if_fxp.c revision 121816
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 121816 2003-10-31 18:32:15Z brooks $");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 121816 2003-10-31 18:32:15Z brooks $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/endian.h>
43#include <sys/mbuf.h>
44		/* #include <sys/mutex.h> */
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/if_dl.h>
51#include <net/if_media.h>
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <machine/clock.h>	/* for DELAY */
64
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67
68#ifdef FXP_IP_CSUM_WAR
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <machine/in_cksum.h>
73#endif
74
75#include <dev/pci/pcivar.h>
76#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
77
78#include <dev/mii/mii.h>
79#include <dev/mii/miivar.h>
80
81#include <dev/fxp/if_fxpreg.h>
82#include <dev/fxp/if_fxpvar.h>
83#include <dev/fxp/rcvbundl.h>
84
85MODULE_DEPEND(fxp, pci, 1, 1, 1);
86MODULE_DEPEND(fxp, ether, 1, 1, 1);
87MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88#include "miibus_if.h"
89
90/*
91 * NOTE!  On the Alpha, we have an alignment constraint.  The
92 * card DMAs the packet immediately following the RFA.  However,
93 * the first thing in the packet is a 14-byte Ethernet header.
94 * This means that the packet is misaligned.  To compensate,
95 * we actually offset the RFA 2 bytes into the cluster.  This
96 * alignes the packet after the Ethernet header at a 32-bit
97 * boundary.  HOWEVER!  This means that the RFA is misaligned!
98 */
99#define	RFA_ALIGNMENT_FUDGE	2
100
101/*
102 * Set initial transmit threshold at 64 (512 bytes). This is
103 * increased by 64 (512 bytes) at a time, to maximum of 192
104 * (1536 bytes), if an underrun occurs.
105 */
106static int tx_threshold = 64;
107
108/*
109 * The configuration byte map has several undefined fields which
110 * must be one or must be zero.  Set up a template for these bits
111 * only, (assuming a 82557 chip) leaving the actual configuration
112 * to fxp_init.
113 *
114 * See struct fxp_cb_config for the bit definitions.
115 */
116static u_char fxp_cb_config_template[] = {
117	0x0, 0x0,		/* cb_status */
118	0x0, 0x0,		/* cb_command */
119	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120	0x0,	/*  0 */
121	0x0,	/*  1 */
122	0x0,	/*  2 */
123	0x0,	/*  3 */
124	0x0,	/*  4 */
125	0x0,	/*  5 */
126	0x32,	/*  6 */
127	0x0,	/*  7 */
128	0x0,	/*  8 */
129	0x0,	/*  9 */
130	0x6,	/* 10 */
131	0x0,	/* 11 */
132	0x0,	/* 12 */
133	0x0,	/* 13 */
134	0xf2,	/* 14 */
135	0x48,	/* 15 */
136	0x0,	/* 16 */
137	0x40,	/* 17 */
138	0xf0,	/* 18 */
139	0x0,	/* 19 */
140	0x3f,	/* 20 */
141	0x5	/* 21 */
142};
143
144struct fxp_ident {
145	u_int16_t	devid;
146	int16_t		revid;		/* -1 matches anything */
147	char 		*name;
148};
149
150/*
151 * Claim various Intel PCI device identifiers for this driver.  The
152 * sub-vendor and sub-device field are extensively used to identify
153 * particular variants, but we don't currently differentiate between
154 * them.
155 */
156static struct fxp_ident fxp_ident_table[] = {
157    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
158    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
159    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
174    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192    { 0,	-1,	NULL },
193};
194
195#ifdef FXP_IP_CSUM_WAR
196#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197#else
198#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199#endif
200
201static int		fxp_probe(device_t dev);
202static int		fxp_attach(device_t dev);
203static int		fxp_detach(device_t dev);
204static int		fxp_shutdown(device_t dev);
205static int		fxp_suspend(device_t dev);
206static int		fxp_resume(device_t dev);
207
208static void		fxp_intr(void *xsc);
209static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210			    u_int8_t statack, int count);
211static void 		fxp_init(void *xsc);
212static void 		fxp_init_body(struct fxp_softc *sc);
213static void 		fxp_tick(void *xsc);
214#ifndef BURN_BRIDGES
215static void		fxp_powerstate_d0(device_t dev);
216#endif
217static void 		fxp_start(struct ifnet *ifp);
218static void 		fxp_start_body(struct ifnet *ifp);
219static void		fxp_stop(struct fxp_softc *sc);
220static void 		fxp_release(struct fxp_softc *sc);
221static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222			    caddr_t data);
223static void 		fxp_watchdog(struct ifnet *ifp);
224static int		fxp_add_rfabuf(struct fxp_softc *sc,
225    			    struct fxp_rx *rxp);
226static int		fxp_mc_addrs(struct fxp_softc *sc);
227static void		fxp_mc_setup(struct fxp_softc *sc);
228static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229			    int autosize);
230static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231			    u_int16_t data);
232static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234			    int offset, int words);
235static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236			    int offset, int words);
237static int		fxp_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242			    struct ifmediareq *ifmr);
243static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245			    int value);
246static void		fxp_load_ucode(struct fxp_softc *sc);
247static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248			    int low, int high);
249static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251static void 		fxp_scb_wait(struct fxp_softc *sc);
252static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253static void		fxp_dma_wait(struct fxp_softc *sc,
254    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
255			    bus_dmamap_t map);
256
257static device_method_t fxp_methods[] = {
258	/* Device interface */
259	DEVMETHOD(device_probe,		fxp_probe),
260	DEVMETHOD(device_attach,	fxp_attach),
261	DEVMETHOD(device_detach,	fxp_detach),
262	DEVMETHOD(device_shutdown,	fxp_shutdown),
263	DEVMETHOD(device_suspend,	fxp_suspend),
264	DEVMETHOD(device_resume,	fxp_resume),
265
266	/* MII interface */
267	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269
270	{ 0, 0 }
271};
272
273static driver_t fxp_driver = {
274	"fxp",
275	fxp_methods,
276	sizeof(struct fxp_softc),
277};
278
279static devclass_t fxp_devclass;
280
281DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284
285static int fxp_rnr;
286SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
287
288static int fxp_noflow;
289SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
290TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
291
292/*
293 * Wait for the previous command to be accepted (but not necessarily
294 * completed).
295 */
296static void
297fxp_scb_wait(struct fxp_softc *sc)
298{
299	int i = 10000;
300
301	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
302		DELAY(2);
303	if (i == 0)
304		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
305		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
306		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
307		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
308		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
309}
310
311static void
312fxp_scb_cmd(struct fxp_softc *sc, int cmd)
313{
314
315	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
316		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
317		fxp_scb_wait(sc);
318	}
319	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
320}
321
322static void
323fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
324    bus_dma_tag_t dmat, bus_dmamap_t map)
325{
326	int i = 10000;
327
328	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
329	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
330		DELAY(2);
331		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
332	}
333	if (i == 0)
334		device_printf(sc->dev, "DMA timeout\n");
335}
336
337/*
338 * Return identification string if this device is ours.
339 */
340static int
341fxp_probe(device_t dev)
342{
343	u_int16_t devid;
344	u_int8_t revid;
345	struct fxp_ident *ident;
346
347	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
348		devid = pci_get_device(dev);
349		revid = pci_get_revid(dev);
350		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
351			if (ident->devid == devid &&
352			    (ident->revid == revid || ident->revid == -1)) {
353				device_set_desc(dev, ident->name);
354				return (0);
355			}
356		}
357	}
358	return (ENXIO);
359}
360
361#ifndef BURN_BRIDGES
362static void
363fxp_powerstate_d0(device_t dev)
364{
365#if __FreeBSD_version >= 430002
366	u_int32_t iobase, membase, irq;
367
368	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
369		/* Save important PCI config data. */
370		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
371		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
372		irq = pci_read_config(dev, PCIR_INTLINE, 4);
373
374		/* Reset the power state. */
375		device_printf(dev, "chip is in D%d power mode "
376		    "-- setting to D0\n", pci_get_powerstate(dev));
377
378		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
379
380		/* Restore PCI config data. */
381		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
382		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
383		pci_write_config(dev, PCIR_INTLINE, irq, 4);
384	}
385#endif
386}
387#endif
388
389static void
390fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
391{
392	u_int32_t *addr;
393
394	if (error)
395		return;
396
397	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
398	addr = arg;
399	*addr = segs->ds_addr;
400}
401
402static int
403fxp_attach(device_t dev)
404{
405	int error = 0;
406	struct fxp_softc *sc = device_get_softc(dev);
407	struct ifnet *ifp;
408	struct fxp_rx *rxp;
409	u_int32_t val;
410	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
411	int i, rid, m1, m2, prefer_iomap, maxtxseg;
412	int s, ipcbxmit_disable;
413
414	sc->dev = dev;
415	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
416	sysctl_ctx_init(&sc->sysctl_ctx);
417	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
418	    MTX_DEF);
419	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
420	    fxp_serial_ifmedia_sts);
421
422	s = splimp();
423
424	/*
425	 * Enable bus mastering.
426	 */
427	pci_enable_busmaster(dev);
428	val = pci_read_config(dev, PCIR_COMMAND, 2);
429#ifndef BURN_BRIDGES
430	fxp_powerstate_d0(dev);
431#endif
432	/*
433	 * Figure out which we should try first - memory mapping or i/o mapping?
