell
592		 * the board to turn on MWI.
593		 */
594		if (val & PCIM_CMD_MWRICEN &&
595		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
596			sc->flags |= FXP_FLAG_MWI_ENABLE;
597
598		/* turn on the extended TxCB feature */
599		sc->flags |= FXP_FLAG_EXT_TXCB;
600
601		/* enable reception of long frames for VLAN */
602		sc->flags |= FXP_FLAG_LONG_PKT_EN;
603	}
604
605	/*
606	 * Enable use of extended RFDs and TCBs for 82550
607	 * and later chips. Note: we need extended TXCB support
608	 * too, but that's already enabled by the code above.
609	 * Be careful to do this only on the right devices.
610	 *
611	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
612	 * truncate packets that end with an mbuf containing 1 to 3 bytes
613	 * when used with this feature enabled in the previous version of the
614	 * driver.  This problem appears to be fixed now that the driver
615	 * always sets the hardware parse bit in the IPCB structure, which
616	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
617	 * Source Software Developer Manual" says is necessary in the
618	 * cases where packet truncation was observed.
619	 *
620	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
621	 * allows this feature to be disabled at boot time.
622	 *
623	 * If fxp is not compiled into the kernel, this feature may also
624	 * be disabled at run time:
625	 *    # kldunload fxp
626	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
627	 *    # kldload fxp
628	 */
629
630	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
631	    &ipcbxmit_disable) != 0)
632		ipcbxmit_disable = 0;
633	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
634	    sc->revision == FXP_REV_82550_C)) {
635		sc->rfa_size = sizeof (struct fxp_rfa);
636		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
637		sc->flags |= FXP_FLAG_EXT_RFA;
638	} else {
639		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
640		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
641	}
642
643	/*
644	 * Allocate DMA tags and DMA safe memory.
645	 */
646	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
647	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
648	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
649	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
650	if (error) {
651		device_printf(dev, "could not allocate dma tag\n");
652		goto fail;
653	}
654
655	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
656	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
657	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
658	    &sc->fxp_stag);
659	if (error) {
660		device_printf(dev, "could not allocate dma tag\n");
661		goto fail;
662	}
663
664	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
665	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
666	if (error)
667		goto fail;
668	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
669	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
670	if (error) {
671		device_printf(dev, "could not map the stats buffer\n");
672		goto fail;
673	}
674
675	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
676	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
677	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
678	if (error) {
679		device_printf(dev, "could not allocate dma tag\n");
680		goto fail;
681	}
682
683	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
684	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
685	if (error)
686		goto fail;
687
688	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
689	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
690	    &sc->fxp_desc.cbl_addr, 0);
691	if (error) {
692		device_printf(dev, "could not map DMA memory\n");
693		goto fail;
694	}
695
696	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
697	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
698	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
699	    &sc->mcs_tag);
700	if (error) {
701		device_printf(dev, "could not allocate dma tag\n");
702		goto fail;
703	}
704
705	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
706	    BUS_DMA_NOWAIT, &sc->mcs_map);
707	if (error)
708		goto fail;
709	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
710	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
711	if (error) {
712		device_printf(dev, "can't map the multicast setup command\n");
713		goto fail;
714	}
715
716	/*
717	 * Pre-allocate the TX DMA maps.
718	 */
719	for (i = 0; i < FXP_NTXCB; i++) {
720		error = bus_dmamap_create(sc->fxp_mtag, 0,
721		    &sc->fxp_desc.tx_list[i].tx_map);
722		if (error) {
723			device_printf(dev, "can't create DMA map for TX\n");
724			goto fail;
725		}
726	}
727	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
728	if (error) {
729		device_printf(dev, "can't create spare DMA map\n");
730		goto fail;
731	}
732
733	/*
734	 * Pre-allocate our receive buffers.
735	 */
736	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
737	for (i = 0; i < FXP_NRFABUFS; i++) {
738		rxp = &sc->fxp_desc.rx_list[i];
739		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
740		if (error) {
741			device_printf(dev, "can't create DMA map for RX\n");
742			goto fail;
743		}
744		if (fxp_add_rfabuf(sc, rxp) != 0) {
745			error = ENOMEM;
746			goto fail;
747		}
748	}
749
750	/*
751	 * Read MAC address.
752	 */
753	fxp_read_eeprom(sc, myea, 0, 3);
754	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
755	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
756	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
757	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
758	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
759	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
760	device_printf(dev, "Ethernet address %6D%s\n",
761	    sc->arpcom.ac_enaddr, ":",
762	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
763	if (bootverbose) {
764		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
765		    pci_get_vendor(dev), pci_get_device(dev),
766		    pci_get_subvendor(dev), pci_get_subdevice(dev),
767		    pci_get_revid(dev));
768		fxp_read_eeprom(sc, &data, 10, 1);
769		device_printf(dev, "Dynamic Standby mode is %s\n",
770		    data & 0x02 ? "enabled" : "disabled");
771	}
772
773	/*
774	 * If this is only a 10Mbps device, then there is no MII, and
775	 * the PHY will use a serial interface instead.
776	 *
777	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
778	 * doesn't have a programming interface of any sort.  The
779	 * media is sensed automatically based on how the link partner
780	 * is configured.  This is, in essence, manual configuration.
781	 */
782	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
783		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
784		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
785	} else {
786		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
787		    fxp_ifmedia_sts)) {
788	                device_printf(dev, "MII without any PHY!\n");
789			error = ENXIO;
790			goto fail;
791		}
792	}
793
794	ifp = &sc->arpcom.ac_if;
795	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
796	ifp->if_output = ether_output;
797	ifp->if_baudrate = 100000000;
798	ifp->if_init = fxp_init;
799	ifp->if_softc = sc;
800	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
801	ifp->if_ioctl = fxp_ioctl;
802	ifp->if_start = fxp_start;
803	ifp->if_watchdog = fxp_watchdog;
804
805	/* Enable checksum offload for 82550 or better chips */
806	if (sc->flags & FXP_FLAG_EXT_RFA) {
807		ifp->if_hwassist = FXP_CSUM_FEATURES;
808		ifp->if_capabilities = IFCAP_HWCSUM;
809		ifp->if_capenable = ifp->if_capabilities;
810	}
811
812	/*
813	 * Attach the interface.
814	 */
815	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
816
817	/*
818	 * Tell the upper layer(s) we support long frames.
819	 */
820	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
821	ifp->if_capabilities |= IFCAP_VLAN_MTU;
822
823	/*
824	 * Let the system queue as many packets as we have available
825	 * TX descriptors.
826	 */
827	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
828
829	/*
830	 * Hook our interrupt after all initialization is complete.
831	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
832	 * however, ifp and its functions are not fully locked so MPSAFE
833	 * should not be used unless you can handle potential data loss.
834	 */
835	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
836			       fxp_intr, sc, &sc->ih);
837	if (error) {
838		device_printf(dev, "could not setup irq\n");
839		ether_ifdetach(&sc->arpcom.ac_if);
840		goto fail;
841	}
842
843fail:
844	splx(s);
845	if (error)
846		fxp_release(sc);
847	return (error);
848}
849
850/*
851 * Release all resources.  The softc lock should not be held and the
852 * interrupt should already be torn down.
