if_fxp.c revision 119277
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30/*
31 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/fxp/if_fxp.c 119277 2003-08-22 05:54:52Z imp $");
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/endian.h>
40#include <sys/mbuf.h>
41		/* #include <sys/mutex.h> */
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/sysctl.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#include <net/bpf.h>
51#include <sys/sockio.h>
52#include <sys/bus.h>
53#include <machine/bus.h>
54#include <sys/rman.h>
55#include <machine/resource.h>
56
57#include <net/ethernet.h>
58#include <net/if_arp.h>
59
60#include <machine/clock.h>	/* for DELAY */
61
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#ifdef FXP_IP_CSUM_WAR
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <machine/in_cksum.h>
70#endif
71
72#include <dev/pci/pcivar.h>
73#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74
75#include <dev/mii/mii.h>
76#include <dev/mii/miivar.h>
77
78#include <dev/fxp/if_fxpreg.h>
79#include <dev/fxp/if_fxpvar.h>
80#include <dev/fxp/rcvbundl.h>
81
82MODULE_DEPEND(fxp, pci, 1, 1, 1);
83MODULE_DEPEND(fxp, ether, 1, 1, 1);
84MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85#include "miibus_if.h"
86
87/*
88 * NOTE!  On the Alpha, we have an alignment constraint.  The
89 * card DMAs the packet immediately following the RFA.  However,
90 * the first thing in the packet is a 14-byte Ethernet header.
91 * This means that the packet is misaligned.  To compensate,
92 * we actually offset the RFA 2 bytes into the cluster.  This
93 * alignes the packet after the Ethernet header at a 32-bit
94 * boundary.  HOWEVER!  This means that the RFA is misaligned!
95 */
96#define	RFA_ALIGNMENT_FUDGE	2
97
98/*
99 * Set initial transmit threshold at 64 (512 bytes). This is
100 * increased by 64 (512 bytes) at a time, to maximum of 192
101 * (1536 bytes), if an underrun occurs.
102 */
103static int tx_threshold = 64;
104
105/*
106 * The configuration byte map has several undefined fields which
107 * must be one or must be zero.  Set up a template for these bits
108 * only, (assuming a 82557 chip) leaving the actual configuration
109 * to fxp_init.
110 *
111 * See struct fxp_cb_config for the bit definitions.
112 */
113static u_char fxp_cb_config_template[] = {
114	0x0, 0x0,		/* cb_status */
115	0x0, 0x0,		/* cb_command */
116	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117	0x0,	/*  0 */
118	0x0,	/*  1 */
119	0x0,	/*  2 */
120	0x0,	/*  3 */
121	0x0,	/*  4 */
122	0x0,	/*  5 */
123	0x32,	/*  6 */
124	0x0,	/*  7 */
125	0x0,	/*  8 */
126	0x0,	/*  9 */
127	0x6,	/* 10 */
128	0x0,	/* 11 */
129	0x0,	/* 12 */
130	0x0,	/* 13 */
131	0xf2,	/* 14 */
132	0x48,	/* 15 */
133	0x0,	/* 16 */
134	0x40,	/* 17 */
135	0xf0,	/* 18 */
136	0x0,	/* 19 */
137	0x3f,	/* 20 */
138	0x5	/* 21 */
139};
140
141struct fxp_ident {
142	u_int16_t	devid;
143	int16_t		revid;		/* -1 matches anything */
144	char 		*name;
145};
146
147/*
148 * Claim various Intel PCI device identifiers for this driver.  The
149 * sub-vendor and sub-device field are extensively used to identify
150 * particular variants, but we don't currently differentiate between
151 * them.
152 */
153static struct fxp_ident fxp_ident_table[] = {
154    { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
155    { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
156    { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157    { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158    { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159    { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160    { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161    { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162    { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163    { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165    { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166    { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167    { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168    { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169    { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170    { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
171    { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
172    { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
173    { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
174    { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
175    { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
176    { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
177    { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
178    { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
179    { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
180    { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
181    { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
182    { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
183    { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
184    { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
185    { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
186    { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
187    { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
188    { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
189    { 0,	-1,	NULL },
190};
191
192#ifdef FXP_IP_CSUM_WAR
193#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
194#else
195#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
196#endif
197
198static int		fxp_probe(device_t dev);
199static int		fxp_attach(device_t dev);
200static int		fxp_detach(device_t dev);
201static int		fxp_shutdown(device_t dev);
202static int		fxp_suspend(device_t dev);
203static int		fxp_resume(device_t dev);
204
205static void		fxp_intr(void *xsc);
206static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
207			    u_int8_t statack, int count);
208static void 		fxp_init(void *xsc);
209static void 		fxp_init_body(struct fxp_softc *sc);
210static void 		fxp_tick(void *xsc);
211#ifndef BURN_BRIDGES
212static void		fxp_powerstate_d0(device_t dev);
213#endif
214static void 		fxp_start(struct ifnet *ifp);
215static void 		fxp_start_body(struct ifnet *ifp);
216static void		fxp_stop(struct fxp_softc *sc);
217static void 		fxp_release(struct fxp_softc *sc);
218static int		fxp_ioctl(struct ifnet *ifp, u_long command,
219			    caddr_t data);
220static void 		fxp_watchdog(struct ifnet *ifp);
221static int		fxp_add_rfabuf(struct fxp_softc *sc,
222    			    struct fxp_rx *rxp);
223static int		fxp_mc_addrs(struct fxp_softc *sc);
224static void		fxp_mc_setup(struct fxp_softc *sc);
225static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
226			    int autosize);
227static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
228			    u_int16_t data);
229static void		fxp_autosize_eeprom(struct fxp_softc *sc);
230static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
231			    int offset, int words);
232static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
233			    int offset, int words);
234static int		fxp_ifmedia_upd(struct ifnet *ifp);
235static void		fxp_ifmedia_sts(struct ifnet *ifp,
236			    struct ifmediareq *ifmr);
237static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
238static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
239			    struct ifmediareq *ifmr);
240static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
241static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
242			    int value);
243static void		fxp_load_ucode(struct fxp_softc *sc);
244static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
245			    int low, int high);
246static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
247static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
248static void 		fxp_scb_wait(struct fxp_softc *sc);
249static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
250static void		fxp_dma_wait(struct fxp_softc *sc,
251    			    volatile u_int16_t *status, bus_dma_tag_t dmat,
252			    bus_dmamap_t map);
253
254static device_method_t fxp_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		fxp_probe),
257	DEVMETHOD(device_attach,	fxp_attach),
258	DEVMETHOD(device_detach,	fxp_detach),
259	DEVMETHOD(device_shutdown,	fxp_shutdown),
260	DEVMETHOD(device_suspend,	fxp_suspend),
261	DEVMETHOD(device_resume,	fxp_resume),
262
263	/* MII interface */
264	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266
267	{ 0, 0 }
268};
269
270static driver_t fxp_driver = {
271	"fxp",
272	fxp_methods,
273	sizeof(struct fxp_softc),
274};
275
276static devclass_t fxp_devclass;
277
278DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
279DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
280DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
281
282static int fxp_rnr;
283SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
284
285static int fxp_noflow;
286SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
287TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
288
289/*
290 * Wait for the previous command to be accepted (but not necessarily
291 * completed).
292 */
293static void
294fxp_scb_wait(struct fxp_softc *sc)
295{
296	int i = 10000;
297
298	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
299		DELAY(2);
300	if (i == 0)
301		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
302		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
303		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
304		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
305		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
306}
307
308static void
309fxp_scb_cmd(struct fxp_softc *sc, int cmd)
310{
311
312	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
313		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
314		fxp_scb_wait(sc);
315	}
316	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
317}
318
319static void
320fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
321    bus_dma_tag_t dmat, bus_dmamap_t map)
322{
323	int i = 10000;
324
325	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
326	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
327		DELAY(2);
328		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
329	}
330	if (i == 0)
331		device_printf(sc->dev, "DMA timeout\n");
332}
333
334/*
335 * Return identification string if this device is ours.
336 */
337static int
338fxp_probe(device_t dev)
339{
340	u_int16_t devid;
341	u_int8_t revid;
342	struct fxp_ident *ident;
343
344	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
345		devid = pci_get_device(dev);
346		revid = pci_get_revid(dev);
347		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
348			if (ident->devid == devid &&
349			    (ident->revid == revid || ident->revid == -1)) {
350				device_set_desc(dev, ident->name);
351				return (0);
352			}
353		}
354	}
355	return (ENXIO);
356}
357
358#ifndef BURN_BRIDGES
359static void
360fxp_powerstate_d0(device_t dev)
361{
362#if __FreeBSD_version >= 430002
363	u_int32_t iobase, membase, irq;
364
365	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
366		/* Save important PCI config data. */
367		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
368		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
369		irq = pci_read_config(dev, PCIR_INTLINE, 4);
370
371		/* Reset the power state. */
372		device_printf(dev, "chip is in D%d power mode "
373		    "-- setting to D0\n", pci_get_powerstate(dev));
374
375		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
376
377		/* Restore PCI config data. */
378		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
379		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
380		pci_write_config(dev, PCIR_INTLINE, irq, 4);
381	}
382#endif
383}
384#endif
385
386static void
387fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
388{
389	u_int32_t *addr;
390
391	if (error)
392		return;
393
394	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
395	addr = arg;
396	*addr = segs->ds_addr;
397}
398
399static int
400fxp_attach(device_t dev)
401{
402	int error = 0;
403	struct fxp_softc *sc = device_get_softc(dev);
404	struct ifnet *ifp;
405	struct fxp_rx *rxp;
406	u_int32_t val;
407	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
408	int i, rid, m1, m2, prefer_iomap, maxtxseg;
409	int s, ipcbxmit_disable;
410
411	sc->dev = dev;
412	callout_handle_init(&sc->stat_ch);
413	sysctl_ctx_init(&sc->sysctl_ctx);
414	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
415	    MTX_DEF);
416	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
417	    fxp_serial_ifmedia_sts);
418
419	s = splimp();
420
421	/*
422	 * Enable bus mastering.