434	 * We default to memory mapping. Then we accept an override from the
435	 * command line. Then we check to see which one is enabled.
436	 */
437	m1 = PCIM_CMD_MEMEN;
438	m2 = PCIM_CMD_PORTEN;
439	prefer_iomap = 0;
440	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
441	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
442		m1 = PCIM_CMD_PORTEN;
443		m2 = PCIM_CMD_MEMEN;
444	}
445
446	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
447	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
448	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
449	                                     0, ~0, 1, RF_ACTIVE);
450	if (sc->mem == NULL) {
451		sc->rtp =
452		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
453		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
454		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
455                                            0, ~0, 1, RF_ACTIVE);
456	}
457
458	if (!sc->mem) {
459		error = ENXIO;
460		goto fail;
461        }
462	if (bootverbose) {
463		device_printf(dev, "using %s space register mapping\n",
464		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
465	}
466
467	sc->sc_st = rman_get_bustag(sc->mem);
468	sc->sc_sh = rman_get_bushandle(sc->mem);
469
470	/*
471	 * Allocate our interrupt.
472	 */
473	rid = 0;
474	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
475				 RF_SHAREABLE | RF_ACTIVE);
476	if (sc->irq == NULL) {
477		device_printf(dev, "could not map interrupt\n");
478		error = ENXIO;
479		goto fail;
480	}
481
482	/*
483	 * Reset to a stable state.
484	 */
485	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
486	DELAY(10);
487
488	/*
489	 * Find out how large of an SEEPROM we have.
490	 */
491	fxp_autosize_eeprom(sc);
492
493	/*
494	 * Determine whether we must use the 503 serial interface.
495	 */
496	fxp_read_eeprom(sc, &data, 6, 1);
497	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498	    (data & FXP_PHY_SERIAL_ONLY))
499		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500
501	/*
502	 * Create the sysctl tree
503	 */
504	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
505	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
506	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
507	if (sc->sysctl_tree == NULL) {
508		error = ENXIO;
509		goto fail;
510	}
511	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
512	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
513	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
514	    "FXP driver receive interrupt microcode bundling delay");
515	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
518	    "FXP driver receive interrupt microcode bundle size limit");
519
520	/*
521	 * Pull in device tunables.
522	 */
523	sc->tunable_int_delay = TUNABLE_INT_DELAY;
524	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
525	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
526	    "int_delay", &sc->tunable_int_delay);
527	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
528	    "bundle_max", &sc->tunable_bundle_max);
529
530	/*
531	 * Find out the chip revision; lump all 82557 revs together.
532	 */
533	fxp_read_eeprom(sc, &data, 5, 1);
534	if ((data >> 8) == 1)
535		sc->revision = FXP_REV_82557;
536	else
537		sc->revision = pci_get_revid(dev);
538
539	/*
540	 * Enable workarounds for certain chip revision deficiencies.
541	 *
542	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543	 * some systems based a normal 82559 design, have a defect where
544	 * the chip can cause a PCI protocol violation if it receives
545	 * a CU_RESUME command when it is entering the IDLE state.  The
546	 * workaround is to disable Dynamic Standby Mode, so the chip never
547	 * deasserts CLKRUN#, and always remains in an active state.
548	 *
549	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550	 */
551	i = pci_get_device(dev);
552	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553	    sc->revision >= FXP_REV_82559_A0) {
554		fxp_read_eeprom(sc, &data, 10, 1);
555		if (data & 0x02) {			/* STB enable */
556			u_int16_t cksum;
557			int i;
558
559			device_printf(dev,
560			    "Disabling dynamic standby mode in EEPROM\n");
561			data &= ~0x02;
562			fxp_write_eeprom(sc, &data, 10, 1);
563			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564			cksum = 0;
565			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566				fxp_read_eeprom(sc, &data, i, 1);
567				cksum += data;
568			}
569			i = (1 << sc->eeprom_size) - 1;
570			cksum = 0xBABA - cksum;
571			fxp_read_eeprom(sc, &data, i, 1);
572			fxp_write_eeprom(sc, &cksum, i, 1);
573			device_printf(dev,
574			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575			    i, data, cksum);
576#if 1
577			/*
578			 * If the user elects to continue, try the software
579			 * workaround, as it is better than nothing.
580			 */
581			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582#endif
583		}
584	}
585
586	/*
587	 * If we are not a 82557 chip, we can enable extended features.
588	 */
589	if (sc->revision != FXP_REV_82557) {
590		/*
591		 * If MWI is enabled in the PCI configuration, and there
592		 * is a valid cacheline size (8 or 16 dwords), then tell
593		 * the board to turn on MWI.
594		 */
595		if (val & PCIM_CMD_MWRICEN &&
596		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597			sc->flags |= FXP_FLAG_MWI_ENABLE;
598
599		/* turn on the extended TxCB feature */
600		sc->flags |= FXP_FLAG_EXT_TXCB;
601
602		/* enable reception of long frames for VLAN */
603		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604	}
605
606	/*
607	 * Enable use of extended RFDs and TCBs for 82550
608	 * and later chips. Note: we need extended TXCB support
609	 * too, but that's already enabled by the code above.
610	 * Be careful to do this only on the right devices.
611	 *
612	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
613	 * truncate packets that end with an mbuf containing 1 to 3 bytes
614	 * when used with this feature enabled in the previous version of the
615	 * driver.  This problem appears to be fixed now that the driver
616	 * always sets the hardware parse bit in the IPCB structure, which
617	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
618	 * Source Software Developer Manual" says is necessary in the
619	 * cases where packet truncation was observed.
620	 *
621	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
622	 * allows this feature to be disabled at boot time.
623	 *
624	 * If fxp is not compiled into the kernel, this feature may also
625	 * be disabled at run time:
626	 *    # kldunload fxp
627	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
628	 *    # kldload fxp
629	 */
630
631	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
632	    &ipcbxmit_disable) != 0)
633		ipcbxmit_disable = 0;
634	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
635	    sc->revision == FXP_REV_82550_C)) {
636		sc->rfa_size = sizeof (struct fxp_rfa);
637		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
638		sc->flags |= FXP_FLAG_EXT_RFA;
639	} else {
640		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
641		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
642	}
643
644	/*
645	 * Allocate DMA tags and DMA safe memory.
646	 */
647	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
648	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
649	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
650	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
651	if (error) {
652		device_printf(dev, "could not allocate dma tag\n");
653		goto fail;
654	}
655
656	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
657	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
658	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
659	    &sc->fxp_stag);
660	if (error) {
661		device_printf(dev, "could not allocate dma tag\n");
662		goto fail;
663	}
664
665	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
666	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
667	if (error)
668		goto fail;
669	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
670	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
671	if (error) {
672		device_printf(dev, "could not map the stats buffer\n");
673		goto fail;
674	}
675
676	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
677	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
678	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
679	if (error) {
680		device_printf(dev, "could not allocate dma tag\n");
681		goto fail;
682	}
683
684	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
685	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
686	if (error)
687		goto fail;
688
689	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
690	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
691	    &sc->fxp_desc.cbl_addr, 0);
692	if (error) {
693		device_printf(dev, "could not map DMA memory\n");
694		goto fail;
695	}
696
697	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
698	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
699	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
700	    &sc->mcs_tag);
701	if (error) {
702		device_printf(dev, "could not allocate dma tag\n");
703		goto fail;
704	}
705
706	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
707	    BUS_DMA_NOWAIT, &sc->mcs_map);
708	if (error)
709		goto fail;
710	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
711	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
712	if (error) {
713		device_printf(dev, "can't map the multicast setup command\n");
714		goto fail;
715	}
716
717	/*
718	 * Pre-allocate the TX DMA maps.
719	 */
720	for (i = 0; i < FXP_NTXCB; i++) {
721		error = bus_dmamap_create(sc->fxp_mtag, 0,
722		    &sc->fxp_desc.tx_list[i].tx_map);
723		if (error) {
724			device_printf(dev, "can't create DMA map for TX\n");
725			goto fail;
726		}
727	}
728	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
729	if (error) {
730		device_printf(dev, "can't create spare DMA map\n");
731		goto fail;
732	}
733
734	/*
735	 * Pre-allocate our receive buffers.
736	 */
737	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
738	for (i = 0; i < FXP_NRFABUFS; i++) {
739		rxp = &sc->fxp_desc.rx_list[i];
740		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
741		if (error) {
742			device_printf(dev, "can't create DMA map for RX\n");
743			goto fail;
744		}
745		if (fxp_add_rfabuf(sc, rxp) != 0) {
746			error = ENOMEM;
747			goto fail;
748		}
749	}
750
751	/*
752	 * Read MAC address.
753	 */
754	fxp_read_eeprom(sc, myea, 0, 3);
755	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
756	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
757	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
758	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
759	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
760	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
761	device_printf(dev, "Ethernet address %6D%s\n",
762	    sc->arpcom.ac_enaddr, ":",
763	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
764	if (bootverbose) {
765		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
766		    pci_get_vendor(dev), pci_get_device(dev),
767		    pci_get_subvendor(dev), pci_get_subdevice(dev),
768		    pci_get_revid(dev));
769		fxp_read_eeprom(sc, &data, 10, 1);
770		device_printf(dev, "Dynamic Standby mode is %s\n",
771		    data & 0x02 ? "enabled" : "disabled");
772	}
773
774	/*
775	 * If this is only a 10Mbps device, then there is no MII, and
776	 * the PHY will use a serial interface instead.