853 */
854static void
855fxp_release(struct fxp_softc *sc)
856{
857	struct fxp_rx *rxp;
858	struct fxp_tx *txp;
859	int i;
860
861	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
862	if (sc->ih)
863		panic("fxp_release() called with intr handle still active");
864	if (sc->miibus)
865		device_delete_child(sc->dev, sc->miibus);
866	bus_generic_detach(sc->dev);
867	ifmedia_removeall(&sc->sc_media);
868	if (sc->fxp_desc.cbl_list) {
869		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
870		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
871		    sc->cbl_map);
872	}
873	if (sc->fxp_stats) {
874		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
875		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
876	}
877	if (sc->mcsp) {
878		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
879		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
880	}
881	if (sc->irq)
882		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
883	if (sc->mem)
884		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
885	if (sc->fxp_mtag) {
886		for (i = 0; i < FXP_NRFABUFS; i++) {
887			rxp = &sc->fxp_desc.rx_list[i];
888			if (rxp->rx_mbuf != NULL) {
889				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
890				    BUS_DMASYNC_POSTREAD);
891				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
892				m_freem(rxp->rx_mbuf);
893			}
894			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
895		}
896		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
897		bus_dma_tag_destroy(sc->fxp_mtag);
898	}
899	if (sc->fxp_stag) {
900		for (i = 0; i < FXP_NTXCB; i++) {
901			txp = &sc->fxp_desc.tx_list[i];
902			if (txp->tx_mbuf != NULL) {
903				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
904				    BUS_DMASYNC_POSTWRITE);
905				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
906				m_freem(txp->tx_mbuf);
907			}
908			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
909		}
910		bus_dma_tag_destroy(sc->fxp_stag);
911	}
912	if (sc->cbl_tag)
913		bus_dma_tag_destroy(sc->cbl_tag);
914	if (sc->mcs_tag)
915		bus_dma_tag_destroy(sc->mcs_tag);
916
917        sysctl_ctx_free(&sc->sysctl_ctx);
918
919	mtx_destroy(&sc->sc_mtx);
920}
921
922/*
923 * Detach interface.
924 */
925static int
926fxp_detach(device_t dev)
927{
928	struct fxp_softc *sc = device_get_softc(dev);
929	int s;
930
931	FXP_LOCK(sc);
932	s = splimp();
933
934	sc->suspended = 1;	/* Do same thing as we do for suspend */
935	/*
936	 * Close down routes etc.
937	 */
938	ether_ifdetach(&sc->arpcom.ac_if);
939
940	/*
941	 * Stop DMA and drop transmit queue, but disable interrupts first.
942	 */
943	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
944	fxp_stop(sc);
945	FXP_UNLOCK(sc);
946
947	/*
948	 * Unhook interrupt before dropping lock. This is to prevent
949	 * races with fxp_intr().
950	 */
951	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
952	sc->ih = NULL;
953
954	splx(s);
955
956	/* Release our allocated resources. */
957	fxp_release(sc);
958	return (0);
959}
960
961/*
962 * Device shutdown routine. Called at system shutdown after sync. The
963 * main purpose of this routine is to shut off receiver DMA so that
964 * kernel memory doesn't get clobbered during warmboot.
965 */
966static int
967fxp_shutdown(device_t dev)
968{
969	/*
970	 * Make sure that DMA is disabled prior to reboot. Not doing
971	 * do could allow DMA to corrupt kernel memory during the
972	 * reboot before the driver initializes.
973	 */
974	fxp_stop((struct fxp_softc *) device_get_softc(dev));
975	return (0);
976}
977
978/*
979 * Device suspend routine.  Stop the interface and save some PCI
980 * settings in case the BIOS doesn't restore them properly on
981 * resume.
982 */
983static int
984fxp_suspend(device_t dev)
985{
986	struct fxp_softc *sc = device_get_softc(dev);
987	int i, s;
988
989	FXP_LOCK(sc);
990	s = splimp();
991
992	fxp_stop(sc);
993
994	for (i = 0; i < 5; i++)
995		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
996	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
997	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
998	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
999	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1000
1001	sc->suspended = 1;
1002
1003	FXP_UNLOCK(sc);
1004	splx(s);
1005	return (0);
1006}
1007
1008/*
1009 * Device resume routine.  Restore some PCI settings in case the BIOS
1010 * doesn't, re-enable busmastering, and restart the interface if
1011 * appropriate.
1012 */
1013static int
1014fxp_resume(device_t dev)
1015{
1016	struct fxp_softc *sc = device_get_softc(dev);
1017	struct ifnet *ifp = &sc->sc_if;
1018	u_int16_t pci_command;
1019	int i, s;
1020
1021	FXP_LOCK(sc);
1022	s = splimp();
1023#ifndef BURN_BRIDGES
1024	fxp_powerstate_d0(dev);
1025#endif
1026	/* better way to do this? */
1027	for (i = 0; i < 5; i++)
1028		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1029	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1030	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1031	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1032	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1033
1034	/* reenable busmastering */
1035	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1036	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1037	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1038
1039	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1040	DELAY(10);
1041
1042	/* reinitialize interface if necessary */
1043	if (ifp->if_flags & IFF_UP)
1044		fxp_init_body(sc);
1045
1046	sc->suspended = 0;
1047
1048	FXP_UNLOCK(sc);
1049	splx(s);
1050	return (0);
1051}
1052
1053static void
1054fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1055{
1056	u_int16_t reg;
1057	int x;
1058
1059	/*
1060	 * Shift in data.
1061	 */
1062	for (x = 1 << (length - 1); x; x >>= 1) {
1063		if (data & x)
1064			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1065		else
1066			reg = FXP_EEPROM_EECS;
1067		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1068		DELAY(1);
1069		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1070		DELAY(1);
1071		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1072		DELAY(1);
1073	}
1074}
1075
1076/*
1077 * Read from the serial EEPROM. Basically, you manually shift in
1078 * the read opcode (one bit at a time) and then shift in the address,
1079 * and then you shift out the data (all of this one bit at a time).
1080 * The word size is 16 bits, so you have to provide the address for
1081 * every 16 bits of data.
1082 */
1083static u_int16_t
1084fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1085{
1086	u_int16_t reg, data;
1087	int x;
1088
1089	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1090	/*
1091	 * Shift in read opcode.
1092	 */
1093	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1094	/*
1095	 * Shift in address.
1096	 */
1097	data = 0;
1098	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1099		if (offset & x)
1100			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1101		else
1102			reg = FXP_EEPROM_EECS;
1103		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1104		DELAY(1);
1105		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1106		DELAY(1);
1107		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1108		DELAY(1);
1109		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1110		data++;
1111		if (autosize && reg == 0) {
1112			sc->eeprom_size = data;
1113			break;
1114		}
1115	}
1116	/*
1117	 * Shift out data.
1118	 */
1119	data = 0;
1120	reg = FXP_EEPROM_EECS;
1121	for (x = 1 << 15; x; x >>= 1) {
1122		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1123		DELAY(1);
1124		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1125			data |= x;
1126		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1127		DELAY(1);
1128	}
1129	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1130	DELAY(1);
1131
1132	return (data);
1133}
1134
1135static void
1136fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1137{
1138	int i;
1139
1140	/*
1141	 * Erase/write enable.
1142	 */
1143	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1144	fxp_eeprom_shiftin(sc, 0x4, 3);
1145	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1146	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1147	DELAY(1);
1148	/*
1149	 * Shift in write opcode, address, data.
1150	 */
1151	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1152	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1153	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1154	fxp_eeprom_shiftin(sc, data, 16);
1155	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1156	DELAY(1);
1157	/*
1158	 * Wait for EEPROM to finish up.
1159	 */
1160	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1161	DELAY(1);
1162	for (i = 0; i < 1000; i++) {
1163		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1164			break;
1165		DELAY(50);
1166	}
1167	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1168	DELAY(1);
1169	/*
1170	 * Erase/write disable.
1171	 */
1172	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1173	fxp_eeprom_shiftin(sc, 0x4, 3);
1174	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1175	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1176	DELAY(1);
1177}
1178
1179/*
1180 * From NetBSD:
1181 *
1182 * Figure out EEPROM size.