423	 */
424	pci_enable_busmaster(dev);
425	val = pci_read_config(dev, PCIR_COMMAND, 2);
426#ifndef BURN_BRIDGES
427	fxp_powerstate_d0(dev);
428#endif
429	/*
430	 * Figure out which we should try first - memory mapping or i/o mapping?
431	 * We default to memory mapping. Then we accept an override from the
432	 * command line. Then we check to see which one is enabled.
433	 */
434	m1 = PCIM_CMD_MEMEN;
435	m2 = PCIM_CMD_PORTEN;
436	prefer_iomap = 0;
437	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
438	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
439		m1 = PCIM_CMD_PORTEN;
440		m2 = PCIM_CMD_MEMEN;
441	}
442
443	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
444	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
445	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
446	                                     0, ~0, 1, RF_ACTIVE);
447	if (sc->mem == NULL) {
448		sc->rtp =
449		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
450		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
451		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
452                                            0, ~0, 1, RF_ACTIVE);
453	}
454
455	if (!sc->mem) {
456		error = ENXIO;
457		goto fail;
458        }
459	if (bootverbose) {
460		device_printf(dev, "using %s space register mapping\n",
461		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
462	}
463
464	sc->sc_st = rman_get_bustag(sc->mem);
465	sc->sc_sh = rman_get_bushandle(sc->mem);
466
467	/*
468	 * Allocate our interrupt.
469	 */
470	rid = 0;
471	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
472				 RF_SHAREABLE | RF_ACTIVE);
473	if (sc->irq == NULL) {
474		device_printf(dev, "could not map interrupt\n");
475		error = ENXIO;
476		goto fail;
477	}
478
479	/*
480	 * Reset to a stable state.
481	 */
482	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
483	DELAY(10);
484
485	/*
486	 * Find out how large of an SEEPROM we have.
487	 */
488	fxp_autosize_eeprom(sc);
489
490	/*
491	 * Determine whether we must use the 503 serial interface.
492	 */
493	fxp_read_eeprom(sc, &data, 6, 1);
494	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
495	    (data & FXP_PHY_SERIAL_ONLY))
496		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
497
498	/*
499	 * Create the sysctl tree
500	 */
501	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
502	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
503	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
504	if (sc->sysctl_tree == NULL) {
505		error = ENXIO;
506		goto fail;
507	}
508	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
511	    "FXP driver receive interrupt microcode bundling delay");
512	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515	    "FXP driver receive interrupt microcode bundle size limit");
516
517	/*
518	 * Pull in device tunables.
519	 */
520	sc->tunable_int_delay = TUNABLE_INT_DELAY;
521	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
522	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
523	    "int_delay", &sc->tunable_int_delay);
524	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525	    "bundle_max", &sc->tunable_bundle_max);
526
527	/*
528	 * Find out the chip revision; lump all 82557 revs together.
529	 */
530	fxp_read_eeprom(sc, &data, 5, 1);
531	if ((data >> 8) == 1)
532		sc->revision = FXP_REV_82557;
533	else
534		sc->revision = pci_get_revid(dev);
535
536	/*
537	 * Enable workarounds for certain chip revision deficiencies.
538	 *
539	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
540	 * some systems based a normal 82559 design, have a defect where
541	 * the chip can cause a PCI protocol violation if it receives
542	 * a CU_RESUME command when it is entering the IDLE state.  The
543	 * workaround is to disable Dynamic Standby Mode, so the chip never
544	 * deasserts CLKRUN#, and always remains in an active state.
545	 *
546	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
547	 */
548	i = pci_get_device(dev);
549	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
550	    sc->revision >= FXP_REV_82559_A0) {
551		fxp_read_eeprom(sc, &data, 10, 1);
552		if (data & 0x02) {			/* STB enable */
553			u_int16_t cksum;
554			int i;
555
556			device_printf(dev,
557			    "Disabling dynamic standby mode in EEPROM\n");
558			data &= ~0x02;
559			fxp_write_eeprom(sc, &data, 10, 1);
560			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
561			cksum = 0;
562			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
563				fxp_read_eeprom(sc, &data, i, 1);
564				cksum += data;
565			}
566			i = (1 << sc->eeprom_size) - 1;
567			cksum = 0xBABA - cksum;
568			fxp_read_eeprom(sc, &data, i, 1);
569			fxp_write_eeprom(sc, &cksum, i, 1);
570			device_printf(dev,
571			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
572			    i, data, cksum);
573#if 1
574			/*
575			 * If the user elects to continue, try the software
576			 * workaround, as it is better than nothing.
577			 */
578			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
579#endif
580		}
581	}
582
583	/*
584	 * If we are not a 82557 chip, we can enable extended features.
585	 */
586	if (sc->revision != FXP_REV_82557) {
587		/*
588		 * If MWI is enabled in the PCI configuration, and there
589		 * is a valid cacheline size (8 or 16 dwords), then tell
590		 * the board to turn on MWI.
591		 */
592		if (val & PCIM_CMD_MWRICEN &&
593		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
594			sc->flags |= FXP_FLAG_MWI_ENABLE;
595
596		/* turn on the extended TxCB feature */
597		sc->flags |= FXP_FLAG_EXT_TXCB;
598
599		/* enable reception of long frames for VLAN */
600		sc->flags |= FXP_FLAG_LONG_PKT_EN;
601	}
602
603	/*
604	 * Enable use of extended RFDs and TCBs for 82550
605	 * and later chips. Note: we need extended TXCB support
606	 * too, but that's already enabled by the code above.
607	 * Be careful to do this only on the right devices.
608	 *
609	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
610	 * truncate packets that end with an mbuf containing 1 to 3 bytes
611	 * when used with this feature enabled in the previous version of the
612	 * driver.  This problem appears to be fixed now that the driver
613	 * always sets the hardware parse bit in the IPCB structure, which
614	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
615	 * Source Software Developer Manual" says is necessary in the
616	 * cases where packet truncation was observed.
617	 *
618	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
619	 * allows this feature to be disabled at boot time.
620	 *
621	 * If fxp is not compiled into the kernel, this feature may also
622	 * be disabled at run time:
623	 *    # kldunload fxp
624	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
625	 *    # kldload fxp
626	 */
627
628	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
629	    &ipcbxmit_disable) != 0)
630		ipcbxmit_disable = 0;
631	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
632	    sc->revision == FXP_REV_82550_C)) {
633		sc->rfa_size = sizeof (struct fxp_rfa);
634		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
635		sc->flags |= FXP_FLAG_EXT_RFA;
636	} else {
637		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
638		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
639	}
640
641	/*
642	 * Allocate DMA tags and DMA safe memory.
643	 */
644	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
645	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
646	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
647	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
648	if (error) {
649		device_printf(dev, "could not allocate dma tag\n");
650		goto fail;
651	}
652
653	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
654	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
655	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
656	    &sc->fxp_stag);
657	if (error) {
658		device_printf(dev, "could not allocate dma tag\n");
659		goto fail;
660	}
661
662	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
663	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
664	if (error)
665		goto fail;
666	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
667	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
668	if (error) {
669		device_printf(dev, "could not map the stats buffer\n");
670		goto fail;
671	}
672
673	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
675	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
676	if (error) {
677		device_printf(dev, "could not allocate dma tag\n");
678		goto fail;
679	}
680
681	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
682	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
683	if (error)
684		goto fail;
685
686	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
687	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
688	    &sc->fxp_desc.cbl_addr, 0);
689	if (error) {
690		device_printf(dev, "could not map DMA memory\n");
691		goto fail;
692	}
693
694	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
695	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
696	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
697	    &sc->mcs_tag);
698	if (error) {
699		device_printf(dev, "could not allocate dma tag\n");
700		goto fail;
701	}
702
703	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
704	    BUS_DMA_NOWAIT, &sc->mcs_map);
705	if (error)
706		goto fail;
707	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
708	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
709	if (error) {
710		device_printf(dev, "can't map the multicast setup command\n");
711		goto fail;
712	}
713
714	/*
715	 * Pre-allocate the TX DMA maps.
716	 */
717	for (i = 0; i < FXP_NTXCB; i++) {
718		error = bus_dmamap_create(sc->fxp_mtag, 0,
719		    &sc->fxp_desc.tx_list[i].tx_map);
720		if (error) {
721			device_printf(dev, "can't create DMA map for TX\n");
722			goto fail;
723		}
724	}
725	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726	if (error) {
727		device_printf(dev, "can't create spare DMA map\n");
728		goto fail;
729	}
730
731	/*
732	 * Pre-allocate our receive buffers.
733	 */
734	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735	for (i = 0; i < FXP_NRFABUFS; i++) {
736		rxp = &sc->fxp_desc.rx_list[i];
737		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738		if (error) {
739			device_printf(dev, "can't create DMA map for RX\n");
740			goto fail;
741		}
742		if (fxp_add_rfabuf(sc, rxp) != 0) {
743			error = ENOMEM;
744			goto fail;
745		}
746	}
747
748	/*
749	 * Read MAC address.