777	 *
778	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
779	 * doesn't have a programming interface of any sort.  The
780	 * media is sensed automatically based on how the link partner
781	 * is configured.  This is, in essence, manual configuration.
782	 */
783	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
784		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
785		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
786	} else {
787		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
788		    fxp_ifmedia_sts)) {
789	                device_printf(dev, "MII without any PHY!\n");
790			error = ENXIO;
791			goto fail;
792		}
793	}
794
795	ifp = &sc->arpcom.ac_if;
796	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
797	ifp->if_output = ether_output;
798	ifp->if_baudrate = 100000000;
799	ifp->if_init = fxp_init;
800	ifp->if_softc = sc;
801	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
802	ifp->if_ioctl = fxp_ioctl;
803	ifp->if_start = fxp_start;
804	ifp->if_watchdog = fxp_watchdog;
805
806	/* Enable checksum offload for 82550 or better chips */
807	if (sc->flags & FXP_FLAG_EXT_RFA) {
808		ifp->if_hwassist = FXP_CSUM_FEATURES;
809		ifp->if_capabilities = IFCAP_HWCSUM;
810		ifp->if_capenable = ifp->if_capabilities;
811	}
812
813	/*
814	 * Attach the interface.
815	 */
816	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
817
818	/*
819	 * Tell the upper layer(s) we support long frames.
820	 */
821	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
822	ifp->if_capabilities |= IFCAP_VLAN_MTU;
823
824	/*
825	 * Let the system queue as many packets as we have available
826	 * TX descriptors.
827	 */
828	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
829
830	/*
831	 * Hook our interrupt after all initialization is complete.
832	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
833	 * however, ifp and its functions are not fully locked so MPSAFE
834	 * should not be used unless you can handle potential data loss.
835	 */
836	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
837			       fxp_intr, sc, &sc->ih);
838	if (error) {
839		device_printf(dev, "could not setup irq\n");
840		ether_ifdetach(&sc->arpcom.ac_if);
841		goto fail;
842	}
843
844fail:
845	splx(s);
846	if (error)
847		fxp_release(sc);
848	return (error);
849}
850
851/*
852 * Release all resources.  The softc lock should not be held and the
853 * interrupt should already be torn down.
854 */
855static void
856fxp_release(struct fxp_softc *sc)
857{
858	struct fxp_rx *rxp;
859	struct fxp_tx *txp;
860	int i;
861
862	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
863	if (sc->ih)
864		panic("fxp_release() called with intr handle still active");
865	if (sc->miibus)
866		device_delete_child(sc->dev, sc->miibus);
867	bus_generic_detach(sc->dev);
868	ifmedia_removeall(&sc->sc_media);
869	if (sc->fxp_desc.cbl_list) {
870		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
871		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
872		    sc->cbl_map);
873	}
874	if (sc->fxp_stats) {
875		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
876		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
877	}
878	if (sc->mcsp) {
879		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
880		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
881	}
882	if (sc->irq)
883		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
884	if (sc->mem)
885		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
886	if (sc->fxp_mtag) {
887		for (i = 0; i < FXP_NRFABUFS; i++) {
888			rxp = &sc->fxp_desc.rx_list[i];
889			if (rxp->rx_mbuf != NULL) {
890				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
891				    BUS_DMASYNC_POSTREAD);
892				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
893				m_freem(rxp->rx_mbuf);
894			}
895			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
896		}
897		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
898		bus_dma_tag_destroy(sc->fxp_mtag);
899	}
900	if (sc->fxp_stag) {
901		for (i = 0; i < FXP_NTXCB; i++) {
902			txp = &sc->fxp_desc.tx_list[i];
903			if (txp->tx_mbuf != NULL) {
904				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
905				    BUS_DMASYNC_POSTWRITE);
906				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
907				m_freem(txp->tx_mbuf);
908			}
909			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
910		}
911		bus_dma_tag_destroy(sc->fxp_stag);
912	}
913	if (sc->cbl_tag)
914		bus_dma_tag_destroy(sc->cbl_tag);
915	if (sc->mcs_tag)
916		bus_dma_tag_destroy(sc->mcs_tag);
917
918        sysctl_ctx_free(&sc->sysctl_ctx);
919
920	mtx_destroy(&sc->sc_mtx);
921}
922
923/*
924 * Detach interface.
925 */
926static int
927fxp_detach(device_t dev)
928{
929	struct fxp_softc *sc = device_get_softc(dev);
930	int s;
931
932	FXP_LOCK(sc);
933	s = splimp();
934
935	sc->suspended = 1;	/* Do same thing as we do for suspend */
936	/*
937	 * Close down routes etc.
938	 */
939	ether_ifdetach(&sc->arpcom.ac_if);
940
941	/*
942	 * Stop DMA and drop transmit queue, but disable interrupts first.
943	 */
944	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
945	fxp_stop(sc);
946	FXP_UNLOCK(sc);
947
948	/*
949	 * Unhook interrupt before dropping lock. This is to prevent
950	 * races with fxp_intr().
951	 */
952	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
953	sc->ih = NULL;
954
955	splx(s);
956
957	/* Release our allocated resources. */
958	fxp_release(sc);
959	return (0);
960}
961
962/*
963 * Device shutdown routine. Called at system shutdown after sync. The
964 * main purpose of this routine is to shut off receiver DMA so that
965 * kernel memory doesn't get clobbered during warmboot.
966 */
967static int
968fxp_shutdown(device_t dev)
969{
970	/*
971	 * Make sure that DMA is disabled prior to reboot. Not doing
972	 * do could allow DMA to corrupt kernel memory during the
973	 * reboot before the driver initializes.
974	 */
975	fxp_stop((struct fxp_softc *) device_get_softc(dev));
976	return (0);
977}
978
979/*
980 * Device suspend routine.  Stop the interface and save some PCI
981 * settings in case the BIOS doesn't restore them properly on
982 * resume.
983 */
984static int
985fxp_suspend(device_t dev)
986{
987	struct fxp_softc *sc = device_get_softc(dev);
988	int i, s;
989
990	FXP_LOCK(sc);
991	s = splimp();
992
993	fxp_stop(sc);
994
995	for (i = 0; i < 5; i++)
996		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
997	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
998	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
999	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1000	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1001
1002	sc->suspended = 1;
1003
1004	FXP_UNLOCK(sc);
1005	splx(s);
1006	return (0);
1007}
1008
1009/*
1010 * Device resume routine.  Restore some PCI settings in case the BIOS
1011 * doesn't, re-enable busmastering, and restart the interface if
1012 * appropriate.
1013 */
1014static int
1015fxp_resume(device_t dev)
1016{
1017	struct fxp_softc *sc = device_get_softc(dev);
1018	struct ifnet *ifp = &sc->sc_if;
1019	u_int16_t pci_command;
1020	int i, s;
1021
1022	FXP_LOCK(sc);
1023	s = splimp();
1024#ifndef BURN_BRIDGES
1025	fxp_powerstate_d0(dev);
1026#endif
1027	/* better way to do this? */
1028	for (i = 0; i < 5; i++)
1029		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1030	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1031	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1032	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1033	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1034
1035	/* reenable busmastering */
1036	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1037	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1038	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1039
1040	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1041	DELAY(10);
1042
1043	/* reinitialize interface if necessary */
1044	if (ifp->if_flags & IFF_UP)
1045		fxp_init_body(sc);
1046
1047	sc->suspended = 0;
1048
1049	FXP_UNLOCK(sc);
1050	splx(s);
1051	return (0);
1052}
1053
1054static void
1055fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1056{
1057	u_int16_t reg;
1058	int x;
1059
1060	/*
1061	 * Shift in data.
1062	 */
1063	for (x = 1 << (length - 1); x; x >>= 1) {
1064		if (data & x)
1065			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1066		else
1067			reg = FXP_EEPROM_EECS;
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1069		DELAY(1);
1070		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1071		DELAY(1);
1072		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1073		DELAY(1);
1074	}
1075}
1076
1077/*
1078 * Read from the serial EEPROM. Basically, you manually shift in
1079 * the read opcode (one bit at a time) and then shift in the address,
1080 * and then you shift out the data (all of this one bit at a time).
1081 * The word size is 16 bits, so you have to provide the address for
1082 * every 16 bits of data.
1083 */
1084static u_int16_t
1085fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1086{
1087	u_int16_t reg, data;
1088	int x;
1089
1090	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1091	/*
1092	 * Shift in read opcode.
1093	 */
1094	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1095	/*
1096	 * Shift in address.
1097	 */
1098	data = 0;
1099	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1100		if (offset & x)
1101			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1102		else
1103			reg = FXP_EEPROM_EECS;
1104		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1105		DELAY(1);
1106		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1107		DELAY(1);
1108		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1109		DELAY(1);
1110		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1111		data++;
1112		if (autosize && reg == 0) {
1113			sc->eeprom_size = data;
1114			break;
1115		}
1116	}
1117	/*
1118	 * Shift out data.
1119	 */
1120	data = 0;
1121	reg = FXP_EEPROM_EECS;
1122	for (x = 1 << 15; x; x >>= 1) {
1123		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1124		DELAY(1);
1125		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1126			data |= x;
1127		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128		DELAY(1);
1129	}
1130	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1131	DELAY(1);
1132
1133	return (data);
1134}
1135
1136static void
1137fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1138{
1139	int i;
1140
1141	/*
1142	 * Erase/write enable.