1183 *
1184 * 559's can have either 64-word or 256-word EEPROMs, the 558
1185 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1186 * talks about the existance of 16 to 256 word EEPROMs.
1187 *
1188 * The only known sizes are 64 and 256, where the 256 version is used
1189 * by CardBus cards to store CIS information.
1190 *
1191 * The address is shifted in msb-to-lsb, and after the last
1192 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1193 * after which follows the actual data. We try to detect this zero, by
1194 * probing the data-out bit in the EEPROM control register just after
1195 * having shifted in a bit. If the bit is zero, we assume we've
1196 * shifted enough address bits. The data-out should be tri-state,
1197 * before this, which should translate to a logical one.
1198 */
1199static void
1200fxp_autosize_eeprom(struct fxp_softc *sc)
1201{
1202
1203	/* guess maximum size of 256 words */
1204	sc->eeprom_size = 8;
1205
1206	/* autosize */
1207	(void) fxp_eeprom_getword(sc, 0, 1);
1208}
1209
1210static void
1211fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1212{
1213	int i;
1214
1215	for (i = 0; i < words; i++)
1216		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1217}
1218
1219static void
1220fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1221{
1222	int i;
1223
1224	for (i = 0; i < words; i++)
1225		fxp_eeprom_putword(sc, offset + i, data[i]);
1226}
1227
1228static void
1229fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1230    bus_size_t mapsize, int error)
1231{
1232	struct fxp_softc *sc;
1233	struct fxp_cb_tx *txp;
1234	int i;
1235
1236	if (error)
1237		return;
1238
1239	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1240
1241	sc = arg;
1242	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1243	for (i = 0; i < nseg; i++) {
1244		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1245		/*
1246		 * If this is an 82550/82551, then we're using extended
1247		 * TxCBs _and_ we're using checksum offload. This means
1248		 * that the TxCB is really an IPCB. One major difference
1249		 * between the two is that with plain extended TxCBs,
1250		 * the bottom half of the TxCB contains two entries from
1251		 * the TBD array, whereas IPCBs contain just one entry:
1252		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1253		 * checksum offload control bits. So to make things work
1254		 * right, we have to start filling in the TBD array
1255		 * starting from a different place depending on whether
1256		 * the chip is an 82550/82551 or not.
1257		 */
1258		if (sc->flags & FXP_FLAG_EXT_RFA) {
1259			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1260			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1261		} else {
1262			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1263			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1264		}
1265	}
1266	txp->tbd_number = nseg;
1267}
1268
1269/*
1270 * Grab the softc lock and call the real fxp_start_body() routine
1271 */
1272static void
1273fxp_start(struct ifnet *ifp)
1274{
1275	struct fxp_softc *sc = ifp->if_softc;
1276
1277	FXP_LOCK(sc);
1278	fxp_start_body(ifp);
1279	FXP_UNLOCK(sc);
1280}
1281
1282/*
1283 * Start packet transmission on the interface.
1284 * This routine must be called with the softc lock held, and is an
1285 * internal entry point only.
1286 */
1287static void
1288fxp_start_body(struct ifnet *ifp)
1289{
1290	struct fxp_softc *sc = ifp->if_softc;
1291	struct fxp_tx *txp;
1292	struct mbuf *mb_head;
1293	int error;
1294
1295	mtx_assert(&sc->sc_mtx, MA_OWNED);
1296	/*
1297	 * See if we need to suspend xmit until the multicast filter
1298	 * has been reprogrammed (which can only be done at the head
1299	 * of the command chain).
1300	 */
1301	if (sc->need_mcsetup) {
1302		return;
1303	}
1304
1305	txp = NULL;
1306
1307	/*
1308	 * We're finished if there is nothing more to add to the list or if
1309	 * we're all filled up with buffers to transmit.
1310	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1311	 *       a NOP command when needed.
1312	 */
1313	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1314
1315		/*
1316		 * Grab a packet to transmit.
1317		 */
1318		IF_DEQUEUE(&ifp->if_snd, mb_head);
1319
1320		/*
1321		 * Get pointer to next available tx desc.
1322		 */
1323		txp = sc->fxp_desc.tx_last->tx_next;
1324
1325		/*
1326		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1327		 * Ethernet Controller Family Open Source Software
1328		 * Developer Manual says:
1329		 *   Using software parsing is only allowed with legal
1330		 *   TCP/IP or UDP/IP packets.
1331		 *   ...
1332		 *   For all other datagrams, hardware parsing must
1333		 *   be used.
1334		 * Software parsing appears to truncate ICMP and
1335		 * fragmented UDP packets that contain one to three
1336		 * bytes in the second (and final) mbuf of the packet.
1337		 */
1338		if (sc->flags & FXP_FLAG_EXT_RFA)
1339			txp->tx_cb->ipcb_ip_activation_high =
1340			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1341
1342		/*
1343		 * Deal with TCP/IP checksum offload. Note that
1344		 * in order for TCP checksum offload to work,
1345		 * the pseudo header checksum must have already
1346		 * been computed and stored in the checksum field
1347		 * in the TCP header. The stack should have
1348		 * already done this for us.
1349		 */
1350
1351		if (mb_head->m_pkthdr.csum_flags) {
1352			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1353				txp->tx_cb->ipcb_ip_schedule =
1354				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1355				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1356					txp->tx_cb->ipcb_ip_schedule |=
1357					    FXP_IPCB_TCP_PACKET;
1358			}
1359#ifdef FXP_IP_CSUM_WAR
1360		/*
1361		 * XXX The 82550 chip appears to have trouble
1362		 * dealing with IP header checksums in very small
1363		 * datagrams, namely fragments from 1 to 3 bytes
1364		 * in size. For example, say you want to transmit
1365		 * a UDP packet of 1473 bytes. The packet will be
1366		 * fragmented over two IP datagrams, the latter
1367		 * containing only one byte of data. The 82550 will
1368		 * botch the header checksum on the 1-byte fragment.
1369		 * As long as the datagram contains 4 or more bytes
1370		 * of data, you're ok.
1371		 *
1372                 * The following code attempts to work around this
1373		 * problem: if the datagram is less than 38 bytes
1374		 * in size (14 bytes ether header, 20 bytes IP header,
1375		 * plus 4 bytes of data), we punt and compute the IP
1376		 * header checksum by hand. This workaround doesn't
1377		 * work very well, however, since it can be fooled
1378		 * by things like VLAN tags and IP options that make
1379		 * the header sizes/offsets vary.
1380		 */
1381
1382			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1383				if (mb_head->m_pkthdr.len < 38) {
1384					struct ip *ip;
1385					mb_head->m_data += ETHER_HDR_LEN;
1386					ip = mtod(mb_head, struct ip *);
1387					ip->ip_sum = in_cksum(mb_head,
1388					    ip->ip_hl << 2);
1389					mb_head->m_data -= ETHER_HDR_LEN;
1390				} else {
1391					txp->tx_cb->ipcb_ip_activation_high =
1392					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1393					txp->tx_cb->ipcb_ip_schedule |=
1394					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1395				}
1396			}
1397#endif
1398		}
1399
1400		/*
1401		 * Go through each of the mbufs in the chain and initialize
1402		 * the transmit buffer descriptors with the physical address
1403		 * and size of the mbuf.
1404		 */
1405		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1406		    mb_head, fxp_dma_map_txbuf, sc, 0);
1407
1408		if (error && error != EFBIG) {
1409			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1410			    error);
1411			m_freem(mb_head);
1412			break;
1413		}
1414
1415		if (error) {
1416			struct mbuf *mn;
1417
1418			/*
1419			 * We ran out of segments. We have to recopy this
1420			 * mbuf chain first. Bail out if we can't get the
1421			 * new buffers.