750	 */
751	fxp_read_eeprom(sc, myea, 0, 3);
752	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
753	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
754	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
755	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
756	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
757	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
758	device_printf(dev, "Ethernet address %6D%s\n",
759	    sc->arpcom.ac_enaddr, ":",
760	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
761	if (bootverbose) {
762		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
763		    pci_get_vendor(dev), pci_get_device(dev),
764		    pci_get_subvendor(dev), pci_get_subdevice(dev),
765		    pci_get_revid(dev));
766		fxp_read_eeprom(sc, &data, 10, 1);
767		device_printf(dev, "Dynamic Standby mode is %s\n",
768		    data & 0x02 ? "enabled" : "disabled");
769	}
770
771	/*
772	 * If this is only a 10Mbps device, then there is no MII, and
773	 * the PHY will use a serial interface instead.
774	 *
775	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
776	 * doesn't have a programming interface of any sort.  The
777	 * media is sensed automatically based on how the link partner
778	 * is configured.  This is, in essence, manual configuration.
779	 */
780	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
781		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
782		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
783	} else {
784		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
785		    fxp_ifmedia_sts)) {
786	                device_printf(dev, "MII without any PHY!\n");
787			error = ENXIO;
788			goto fail;
789		}
790	}
791
792	ifp = &sc->arpcom.ac_if;
793	ifp->if_unit = device_get_unit(dev);
794	ifp->if_name = "fxp";
795	ifp->if_output = ether_output;
796	ifp->if_baudrate = 100000000;
797	ifp->if_init = fxp_init;
798	ifp->if_softc = sc;
799	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
800	ifp->if_ioctl = fxp_ioctl;
801	ifp->if_start = fxp_start;
802	ifp->if_watchdog = fxp_watchdog;
803
804	/* Enable checksum offload for 82550 or better chips */
805	if (sc->flags & FXP_FLAG_EXT_RFA) {
806		ifp->if_hwassist = FXP_CSUM_FEATURES;
807		ifp->if_capabilities = IFCAP_HWCSUM;
808		ifp->if_capenable = ifp->if_capabilities;
809	}
810
811	/*
812	 * Attach the interface.
813	 */
814	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
815
816	/*
817	 * Tell the upper layer(s) we support long frames.
818	 */
819	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
820	ifp->if_capabilities |= IFCAP_VLAN_MTU;
821
822	/*
823	 * Let the system queue as many packets as we have available
824	 * TX descriptors.
825	 */
826	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
827
828	/*
829	 * Hook our interrupt after all initialization is complete.
830	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
831	 * however, ifp and its functions are not fully locked so MPSAFE
832	 * should not be used unless you can handle potential data loss.
833	 */
834	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/,
835			       fxp_intr, sc, &sc->ih);
836	if (error) {
837		device_printf(dev, "could not setup irq\n");
838		ether_ifdetach(&sc->arpcom.ac_if);
839		goto fail;
840	}
841
842fail:
843	splx(s);
844	if (error)
845		fxp_release(sc);
846	return (error);
847}
848
849/*
850 * Release all resources.  The softc lock should not be held and the
851 * interrupt should already be torn down.
852 */
853static void
854fxp_release(struct fxp_softc *sc)
855{
856	struct fxp_rx *rxp;
857	struct fxp_tx *txp;
858	int i;
859
860	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
861	if (sc->ih)
862		panic("fxp_release() called with intr handle still active");
863	if (sc->miibus)
864		device_delete_child(sc->dev, sc->miibus);
865	bus_generic_detach(sc->dev);
866	ifmedia_removeall(&sc->sc_media);
867	if (sc->fxp_desc.cbl_list) {
868		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
869		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
870		    sc->cbl_map);
871	}
872	if (sc->fxp_stats) {
873		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
874		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
875	}
876	if (sc->mcsp) {
877		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
878		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
879	}
880	if (sc->irq)
881		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
882	if (sc->mem)
883		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
884	if (sc->fxp_mtag) {
885		for (i = 0; i < FXP_NRFABUFS; i++) {
886			rxp = &sc->fxp_desc.rx_list[i];
887			if (rxp->rx_mbuf != NULL) {
888				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
889				    BUS_DMASYNC_POSTREAD);
890				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
891				m_freem(rxp->rx_mbuf);
892			}
893			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
894		}
895		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
896		bus_dma_tag_destroy(sc->fxp_mtag);
897	}
898	if (sc->fxp_stag) {
899		for (i = 0; i < FXP_NTXCB; i++) {
900			txp = &sc->fxp_desc.tx_list[i];
901			if (txp->tx_mbuf != NULL) {
902				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
903				    BUS_DMASYNC_POSTWRITE);
904				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
905				m_freem(txp->tx_mbuf);
906			}
907			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
908		}
909		bus_dma_tag_destroy(sc->fxp_stag);
910	}
911	if (sc->cbl_tag)
912		bus_dma_tag_destroy(sc->cbl_tag);
913	if (sc->mcs_tag)
914		bus_dma_tag_destroy(sc->mcs_tag);
915
916        sysctl_ctx_free(&sc->sysctl_ctx);
917
918	mtx_destroy(&sc->sc_mtx);
919}
920
921/*
922 * Detach interface.
923 */
924static int
925fxp_detach(device_t dev)
926{
927	struct fxp_softc *sc = device_get_softc(dev);
928	int s;
929
930	FXP_LOCK(sc);
931	s = splimp();
932
933	sc->suspended = 1;	/* Do same thing as we do for suspend */
934	/*
935	 * Close down routes etc.
936	 */
937	ether_ifdetach(&sc->arpcom.ac_if);
938
939	/*
940	 * Stop DMA and drop transmit queue, but disable interrupts first.
941	 */
942	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
943	fxp_stop(sc);
944	FXP_UNLOCK(sc);
945
946	/*
947	 * Unhook interrupt before dropping lock. This is to prevent
948	 * races with fxp_intr().
949	 */
950	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
951	sc->ih = NULL;
952
953	splx(s);
954
955	/* Release our allocated resources. */
956	fxp_release(sc);
957	return (0);
958}
959
960/*
961 * Device shutdown routine. Called at system shutdown after sync. The
962 * main purpose of this routine is to shut off receiver DMA so that
963 * kernel memory doesn't get clobbered during warmboot.
964 */
965static int
966fxp_shutdown(device_t dev)
967{
968	/*
969	 * Make sure that DMA is disabled prior to reboot. Not doing
970	 * do could allow DMA to corrupt kernel memory during the
971	 * reboot before the driver initializes.
972	 */
973	fxp_stop((struct fxp_softc *) device_get_softc(dev));
974	return (0);
975}
976
977/*
978 * Device suspend routine.  Stop the interface and save some PCI
979 * settings in case the BIOS doesn't restore them properly on
980 * resume.
981 */
982static int
983fxp_suspend(device_t dev)
984{
985	struct fxp_softc *sc = device_get_softc(dev);
986	int i, s;
987
988	FXP_LOCK(sc);
989	s = splimp();
990
991	fxp_stop(sc);
992
993	for (i = 0; i < 5; i++)
994		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
995	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
996	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
997	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
998	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
999
1000	sc->suspended = 1;
1001
1002	FXP_UNLOCK(sc);
1003	splx(s);
1004	return (0);
1005}
1006
1007/*
1008 * Device resume routine.  Restore some PCI settings in case the BIOS
1009 * doesn't, re-enable busmastering, and restart the interface if
1010 * appropriate.
1011 */
1012static int
1013fxp_resume(device_t dev)
1014{
1015	struct fxp_softc *sc = device_get_softc(dev);
1016	struct ifnet *ifp = &sc->sc_if;
1017	u_int16_t pci_command;
1018	int i, s;
1019
1020	FXP_LOCK(sc);
1021	s = splimp();
1022#ifndef BURN_BRIDGES
1023	fxp_powerstate_d0(dev);
1024#endif
1025	/* better way to do this? */
1026	for (i = 0; i < 5; i++)
1027		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
1028	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1029	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1030	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1031	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1032
1033	/* reenable busmastering */
1034	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1035	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1036	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1037
1038	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1039	DELAY(10);
1040
1041	/* reinitialize interface if necessary */
1042	if (ifp->if_flags & IFF_UP)
1043		fxp_init_body(sc);
1044
1045	sc->suspended = 0;
1046
1047	FXP_UNLOCK(sc);
1048	splx(s);
1049	return (0);
1050}
1051
1052static void
1053fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1054{
1055	u_int16_t reg;
1056	int x;
1057
1058	/*
1059	 * Shift in data.
1060	 */
1061	for (x = 1 << (length - 1); x; x >>= 1) {
1062		if (data & x)
1063			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1064		else
1065			reg = FXP_EEPROM_EECS;
1066		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1067		DELAY(1);
1068		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1069		DELAY(1);
1070		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1071		DELAY(1);
1072	}
1073}
1074
1075/*
1076 * Read from the serial EEPROM. Basically, you manually shift in
1077 * the read opcode (one bit at a time) and then shift in the address,
1078 * and then you shift out the data (all of this one bit at a time).
1079 * The word size is 16 bits, so you have to provide the address for
1080 * every 16 bits of data.
1081 */
1082static u_int16_t
1083fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1084{
1085	u_int16_t reg, data;
1086	int x;
1087
1088	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1089	/*
1090	 * Shift in read opcode.
1091	 */
1092	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1093	/*
1094	 * Shift in address.
1095	 */
1096	data = 0;
1097	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1098		if (offset & x)
1099			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1100		else
1101			reg = FXP_EEPROM_EECS;
1102		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1103		DELAY(1);
1104		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1105		DELAY(1);
1106		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1107		DELAY(1);
1108		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1109		data++;
1110		if (autosize && reg == 0) {
1111			sc->eeprom_size = data;
1112			break;
1113		}
1114	}
1115	/*
1116	 * Shift out data.