1143	 */
1144	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1145	fxp_eeprom_shiftin(sc, 0x4, 3);
1146	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1147	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1148	DELAY(1);
1149	/*
1150	 * Shift in write opcode, address, data.
1151	 */
1152	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1153	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1154	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1155	fxp_eeprom_shiftin(sc, data, 16);
1156	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1157	DELAY(1);
1158	/*
1159	 * Wait for EEPROM to finish up.
1160	 */
1161	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1162	DELAY(1);
1163	for (i = 0; i < 1000; i++) {
1164		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1165			break;
1166		DELAY(50);
1167	}
1168	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1169	DELAY(1);
1170	/*
1171	 * Erase/write disable.
1172	 */
1173	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174	fxp_eeprom_shiftin(sc, 0x4, 3);
1175	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1176	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1177	DELAY(1);
1178}
1179
1180/*
1181 * From NetBSD:
1182 *
1183 * Figure out EEPROM size.
1184 *
1185 * 559's can have either 64-word or 256-word EEPROMs, the 558
1186 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1187 * talks about the existance of 16 to 256 word EEPROMs.
1188 *
1189 * The only known sizes are 64 and 256, where the 256 version is used
1190 * by CardBus cards to store CIS information.
1191 *
1192 * The address is shifted in msb-to-lsb, and after the last
1193 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1194 * after which follows the actual data. We try to detect this zero, by
1195 * probing the data-out bit in the EEPROM control register just after
1196 * having shifted in a bit. If the bit is zero, we assume we've
1197 * shifted enough address bits. The data-out should be tri-state,
1198 * before this, which should translate to a logical one.
1199 */
1200static void
1201fxp_autosize_eeprom(struct fxp_softc *sc)
1202{
1203
1204	/* guess maximum size of 256 words */
1205	sc->eeprom_size = 8;
1206
1207	/* autosize */
1208	(void) fxp_eeprom_getword(sc, 0, 1);
1209}
1210
1211static void
1212fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1213{
1214	int i;
1215
1216	for (i = 0; i < words; i++)
1217		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1218}
1219
1220static void
1221fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1222{
1223	int i;
1224
1225	for (i = 0; i < words; i++)
1226		fxp_eeprom_putword(sc, offset + i, data[i]);
1227}
1228
1229static void
1230fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1231    bus_size_t mapsize, int error)
1232{
1233	struct fxp_softc *sc;
1234	struct fxp_cb_tx *txp;
1235	int i;
1236
1237	if (error)
1238		return;
1239
1240	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1241
1242	sc = arg;
1243	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1244	for (i = 0; i < nseg; i++) {
1245		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1246		/*
1247		 * If this is an 82550/82551, then we're using extended
1248		 * TxCBs _and_ we're using checksum offload. This means
1249		 * that the TxCB is really an IPCB. One major difference
1250		 * between the two is that with plain extended TxCBs,
1251		 * the bottom half of the TxCB contains two entries from
1252		 * the TBD array, whereas IPCBs contain just one entry:
1253		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1254		 * checksum offload control bits. So to make things work
1255		 * right, we have to start filling in the TBD array
1256		 * starting from a different place depending on whether
1257		 * the chip is an 82550/82551 or not.
1258		 */
1259		if (sc->flags & FXP_FLAG_EXT_RFA) {
1260			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1261			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1262		} else {
1263			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1264			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1265		}
1266	}
1267	txp->tbd_number = nseg;
1268}
1269
1270/*
1271 * Grab the softc lock and call the real fxp_start_body() routine
1272 */
1273static void
1274fxp_start(struct ifnet *ifp)
1275{
1276	struct fxp_softc *sc = ifp->if_softc;
1277
1278	FXP_LOCK(sc);
1279	fxp_start_body(ifp);
1280	FXP_UNLOCK(sc);
1281}
1282
1283/*
1284 * Start packet transmission on the interface.
1285 * This routine must be called with the softc lock held, and is an
1286 * internal entry point only.
1287 */
1288static void
1289fxp_start_body(struct ifnet *ifp)
1290{
1291	struct fxp_softc *sc = ifp->if_softc;
1292	struct fxp_tx *txp;
1293	struct mbuf *mb_head;
1294	int error;
1295
1296	mtx_assert(&sc->sc_mtx, MA_OWNED);
1297	/*
1298	 * See if we need to suspend xmit until the multicast filter
1299	 * has been reprogrammed (which can only be done at the head
1300	 * of the command chain).
1301	 */
1302	if (sc->need_mcsetup) {
1303		return;
1304	}
1305
1306	txp = NULL;
1307
1308	/*
1309	 * We're finished if there is nothing more to add to the list or if
1310	 * we're all filled up with buffers to transmit.
1311	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1312	 *       a NOP command when needed.
1313	 */
1314	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1315
1316		/*
1317		 * Grab a packet to transmit.
1318		 */
1319		IF_DEQUEUE(&ifp->if_snd, mb_head);
1320
1321		/*
1322		 * Get pointer to next available tx desc.
1323		 */
1324		txp = sc->fxp_desc.tx_last->tx_next;
1325
1326		/*
1327		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1328		 * Ethernet Controller Family Open Source Software
1329		 * Developer Manual says:
1330		 *   Using software parsing is only allowed with legal
1331		 *   TCP/IP or UDP/IP packets.
1332		 *   ...
1333		 *   For all other datagrams, hardware parsing must
1334		 *   be used.
1335		 * Software parsing appears to truncate ICMP and
1336		 * fragmented UDP packets that contain one to three
1337		 * bytes in the second (and final) mbuf of the packet.
1338		 */
1339		if (sc->flags & FXP_FLAG_EXT_RFA)
1340			txp->tx_cb->ipcb_ip_activation_high =
1341			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1342
1343		/*
1344		 * Deal with TCP/IP checksum offload. Note that
1345		 * in order for TCP checksum offload to work,
1346		 * the pseudo header checksum must have already
1347		 * been computed and stored in the checksum field
1348		 * in the TCP header. The stack should have
1349		 * already done this for us.
1350		 */
1351
1352		if (mb_head->m_pkthdr.csum_flags) {
1353			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1354				txp->tx_cb->ipcb_ip_schedule =
1355				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1356				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1357					txp->tx_cb->ipcb_ip_schedule |=
1358					    FXP_IPCB_TCP_PACKET;
1359			}
1360#ifdef FXP_IP_CSUM_WAR
1361		/*
1362		 * XXX The 82550 chip appears to have trouble
1363		 * dealing with IP header checksums in very small
1364		 * datagrams, namely fragments from 1 to 3 bytes
1365		 * in size. For example, say you want to transmit
1366		 * a UDP packet of 1473 bytes. The packet will be
1367		 * fragmented over two IP datagrams, the latter
1368		 * containing only one byte of data. The 82550 will
1369		 * botch the header checksum on the 1-byte fragment.
1370		 * As long as the datagram contains 4 or more bytes
1371		 * of data, you're ok.
1372		 *
1373                 * The following code attempts to work around this
1374		 * problem: if the datagram is less than 38 bytes
1375		 * in size (14 bytes ether header, 20 bytes IP header,
1376		 * plus 4 bytes of data), we punt and compute the IP
1377		 * header checksum by hand. This workaround doesn't
1378		 * work very well, however, since it can be fooled
1379		 * by things like VLAN tags and IP options that make
1380		 * the header sizes/offsets vary.
1381		 */
1382
1383			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1384				if (mb_head->m_pkthdr.len < 38) {
1385					struct ip *ip;
1386					mb_head->m_data += ETHER_HDR_LEN;
1387					ip = mtod(mb_head, struct ip *);
1388					ip->ip_sum = in_cksum(mb_head,
1389					    ip->ip_hl << 2);
1390					mb_head->m_data -= ETHER_HDR_LEN;
1391				} else {
1392					txp->tx_cb->ipcb_ip_activation_high =
1393					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1394					txp->tx_cb->ipcb_ip_schedule |=
1395					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1396				}
1397			}
1398#endif
1399		}
1400
1401		/*
1402		 * Go through each of the mbufs in the chain and initialize
1403		 * the transmit buffer descriptors with the physical address
1404		 * and size of the mbuf.
1405		 */
1406		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1407		    mb_head, fxp_dma_map_txbuf, sc, 0);
1408
1409		if (error && error != EFBIG) {
1410			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1411			    error);
1412			m_freem(mb_head);
1413			break;
1414		}
1415
1416		if (error) {
1417			struct mbuf *mn;
1418
1419			/*
1420			 * We ran out of segments. We have to recopy this
1421			 * mbuf chain first. Bail out if we can't get the
1422			 * new buffers.
1423			 */
1424			mn = m_defrag(mb_head, M_DONTWAIT);
1425			if (mn == NULL) {
1426				m_freem(mb_head);
1427				break;
1428			} else {
1429				mb_head = mn;
1430			}
1431			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1432			    mb_head, fxp_dma_map_txbuf, sc, 0);
1433			if (error) {
1434				device_printf(sc->dev,
1435				    "can't map mbuf (error %d)\n", error);
1436				m_freem(mb_head);
1437				break;
1438			}
1439		}
1440
1441		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1442		    BUS_DMASYNC_PREWRITE);
1443
1444		txp->tx_mbuf = mb_head;
1445		txp->tx_cb->cb_status = 0;
1446		txp->tx_cb->byte_count = 0;
1447		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1448			txp->tx_cb->cb_command =
1449			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1450			    FXP_CB_COMMAND_S);
1451		} else {
1452			txp->tx_cb->cb_command =
1453			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1454			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1455			/*
1456			 * Set a 5 second timer just in case we don't hear
1457			 * from the card again.