1422			 */
1423			mn = m_defrag(mb_head, M_DONTWAIT);
1424			if (mn == NULL) {
1425				m_freem(mb_head);
1426				break;
1427			} else {
1428				mb_head = mn;
1429			}
1430			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1431			    mb_head, fxp_dma_map_txbuf, sc, 0);
1432			if (error) {
1433				device_printf(sc->dev,
1434				    "can't map mbuf (error %d)\n", error);
1435				m_freem(mb_head);
1436				break;
1437			}
1438		}
1439
1440		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1441		    BUS_DMASYNC_PREWRITE);
1442
1443		txp->tx_mbuf = mb_head;
1444		txp->tx_cb->cb_status = 0;
1445		txp->tx_cb->byte_count = 0;
1446		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1447			txp->tx_cb->cb_command =
1448			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1449			    FXP_CB_COMMAND_S);
1450		} else {
1451			txp->tx_cb->cb_command =
1452			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1453			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1454			/*
1455			 * Set a 5 second timer just in case we don't hear
1456			 * from the card again.
1457			 */
1458			ifp->if_timer = 5;
1459		}
1460		txp->tx_cb->tx_threshold = tx_threshold;
1461
1462		/*
1463		 * Advance the end of list forward.
1464		 */
1465
1466#ifdef __alpha__
1467		/*
1468		 * On platforms which can't access memory in 16-bit
1469		 * granularities, we must prevent the card from DMA'ing
1470		 * up the status while we update the command field.
1471		 * This could cause us to overwrite the completion status.
1472		 * XXX This is probably bogus and we're _not_ looking
1473		 * for atomicity here.
1474		 */
1475		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1476		    htole16(FXP_CB_COMMAND_S));
1477#else
1478		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1479		    htole16(~FXP_CB_COMMAND_S);
1480#endif /*__alpha__*/
1481		sc->fxp_desc.tx_last = txp;
1482
1483		/*
1484		 * Advance the beginning of the list forward if there are
1485		 * no other packets queued (when nothing is queued, tx_first
1486		 * sits on the last TxCB that was sent out).
1487		 */
1488		if (sc->tx_queued == 0)
1489			sc->fxp_desc.tx_first = txp;
1490
1491		sc->tx_queued++;
1492
1493		/*
1494		 * Pass packet to bpf if there is a listener.
1495		 */
1496		BPF_MTAP(ifp, mb_head);
1497	}
1498	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1499
1500	/*
1501	 * We're finished. If we added to the list, issue a RESUME to get DMA
1502	 * going again if suspended.
1503	 */
1504	if (txp != NULL) {
1505		fxp_scb_wait(sc);
1506		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1507	}
1508}
1509
1510#ifdef DEVICE_POLLING
1511static poll_handler_t fxp_poll;
1512
1513static void
1514fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1515{
1516	struct fxp_softc *sc = ifp->if_softc;
1517	u_int8_t statack;
1518
1519	FXP_LOCK(sc);
1520	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1521		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1522		FXP_UNLOCK(sc);
1523		return;
1524	}
1525	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1526	    FXP_SCB_STATACK_FR;
1527	if (cmd == POLL_AND_CHECK_STATUS) {
1528		u_int8_t tmp;
1529
1530		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1531		if (tmp == 0xff || tmp == 0) {
1532			FXP_UNLOCK(sc);
1533			return; /* nothing to do */
1534		}
1535		tmp &= ~statack;
1536		/* ack what we can */
1537		if (tmp != 0)
1538			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1539		statack |= tmp;
1540	}
1541	fxp_intr_body(sc, ifp, statack, count);
1542	FXP_UNLOCK(sc);
1543}
1544#endif /* DEVICE_POLLING */
1545
1546/*
1547 * Process interface interrupts.
1548 */
1549static void
1550fxp_intr(void *xsc)
1551{
1552	struct fxp_softc *sc = xsc;
1553	struct ifnet *ifp = &sc->sc_if;
1554	u_int8_t statack;
1555
1556	FXP_LOCK(sc);
1557	if (sc->suspended) {
1558		FXP_UNLOCK(sc);
1559		return;
1560	}
1561
1562#ifdef DEVICE_POLLING
1563	if (ifp->if_flags & IFF_POLLING) {
1564		FXP_UNLOCK(sc);
1565		return;
1566	}
1567	if (ether_poll_register(fxp_poll, ifp)) {
1568		/* disable interrupts */
1569		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1570		FXP_UNLOCK(sc);
1571		fxp_poll(ifp, 0, 1);
1572		return;
1573	}
1574#endif
1575	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1576		/*
1577		 * It should not be possible to have all bits set; the
1578		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1579		 * all bits are set, this may indicate that the card has
1580		 * been physically ejected, so ignore it.
1581		 */
1582		if (statack == 0xff) {
1583			FXP_UNLOCK(sc);
1584			return;
1585		}
1586
1587		/*
1588		 * First ACK all the interrupts in this pass.
1589		 */
1590		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1591		fxp_intr_body(sc, ifp, statack, -1);
1592	}
1593	FXP_UNLOCK(sc);
1594}
1595
1596static void
1597fxp_txeof(struct fxp_softc *sc)
1598{
1599	struct fxp_tx *txp;
1600
1601	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1602	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1603	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1604	    txp = txp->tx_next) {
1605		if (txp->tx_mbuf != NULL) {
1606			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1607			    BUS_DMASYNC_POSTWRITE);
1608			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1609			m_freem(txp->tx_mbuf);
1610			txp->tx_mbuf = NULL;
1611			/* clear this to reset csum offload bits */
1612			txp->tx_cb->tbd[0].tb_addr = 0;
1613		}
1614		sc->tx_queued--;
1615	}
1616	sc->fxp_desc.tx_first = txp;
1617	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1618}
1619
1620static void
1621fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1622    int count)
1623{
1624	struct mbuf *m;
1625	struct fxp_rx *rxp;
1626	struct fxp_rfa *rfa;
1627	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1628
1629	mtx_assert(&sc->sc_mtx, MA_OWNED);
1630	if (rnr)
1631		fxp_rnr++;
1632#ifdef DEVICE_POLLING
1633	/* Pick up a deferred RNR condition if `count' ran out last time. */
1634	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1635		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1636		rnr = 1;
1637	}
1638#endif
1639
1640	/*
1641	 * Free any finished transmit mbuf chains.
1642	 *
1643	 * Handle the CNA event likt a CXTNO event. It used to
1644	 * be that this event (control unit not ready) was not
1645	 * encountered, but it is now with the SMPng modifications.
1646	 * The exact sequence of events that occur when the interface
1647	 * is brought up are different now, and if this event
1648	 * goes unhandled, the configuration/rxfilter setup sequence
1649	 * can stall for several seconds. The result is that no
1650	 * packets go out onto the wire for about 5 to 10 seconds
1651	 * after the interface is ifconfig'ed for the first time.
1652	 */
1653	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1654		fxp_txeof(sc);
1655
1656		ifp->if_timer = 0;
1657		if (sc->tx_queued == 0) {
1658			if (sc->need_mcsetup)
1659				fxp_mc_setup(sc);
1660		}
1661		/*
1662		 * Try to start more packets transmitting.
1663		 */
1664		if (ifp->if_snd.ifq_head != NULL)
1665			fxp_start_body(ifp);
1666	}
1667
1668	/*
1669	 * Just return if nothing happened on the receive side.
1670	 */
1671	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1672		return;
1673
1674	/*
1675	 * Process receiver interrupts. If a no-resource (RNR)
1676	 * condition exists, get whatever packets we can and
1677	 * re-start the receiver.
1678	 *
1679	 * When using polling, we do not process the list to completion,
1680	 * so when we get an RNR interrupt we must defer the restart
1681	 * until we hit the last buffer with the C bit set.