1117	 */
1118	data = 0;
1119	reg = FXP_EEPROM_EECS;
1120	for (x = 1 << 15; x; x >>= 1) {
1121		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1122		DELAY(1);
1123		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1124			data |= x;
1125		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1126		DELAY(1);
1127	}
1128	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1129	DELAY(1);
1130
1131	return (data);
1132}
1133
1134static void
1135fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1136{
1137	int i;
1138
1139	/*
1140	 * Erase/write enable.
1141	 */
1142	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1143	fxp_eeprom_shiftin(sc, 0x4, 3);
1144	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1145	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1146	DELAY(1);
1147	/*
1148	 * Shift in write opcode, address, data.
1149	 */
1150	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1151	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1152	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1153	fxp_eeprom_shiftin(sc, data, 16);
1154	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1155	DELAY(1);
1156	/*
1157	 * Wait for EEPROM to finish up.
1158	 */
1159	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1160	DELAY(1);
1161	for (i = 0; i < 1000; i++) {
1162		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1163			break;
1164		DELAY(50);
1165	}
1166	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1167	DELAY(1);
1168	/*
1169	 * Erase/write disable.
1170	 */
1171	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1172	fxp_eeprom_shiftin(sc, 0x4, 3);
1173	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1174	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1175	DELAY(1);
1176}
1177
1178/*
1179 * From NetBSD:
1180 *
1181 * Figure out EEPROM size.
1182 *
1183 * 559's can have either 64-word or 256-word EEPROMs, the 558
1184 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1185 * talks about the existance of 16 to 256 word EEPROMs.
1186 *
1187 * The only known sizes are 64 and 256, where the 256 version is used
1188 * by CardBus cards to store CIS information.
1189 *
1190 * The address is shifted in msb-to-lsb, and after the last
1191 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1192 * after which follows the actual data. We try to detect this zero, by
1193 * probing the data-out bit in the EEPROM control register just after
1194 * having shifted in a bit. If the bit is zero, we assume we've
1195 * shifted enough address bits. The data-out should be tri-state,
1196 * before this, which should translate to a logical one.
1197 */
1198static void
1199fxp_autosize_eeprom(struct fxp_softc *sc)
1200{
1201
1202	/* guess maximum size of 256 words */
1203	sc->eeprom_size = 8;
1204
1205	/* autosize */
1206	(void) fxp_eeprom_getword(sc, 0, 1);
1207}
1208
1209static void
1210fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1211{
1212	int i;
1213
1214	for (i = 0; i < words; i++)
1215		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1216}
1217
1218static void
1219fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1220{
1221	int i;
1222
1223	for (i = 0; i < words; i++)
1224		fxp_eeprom_putword(sc, offset + i, data[i]);
1225}
1226
1227static void
1228fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1229    bus_size_t mapsize, int error)
1230{
1231	struct fxp_softc *sc;
1232	struct fxp_cb_tx *txp;
1233	int i;
1234
1235	if (error)
1236		return;
1237
1238	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1239
1240	sc = arg;
1241	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1242	for (i = 0; i < nseg; i++) {
1243		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1244		/*
1245		 * If this is an 82550/82551, then we're using extended
1246		 * TxCBs _and_ we're using checksum offload. This means
1247		 * that the TxCB is really an IPCB. One major difference
1248		 * between the two is that with plain extended TxCBs,
1249		 * the bottom half of the TxCB contains two entries from
1250		 * the TBD array, whereas IPCBs contain just one entry:
1251		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1252		 * checksum offload control bits. So to make things work
1253		 * right, we have to start filling in the TBD array
1254		 * starting from a different place depending on whether
1255		 * the chip is an 82550/82551 or not.
1256		 */
1257		if (sc->flags & FXP_FLAG_EXT_RFA) {
1258			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1259			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1260		} else {
1261			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1262			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1263		}
1264	}
1265	txp->tbd_number = nseg;
1266}
1267
1268/*
1269 * Grab the softc lock and call the real fxp_start_body() routine
1270 */
1271static void
1272fxp_start(struct ifnet *ifp)
1273{
1274	struct fxp_softc *sc = ifp->if_softc;
1275
1276	FXP_LOCK(sc);
1277	fxp_start_body(ifp);
1278	FXP_UNLOCK(sc);
1279}
1280
1281/*
1282 * Start packet transmission on the interface.
1283 * This routine must be called with the softc lock held, and is an
1284 * internal entry point only.
1285 */
1286static void
1287fxp_start_body(struct ifnet *ifp)
1288{
1289	struct fxp_softc *sc = ifp->if_softc;
1290	struct fxp_tx *txp;
1291	struct mbuf *mb_head;
1292	int error;
1293
1294	mtx_assert(&sc->sc_mtx, MA_OWNED);
1295	/*
1296	 * See if we need to suspend xmit until the multicast filter
1297	 * has been reprogrammed (which can only be done at the head
1298	 * of the command chain).
1299	 */
1300	if (sc->need_mcsetup) {
1301		return;
1302	}
1303
1304	txp = NULL;
1305
1306	/*
1307	 * We're finished if there is nothing more to add to the list or if
1308	 * we're all filled up with buffers to transmit.
1309	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1310	 *       a NOP command when needed.
1311	 */
1312	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1313
1314		/*
1315		 * Grab a packet to transmit.
1316		 */
1317		IF_DEQUEUE(&ifp->if_snd, mb_head);
1318
1319		/*
1320		 * Get pointer to next available tx desc.
1321		 */
1322		txp = sc->fxp_desc.tx_last->tx_next;
1323
1324		/*
1325		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1326		 * Ethernet Controller Family Open Source Software
1327		 * Developer Manual says:
1328		 *   Using software parsing is only allowed with legal
1329		 *   TCP/IP or UDP/IP packets.
1330		 *   ...
1331		 *   For all other datagrams, hardware parsing must
1332		 *   be used.
1333		 * Software parsing appears to truncate ICMP and
1334		 * fragmented UDP packets that contain one to three
1335		 * bytes in the second (and final) mbuf of the packet.
1336		 */
1337		if (sc->flags & FXP_FLAG_EXT_RFA)
1338			txp->tx_cb->ipcb_ip_activation_high =
1339			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1340
1341		/*
1342		 * Deal with TCP/IP checksum offload. Note that
1343		 * in order for TCP checksum offload to work,
1344		 * the pseudo header checksum must have already
1345		 * been computed and stored in the checksum field
1346		 * in the TCP header. The stack should have
1347		 * already done this for us.
1348		 */
1349
1350		if (mb_head->m_pkthdr.csum_flags) {
1351			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1352				txp->tx_cb->ipcb_ip_schedule =
1353				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1354				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1355					txp->tx_cb->ipcb_ip_schedule |=
1356					    FXP_IPCB_TCP_PACKET;
1357			}
1358#ifdef FXP_IP_CSUM_WAR
1359		/*
1360		 * XXX The 82550 chip appears to have trouble
1361		 * dealing with IP header checksums in very small
1362		 * datagrams, namely fragments from 1 to 3 bytes
1363		 * in size. For example, say you want to transmit
1364		 * a UDP packet of 1473 bytes. The packet will be
1365		 * fragmented over two IP datagrams, the latter
1366		 * containing only one byte of data. The 82550 will
1367		 * botch the header checksum on the 1-byte fragment.
1368		 * As long as the datagram contains 4 or more bytes
1369		 * of data, you're ok.
1370		 *
1371                 * The following code attempts to work around this
1372		 * problem: if the datagram is less than 38 bytes
1373		 * in size (14 bytes ether header, 20 bytes IP header,
1374		 * plus 4 bytes of data), we punt and compute the IP
1375		 * header checksum by hand. This workaround doesn't
1376		 * work very well, however, since it can be fooled
1377		 * by things like VLAN tags and IP options that make
1378		 * the header sizes/offsets vary.
1379		 */
1380
1381			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1382				if (mb_head->m_pkthdr.len < 38) {
1383					struct ip *ip;
1384					mb_head->m_data += ETHER_HDR_LEN;
1385					ip = mtod(mb_head, struct ip *);
1386					ip->ip_sum = in_cksum(mb_head,
1387					    ip->ip_hl << 2);
1388					mb_head->m_data -= ETHER_HDR_LEN;
1389				} else {
1390					txp->tx_cb->ipcb_ip_activation_high =
1391					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1392					txp->tx_cb->ipcb_ip_schedule |=
1393					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1394				}
1395			}
1396#endif
1397		}
1398
1399		/*
1400		 * Go through each of the mbufs in the chain and initialize
1401		 * the transmit buffer descriptors with the physical address
1402		 * and size of the mbuf.
1403		 */
1404		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1405		    mb_head, fxp_dma_map_txbuf, sc, 0);
1406
1407		if (error && error != EFBIG) {
1408			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1409			    error);
1410			m_freem(mb_head);
1411			break;
1412		}
1413
1414		if (error) {
1415			struct mbuf *mn;
1416
1417			/*
1418			 * We ran out of segments. We have to recopy this
1419			 * mbuf chain first. Bail out if we can't get the
1420			 * new buffers.