1458			 */
1459			ifp->if_timer = 5;
1460		}
1461		txp->tx_cb->tx_threshold = tx_threshold;
1462
1463		/*
1464		 * Advance the end of list forward.
1465		 */
1466
1467#ifdef __alpha__
1468		/*
1469		 * On platforms which can't access memory in 16-bit
1470		 * granularities, we must prevent the card from DMA'ing
1471		 * up the status while we update the command field.
1472		 * This could cause us to overwrite the completion status.
1473		 * XXX This is probably bogus and we're _not_ looking
1474		 * for atomicity here.
1475		 */
1476		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1477		    htole16(FXP_CB_COMMAND_S));
1478#else
1479		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1480		    htole16(~FXP_CB_COMMAND_S);
1481#endif /*__alpha__*/
1482		sc->fxp_desc.tx_last = txp;
1483
1484		/*
1485		 * Advance the beginning of the list forward if there are
1486		 * no other packets queued (when nothing is queued, tx_first
1487		 * sits on the last TxCB that was sent out).
1488		 */
1489		if (sc->tx_queued == 0)
1490			sc->fxp_desc.tx_first = txp;
1491
1492		sc->tx_queued++;
1493
1494		/*
1495		 * Pass packet to bpf if there is a listener.
1496		 */
1497		BPF_MTAP(ifp, mb_head);
1498	}
1499	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1500
1501	/*
1502	 * We're finished. If we added to the list, issue a RESUME to get DMA
1503	 * going again if suspended.
1504	 */
1505	if (txp != NULL) {
1506		fxp_scb_wait(sc);
1507		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1508	}
1509}
1510
1511#ifdef DEVICE_POLLING
1512static poll_handler_t fxp_poll;
1513
1514static void
1515fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1516{
1517	struct fxp_softc *sc = ifp->if_softc;
1518	u_int8_t statack;
1519
1520	FXP_LOCK(sc);
1521	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1522		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1523		FXP_UNLOCK(sc);
1524		return;
1525	}
1526	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1527	    FXP_SCB_STATACK_FR;
1528	if (cmd == POLL_AND_CHECK_STATUS) {
1529		u_int8_t tmp;
1530
1531		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1532		if (tmp == 0xff || tmp == 0) {
1533			FXP_UNLOCK(sc);
1534			return; /* nothing to do */
1535		}
1536		tmp &= ~statack;
1537		/* ack what we can */
1538		if (tmp != 0)
1539			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1540		statack |= tmp;
1541	}
1542	fxp_intr_body(sc, ifp, statack, count);
1543	FXP_UNLOCK(sc);
1544}
1545#endif /* DEVICE_POLLING */
1546
1547/*
1548 * Process interface interrupts.
1549 */
1550static void
1551fxp_intr(void *xsc)
1552{
1553	struct fxp_softc *sc = xsc;
1554	struct ifnet *ifp = &sc->sc_if;
1555	u_int8_t statack;
1556
1557	FXP_LOCK(sc);
1558	if (sc->suspended) {
1559		FXP_UNLOCK(sc);
1560		return;
1561	}
1562
1563#ifdef DEVICE_POLLING
1564	if (ifp->if_flags & IFF_POLLING) {
1565		FXP_UNLOCK(sc);
1566		return;
1567	}
1568	if (ether_poll_register(fxp_poll, ifp)) {
1569		/* disable interrupts */
1570		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1571		FXP_UNLOCK(sc);
1572		fxp_poll(ifp, 0, 1);
1573		return;
1574	}
1575#endif
1576	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1577		/*
1578		 * It should not be possible to have all bits set; the
1579		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1580		 * all bits are set, this may indicate that the card has
1581		 * been physically ejected, so ignore it.
1582		 */
1583		if (statack == 0xff) {
1584			FXP_UNLOCK(sc);
1585			return;
1586		}
1587
1588		/*
1589		 * First ACK all the interrupts in this pass.
1590		 */
1591		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1592		fxp_intr_body(sc, ifp, statack, -1);
1593	}
1594	FXP_UNLOCK(sc);
1595}
1596
1597static void
1598fxp_txeof(struct fxp_softc *sc)
1599{
1600	struct fxp_tx *txp;
1601
1602	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1603	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1604	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1605	    txp = txp->tx_next) {
1606		if (txp->tx_mbuf != NULL) {
1607			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1608			    BUS_DMASYNC_POSTWRITE);
1609			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1610			m_freem(txp->tx_mbuf);
1611			txp->tx_mbuf = NULL;
1612			/* clear this to reset csum offload bits */
1613			txp->tx_cb->tbd[0].tb_addr = 0;
1614		}
1615		sc->tx_queued--;
1616	}
1617	sc->fxp_desc.tx_first = txp;
1618	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1619}
1620
1621static void
1622fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1623    int count)
1624{
1625	struct mbuf *m;
1626	struct fxp_rx *rxp;
1627	struct fxp_rfa *rfa;
1628	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1629
1630	mtx_assert(&sc->sc_mtx, MA_OWNED);
1631	if (rnr)
1632		fxp_rnr++;
1633#ifdef DEVICE_POLLING
1634	/* Pick up a deferred RNR condition if `count' ran out last time. */
1635	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1636		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1637		rnr = 1;
1638	}
1639#endif
1640
1641	/*
1642	 * Free any finished transmit mbuf chains.
1643	 *
1644	 * Handle the CNA event likt a CXTNO event. It used to
1645	 * be that this event (control unit not ready) was not
1646	 * encountered, but it is now with the SMPng modifications.
1647	 * The exact sequence of events that occur when the interface
1648	 * is brought up are different now, and if this event
1649	 * goes unhandled, the configuration/rxfilter setup sequence
1650	 * can stall for several seconds. The result is that no
1651	 * packets go out onto the wire for about 5 to 10 seconds
1652	 * after the interface is ifconfig'ed for the first time.
1653	 */
1654	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1655		fxp_txeof(sc);
1656
1657		ifp->if_timer = 0;
1658		if (sc->tx_queued == 0) {
1659			if (sc->need_mcsetup)
1660				fxp_mc_setup(sc);
1661		}
1662		/*
1663		 * Try to start more packets transmitting.
1664		 */
1665		if (ifp->if_snd.ifq_head != NULL)
1666			fxp_start_body(ifp);
1667	}
1668
1669	/*
1670	 * Just return if nothing happened on the receive side.
1671	 */
1672	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1673		return;
1674
1675	/*
1676	 * Process receiver interrupts. If a no-resource (RNR)
1677	 * condition exists, get whatever packets we can and
1678	 * re-start the receiver.
1679	 *
1680	 * When using polling, we do not process the list to completion,
1681	 * so when we get an RNR interrupt we must defer the restart
1682	 * until we hit the last buffer with the C bit set.
1683	 * If we run out of cycles and rfa_headm has the C bit set,
1684	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1685	 * that the info will be used in the subsequent polling cycle.
1686	 */
1687	for (;;) {
1688		rxp = sc->fxp_desc.rx_head;
1689		m = rxp->rx_mbuf;
1690		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1691		    RFA_ALIGNMENT_FUDGE);
1692		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1693		    BUS_DMASYNC_POSTREAD);
1694
1695#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1696		if (count >= 0 && count-- == 0) {
1697			if (rnr) {
1698				/* Defer RNR processing until the next time. */
1699				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1700				rnr = 0;
1701			}
1702			break;
1703		}
1704#endif /* DEVICE_POLLING */
1705
1706		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1707			break;
1708
1709		/*
1710		 * Advance head forward.
1711		 */
1712		sc->fxp_desc.rx_head = rxp->rx_next;
1713
1714		/*
1715		 * Add a new buffer to the receive chain.
1716		 * If this fails, the old buffer is recycled
1717		 * instead.
1718		 */
1719		if (fxp_add_rfabuf(sc, rxp) == 0) {
1720			int total_len;
1721
1722			/*
1723			 * Fetch packet length (the top 2 bits of
1724			 * actual_size are flags set by the controller
1725			 * upon completion), and drop the packet in case
1726			 * of bogus length or CRC errors.
1727			 */
1728			total_len = le16toh(rfa->actual_size) & 0x3fff;
1729			if (total_len < sizeof(struct ether_header) ||
1730			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1731				sc->rfa_size ||
1732			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1733				m_freem(m);
1734				continue;
1735			}
1736
1737                        /* Do IP checksum checking. */
1738			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1739				if (rfa->rfax_csum_sts &
1740				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1741					m->m_pkthdr.csum_flags |=
1742					    CSUM_IP_CHECKED;
1743				if (rfa->rfax_csum_sts &
1744				    FXP_RFDX_CS_IP_CSUM_VALID)
1745					m->m_pkthdr.csum_flags |=
1746					    CSUM_IP_VALID;
1747				if ((rfa->rfax_csum_sts &
1748				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1749				    (rfa->rfax_csum_sts &
1750				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1751					m->m_pkthdr.csum_flags |=
1752					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1753					m->m_pkthdr.csum_data = 0xffff;
1754				}
1755			}
1756
1757			m->m_pkthdr.len = m->m_len = total_len;
1758			m->m_pkthdr.rcvif = ifp;
1759
1760			/*
1761			 * Drop locks before calling if_input() since it
1762			 * may re-enter fxp_start() in the netisr case.