1682	 * If we run out of cycles and rfa_headm has the C bit set,
1683	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1684	 * that the info will be used in the subsequent polling cycle.
1685	 */
1686	for (;;) {
1687		rxp = sc->fxp_desc.rx_head;
1688		m = rxp->rx_mbuf;
1689		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1690		    RFA_ALIGNMENT_FUDGE);
1691		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1692		    BUS_DMASYNC_POSTREAD);
1693
1694#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1695		if (count >= 0 && count-- == 0) {
1696			if (rnr) {
1697				/* Defer RNR processing until the next time. */
1698				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1699				rnr = 0;
1700			}
1701			break;
1702		}
1703#endif /* DEVICE_POLLING */
1704
1705		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1706			break;
1707
1708		/*
1709		 * Advance head forward.
1710		 */
1711		sc->fxp_desc.rx_head = rxp->rx_next;
1712
1713		/*
1714		 * Add a new buffer to the receive chain.
1715		 * If this fails, the old buffer is recycled
1716		 * instead.
1717		 */
1718		if (fxp_add_rfabuf(sc, rxp) == 0) {
1719			int total_len;
1720
1721			/*
1722			 * Fetch packet length (the top 2 bits of
1723			 * actual_size are flags set by the controller
1724			 * upon completion), and drop the packet in case
1725			 * of bogus length or CRC errors.
1726			 */
1727			total_len = le16toh(rfa->actual_size) & 0x3fff;
1728			if (total_len < sizeof(struct ether_header) ||
1729			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1730				sc->rfa_size ||
1731			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1732				m_freem(m);
1733				continue;
1734			}
1735
1736                        /* Do IP checksum checking. */
1737			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1738				if (rfa->rfax_csum_sts &
1739				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1740					m->m_pkthdr.csum_flags |=
1741					    CSUM_IP_CHECKED;
1742				if (rfa->rfax_csum_sts &
1743				    FXP_RFDX_CS_IP_CSUM_VALID)
1744					m->m_pkthdr.csum_flags |=
1745					    CSUM_IP_VALID;
1746				if ((rfa->rfax_csum_sts &
1747				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1748				    (rfa->rfax_csum_sts &
1749				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1750					m->m_pkthdr.csum_flags |=
1751					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1752					m->m_pkthdr.csum_data = 0xffff;
1753				}
1754			}
1755
1756			m->m_pkthdr.len = m->m_len = total_len;
1757			m->m_pkthdr.rcvif = ifp;
1758
1759			/*
1760			 * Drop locks before calling if_input() since it
1761			 * may re-enter fxp_start() in the netisr case.
1762			 * This would result in a lock reversal.  Better
1763			 * performance might be obtained by chaining all
1764			 * packets received, dropping the lock, and then
1765			 * calling if_input() on each one.
1766			 */
1767			FXP_UNLOCK(sc);
1768			(*ifp->if_input)(ifp, m);
1769			FXP_LOCK(sc);
1770		}
1771	}
1772	if (rnr) {
1773		fxp_scb_wait(sc);
1774		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1775		    sc->fxp_desc.rx_head->rx_addr);
1776		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1777	}
1778}
1779
1780/*
1781 * Update packet in/out/collision statistics. The i82557 doesn't
1782 * allow you to access these counters without doing a fairly
1783 * expensive DMA to get _all_ of the statistics it maintains, so
1784 * we do this operation here only once per second. The statistics
1785 * counters in the kernel are updated from the previous dump-stats
1786 * DMA and then a new dump-stats DMA is started. The on-chip
1787 * counters are zeroed when the DMA completes. If we can't start
1788 * the DMA immediately, we don't wait - we just prepare to read
1789 * them again next time.
1790 */
1791static void
1792fxp_tick(void *xsc)
1793{
1794	struct fxp_softc *sc = xsc;
1795	struct ifnet *ifp = &sc->sc_if;
1796	struct fxp_stats *sp = sc->fxp_stats;
1797	int s;
1798
1799	FXP_LOCK(sc);
1800	s = splimp();
1801	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1802	ifp->if_opackets += le32toh(sp->tx_good);
1803	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1804	if (sp->rx_good) {
1805		ifp->if_ipackets += le32toh(sp->rx_good);
1806		sc->rx_idle_secs = 0;
1807	} else {
1808		/*
1809		 * Receiver's been idle for another second.
1810		 */
1811		sc->rx_idle_secs++;
1812	}
1813	ifp->if_ierrors +=
1814	    le32toh(sp->rx_crc_errors) +
1815	    le32toh(sp->rx_alignment_errors) +
1816	    le32toh(sp->rx_rnr_errors) +
1817	    le32toh(sp->rx_overrun_errors);
1818	/*
1819	 * If any transmit underruns occured, bump up the transmit
1820	 * threshold by another 512 bytes (64 * 8).
1821	 */
1822	if (sp->tx_underruns) {
1823		ifp->if_oerrors += le32toh(sp->tx_underruns);
1824		if (tx_threshold < 192)
1825			tx_threshold += 64;
1826	}
1827
1828	/*
1829	 * Release any xmit buffers that have completed DMA. This isn't
1830	 * strictly necessary to do here, but it's advantagous for mbufs
1831	 * with external storage to be released in a timely manner rather
1832	 * than being defered for a potentially long time. This limits
1833	 * the delay to a maximum of one second.
1834	 */
1835	fxp_txeof(sc);
1836
1837	/*
1838	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1839	 * then assume the receiver has locked up and attempt to clear
1840	 * the condition by reprogramming the multicast filter. This is
1841	 * a work-around for a bug in the 82557 where the receiver locks
1842	 * up if it gets certain types of garbage in the syncronization
1843	 * bits prior to the packet header. This bug is supposed to only
1844	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1845	 * mode as well (perhaps due to a 10/100 speed transition).
1846	 */
1847	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1848		sc->rx_idle_secs = 0;
1849		fxp_mc_setup(sc);
1850	}
1851	/*
1852	 * If there is no pending command, start another stats
1853	 * dump. Otherwise punt for now.
1854	 */
1855	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1856		/*
1857		 * Start another stats dump.
1858		 */
1859		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1860		    BUS_DMASYNC_PREREAD);
1861		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1862	} else {
1863		/*
1864		 * A previous command is still waiting to be accepted.
1865		 * Just zero our copy of the stats and wait for the
1866		 * next timer event to update them.
1867		 */
1868		sp->tx_good = 0;
1869		sp->tx_underruns = 0;
1870		sp->tx_total_collisions = 0;
1871
1872		sp->rx_good = 0;
1873		sp->rx_crc_errors = 0;
1874		sp->rx_alignment_errors = 0;
1875		sp->rx_rnr_errors = 0;
1876		sp->rx_overrun_errors = 0;
1877	}
1878	if (sc->miibus != NULL)
1879		mii_tick(device_get_softc(sc->miibus));
1880
1881	/*
1882	 * Schedule another timeout one second from now.
1883	 */
1884	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1885	FXP_UNLOCK(sc);
1886	splx(s);
1887}
1888
1889/*
1890 * Stop the interface. Cancels the statistics updater and resets
1891 * the interface.
1892 */
1893static void
1894fxp_stop(struct fxp_softc *sc)
1895{
1896	struct ifnet *ifp = &sc->sc_if;
1897	struct fxp_tx *txp;
1898	int i;
1899
1900	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901	ifp->if_timer = 0;
1902
1903#ifdef DEVICE_POLLING
1904	ether_poll_deregister(ifp);
1905#endif
1906	/*
1907	 * Cancel stats updater.
1908	 */
1909	callout_stop(&sc->stat_ch);
1910
1911	/*
1912	 * Issue software reset, which also unloads the microcode.