1421			 */
1422			mn = m_defrag(mb_head, M_DONTWAIT);
1423			if (mn == NULL) {
1424				m_freem(mb_head);
1425				break;
1426			} else {
1427				mb_head = mn;
1428			}
1429			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1430			    mb_head, fxp_dma_map_txbuf, sc, 0);
1431			if (error) {
1432				device_printf(sc->dev,
1433				    "can't map mbuf (error %d)\n", error);
1434				m_freem(mb_head);
1435				break;
1436			}
1437		}
1438
1439		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1440		    BUS_DMASYNC_PREWRITE);
1441
1442		txp->tx_mbuf = mb_head;
1443		txp->tx_cb->cb_status = 0;
1444		txp->tx_cb->byte_count = 0;
1445		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1446			txp->tx_cb->cb_command =
1447			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1448			    FXP_CB_COMMAND_S);
1449		} else {
1450			txp->tx_cb->cb_command =
1451			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1452			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1453			/*
1454			 * Set a 5 second timer just in case we don't hear
1455			 * from the card again.
1456			 */
1457			ifp->if_timer = 5;
1458		}
1459		txp->tx_cb->tx_threshold = tx_threshold;
1460
1461		/*
1462		 * Advance the end of list forward.
1463		 */
1464
1465#ifdef __alpha__
1466		/*
1467		 * On platforms which can't access memory in 16-bit
1468		 * granularities, we must prevent the card from DMA'ing
1469		 * up the status while we update the command field.
1470		 * This could cause us to overwrite the completion status.
1471		 * XXX This is probably bogus and we're _not_ looking
1472		 * for atomicity here.
1473		 */
1474		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1475		    htole16(FXP_CB_COMMAND_S));
1476#else
1477		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1478		    htole16(~FXP_CB_COMMAND_S);
1479#endif /*__alpha__*/
1480		sc->fxp_desc.tx_last = txp;
1481
1482		/*
1483		 * Advance the beginning of the list forward if there are
1484		 * no other packets queued (when nothing is queued, tx_first
1485		 * sits on the last TxCB that was sent out).
1486		 */
1487		if (sc->tx_queued == 0)
1488			sc->fxp_desc.tx_first = txp;
1489
1490		sc->tx_queued++;
1491
1492		/*
1493		 * Pass packet to bpf if there is a listener.
1494		 */
1495		BPF_MTAP(ifp, mb_head);
1496	}
1497	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1498
1499	/*
1500	 * We're finished. If we added to the list, issue a RESUME to get DMA
1501	 * going again if suspended.
1502	 */
1503	if (txp != NULL) {
1504		fxp_scb_wait(sc);
1505		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1506	}
1507}
1508
1509#ifdef DEVICE_POLLING
1510static poll_handler_t fxp_poll;
1511
1512static void
1513fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1514{
1515	struct fxp_softc *sc = ifp->if_softc;
1516	u_int8_t statack;
1517
1518	FXP_LOCK(sc);
1519	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1520		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1521		FXP_UNLOCK(sc);
1522		return;
1523	}
1524	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1525	    FXP_SCB_STATACK_FR;
1526	if (cmd == POLL_AND_CHECK_STATUS) {
1527		u_int8_t tmp;
1528
1529		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1530		if (tmp == 0xff || tmp == 0) {
1531			FXP_UNLOCK(sc);
1532			return; /* nothing to do */
1533		}
1534		tmp &= ~statack;
1535		/* ack what we can */
1536		if (tmp != 0)
1537			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1538		statack |= tmp;
1539	}
1540	fxp_intr_body(sc, ifp, statack, count);
1541	FXP_UNLOCK(sc);
1542}
1543#endif /* DEVICE_POLLING */
1544
1545/*
1546 * Process interface interrupts.
1547 */
1548static void
1549fxp_intr(void *xsc)
1550{
1551	struct fxp_softc *sc = xsc;
1552	struct ifnet *ifp = &sc->sc_if;
1553	u_int8_t statack;
1554
1555	FXP_LOCK(sc);
1556	if (sc->suspended) {
1557		FXP_UNLOCK(sc);
1558		return;
1559	}
1560
1561#ifdef DEVICE_POLLING
1562	if (ifp->if_flags & IFF_POLLING) {
1563		FXP_UNLOCK(sc);
1564		return;
1565	}
1566	if (ether_poll_register(fxp_poll, ifp)) {
1567		/* disable interrupts */
1568		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1569		FXP_UNLOCK(sc);
1570		fxp_poll(ifp, 0, 1);
1571		return;
1572	}
1573#endif
1574	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1575		/*
1576		 * It should not be possible to have all bits set; the
1577		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1578		 * all bits are set, this may indicate that the card has
1579		 * been physically ejected, so ignore it.
1580		 */
1581		if (statack == 0xff) {
1582			FXP_UNLOCK(sc);
1583			return;
1584		}
1585
1586		/*
1587		 * First ACK all the interrupts in this pass.
1588		 */
1589		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1590		fxp_intr_body(sc, ifp, statack, -1);
1591	}
1592	FXP_UNLOCK(sc);
1593}
1594
1595static void
1596fxp_txeof(struct fxp_softc *sc)
1597{
1598	struct fxp_tx *txp;
1599
1600	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1601	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1602	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1603	    txp = txp->tx_next) {
1604		if (txp->tx_mbuf != NULL) {
1605			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1606			    BUS_DMASYNC_POSTWRITE);
1607			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1608			m_freem(txp->tx_mbuf);
1609			txp->tx_mbuf = NULL;
1610			/* clear this to reset csum offload bits */
1611			txp->tx_cb->tbd[0].tb_addr = 0;
1612		}
1613		sc->tx_queued--;
1614	}
1615	sc->fxp_desc.tx_first = txp;
1616	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1617}
1618
1619static void
1620fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1621    int count)
1622{
1623	struct mbuf *m;
1624	struct fxp_rx *rxp;
1625	struct fxp_rfa *rfa;
1626	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1627
1628	mtx_assert(&sc->sc_mtx, MA_OWNED);
1629	if (rnr)
1630		fxp_rnr++;
1631#ifdef DEVICE_POLLING
1632	/* Pick up a deferred RNR condition if `count' ran out last time. */
1633	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1634		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1635		rnr = 1;
1636	}
1637#endif
1638
1639	/*
1640	 * Free any finished transmit mbuf chains.
1641	 *
1642	 * Handle the CNA event likt a CXTNO event. It used to
1643	 * be that this event (control unit not ready) was not
1644	 * encountered, but it is now with the SMPng modifications.
1645	 * The exact sequence of events that occur when the interface
1646	 * is brought up are different now, and if this event
1647	 * goes unhandled, the configuration/rxfilter setup sequence
1648	 * can stall for several seconds. The result is that no
1649	 * packets go out onto the wire for about 5 to 10 seconds
1650	 * after the interface is ifconfig'ed for the first time.
1651	 */
1652	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1653		fxp_txeof(sc);
1654
1655		ifp->if_timer = 0;
1656		if (sc->tx_queued == 0) {
1657			if (sc->need_mcsetup)
1658				fxp_mc_setup(sc);
1659		}
1660		/*
1661		 * Try to start more packets transmitting.
1662		 */
1663		if (ifp->if_snd.ifq_head != NULL)
1664			fxp_start_body(ifp);
1665	}
1666
1667	/*
1668	 * Just return if nothing happened on the receive side.
1669	 */
1670	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1671		return;
1672
1673	/*
1674	 * Process receiver interrupts. If a no-resource (RNR)
1675	 * condition exists, get whatever packets we can and
1676	 * re-start the receiver.
1677	 *
1678	 * When using polling, we do not process the list to completion,
1679	 * so when we get an RNR interrupt we must defer the restart
1680	 * until we hit the last buffer with the C bit set.
1681	 * If we run out of cycles and rfa_headm has the C bit set,
1682	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1683	 * that the info will be used in the subsequent polling cycle.
1684	 */
1685	for (;;) {
1686		rxp = sc->fxp_desc.rx_head;
1687		m = rxp->rx_mbuf;
1688		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1689		    RFA_ALIGNMENT_FUDGE);
1690		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1691		    BUS_DMASYNC_POSTREAD);
1692
1693#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1694		if (count >= 0 && count-- == 0) {
1695			if (rnr) {
1696				/* Defer RNR processing until the next time. */
1697				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1698				rnr = 0;
1699			}
1700			break;
1701		}
1702#endif /* DEVICE_POLLING */
1703
1704		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1705			break;
1706
1707		/*
1708		 * Advance head forward.
1709		 */
1710		sc->fxp_desc.rx_head = rxp->rx_next;
1711
1712		/*
1713		 * Add a new buffer to the receive chain.
1714		 * If this fails, the old buffer is recycled
1715		 * instead.
1716		 */
1717		if (fxp_add_rfabuf(sc, rxp) == 0) {
1718			int total_len;
1719
1720			/*
1721			 * Fetch packet length (the top 2 bits of
1722			 * actual_size are flags set by the controller
1723			 * upon completion), and drop the packet in case
1724			 * of bogus length or CRC errors.
1725			 */
1726			total_len = le16toh(rfa->actual_size) & 0x3fff;
1727			if (total_len < sizeof(struct ether_header) ||
1728			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1729				sc->rfa_size ||
1730			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1731				m_freem(m);
1732				continue;
1733			}
1734
1735                        /* Do IP checksum checking. */
1736			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1737				if (rfa->rfax_csum_sts &
1738				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1739					m->m_pkthdr.csum_flags |=
1740					    CSUM_IP_CHECKED;
1741				if (rfa->rfax_csum_sts &
1742				    FXP_RFDX_CS_IP_CSUM_VALID)
1743					m->m_pkthdr.csum_flags |=
1744					    CSUM_IP_VALID;
1745				if ((rfa->rfax_csum_sts &
1746				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1747				    (rfa->rfax_csum_sts &
1748				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1749					m->m_pkthdr.csum_flags |=
1750					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1751					m->m_pkthdr.csum_data = 0xffff;
1752				}
1753			}
1754
1755			m->m_pkthdr.len = m->m_len = total_len;
1756			m->m_pkthdr.rcvif = ifp;
1757
1758			/*
1759			 * Drop locks before calling if_input() since it
1760			 * may re-enter fxp_start() in the netisr case.