1763			 * This would result in a lock reversal.  Better
1764			 * performance might be obtained by chaining all
1765			 * packets received, dropping the lock, and then
1766			 * calling if_input() on each one.
1767			 */
1768			FXP_UNLOCK(sc);
1769			(*ifp->if_input)(ifp, m);
1770			FXP_LOCK(sc);
1771		}
1772	}
1773	if (rnr) {
1774		fxp_scb_wait(sc);
1775		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1776		    sc->fxp_desc.rx_head->rx_addr);
1777		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1778	}
1779}
1780
1781/*
1782 * Update packet in/out/collision statistics. The i82557 doesn't
1783 * allow you to access these counters without doing a fairly
1784 * expensive DMA to get _all_ of the statistics it maintains, so
1785 * we do this operation here only once per second. The statistics
1786 * counters in the kernel are updated from the previous dump-stats
1787 * DMA and then a new dump-stats DMA is started. The on-chip
1788 * counters are zeroed when the DMA completes. If we can't start
1789 * the DMA immediately, we don't wait - we just prepare to read
1790 * them again next time.
1791 */
1792static void
1793fxp_tick(void *xsc)
1794{
1795	struct fxp_softc *sc = xsc;
1796	struct ifnet *ifp = &sc->sc_if;
1797	struct fxp_stats *sp = sc->fxp_stats;
1798	int s;
1799
1800	FXP_LOCK(sc);
1801	s = splimp();
1802	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1803	ifp->if_opackets += le32toh(sp->tx_good);
1804	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1805	if (sp->rx_good) {
1806		ifp->if_ipackets += le32toh(sp->rx_good);
1807		sc->rx_idle_secs = 0;
1808	} else {
1809		/*
1810		 * Receiver's been idle for another second.
1811		 */
1812		sc->rx_idle_secs++;
1813	}
1814	ifp->if_ierrors +=
1815	    le32toh(sp->rx_crc_errors) +
1816	    le32toh(sp->rx_alignment_errors) +
1817	    le32toh(sp->rx_rnr_errors) +
1818	    le32toh(sp->rx_overrun_errors);
1819	/*
1820	 * If any transmit underruns occured, bump up the transmit
1821	 * threshold by another 512 bytes (64 * 8).
1822	 */
1823	if (sp->tx_underruns) {
1824		ifp->if_oerrors += le32toh(sp->tx_underruns);
1825		if (tx_threshold < 192)
1826			tx_threshold += 64;
1827	}
1828
1829	/*
1830	 * Release any xmit buffers that have completed DMA. This isn't
1831	 * strictly necessary to do here, but it's advantagous for mbufs
1832	 * with external storage to be released in a timely manner rather
1833	 * than being defered for a potentially long time. This limits
1834	 * the delay to a maximum of one second.
1835	 */
1836	fxp_txeof(sc);
1837
1838	/*
1839	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1840	 * then assume the receiver has locked up and attempt to clear
1841	 * the condition by reprogramming the multicast filter. This is
1842	 * a work-around for a bug in the 82557 where the receiver locks
1843	 * up if it gets certain types of garbage in the syncronization
1844	 * bits prior to the packet header. This bug is supposed to only
1845	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1846	 * mode as well (perhaps due to a 10/100 speed transition).
1847	 */
1848	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1849		sc->rx_idle_secs = 0;
1850		fxp_mc_setup(sc);
1851	}
1852	/*
1853	 * If there is no pending command, start another stats
1854	 * dump. Otherwise punt for now.
1855	 */
1856	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1857		/*
1858		 * Start another stats dump.
1859		 */
1860		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1861		    BUS_DMASYNC_PREREAD);
1862		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1863	} else {
1864		/*
1865		 * A previous command is still waiting to be accepted.
1866		 * Just zero our copy of the stats and wait for the
1867		 * next timer event to update them.
1868		 */
1869		sp->tx_good = 0;
1870		sp->tx_underruns = 0;
1871		sp->tx_total_collisions = 0;
1872
1873		sp->rx_good = 0;
1874		sp->rx_crc_errors = 0;
1875		sp->rx_alignment_errors = 0;
1876		sp->rx_rnr_errors = 0;
1877		sp->rx_overrun_errors = 0;
1878	}
1879	if (sc->miibus != NULL)
1880		mii_tick(device_get_softc(sc->miibus));
1881
1882	/*
1883	 * Schedule another timeout one second from now.
1884	 */
1885	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1886	FXP_UNLOCK(sc);
1887	splx(s);
1888}
1889
1890/*
1891 * Stop the interface. Cancels the statistics updater and resets
1892 * the interface.
1893 */
1894static void
1895fxp_stop(struct fxp_softc *sc)
1896{
1897	struct ifnet *ifp = &sc->sc_if;
1898	struct fxp_tx *txp;
1899	int i;
1900
1901	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1902	ifp->if_timer = 0;
1903
1904#ifdef DEVICE_POLLING
1905	ether_poll_deregister(ifp);
1906#endif
1907	/*
1908	 * Cancel stats updater.
1909	 */
1910	callout_stop(&sc->stat_ch);
1911
1912	/*
1913	 * Issue software reset, which also unloads the microcode.
1914	 */
1915	sc->flags &= ~FXP_FLAG_UCODE;
1916	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1917	DELAY(50);
1918
1919	/*
1920	 * Release any xmit buffers.
1921	 */
1922	txp = sc->fxp_desc.tx_list;
1923	if (txp != NULL) {
1924		for (i = 0; i < FXP_NTXCB; i++) {
1925 			if (txp[i].tx_mbuf != NULL) {
1926				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1927				    BUS_DMASYNC_POSTWRITE);
1928				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1929				m_freem(txp[i].tx_mbuf);
1930				txp[i].tx_mbuf = NULL;
1931				/* clear this to reset csum offload bits */
1932				txp[i].tx_cb->tbd[0].tb_addr = 0;
1933			}
1934		}
1935	}
1936	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1937	sc->tx_queued = 0;
1938}
1939
1940/*
1941 * Watchdog/transmission transmit timeout handler. Called when a
1942 * transmission is started on the interface, but no interrupt is
1943 * received before the timeout. This usually indicates that the
1944 * card has wedged for some reason.
1945 */
1946static void
1947fxp_watchdog(struct ifnet *ifp)
1948{
1949	struct fxp_softc *sc = ifp->if_softc;
1950
1951	FXP_LOCK(sc);
1952	device_printf(sc->dev, "device timeout\n");
1953	ifp->if_oerrors++;
1954
1955	fxp_init_body(sc);
1956	FXP_UNLOCK(sc);
1957}
1958
1959/*
1960 * Acquire locks and then call the real initialization function.  This
1961 * is necessary because ether_ioctl() calls if_init() and this would
1962 * result in mutex recursion if the mutex was held.
1963 */
1964static void
1965fxp_init(void *xsc)
1966{
1967	struct fxp_softc *sc = xsc;
1968
1969	FXP_LOCK(sc);
1970	fxp_init_body(sc);
1971	FXP_UNLOCK(sc);
1972}
1973
1974/*
1975 * Perform device initialization. This routine must be called with the
1976 * softc lock held.
1977 */
1978static void
1979fxp_init_body(struct fxp_softc *sc)
1980{
1981	struct ifnet *ifp = &sc->sc_if;
1982	struct fxp_cb_config *cbp;
1983	struct fxp_cb_ias *cb_ias;
1984	struct fxp_cb_tx *tcbp;
1985	struct fxp_tx *txp;
1986	struct fxp_cb_mcs *mcsp;
1987	int i, prm, s;
1988
1989	mtx_assert(&sc->sc_mtx, MA_OWNED);
1990	s = splimp();
1991	/*
1992	 * Cancel any pending I/O
1993	 */
1994	fxp_stop(sc);
1995
1996	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1997
1998	/*
1999	 * Initialize base of CBL and RFA memory. Loading with zero
2000	 * sets it up for regular linear addressing.
2001	 */
2002	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2003	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2004
2005	fxp_scb_wait(sc);
2006	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2007
2008	/*
2009	 * Initialize base of dump-stats buffer.
2010	 */
2011	fxp_scb_wait(sc);
2012	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2013	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2014	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2015
2016	/*
2017	 * Attempt to load microcode if requested.
2018	 */
2019	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2020		fxp_load_ucode(sc);
2021
2022	/*
2023	 * Initialize the multicast address list.
2024	 */
2025	if (fxp_mc_addrs(sc)) {
2026		mcsp = sc->mcsp;
2027		mcsp->cb_status = 0;
2028		mcsp->cb_command =
2029		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2030		mcsp->link_addr = 0xffffffff;
2031		/*
2032	 	 * Start the multicast setup command.
2033		 */
2034		fxp_scb_wait(sc);
2035		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2036		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2037		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2038		/* ...and wait for it to complete. */
2039		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2040		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2041		    BUS_DMASYNC_POSTWRITE);
2042	}
2043
2044	/*
2045	 * We temporarily use memory that contains the TxCB list to
2046	 * construct the config CB. The TxCB list memory is rebuilt
2047	 * later.
2048	 */
2049	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2050
2051	/*
2052	 * This bcopy is kind of disgusting, but there are a bunch of must be
2053	 * zero and must be one bits in this structure and this is the easiest
2054	 * way to initialize them all to proper values.
