if_fxp.c revision 112005
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 112005 2003-03-08 21:44:21Z jdp $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39		/* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#include <net/bpf.h>
49#include <sys/sockio.h>
50#include <sys/bus.h>
51#include <machine/bus.h>
52#include <sys/rman.h>
53#include <machine/resource.h>
54
55#include <net/ethernet.h>
56#include <net/if_arp.h>
57
58#include <vm/vm.h>		/* for vtophys */
59#include <vm/pmap.h>		/* for vtophys */
60#include <machine/clock.h>	/* for DELAY */
61
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#ifdef FXP_IP_CSUM_WAR
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <machine/in_cksum.h>
70#endif
71
72#include <pci/pcivar.h>
73#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
74
75#include <dev/mii/mii.h>
76#include <dev/mii/miivar.h>
77
78#include <dev/fxp/if_fxpreg.h>
79#include <dev/fxp/if_fxpvar.h>
80#include <dev/fxp/rcvbundl.h>
81
82MODULE_DEPEND(fxp, miibus, 1, 1, 1);
83#include "miibus_if.h"
84
85/*
86 * NOTE!  On the Alpha, we have an alignment constraint.  The
87 * card DMAs the packet immediately following the RFA.  However,
88 * the first thing in the packet is a 14-byte Ethernet header.
89 * This means that the packet is misaligned.  To compensate,
90 * we actually offset the RFA 2 bytes into the cluster.  This
91 * alignes the packet after the Ethernet header at a 32-bit
92 * boundary.  HOWEVER!  This means that the RFA is misaligned!
93 */
94#define	RFA_ALIGNMENT_FUDGE	2
95
96/*
97 * Set initial transmit threshold at 64 (512 bytes). This is
98 * increased by 64 (512 bytes) at a time, to maximum of 192
99 * (1536 bytes), if an underrun occurs.
100 */
101static int tx_threshold = 64;
102
103/*
104 * The configuration byte map has several undefined fields which
105 * must be one or must be zero.  Set up a template for these bits
106 * only, (assuming a 82557 chip) leaving the actual configuration
107 * to fxp_init.
108 *
109 * See struct fxp_cb_config for the bit definitions.
110 */
111static u_char fxp_cb_config_template[] = {
112	0x0, 0x0,		/* cb_status */
113	0x0, 0x0,		/* cb_command */
114	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115	0x0,	/*  0 */
116	0x0,	/*  1 */
117	0x0,	/*  2 */
118	0x0,	/*  3 */
119	0x0,	/*  4 */
120	0x0,	/*  5 */
121	0x32,	/*  6 */
122	0x0,	/*  7 */
123	0x0,	/*  8 */
124	0x0,	/*  9 */
125	0x6,	/* 10 */
126	0x0,	/* 11 */
127	0x0,	/* 12 */
128	0x0,	/* 13 */
129	0xf2,	/* 14 */
130	0x48,	/* 15 */
131	0x0,	/* 16 */
132	0x40,	/* 17 */
133	0xf0,	/* 18 */
134	0x0,	/* 19 */
135	0x3f,	/* 20 */
136	0x5	/* 21 */
137};
138
139struct fxp_ident {
140	u_int16_t	devid;
141	char 		*name;
142};
143
144/*
145 * Claim various Intel PCI device identifiers for this driver.  The
146 * sub-vendor and sub-device field are extensively used to identify
147 * particular variants, but we don't currently differentiate between
148 * them.