1761			 * This would result in a lock reversal.  Better
1762			 * performance might be obtained by chaining all
1763			 * packets received, dropping the lock, and then
1764			 * calling if_input() on each one.
1765			 */
1766			FXP_UNLOCK(sc);
1767			(*ifp->if_input)(ifp, m);
1768			FXP_LOCK(sc);
1769		}
1770	}
1771	if (rnr) {
1772		fxp_scb_wait(sc);
1773		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1774		    sc->fxp_desc.rx_head->rx_addr);
1775		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1776	}
1777}
1778
1779/*
1780 * Update packet in/out/collision statistics. The i82557 doesn't
1781 * allow you to access these counters without doing a fairly
1782 * expensive DMA to get _all_ of the statistics it maintains, so
1783 * we do this operation here only once per second. The statistics
1784 * counters in the kernel are updated from the previous dump-stats
1785 * DMA and then a new dump-stats DMA is started. The on-chip
1786 * counters are zeroed when the DMA completes. If we can't start
1787 * the DMA immediately, we don't wait - we just prepare to read
1788 * them again next time.
1789 */
1790static void
1791fxp_tick(void *xsc)
1792{
1793	struct fxp_softc *sc = xsc;
1794	struct ifnet *ifp = &sc->sc_if;
1795	struct fxp_stats *sp = sc->fxp_stats;
1796	int s;
1797
1798	FXP_LOCK(sc);
1799	s = splimp();
1800	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1801	ifp->if_opackets += le32toh(sp->tx_good);
1802	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1803	if (sp->rx_good) {
1804		ifp->if_ipackets += le32toh(sp->rx_good);
1805		sc->rx_idle_secs = 0;
1806	} else {
1807		/*
1808		 * Receiver's been idle for another second.
1809		 */
1810		sc->rx_idle_secs++;
1811	}
1812	ifp->if_ierrors +=
1813	    le32toh(sp->rx_crc_errors) +
1814	    le32toh(sp->rx_alignment_errors) +
1815	    le32toh(sp->rx_rnr_errors) +
1816	    le32toh(sp->rx_overrun_errors);
1817	/*
1818	 * If any transmit underruns occured, bump up the transmit
1819	 * threshold by another 512 bytes (64 * 8).
1820	 */
1821	if (sp->tx_underruns) {
1822		ifp->if_oerrors += le32toh(sp->tx_underruns);
1823		if (tx_threshold < 192)
1824			tx_threshold += 64;
1825	}
1826
1827	/*
1828	 * Release any xmit buffers that have completed DMA. This isn't
1829	 * strictly necessary to do here, but it's advantagous for mbufs
1830	 * with external storage to be released in a timely manner rather
1831	 * than being defered for a potentially long time. This limits
1832	 * the delay to a maximum of one second.
1833	 */
1834	fxp_txeof(sc);
1835
1836	/*
1837	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1838	 * then assume the receiver has locked up and attempt to clear
1839	 * the condition by reprogramming the multicast filter. This is
1840	 * a work-around for a bug in the 82557 where the receiver locks
1841	 * up if it gets certain types of garbage in the syncronization
1842	 * bits prior to the packet header. This bug is supposed to only
1843	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1844	 * mode as well (perhaps due to a 10/100 speed transition).
1845	 */
1846	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1847		sc->rx_idle_secs = 0;
1848		fxp_mc_setup(sc);
1849	}
1850	/*
1851	 * If there is no pending command, start another stats
1852	 * dump. Otherwise punt for now.
1853	 */
1854	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1855		/*
1856		 * Start another stats dump.
1857		 */
1858		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1859		    BUS_DMASYNC_PREREAD);
1860		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1861	} else {
1862		/*
1863		 * A previous command is still waiting to be accepted.
1864		 * Just zero our copy of the stats and wait for the
1865		 * next timer event to update them.
1866		 */
1867		sp->tx_good = 0;
1868		sp->tx_underruns = 0;
1869		sp->tx_total_collisions = 0;
1870
1871		sp->rx_good = 0;
1872		sp->rx_crc_errors = 0;
1873		sp->rx_alignment_errors = 0;
1874		sp->rx_rnr_errors = 0;
1875		sp->rx_overrun_errors = 0;
1876	}
1877	if (sc->miibus != NULL)
1878		mii_tick(device_get_softc(sc->miibus));
1879
1880	/*
1881	 * Schedule another timeout one second from now.
1882	 */
1883	sc->stat_ch = timeout(fxp_tick, sc, hz);
1884	FXP_UNLOCK(sc);
1885	splx(s);
1886}
1887
1888/*
1889 * Stop the interface. Cancels the statistics updater and resets
1890 * the interface.
1891 */
1892static void
1893fxp_stop(struct fxp_softc *sc)
1894{
1895	struct ifnet *ifp = &sc->sc_if;
1896	struct fxp_tx *txp;
1897	int i;
1898
1899	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1900	ifp->if_timer = 0;
1901
1902#ifdef DEVICE_POLLING
1903	ether_poll_deregister(ifp);
1904#endif
1905	/*
1906	 * Cancel stats updater.
1907	 */
1908	untimeout(fxp_tick, sc, sc->stat_ch);
1909
1910	/*
1911	 * Issue software reset, which also unloads the microcode.
1912	 */
1913	sc->flags &= ~FXP_FLAG_UCODE;
1914	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1915	DELAY(50);
1916
1917	/*
1918	 * Release any xmit buffers.
1919	 */
1920	txp = sc->fxp_desc.tx_list;
1921	if (txp != NULL) {
1922		for (i = 0; i < FXP_NTXCB; i++) {
1923 			if (txp[i].tx_mbuf != NULL) {
1924				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1925				    BUS_DMASYNC_POSTWRITE);
1926				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1927				m_freem(txp[i].tx_mbuf);
1928				txp[i].tx_mbuf = NULL;
1929				/* clear this to reset csum offload bits */
1930				txp[i].tx_cb->tbd[0].tb_addr = 0;
1931			}
1932		}
1933	}
1934	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1935	sc->tx_queued = 0;
1936}
1937
1938/*
1939 * Watchdog/transmission transmit timeout handler. Called when a
1940 * transmission is started on the interface, but no interrupt is
1941 * received before the timeout. This usually indicates that the
1942 * card has wedged for some reason.
1943 */
1944static void
1945fxp_watchdog(struct ifnet *ifp)
1946{
1947	struct fxp_softc *sc = ifp->if_softc;
1948
1949	FXP_LOCK(sc);
1950	device_printf(sc->dev, "device timeout\n");
1951	ifp->if_oerrors++;
1952
1953	fxp_init_body(sc);
1954	FXP_UNLOCK(sc);
1955}
1956
1957/*
1958 * Acquire locks and then call the real initialization function.  This
1959 * is necessary because ether_ioctl() calls if_init() and this would
1960 * result in mutex recursion if the mutex was held.
1961 */
1962static void
1963fxp_init(void *xsc)
1964{
1965	struct fxp_softc *sc = xsc;
1966
1967	FXP_LOCK(sc);
1968	fxp_init_body(sc);
1969	FXP_UNLOCK(sc);
1970}
1971
1972/*
1973 * Perform device initialization. This routine must be called with the
1974 * softc lock held.
1975 */
1976static void
1977fxp_init_body(struct fxp_softc *sc)
1978{
1979	struct ifnet *ifp = &sc->sc_if;
1980	struct fxp_cb_config *cbp;
1981	struct fxp_cb_ias *cb_ias;
1982	struct fxp_cb_tx *tcbp;
1983	struct fxp_tx *txp;
1984	struct fxp_cb_mcs *mcsp;
1985	int i, prm, s;
1986
1987	mtx_assert(&sc->sc_mtx, MA_OWNED);
1988	s = splimp();
1989	/*
1990	 * Cancel any pending I/O
1991	 */
1992	fxp_stop(sc);
1993
1994	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1995
1996	/*
1997	 * Initialize base of CBL and RFA memory. Loading with zero
1998	 * sets it up for regular linear addressing.
1999	 */
2000	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2001	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2002
2003	fxp_scb_wait(sc);
2004	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2005
2006	/*
2007	 * Initialize base of dump-stats buffer.
2008	 */
2009	fxp_scb_wait(sc);
2010	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2011	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2012	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2013
2014	/*
2015	 * Attempt to load microcode if requested.
2016	 */
2017	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2018		fxp_load_ucode(sc);
2019
2020	/*
2021	 * Initialize the multicast address list.
2022	 */
2023	if (fxp_mc_addrs(sc)) {
2024		mcsp = sc->mcsp;
2025		mcsp->cb_status = 0;
2026		mcsp->cb_command =
2027		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2028		mcsp->link_addr = 0xffffffff;
2029		/*
2030	 	 * Start the multicast setup command.
2031		 */
2032		fxp_scb_wait(sc);
2033		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2034		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2035		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2036		/* ...and wait for it to complete. */
2037		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2038		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2039		    BUS_DMASYNC_POSTWRITE);
2040	}
2041
2042	/*
2043	 * We temporarily use memory that contains the TxCB list to
2044	 * construct the config CB. The TxCB list memory is rebuilt
2045	 * later.