2055	 */
2056	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2057
2058	cbp->cb_status =	0;
2059	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2060	    FXP_CB_COMMAND_EL);
2061	cbp->link_addr =	0xffffffff;	/* (no) next command */
2062	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2063	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2064	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2065	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2066	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2067	cbp->type_enable =	0;	/* actually reserved */
2068	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2069	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2070	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2071	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2072	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2073	cbp->late_scb =		0;	/* (don't) defer SCB update */
2074	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2075	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2076	cbp->ci_int =		1;	/* interrupt on CU idle */
2077	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2078	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2079	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2080	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2081	cbp->disc_short_rx =	!prm;	/* discard short packets */
2082	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2083	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2084	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2085	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2086	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2087	cbp->csma_dis =		0;	/* (don't) disable link */
2088	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2089	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2090	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2091	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2092	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2093	cbp->nsai =		1;	/* (don't) disable source addr insert */
2094	cbp->preamble_length =	2;	/* (7 byte) preamble */
2095	cbp->loopback =		0;	/* (don't) loopback */
2096	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2097	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2098	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2099	cbp->promiscuous =	prm;	/* promiscuous mode */
2100	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2101	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2102	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2103	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2104	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2105
2106	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2107	cbp->padding =		1;	/* (do) pad short tx packets */
2108	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2109	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2110	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2111	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2112					/* must set wake_en in PMCSR also */
2113	cbp->force_fdx =	0;	/* (don't) force full duplex */
2114	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2115	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2116	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2117	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2118
2119	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2120		/*
2121		 * The 82557 has no hardware flow control, the values
2122		 * below are the defaults for the chip.
2123		 */
2124		cbp->fc_delay_lsb =	0;
2125		cbp->fc_delay_msb =	0x40;
2126		cbp->pri_fc_thresh =	3;
2127		cbp->tx_fc_dis =	0;
2128		cbp->rx_fc_restop =	0;
2129		cbp->rx_fc_restart =	0;
2130		cbp->fc_filter =	0;
2131		cbp->pri_fc_loc =	1;
2132	} else {
2133		cbp->fc_delay_lsb =	0x1f;
2134		cbp->fc_delay_msb =	0x01;
2135		cbp->pri_fc_thresh =	3;
2136		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2137		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2138		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2139		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2140		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2141	}
2142
2143	/*
2144	 * Start the config command/DMA.
2145	 */
2146	fxp_scb_wait(sc);
2147	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2148	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2149	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2150	/* ...and wait for it to complete. */
2151	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2152	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2153
2154	/*
2155	 * Now initialize the station address. Temporarily use the TxCB
2156	 * memory area like we did above for the config CB.
2157	 */
2158	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2159	cb_ias->cb_status = 0;
2160	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2161	cb_ias->link_addr = 0xffffffff;
2162	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2163	    sizeof(sc->arpcom.ac_enaddr));
2164
2165	/*
2166	 * Start the IAS (Individual Address Setup) command/DMA.
2167	 */
2168	fxp_scb_wait(sc);
2169	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2170	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2171	/* ...and wait for it to complete. */
2172	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2173	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2174
2175	/*
2176	 * Initialize transmit control block (TxCB) list.
2177	 */
2178	txp = sc->fxp_desc.tx_list;
2179	tcbp = sc->fxp_desc.cbl_list;
2180	bzero(tcbp, FXP_TXCB_SZ);
2181	for (i = 0; i < FXP_NTXCB; i++) {
2182		txp[i].tx_cb = tcbp + i;
2183		txp[i].tx_mbuf = NULL;
2184		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2185		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2186		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2187		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2188		if (sc->flags & FXP_FLAG_EXT_TXCB)
2189			tcbp[i].tbd_array_addr =
2190			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2191		else
2192			tcbp[i].tbd_array_addr =
2193			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2194		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2195	}
2196	/*
2197	 * Set the suspend flag on the first TxCB and start the control
2198	 * unit. It will execute the NOP and then suspend.
2199	 */
2200	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2201	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2202	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2203	sc->tx_queued = 1;
2204
2205	fxp_scb_wait(sc);
2206	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2207
2208	/*
2209	 * Initialize receiver buffer area - RFA.
2210	 */
2211	fxp_scb_wait(sc);
2212	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2213	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2214
2215	/*
2216	 * Set current media.
2217	 */
2218	if (sc->miibus != NULL)
2219		mii_mediachg(device_get_softc(sc->miibus));
2220
2221	ifp->if_flags |= IFF_RUNNING;
2222	ifp->if_flags &= ~IFF_OACTIVE;
2223
2224	/*
2225	 * Enable interrupts.
2226	 */
2227#ifdef DEVICE_POLLING
2228	/*
2229	 * ... but only do that if we are not polling. And because (presumably)
2230	 * the default is interrupts on, we need to disable them explicitly!
2231	 */
2232	if ( ifp->if_flags & IFF_POLLING )
2233		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2234	else
2235#endif /* DEVICE_POLLING */
2236	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2237
2238	/*
2239	 * Start stats updater.
2240	 */
2241	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2242	splx(s);
2243}
2244
2245static int
2246fxp_serial_ifmedia_upd(struct ifnet *ifp)
2247{
2248
2249	return (0);
2250}
2251
2252static void
2253fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2254{
2255
2256	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2257}
2258
2259/*
2260 * Change media according to request.
2261 */
2262static int
2263fxp_ifmedia_upd(struct ifnet *ifp)
2264{
2265	struct fxp_softc *sc = ifp->if_softc;
2266	struct mii_data *mii;
2267
2268	mii = device_get_softc(sc->miibus);
2269	mii_mediachg(mii);
2270	return (0);
2271}
2272
2273/*
2274 * Notify the world which media we're using.
2275 */
2276static void
2277fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2278{
2279	struct fxp_softc *sc = ifp->if_softc;
2280	struct mii_data *mii;
2281
2282	mii = device_get_softc(sc->miibus);
2283	mii_pollstat(mii);
2284	ifmr->ifm_active = mii->mii_media_active;
2285	ifmr->ifm_status = mii->mii_media_status;
2286
2287	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2288		sc->cu_resume_bug = 1;
2289	else
2290		sc->cu_resume_bug = 0;
2291}
2292
2293/*
2294 * Add a buffer to the end of the RFA buffer list.
2295 * Return 0 if successful, 1 for failure. A failure results in
2296 * adding the 'oldm' (if non-NULL) on to the end of the list -
2297 * tossing out its old contents and recycling it.
2298 * The RFA struct is stuck at the beginning of mbuf cluster and the
2299 * data pointer is fixed up to point just past it.
2300 */
2301static int
2302fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2303{
2304	struct mbuf *m;
2305	struct fxp_rfa *rfa, *p_rfa;
2306	struct fxp_rx *p_rx;
2307	bus_dmamap_t tmp_map;
2308	int error;
2309
2310	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2311	if (m == NULL)
2312		return (ENOBUFS);
2313
2314	/*
2315	 * Move the data pointer up so that the incoming data packet
2316	 * will be 32-bit aligned.
2317	 */
2318	m->m_data += RFA_ALIGNMENT_FUDGE;
2319
2320	/*
2321	 * Get a pointer to the base of the mbuf cluster and move
2322	 * data start past it.
2323	 */
2324	rfa = mtod(m, struct fxp_rfa *);
2325	m->m_data += sc->rfa_size;
2326	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2327
2328	rfa->rfa_status = 0;
2329	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2330	rfa->actual_size = 0;
2331
2332	/*
2333	 * Initialize the rest of the RFA.  Note that since the RFA
2334	 * is misaligned, we cannot store values directly.  We're thus
2335	 * using the le32enc() function which handles endianness and
2336	 * is also alignment-safe.
2337	 */
2338	le32enc(&rfa->link_addr, 0xffffffff);
2339	le32enc(&rfa->rbd_addr, 0xffffffff);
2340
2341	/* Map the RFA into DMA memory. */
2342	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2343	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2344	    &rxp->rx_addr, 0);
2345	if (error) {
2346		m_freem(m);
2347		return (error);
2348	}
2349
2350	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2351	tmp_map = sc->spare_map;
2352	sc->spare_map = rxp->rx_map;
2353	rxp->rx_map = tmp_map;
2354	rxp->rx_mbuf = m;
2355
2356	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2357	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2358
2359	/*
2360	 * If there are other buffers already on the list, attach this
2361	 * one to the end by fixing up the tail to point to this one.
2362	 */
2363	if (sc->fxp_desc.rx_head != NULL) {
2364		p_rx = sc->fxp_desc.rx_tail;
2365		p_rfa = (struct fxp_rfa *)
2366		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2367		p_rx->rx_next = rxp;
2368		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2369		p_rfa->rfa_control = 0;
2370		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2371		    BUS_DMASYNC_PREWRITE);
2372	} else {
2373		rxp->rx_next = NULL;
2374		sc->fxp_desc.rx_head = rxp;
2375	}
2376	sc->fxp_desc.rx_tail = rxp;
2377	return (0);
2378}
2379
2380static volatile int
2381fxp_miibus_readreg(device_t dev, int phy, int reg)
2382{
2383	struct fxp_softc *sc = device_get_softc(dev);
2384	int count = 10000;
2385	int value;
2386
2387	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2388	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2389
2390	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2391	    && count--)
2392		DELAY(10);
2393
2394	if (count <= 0)
2395		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2396
2397	return (value & 0xffff);
2398}
2399
2400static void
2401fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2402{
2403	struct fxp_softc *sc = device_get_softc(dev);
2404	int count = 10000;
2405
2406	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2407	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2408	    (value & 0xffff));
2409
2410	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2411	    count--)
2412		DELAY(10);
2413
2414	if (count <= 0)
2415		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2416}
2417
2418static int
2419fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2420{
2421	struct fxp_softc *sc = ifp->if_softc;
2422	struct ifreq *ifr = (struct ifreq *)data;
2423	struct mii_data *mii;
2424	int s, error = 0;
2425
2426	/*
2427	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2428	 * that by saying we're busy if the lock is already held.