1913	 */
1914	sc->flags &= ~FXP_FLAG_UCODE;
1915	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1916	DELAY(50);
1917
1918	/*
1919	 * Release any xmit buffers.
1920	 */
1921	txp = sc->fxp_desc.tx_list;
1922	if (txp != NULL) {
1923		for (i = 0; i < FXP_NTXCB; i++) {
1924 			if (txp[i].tx_mbuf != NULL) {
1925				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1926				    BUS_DMASYNC_POSTWRITE);
1927				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1928				m_freem(txp[i].tx_mbuf);
1929				txp[i].tx_mbuf = NULL;
1930				/* clear this to reset csum offload bits */
1931				txp[i].tx_cb->tbd[0].tb_addr = 0;
1932			}
1933		}
1934	}
1935	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1936	sc->tx_queued = 0;
1937}
1938
1939/*
1940 * Watchdog/transmission transmit timeout handler. Called when a
1941 * transmission is started on the interface, but no interrupt is
1942 * received before the timeout. This usually indicates that the
1943 * card has wedged for some reason.
1944 */
1945static void
1946fxp_watchdog(struct ifnet *ifp)
1947{
1948	struct fxp_softc *sc = ifp->if_softc;
1949
1950	FXP_LOCK(sc);
1951	device_printf(sc->dev, "device timeout\n");
1952	ifp->if_oerrors++;
1953
1954	fxp_init_body(sc);
1955	FXP_UNLOCK(sc);
1956}
1957
1958/*
1959 * Acquire locks and then call the real initialization function.  This
1960 * is necessary because ether_ioctl() calls if_init() and this would
1961 * result in mutex recursion if the mutex was held.
1962 */
1963static void
1964fxp_init(void *xsc)
1965{
1966	struct fxp_softc *sc = xsc;
1967
1968	FXP_LOCK(sc);
1969	fxp_init_body(sc);
1970	FXP_UNLOCK(sc);
1971}
1972
1973/*
1974 * Perform device initialization. This routine must be called with the
1975 * softc lock held.
1976 */
1977static void
1978fxp_init_body(struct fxp_softc *sc)
1979{
1980	struct ifnet *ifp = &sc->sc_if;
1981	struct fxp_cb_config *cbp;
1982	struct fxp_cb_ias *cb_ias;
1983	struct fxp_cb_tx *tcbp;
1984	struct fxp_tx *txp;
1985	struct fxp_cb_mcs *mcsp;
1986	int i, prm, s;
1987
1988	mtx_assert(&sc->sc_mtx, MA_OWNED);
1989	s = splimp();
1990	/*
1991	 * Cancel any pending I/O
1992	 */
1993	fxp_stop(sc);
1994
1995	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1996
1997	/*
1998	 * Initialize base of CBL and RFA memory. Loading with zero
1999	 * sets it up for regular linear addressing.
2000	 */
2001	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2002	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2003
2004	fxp_scb_wait(sc);
2005	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2006
2007	/*
2008	 * Initialize base of dump-stats buffer.
2009	 */
2010	fxp_scb_wait(sc);
2011	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2012	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2013	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2014
2015	/*
2016	 * Attempt to load microcode if requested.
2017	 */
2018	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2019		fxp_load_ucode(sc);
2020
2021	/*
2022	 * Initialize the multicast address list.
2023	 */
2024	if (fxp_mc_addrs(sc)) {
2025		mcsp = sc->mcsp;
2026		mcsp->cb_status = 0;
2027		mcsp->cb_command =
2028		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2029		mcsp->link_addr = 0xffffffff;
2030		/*
2031	 	 * Start the multicast setup command.
2032		 */
2033		fxp_scb_wait(sc);
2034		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2035		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2036		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2037		/* ...and wait for it to complete. */
2038		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2039		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2040		    BUS_DMASYNC_POSTWRITE);
2041	}
2042
2043	/*
2044	 * We temporarily use memory that contains the TxCB list to
2045	 * construct the config CB. The TxCB list memory is rebuilt
2046	 * later.
2047	 */
2048	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2049
2050	/*
2051	 * This bcopy is kind of disgusting, but there are a bunch of must be
2052	 * zero and must be one bits in this structure and this is the easiest
2053	 * way to initialize them all to proper values.
2054	 */
2055	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2056
2057	cbp->cb_status =	0;
2058	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2059	    FXP_CB_COMMAND_EL);
2060	cbp->link_addr =	0xffffffff;	/* (no) next command */
2061	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2062	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2063	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2064	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2065	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2066	cbp->type_enable =	0;	/* actually reserved */
2067	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2068	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2069	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2070	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2071	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2072	cbp->late_scb =		0;	/* (don't) defer SCB update */
2073	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2074	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2075	cbp->ci_int =		1;	/* interrupt on CU idle */
2076	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2077	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2078	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2079	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2080	cbp->disc_short_rx =	!prm;	/* discard short packets */
2081	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2082	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2083	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2084	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2085	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2086	cbp->csma_dis =		0;	/* (don't) disable link */
2087	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2088	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2089	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2090	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2091	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2092	cbp->nsai =		1;	/* (don't) disable source addr insert */
2093	cbp->preamble_length =	2;	/* (7 byte) preamble */
2094	cbp->loopback =		0;	/* (don't) loopback */
2095	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2096	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2097	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2098	cbp->promiscuous =	prm;	/* promiscuous mode */
2099	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2100	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2101	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2102	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2103	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2104
2105	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2106	cbp->padding =		1;	/* (do) pad short tx packets */
2107	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2108	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2109	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2110	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2111					/* must set wake_en in PMCSR also */
2112	cbp->force_fdx =	0;	/* (don't) force full duplex */
2113	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2114	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2115	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2116	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2117
2118	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2119		/*
2120		 * The 82557 has no hardware flow control, the values
2121		 * below are the defaults for the chip.
2122		 */
2123		cbp->fc_delay_lsb =	0;
2124		cbp->fc_delay_msb =	0x40;
2125		cbp->pri_fc_thresh =	3;
2126		cbp->tx_fc_dis =	0;
2127		cbp->rx_fc_restop =	0;
2128		cbp->rx_fc_restart =	0;
2129		cbp->fc_filter =	0;
2130		cbp->pri_fc_loc =	1;
2131	} else {
2132		cbp->fc_delay_lsb =	0x1f;
2133		cbp->fc_delay_msb =	0x01;
2134		cbp->pri_fc_thresh =	3;
2135		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2136		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2137		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2138		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2139		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2140	}
2141
2142	/*
2143	 * Start the config command/DMA.
2144	 */
2145	fxp_scb_wait(sc);
2146	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2147	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2148	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2149	/* ...and wait for it to complete. */
2150	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2151	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2152
2153	/*
2154	 * Now initialize the station address. Temporarily use the TxCB
2155	 * memory area like we did above for the config CB.
2156	 */
2157	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2158	cb_ias->cb_status = 0;
2159	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2160	cb_ias->link_addr = 0xffffffff;
2161	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2162	    sizeof(sc->arpcom.ac_enaddr));
2163
2164	/*
2165	 * Start the IAS (Individual Address Setup) command/DMA.
2166	 */
2167	fxp_scb_wait(sc);
2168	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2169	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2170	/* ...and wait for it to complete. */
2171	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2172	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2173
2174	/*
2175	 * Initialize transmit control block (TxCB) list.
2176	 */
2177	txp = sc->fxp_desc.tx_list;
2178	tcbp = sc->fxp_desc.cbl_list;
2179	bzero(tcbp, FXP_TXCB_SZ);
2180	for (i = 0; i < FXP_NTXCB; i++) {
2181		txp[i].tx_cb = tcbp + i;
2182		txp[i].tx_mbuf = NULL;
2183		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2184		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2185		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2186		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2187		if (sc->flags & FXP_FLAG_EXT_TXCB)
2188			tcbp[i].tbd_array_addr =
2189			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2190		else
2191			tcbp[i].tbd_array_addr =
2192			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2193		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2194	}
2195	/*
2196	 * Set the suspend flag on the first TxCB and start the control
2197	 * unit. It will execute the NOP and then suspend.