2046	 */
2047	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2048
2049	/*
2050	 * This bcopy is kind of disgusting, but there are a bunch of must be
2051	 * zero and must be one bits in this structure and this is the easiest
2052	 * way to initialize them all to proper values.
2053	 */
2054	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2055
2056	cbp->cb_status =	0;
2057	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2058	    FXP_CB_COMMAND_EL);
2059	cbp->link_addr =	0xffffffff;	/* (no) next command */
2060	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2061	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2062	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2063	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2064	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2065	cbp->type_enable =	0;	/* actually reserved */
2066	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2067	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2068	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2069	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2070	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2071	cbp->late_scb =		0;	/* (don't) defer SCB update */
2072	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2073	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2074	cbp->ci_int =		1;	/* interrupt on CU idle */
2075	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2076	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2077	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2078	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2079	cbp->disc_short_rx =	!prm;	/* discard short packets */
2080	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2081	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2082	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2083	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2084	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2085	cbp->csma_dis =		0;	/* (don't) disable link */
2086	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2087	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2088	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2089	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2090	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2091	cbp->nsai =		1;	/* (don't) disable source addr insert */
2092	cbp->preamble_length =	2;	/* (7 byte) preamble */
2093	cbp->loopback =		0;	/* (don't) loopback */
2094	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2095	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2096	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2097	cbp->promiscuous =	prm;	/* promiscuous mode */
2098	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2099	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2100	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2101	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2102	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2103
2104	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2105	cbp->padding =		1;	/* (do) pad short tx packets */
2106	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2107	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2108	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2109	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2110					/* must set wake_en in PMCSR also */
2111	cbp->force_fdx =	0;	/* (don't) force full duplex */
2112	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2113	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2114	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2115	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2116
2117	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2118		/*
2119		 * The 82557 has no hardware flow control, the values
2120		 * below are the defaults for the chip.
2121		 */
2122		cbp->fc_delay_lsb =	0;
2123		cbp->fc_delay_msb =	0x40;
2124		cbp->pri_fc_thresh =	3;
2125		cbp->tx_fc_dis =	0;
2126		cbp->rx_fc_restop =	0;
2127		cbp->rx_fc_restart =	0;
2128		cbp->fc_filter =	0;
2129		cbp->pri_fc_loc =	1;
2130	} else {
2131		cbp->fc_delay_lsb =	0x1f;
2132		cbp->fc_delay_msb =	0x01;
2133		cbp->pri_fc_thresh =	3;
2134		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2135		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2136		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2137		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2138		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2139	}
2140
2141	/*
2142	 * Start the config command/DMA.
2143	 */
2144	fxp_scb_wait(sc);
2145	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2146	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2147	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2148	/* ...and wait for it to complete. */
2149	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2150	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2151
2152	/*
2153	 * Now initialize the station address. Temporarily use the TxCB
2154	 * memory area like we did above for the config CB.
2155	 */
2156	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2157	cb_ias->cb_status = 0;
2158	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2159	cb_ias->link_addr = 0xffffffff;
2160	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2161	    sizeof(sc->arpcom.ac_enaddr));
2162
2163	/*
2164	 * Start the IAS (Individual Address Setup) command/DMA.
2165	 */
2166	fxp_scb_wait(sc);
2167	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2168	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2169	/* ...and wait for it to complete. */
2170	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2171	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2172
2173	/*
2174	 * Initialize transmit control block (TxCB) list.
2175	 */
2176	txp = sc->fxp_desc.tx_list;
2177	tcbp = sc->fxp_desc.cbl_list;
2178	bzero(tcbp, FXP_TXCB_SZ);
2179	for (i = 0; i < FXP_NTXCB; i++) {
2180		txp[i].tx_cb = tcbp + i;
2181		txp[i].tx_mbuf = NULL;
2182		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2183		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2184		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2185		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2186		if (sc->flags & FXP_FLAG_EXT_TXCB)
2187			tcbp[i].tbd_array_addr =
2188			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2189		else
2190			tcbp[i].tbd_array_addr =
2191			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2192		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2193	}
2194	/*
2195	 * Set the suspend flag on the first TxCB and start the control
2196	 * unit. It will execute the NOP and then suspend.
2197	 */
2198	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2199	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2200	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2201	sc->tx_queued = 1;
2202
2203	fxp_scb_wait(sc);
2204	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2205
2206	/*
2207	 * Initialize receiver buffer area - RFA.
2208	 */
2209	fxp_scb_wait(sc);
2210	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2211	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2212
2213	/*
2214	 * Set current media.
2215	 */
2216	if (sc->miibus != NULL)
2217		mii_mediachg(device_get_softc(sc->miibus));
2218
2219	ifp->if_flags |= IFF_RUNNING;
2220	ifp->if_flags &= ~IFF_OACTIVE;
2221
2222	/*
2223	 * Enable interrupts.
2224	 */
2225#ifdef DEVICE_POLLING
2226	/*
2227	 * ... but only do that if we are not polling. And because (presumably)
2228	 * the default is interrupts on, we need to disable them explicitly!
2229	 */
2230	if ( ifp->if_flags & IFF_POLLING )
2231		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2232	else
2233#endif /* DEVICE_POLLING */
2234	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2235
2236	/*
2237	 * Start stats updater.
2238	 */
2239	sc->stat_ch = timeout(fxp_tick, sc, hz);
2240	splx(s);
2241}
2242
2243static int
2244fxp_serial_ifmedia_upd(struct ifnet *ifp)
2245{
2246
2247	return (0);
2248}
2249
2250static void
2251fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2252{
2253
2254	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2255}
2256
2257/*
2258 * Change media according to request.
2259 */
2260static int
2261fxp_ifmedia_upd(struct ifnet *ifp)
2262{
2263	struct fxp_softc *sc = ifp->if_softc;
2264	struct mii_data *mii;
2265
2266	mii = device_get_softc(sc->miibus);
2267	mii_mediachg(mii);
2268	return (0);
2269}
2270
2271/*
2272 * Notify the world which media we're using.
2273 */
2274static void
2275fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2276{
2277	struct fxp_softc *sc = ifp->if_softc;
2278	struct mii_data *mii;
2279
2280	mii = device_get_softc(sc->miibus);
2281	mii_pollstat(mii);
2282	ifmr->ifm_active = mii->mii_media_active;
2283	ifmr->ifm_status = mii->mii_media_status;
2284
2285	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2286		sc->cu_resume_bug = 1;
2287	else
2288		sc->cu_resume_bug = 0;
2289}
2290
2291/*
2292 * Add a buffer to the end of the RFA buffer list.
2293 * Return 0 if successful, 1 for failure. A failure results in
2294 * adding the 'oldm' (if non-NULL) on to the end of the list -
2295 * tossing out its old contents and recycling it.
2296 * The RFA struct is stuck at the beginning of mbuf cluster and the
2297 * data pointer is fixed up to point just past it.
2298 */
2299static int
2300fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2301{
2302	struct mbuf *m;
2303	struct fxp_rfa *rfa, *p_rfa;
2304	struct fxp_rx *p_rx;
2305	bus_dmamap_t tmp_map;
2306	int error;
2307
2308	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2309	if (m == NULL)
2310		return (ENOBUFS);
2311
2312	/*
2313	 * Move the data pointer up so that the incoming data packet
2314	 * will be 32-bit aligned.
2315	 */
2316	m->m_data += RFA_ALIGNMENT_FUDGE;
2317
2318	/*
2319	 * Get a pointer to the base of the mbuf cluster and move
2320	 * data start past it.
2321	 */
2322	rfa = mtod(m, struct fxp_rfa *);
2323	m->m_data += sc->rfa_size;
2324	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2325
2326	rfa->rfa_status = 0;
2327	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2328	rfa->actual_size = 0;
2329
2330	/*
2331	 * Initialize the rest of the RFA.  Note that since the RFA
2332	 * is misaligned, we cannot store values directly.  We're thus
2333	 * using the le32enc() function which handles endianness and
2334	 * is also alignment-safe.
2335	 */
2336	le32enc(&rfa->link_addr, 0xffffffff);
2337	le32enc(&rfa->rbd_addr, 0xffffffff);
2338
2339	/* Map the RFA into DMA memory. */
2340	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2341	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2342	    &rxp->rx_addr, 0);
2343	if (error) {
2344		m_freem(m);
2345		return (error);
2346	}
2347
2348	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2349	tmp_map = sc->spare_map;
2350	sc->spare_map = rxp->rx_map;
2351	rxp->rx_map = tmp_map;
2352	rxp->rx_mbuf = m;
2353
2354	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2355	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2356
2357	/*
2358	 * If there are other buffers already on the list, attach this
2359	 * one to the end by fixing up the tail to point to this one.
2360	 */
2361	if (sc->fxp_desc.rx_head != NULL) {
2362		p_rx = sc->fxp_desc.rx_tail;
2363		p_rfa = (struct fxp_rfa *)
2364		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2365		p_rx->rx_next = rxp;
2366		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2367		p_rfa->rfa_control = 0;
2368		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2369		    BUS_DMASYNC_PREWRITE);
2370	} else {
2371		rxp->rx_next = NULL;
2372		sc->fxp_desc.rx_head = rxp;
2373	}
2374	sc->fxp_desc.rx_tail = rxp;
2375	return (0);
2376}
2377
2378static volatile int
2379fxp_miibus_readreg(device_t dev, int phy, int reg)
2380{
2381	struct fxp_softc *sc = device_get_softc(dev);
2382	int count = 10000;
2383	int value;
2384
2385	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2386	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2387
2388	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2389	    && count--)
2390		DELAY(10);
2391
2392	if (count <= 0)
2393		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2394
2395	return (value & 0xffff);
2396}
2397
2398static void
2399fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2400{
2401	struct fxp_softc *sc = device_get_softc(dev);
2402	int count = 10000;
2403
2404	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2405	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2406	    (value & 0xffff));
2407
2408	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2409	    count--)
2410		DELAY(10);
2411
2412	if (count <= 0)
2413		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2414}
2415
2416static int
2417fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2418{
2419	struct fxp_softc *sc = ifp->if_softc;
2420	struct ifreq *ifr = (struct ifreq *)data;
2421	struct mii_data *mii;
2422	int s, error = 0;
2423
2424	/*
2425	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2426	 * that by saying we're busy if the lock is already held.