2429	 */
2430	if (mtx_owned(&sc->sc_mtx))
2431		return (EBUSY);
2432
2433	FXP_LOCK(sc);
2434	s = splimp();
2435
2436	switch (command) {
2437	case SIOCSIFFLAGS:
2438		if (ifp->if_flags & IFF_ALLMULTI)
2439			sc->flags |= FXP_FLAG_ALL_MCAST;
2440		else
2441			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2442
2443		/*
2444		 * If interface is marked up and not running, then start it.
2445		 * If it is marked down and running, stop it.
2446		 * XXX If it's up then re-initialize it. This is so flags
2447		 * such as IFF_PROMISC are handled.
2448		 */
2449		if (ifp->if_flags & IFF_UP) {
2450			fxp_init_body(sc);
2451		} else {
2452			if (ifp->if_flags & IFF_RUNNING)
2453				fxp_stop(sc);
2454		}
2455		break;
2456
2457	case SIOCADDMULTI:
2458	case SIOCDELMULTI:
2459		if (ifp->if_flags & IFF_ALLMULTI)
2460			sc->flags |= FXP_FLAG_ALL_MCAST;
2461		else
2462			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2463		/*
2464		 * Multicast list has changed; set the hardware filter
2465		 * accordingly.
2466		 */
2467		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2468			fxp_mc_setup(sc);
2469		/*
2470		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2471		 * again rather than else {}.
2472		 */
2473		if (sc->flags & FXP_FLAG_ALL_MCAST)
2474			fxp_init_body(sc);
2475		error = 0;
2476		break;
2477
2478	case SIOCSIFMEDIA:
2479	case SIOCGIFMEDIA:
2480		if (sc->miibus != NULL) {
2481			mii = device_get_softc(sc->miibus);
2482                        error = ifmedia_ioctl(ifp, ifr,
2483                            &mii->mii_media, command);
2484		} else {
2485                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2486		}
2487		break;
2488
2489	default:
2490		/*
2491		 * ether_ioctl() will eventually call fxp_start() which
2492		 * will result in mutex recursion so drop it first.
2493		 */
2494		FXP_UNLOCK(sc);
2495		error = ether_ioctl(ifp, command, data);
2496	}
2497	if (mtx_owned(&sc->sc_mtx))
2498		FXP_UNLOCK(sc);
2499	splx(s);
2500	return (error);
2501}
2502
2503/*
2504 * Fill in the multicast address list and return number of entries.
2505 */
2506static int
2507fxp_mc_addrs(struct fxp_softc *sc)
2508{
2509	struct fxp_cb_mcs *mcsp = sc->mcsp;
2510	struct ifnet *ifp = &sc->sc_if;
2511	struct ifmultiaddr *ifma;
2512	int nmcasts;
2513
2514	nmcasts = 0;
2515	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2516#if __FreeBSD_version < 500000
2517		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2518#else
2519		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2520#endif
2521			if (ifma->ifma_addr->sa_family != AF_LINK)
2522				continue;
2523			if (nmcasts >= MAXMCADDR) {
2524				sc->flags |= FXP_FLAG_ALL_MCAST;
2525				nmcasts = 0;
2526				break;
2527			}
2528			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2529			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2530			nmcasts++;
2531		}
2532	}
2533	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2534	return (nmcasts);
2535}
2536
2537/*
2538 * Program the multicast filter.
2539 *
2540 * We have an artificial restriction that the multicast setup command
2541 * must be the first command in the chain, so we take steps to ensure
2542 * this. By requiring this, it allows us to keep up the performance of
2543 * the pre-initialized command ring (esp. link pointers) by not actually
2544 * inserting the mcsetup command in the ring - i.e. its link pointer
2545 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2546 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2547 * lead into the regular TxCB ring when it completes.
2548 *
2549 * This function must be called at splimp.
2550 */
2551static void
2552fxp_mc_setup(struct fxp_softc *sc)
2553{
2554	struct fxp_cb_mcs *mcsp = sc->mcsp;
2555	struct ifnet *ifp = &sc->sc_if;
2556	struct fxp_tx *txp;
2557	int count;
2558
2559	/*
2560	 * If there are queued commands, we must wait until they are all
2561	 * completed. If we are already waiting, then add a NOP command
2562	 * with interrupt option so that we're notified when all commands
2563	 * have been completed - fxp_start() ensures that no additional
2564	 * TX commands will be added when need_mcsetup is true.
2565	 */
2566	if (sc->tx_queued) {
2567		/*
2568		 * need_mcsetup will be true if we are already waiting for the
2569		 * NOP command to be completed (see below). In this case, bail.
2570		 */
2571		if (sc->need_mcsetup)
2572			return;
2573		sc->need_mcsetup = 1;
2574
2575		/*
2576		 * Add a NOP command with interrupt so that we are notified
2577		 * when all TX commands have been processed.
2578		 */
2579		txp = sc->fxp_desc.tx_last->tx_next;
2580		txp->tx_mbuf = NULL;
2581		txp->tx_cb->cb_status = 0;
2582		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2583		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2584		/*
2585		 * Advance the end of list forward.
2586		 */
2587		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2588		    htole16(~FXP_CB_COMMAND_S);
2589		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2590		sc->fxp_desc.tx_last = txp;
2591		sc->tx_queued++;
2592		/*
2593		 * Issue a resume in case the CU has just suspended.
2594		 */
2595		fxp_scb_wait(sc);
2596		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2597		/*
2598		 * Set a 5 second timer just in case we don't hear from the
2599		 * card again.
2600		 */
2601		ifp->if_timer = 5;
2602
2603		return;
2604	}
2605	sc->need_mcsetup = 0;
2606
2607	/*
2608	 * Initialize multicast setup descriptor.
2609	 */
2610	mcsp->cb_status = 0;
2611	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2612	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2613	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2614	txp = &sc->fxp_desc.mcs_tx;
2615	txp->tx_mbuf = NULL;
2616	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2617	txp->tx_next = sc->fxp_desc.tx_list;
2618	(void) fxp_mc_addrs(sc);
2619	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2620	sc->tx_queued = 1;
2621
2622	/*
2623	 * Wait until command unit is not active. This should never
2624	 * be the case when nothing is queued, but make sure anyway.
2625	 */
2626	count = 100;
2627	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2628	    FXP_SCB_CUS_ACTIVE && --count)
2629		DELAY(10);
2630	if (count == 0) {
2631		device_printf(sc->dev, "command queue timeout\n");
2632		return;
2633	}
2634
2635	/*
2636	 * Start the multicast setup command.
2637	 */
2638	fxp_scb_wait(sc);
2639	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2640	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2641	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2642
2643	ifp->if_timer = 2;
2644	return;
2645}
2646
2647static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2648static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2649static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2650static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2651static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2652static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2653
2654#define UCODE(x)	x, sizeof(x)
2655
2656struct ucode {
2657	u_int32_t	revision;
2658	u_int32_t	*ucode;
2659	int		length;
2660	u_short		int_delay_offset;
2661	u_short		bundle_max_offset;
2662} ucode_table[] = {
2663	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2664	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2665	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2666	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2667	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2668	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2669	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2670	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2671	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2672	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2673	{ 0, NULL, 0, 0, 0 }
2674};
2675
2676static void
2677fxp_load_ucode(struct fxp_softc *sc)
2678{
2679	struct ucode *uc;
2680	struct fxp_cb_ucode *cbp;
2681
2682	for (uc = ucode_table; uc->ucode != NULL; uc++)
2683		if (sc->revision == uc->revision)
2684			break;
2685	if (uc->ucode == NULL)
2686		return;
2687	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2688	cbp->cb_status = 0;
2689	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2690	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2691	memcpy(cbp->ucode, uc->ucode, uc->length);
2692	if (uc->int_delay_offset)
2693		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2694		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2695	if (uc->bundle_max_offset)
2696		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2697		    htole16(sc->tunable_bundle_max);
2698	/*
2699	 * Download the ucode to the chip.
2700	 */
2701	fxp_scb_wait(sc);
2702	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2703	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2704	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2705	/* ...and wait for it to complete. */
2706	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2707	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2708	device_printf(sc->dev,
2709	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2710	    sc->tunable_int_delay,
2711	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2712	sc->flags |= FXP_FLAG_UCODE;
2713}
2714
2715static int
2716sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2717{
2718	int error, value;
2719
2720	value = *(int *)arg1;
2721	error = sysctl_handle_int(oidp, &value, 0, req);
2722	if (error || !req->newptr)
2723		return (error);
2724	if (value < low || value > high)
2725		return (EINVAL);
2726	*(int *)arg1 = value;
2727	return (0);
2728}
2729
2730/*
2731 * Interrupt delay is expressed in microseconds, a multiplier is used
2732 * to convert this to the appropriate clock ticks before using.
2733 */
2734static int
2735sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2736{
2737	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2738}
2739
2740static int
2741sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2742{
2743	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2744}
2745