2198	 */
2199	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2200	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2201	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2202	sc->tx_queued = 1;
2203
2204	fxp_scb_wait(sc);
2205	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2206
2207	/*
2208	 * Initialize receiver buffer area - RFA.
2209	 */
2210	fxp_scb_wait(sc);
2211	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2212	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2213
2214	/*
2215	 * Set current media.
2216	 */
2217	if (sc->miibus != NULL)
2218		mii_mediachg(device_get_softc(sc->miibus));
2219
2220	ifp->if_flags |= IFF_RUNNING;
2221	ifp->if_flags &= ~IFF_OACTIVE;
2222
2223	/*
2224	 * Enable interrupts.
2225	 */
2226#ifdef DEVICE_POLLING
2227	/*
2228	 * ... but only do that if we are not polling. And because (presumably)
2229	 * the default is interrupts on, we need to disable them explicitly!
2230	 */
2231	if ( ifp->if_flags & IFF_POLLING )
2232		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2233	else
2234#endif /* DEVICE_POLLING */
2235	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2236
2237	/*
2238	 * Start stats updater.
2239	 */
2240	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2241	splx(s);
2242}
2243
2244static int
2245fxp_serial_ifmedia_upd(struct ifnet *ifp)
2246{
2247
2248	return (0);
2249}
2250
2251static void
2252fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2253{
2254
2255	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2256}
2257
2258/*
2259 * Change media according to request.
2260 */
2261static int
2262fxp_ifmedia_upd(struct ifnet *ifp)
2263{
2264	struct fxp_softc *sc = ifp->if_softc;
2265	struct mii_data *mii;
2266
2267	mii = device_get_softc(sc->miibus);
2268	mii_mediachg(mii);
2269	return (0);
2270}
2271
2272/*
2273 * Notify the world which media we're using.
2274 */
2275static void
2276fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2277{
2278	struct fxp_softc *sc = ifp->if_softc;
2279	struct mii_data *mii;
2280
2281	mii = device_get_softc(sc->miibus);
2282	mii_pollstat(mii);
2283	ifmr->ifm_active = mii->mii_media_active;
2284	ifmr->ifm_status = mii->mii_media_status;
2285
2286	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2287		sc->cu_resume_bug = 1;
2288	else
2289		sc->cu_resume_bug = 0;
2290}
2291
2292/*
2293 * Add a buffer to the end of the RFA buffer list.
2294 * Return 0 if successful, 1 for failure. A failure results in
2295 * adding the 'oldm' (if non-NULL) on to the end of the list -
2296 * tossing out its old contents and recycling it.
2297 * The RFA struct is stuck at the beginning of mbuf cluster and the
2298 * data pointer is fixed up to point just past it.
2299 */
2300static int
2301fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2302{
2303	struct mbuf *m;
2304	struct fxp_rfa *rfa, *p_rfa;
2305	struct fxp_rx *p_rx;
2306	bus_dmamap_t tmp_map;
2307	int error;
2308
2309	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2310	if (m == NULL)
2311		return (ENOBUFS);
2312
2313	/*
2314	 * Move the data pointer up so that the incoming data packet
2315	 * will be 32-bit aligned.
2316	 */
2317	m->m_data += RFA_ALIGNMENT_FUDGE;
2318
2319	/*
2320	 * Get a pointer to the base of the mbuf cluster and move
2321	 * data start past it.
2322	 */
2323	rfa = mtod(m, struct fxp_rfa *);
2324	m->m_data += sc->rfa_size;
2325	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2326
2327	rfa->rfa_status = 0;
2328	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2329	rfa->actual_size = 0;
2330
2331	/*
2332	 * Initialize the rest of the RFA.  Note that since the RFA
2333	 * is misaligned, we cannot store values directly.  We're thus
2334	 * using the le32enc() function which handles endianness and
2335	 * is also alignment-safe.
2336	 */
2337	le32enc(&rfa->link_addr, 0xffffffff);
2338	le32enc(&rfa->rbd_addr, 0xffffffff);
2339
2340	/* Map the RFA into DMA memory. */
2341	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2342	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2343	    &rxp->rx_addr, 0);
2344	if (error) {
2345		m_freem(m);
2346		return (error);
2347	}
2348
2349	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2350	tmp_map = sc->spare_map;
2351	sc->spare_map = rxp->rx_map;
2352	rxp->rx_map = tmp_map;
2353	rxp->rx_mbuf = m;
2354
2355	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2356	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2357
2358	/*
2359	 * If there are other buffers already on the list, attach this
2360	 * one to the end by fixing up the tail to point to this one.
2361	 */
2362	if (sc->fxp_desc.rx_head != NULL) {
2363		p_rx = sc->fxp_desc.rx_tail;
2364		p_rfa = (struct fxp_rfa *)
2365		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2366		p_rx->rx_next = rxp;
2367		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2368		p_rfa->rfa_control = 0;
2369		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2370		    BUS_DMASYNC_PREWRITE);
2371	} else {
2372		rxp->rx_next = NULL;
2373		sc->fxp_desc.rx_head = rxp;
2374	}
2375	sc->fxp_desc.rx_tail = rxp;
2376	return (0);
2377}
2378
2379static volatile int
2380fxp_miibus_readreg(device_t dev, int phy, int reg)
2381{
2382	struct fxp_softc *sc = device_get_softc(dev);
2383	int count = 10000;
2384	int value;
2385
2386	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2387	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2388
2389	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2390	    && count--)
2391		DELAY(10);
2392
2393	if (count <= 0)
2394		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2395
2396	return (value & 0xffff);
2397}
2398
2399static void
2400fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2401{
2402	struct fxp_softc *sc = device_get_softc(dev);
2403	int count = 10000;
2404
2405	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2406	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2407	    (value & 0xffff));
2408
2409	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2410	    count--)
2411		DELAY(10);
2412
2413	if (count <= 0)
2414		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2415}
2416
2417static int
2418fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2419{
2420	struct fxp_softc *sc = ifp->if_softc;
2421	struct ifreq *ifr = (struct ifreq *)data;
2422	struct mii_data *mii;
2423	int s, error = 0;
2424
2425	/*
2426	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2427	 * that by saying we're busy if the lock is already held.
2428	 */
2429	if (mtx_owned(&sc->sc_mtx))
2430		return (EBUSY);
2431
2432	FXP_LOCK(sc);
2433	s = splimp();
2434
2435	switch (command) {
2436	case SIOCSIFFLAGS:
2437		if (ifp->if_flags & IFF_ALLMULTI)
2438			sc->flags |= FXP_FLAG_ALL_MCAST;
2439		else
2440			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2441
2442		/*
2443		 * If interface is marked up and not running, then start it.
2444		 * If it is marked down and running, stop it.
2445		 * XXX If it's up then re-initialize it. This is so flags
2446		 * such as IFF_PROMISC are handled.
2447		 */
2448		if (ifp->if_flags & IFF_UP) {
2449			fxp_init_body(sc);
2450		} else {
2451			if (ifp->if_flags & IFF_RUNNING)
2452				fxp_stop(sc);
2453		}
2454		break;
2455
2456	case SIOCADDMULTI:
2457	case SIOCDELMULTI:
2458		if (ifp->if_flags & IFF_ALLMULTI)
2459			sc->flags |= FXP_FLAG_ALL_MCAST;
2460		else
2461			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2462		/*
2463		 * Multicast list has changed; set the hardware filter
2464		 * accordingly.