2427	 */
2428	if (mtx_owned(&sc->sc_mtx))
2429		return (EBUSY);
2430
2431	FXP_LOCK(sc);
2432	s = splimp();
2433
2434	switch (command) {
2435	case SIOCSIFFLAGS:
2436		if (ifp->if_flags & IFF_ALLMULTI)
2437			sc->flags |= FXP_FLAG_ALL_MCAST;
2438		else
2439			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2440
2441		/*
2442		 * If interface is marked up and not running, then start it.
2443		 * If it is marked down and running, stop it.
2444		 * XXX If it's up then re-initialize it. This is so flags
2445		 * such as IFF_PROMISC are handled.
2446		 */
2447		if (ifp->if_flags & IFF_UP) {
2448			fxp_init_body(sc);
2449		} else {
2450			if (ifp->if_flags & IFF_RUNNING)
2451				fxp_stop(sc);
2452		}
2453		break;
2454
2455	case SIOCADDMULTI:
2456	case SIOCDELMULTI:
2457		if (ifp->if_flags & IFF_ALLMULTI)
2458			sc->flags |= FXP_FLAG_ALL_MCAST;
2459		else
2460			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2461		/*
2462		 * Multicast list has changed; set the hardware filter
2463		 * accordingly.
2464		 */
2465		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2466			fxp_mc_setup(sc);
2467		/*
2468		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2469		 * again rather than else {}.
2470		 */
2471		if (sc->flags & FXP_FLAG_ALL_MCAST)
2472			fxp_init_body(sc);
2473		error = 0;
2474		break;
2475
2476	case SIOCSIFMEDIA:
2477	case SIOCGIFMEDIA:
2478		if (sc->miibus != NULL) {
2479			mii = device_get_softc(sc->miibus);
2480                        error = ifmedia_ioctl(ifp, ifr,
2481                            &mii->mii_media, command);
2482		} else {
2483                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2484		}
2485		break;
2486
2487	default:
2488		/*
2489		 * ether_ioctl() will eventually call fxp_start() which
2490		 * will result in mutex recursion so drop it first.
2491		 */
2492		FXP_UNLOCK(sc);
2493		error = ether_ioctl(ifp, command, data);
2494	}
2495	if (mtx_owned(&sc->sc_mtx))
2496		FXP_UNLOCK(sc);
2497	splx(s);
2498	return (error);
2499}
2500
2501/*
2502 * Fill in the multicast address list and return number of entries.
2503 */
2504static int
2505fxp_mc_addrs(struct fxp_softc *sc)
2506{
2507	struct fxp_cb_mcs *mcsp = sc->mcsp;
2508	struct ifnet *ifp = &sc->sc_if;
2509	struct ifmultiaddr *ifma;
2510	int nmcasts;
2511
2512	nmcasts = 0;
2513	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2514#if __FreeBSD_version < 500000
2515		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2516#else
2517		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2518#endif
2519			if (ifma->ifma_addr->sa_family != AF_LINK)
2520				continue;
2521			if (nmcasts >= MAXMCADDR) {
2522				sc->flags |= FXP_FLAG_ALL_MCAST;
2523				nmcasts = 0;
2524				break;
2525			}
2526			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2527			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2528			nmcasts++;
2529		}
2530	}
2531	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2532	return (nmcasts);
2533}
2534
2535/*
2536 * Program the multicast filter.
2537 *
2538 * We have an artificial restriction that the multicast setup command
2539 * must be the first command in the chain, so we take steps to ensure
2540 * this. By requiring this, it allows us to keep up the performance of
2541 * the pre-initialized command ring (esp. link pointers) by not actually
2542 * inserting the mcsetup command in the ring - i.e. its link pointer
2543 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2544 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2545 * lead into the regular TxCB ring when it completes.
2546 *
2547 * This function must be called at splimp.
2548 */
2549static void
2550fxp_mc_setup(struct fxp_softc *sc)
2551{
2552	struct fxp_cb_mcs *mcsp = sc->mcsp;
2553	struct ifnet *ifp = &sc->sc_if;
2554	struct fxp_tx *txp;
2555	int count;
2556
2557	/*
2558	 * If there are queued commands, we must wait until they are all
2559	 * completed. If we are already waiting, then add a NOP command
2560	 * with interrupt option so that we're notified when all commands
2561	 * have been completed - fxp_start() ensures that no additional
2562	 * TX commands will be added when need_mcsetup is true.
2563	 */
2564	if (sc->tx_queued) {
2565		/*
2566		 * need_mcsetup will be true if we are already waiting for the
2567		 * NOP command to be completed (see below). In this case, bail.
2568		 */
2569		if (sc->need_mcsetup)
2570			return;
2571		sc->need_mcsetup = 1;
2572
2573		/*
2574		 * Add a NOP command with interrupt so that we are notified
2575		 * when all TX commands have been processed.
2576		 */
2577		txp = sc->fxp_desc.tx_last->tx_next;
2578		txp->tx_mbuf = NULL;
2579		txp->tx_cb->cb_status = 0;
2580		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2581		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2582		/*
2583		 * Advance the end of list forward.
2584		 */
2585		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2586		    htole16(~FXP_CB_COMMAND_S);
2587		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2588		sc->fxp_desc.tx_last = txp;
2589		sc->tx_queued++;
2590		/*
2591		 * Issue a resume in case the CU has just suspended.
2592		 */
2593		fxp_scb_wait(sc);
2594		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2595		/*
2596		 * Set a 5 second timer just in case we don't hear from the
2597		 * card again.
2598		 */
2599		ifp->if_timer = 5;
2600
2601		return;
2602	}
2603	sc->need_mcsetup = 0;
2604
2605	/*
2606	 * Initialize multicast setup descriptor.
2607	 */
2608	mcsp->cb_status = 0;
2609	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2610	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2611	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2612	txp = &sc->fxp_desc.mcs_tx;
2613	txp->tx_mbuf = NULL;
2614	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2615	txp->tx_next = sc->fxp_desc.tx_list;
2616	(void) fxp_mc_addrs(sc);
2617	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2618	sc->tx_queued = 1;
2619
2620	/*
2621	 * Wait until command unit is not active. This should never
2622	 * be the case when nothing is queued, but make sure anyway.
2623	 */
2624	count = 100;
2625	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2626	    FXP_SCB_CUS_ACTIVE && --count)
2627		DELAY(10);
2628	if (count == 0) {
2629		device_printf(sc->dev, "command queue timeout\n");
2630		return;
2631	}
2632
2633	/*
2634	 * Start the multicast setup command.
2635	 */
2636	fxp_scb_wait(sc);
2637	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2638	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2639	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2640
2641	ifp->if_timer = 2;
2642	return;
2643}
2644
2645static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2646static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2647static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2648static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2649static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2650static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2651
2652#define UCODE(x)	x, sizeof(x)
2653
2654struct ucode {
2655	u_int32_t	revision;
2656	u_int32_t	*ucode;
2657	int		length;
2658	u_short		int_delay_offset;
2659	u_short		bundle_max_offset;
2660} ucode_table[] = {
2661	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2662	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2663	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2664	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2665	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2666	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2667	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2668	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2669	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2670	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2671	{ 0, NULL, 0, 0, 0 }
2672};
2673
2674static void
2675fxp_load_ucode(struct fxp_softc *sc)
2676{
2677	struct ucode *uc;
2678	struct fxp_cb_ucode *cbp;
2679
2680	for (uc = ucode_table; uc->ucode != NULL; uc++)
2681		if (sc->revision == uc->revision)
2682			break;
2683	if (uc->ucode == NULL)
2684		return;
2685	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2686	cbp->cb_status = 0;
2687	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2688	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2689	memcpy(cbp->ucode, uc->ucode, uc->length);
2690	if (uc->int_delay_offset)
2691		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2692		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2693	if (uc->bundle_max_offset)
2694		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2695		    htole16(sc->tunable_bundle_max);
2696	/*
2697	 * Download the ucode to the chip.
2698	 */
2699	fxp_scb_wait(sc);
2700	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2701	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2702	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2703	/* ...and wait for it to complete. */
2704	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2705	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2706	device_printf(sc->dev,
2707	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2708	    sc->tunable_int_delay,
2709	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2710	sc->flags |= FXP_FLAG_UCODE;
2711}
2712
2713static int
2714sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2715{
2716	int error, value;
2717
2718	value = *(int *)arg1;
2719	error = sysctl_handle_int(oidp, &value, 0, req);
2720	if (error || !req->newptr)
2721		return (error);
2722	if (value < low || value > high)
2723		return (EINVAL);
2724	*(int *)arg1 = value;
2725	return (0);
2726}
2727
2728/*
2729 * Interrupt delay is expressed in microseconds, a multiplier is used
2730 * to convert this to the appropriate clock ticks before using.
2731 */
2732static int
2733sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2734{
2735	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2736}
2737
2738static int
2739sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2740{
2741	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2742}
2743