2465		 */
2466		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2467			fxp_mc_setup(sc);
2468		/*
2469		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2470		 * again rather than else {}.
2471		 */
2472		if (sc->flags & FXP_FLAG_ALL_MCAST)
2473			fxp_init_body(sc);
2474		error = 0;
2475		break;
2476
2477	case SIOCSIFMEDIA:
2478	case SIOCGIFMEDIA:
2479		if (sc->miibus != NULL) {
2480			mii = device_get_softc(sc->miibus);
2481                        error = ifmedia_ioctl(ifp, ifr,
2482                            &mii->mii_media, command);
2483		} else {
2484                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2485		}
2486		break;
2487
2488	default:
2489		/*
2490		 * ether_ioctl() will eventually call fxp_start() which
2491		 * will result in mutex recursion so drop it first.
2492		 */
2493		FXP_UNLOCK(sc);
2494		error = ether_ioctl(ifp, command, data);
2495	}
2496	if (mtx_owned(&sc->sc_mtx))
2497		FXP_UNLOCK(sc);
2498	splx(s);
2499	return (error);
2500}
2501
2502/*
2503 * Fill in the multicast address list and return number of entries.
2504 */
2505static int
2506fxp_mc_addrs(struct fxp_softc *sc)
2507{
2508	struct fxp_cb_mcs *mcsp = sc->mcsp;
2509	struct ifnet *ifp = &sc->sc_if;
2510	struct ifmultiaddr *ifma;
2511	int nmcasts;
2512
2513	nmcasts = 0;
2514	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2515#if __FreeBSD_version < 500000
2516		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2517#else
2518		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2519#endif
2520			if (ifma->ifma_addr->sa_family != AF_LINK)
2521				continue;
2522			if (nmcasts >= MAXMCADDR) {
2523				sc->flags |= FXP_FLAG_ALL_MCAST;
2524				nmcasts = 0;
2525				break;
2526			}
2527			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2528			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2529			nmcasts++;
2530		}
2531	}
2532	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2533	return (nmcasts);
2534}
2535
2536/*
2537 * Program the multicast filter.
2538 *
2539 * We have an artificial restriction that the multicast setup command
2540 * must be the first command in the chain, so we take steps to ensure
2541 * this. By requiring this, it allows us to keep up the performance of
2542 * the pre-initialized command ring (esp. link pointers) by not actually
2543 * inserting the mcsetup command in the ring - i.e. its link pointer
2544 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2545 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2546 * lead into the regular TxCB ring when it completes.
2547 *
2548 * This function must be called at splimp.
2549 */
2550static void
2551fxp_mc_setup(struct fxp_softc *sc)
2552{
2553	struct fxp_cb_mcs *mcsp = sc->mcsp;
2554	struct ifnet *ifp = &sc->sc_if;
2555	struct fxp_tx *txp;
2556	int count;
2557
2558	/*
2559	 * If there are queued commands, we must wait until they are all
2560	 * completed. If we are already waiting, then add a NOP command
2561	 * with interrupt option so that we're notified when all commands
2562	 * have been completed - fxp_start() ensures that no additional
2563	 * TX commands will be added when need_mcsetup is true.
2564	 */
2565	if (sc->tx_queued) {
2566		/*
2567		 * need_mcsetup will be true if we are already waiting for the
2568		 * NOP command to be completed (see below). In this case, bail.
2569		 */
2570		if (sc->need_mcsetup)
2571			return;
2572		sc->need_mcsetup = 1;
2573
2574		/*
2575		 * Add a NOP command with interrupt so that we are notified
2576		 * when all TX commands have been processed.
2577		 */
2578		txp = sc->fxp_desc.tx_last->tx_next;
2579		txp->tx_mbuf = NULL;
2580		txp->tx_cb->cb_status = 0;
2581		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2582		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2583		/*
2584		 * Advance the end of list forward.
2585		 */
2586		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2587		    htole16(~FXP_CB_COMMAND_S);
2588		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2589		sc->fxp_desc.tx_last = txp;
2590		sc->tx_queued++;
2591		/*
2592		 * Issue a resume in case the CU has just suspended.
2593		 */
2594		fxp_scb_wait(sc);
2595		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2596		/*
2597		 * Set a 5 second timer just in case we don't hear from the
2598		 * card again.
2599		 */
2600		ifp->if_timer = 5;
2601
2602		return;
2603	}
2604	sc->need_mcsetup = 0;
2605
2606	/*
2607	 * Initialize multicast setup descriptor.
2608	 */
2609	mcsp->cb_status = 0;
2610	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2611	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2612	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2613	txp = &sc->fxp_desc.mcs_tx;
2614	txp->tx_mbuf = NULL;
2615	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2616	txp->tx_next = sc->fxp_desc.tx_list;
2617	(void) fxp_mc_addrs(sc);
2618	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2619	sc->tx_queued = 1;
2620
2621	/*
2622	 * Wait until command unit is not active. This should never
2623	 * be the case when nothing is queued, but make sure anyway.
2624	 */
2625	count = 100;
2626	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2627	    FXP_SCB_CUS_ACTIVE && --count)
2628		DELAY(10);
2629	if (count == 0) {
2630		device_printf(sc->dev, "command queue timeout\n");
2631		return;
2632	}
2633
2634	/*
2635	 * Start the multicast setup command.
2636	 */
2637	fxp_scb_wait(sc);
2638	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2639	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2640	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2641
2642	ifp->if_timer = 2;
2643	return;
2644}
2645
2646static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2647static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2648static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2649static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2650static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2651static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2652
2653#define UCODE(x)	x, sizeof(x)
2654
2655struct ucode {
2656	u_int32_t	revision;
2657	u_int32_t	*ucode;
2658	int		length;
2659	u_short		int_delay_offset;
2660	u_short		bundle_max_offset;
2661} ucode_table[] = {
2662	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2663	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2664	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2665	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2666	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2667	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2668	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2669	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2670	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2671	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2672	{ 0, NULL, 0, 0, 0 }
2673};
2674
2675static void
2676fxp_load_ucode(struct fxp_softc *sc)
2677{
2678	struct ucode *uc;
2679	struct fxp_cb_ucode *cbp;
2680
2681	for (uc = ucode_table; uc->ucode != NULL; uc++)
2682		if (sc->revision == uc->revision)
2683			break;
2684	if (uc->ucode == NULL)
2685		return;
2686	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2687	cbp->cb_status = 0;
2688	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2689	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2690	memcpy(cbp->ucode, uc->ucode, uc->length);
2691	if (uc->int_delay_offset)
2692		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2693		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2694	if (uc->bundle_max_offset)
2695		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2696		    htole16(sc->tunable_bundle_max);
2697	/*
2698	 * Download the ucode to the chip.
2699	 */
2700	fxp_scb_wait(sc);
2701	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2702	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2703	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2704	/* ...and wait for it to complete. */
2705	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2706	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2707	device_printf(sc->dev,
2708	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2709	    sc->tunable_int_delay,
2710	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2711	sc->flags |= FXP_FLAG_UCODE;
2712}
2713
2714static int
2715sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2716{
2717	int error, value;
2718
2719	value = *(int *)arg1;
2720	error = sysctl_handle_int(oidp, &value, 0, req);
2721	if (error || !req->newptr)
2722		return (error);
2723	if (value < low || value > high)
2724		return (EINVAL);
2725	*(int *)arg1 = value;
2726	return (0);
2727}
2728
2729/*
2730 * Interrupt delay is expressed in microseconds, a multiplier is used
2731 * to convert this to the appropriate clock ticks before using.
2732 */
2733static int
2734sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2735{
2736	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2737}
2738
2739static int
2740sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2741{
2742	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2743}
2744