149 */
150static struct fxp_ident fxp_ident_table[] = {
151    { 0x1029,		"Intel 82559 PCI/CardBus Pro/100" },
152    { 0x1030,		"Intel 82559 Pro/100 Ethernet" },
153    { 0x1031,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154    { 0x1032,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155    { 0x1033,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156    { 0x1034,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157    { 0x1035,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158    { 0x1036,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159    { 0x1037,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160    { 0x1038,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161    { 0x1039,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162    { 0x103A,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
163    { 0x103B,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164    { 0x103C,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165    { 0x103D,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166    { 0x103E,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167    { 0x1059,		"Intel 82551QM Pro/100 M Mobile Connection" },
168    { 0x1209,		"Intel 82559ER Embedded 10/100 Ethernet" },
169    { 0x1229,		"Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" },
170    { 0x2449,		"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
171    { 0,		NULL },
172};
173
174#ifdef FXP_IP_CSUM_WAR
175#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
176#else
177#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
178#endif
179
180static int		fxp_probe(device_t dev);
181static int		fxp_attach(device_t dev);
182static int		fxp_detach(device_t dev);
183static int		fxp_shutdown(device_t dev);
184static int		fxp_suspend(device_t dev);
185static int		fxp_resume(device_t dev);
186
187static void		fxp_intr(void *xsc);
188static void 		fxp_init(void *xsc);
189static void 		fxp_tick(void *xsc);
190static void		fxp_powerstate_d0(device_t dev);
191static void 		fxp_start(struct ifnet *ifp);
192static void		fxp_stop(struct fxp_softc *sc);
193static void 		fxp_release(struct fxp_softc *sc);
194static int		fxp_ioctl(struct ifnet *ifp, u_long command,
195			    caddr_t data);
196static void 		fxp_watchdog(struct ifnet *ifp);
197static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
198static int		fxp_mc_addrs(struct fxp_softc *sc);
199static void		fxp_mc_setup(struct fxp_softc *sc);
200static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
201			    int autosize);
202static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
203			    u_int16_t data);
204static void		fxp_autosize_eeprom(struct fxp_softc *sc);
205static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
206			    int offset, int words);
207static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
208			    int offset, int words);
209static int		fxp_ifmedia_upd(struct ifnet *ifp);
210static void		fxp_ifmedia_sts(struct ifnet *ifp,
211			    struct ifmediareq *ifmr);
212static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
213static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
214			    struct ifmediareq *ifmr);
215static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
216static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
217			    int value);
218static void		fxp_load_ucode(struct fxp_softc *sc);
219static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
220			    int low, int high);
221static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
222static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
223static __inline void	fxp_lwcopy(volatile u_int32_t *src,
224			    volatile u_int32_t *dst);
225static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
226static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
227static __inline void	fxp_dma_wait(volatile u_int16_t *status,
228			    struct fxp_softc *sc);
229
230static device_method_t fxp_methods[] = {
231	/* Device interface */
232	DEVMETHOD(device_probe,		fxp_probe),
233	DEVMETHOD(device_attach,	fxp_attach),
234	DEVMETHOD(device_detach,	fxp_detach),
235	DEVMETHOD(device_shutdown,	fxp_shutdown),
236	DEVMETHOD(device_suspend,	fxp_suspend),
237	DEVMETHOD(device_resume,	fxp_resume),
238
239	/* MII interface */
240	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
241	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
242
243	{ 0, 0 }
244};
245
246static driver_t fxp_driver = {
247	"fxp",
248	fxp_methods,
249	sizeof(struct fxp_softc),
250};
251
252static devclass_t fxp_devclass;
253
254DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
255DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
256DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
257
258static int fxp_rnr;
259SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
260
261/*
262 * Inline function to copy a 16-bit aligned 32-bit quantity.
263 */
264static __inline void
265fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
266{
267#ifdef __i386__
268	*dst = *src;
269#else
270	volatile u_int16_t *a = (volatile u_int16_t *)src;
271	volatile u_int16_t *b = (volatile u_int16_t *)dst;
272
273	b[0] = a[0];
274	b[1] = a[1];
275#endif
276}
277
278/*
279 * Wait for the previous command to be accepted (but not necessarily
280 * completed).
281 */
282static __inline void
283fxp_scb_wait(struct fxp_softc *sc)
284{
285	int i = 10000;
286
287	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
288		DELAY(2);
289	if (i == 0)
290		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
291		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
292		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
293		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
294		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
295}
296
297static __inline void
298fxp_scb_cmd(struct fxp_softc *sc, int cmd)
299{
300
301	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
302		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
303		fxp_scb_wait(sc);
304	}
305	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
306}
307
308static __inline void
309fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
310{
311	int i = 10000;
312
313	while (!(*status & FXP_CB_STATUS_C) && --i)
314		DELAY(2);
315	if (i == 0)
316		device_printf(sc->dev, "DMA timeout\n");
317}
318
319/*
320 * Return identification string if this is device is ours.
321 */
322static int
323fxp_probe(device_t dev)
324{
325	u_int16_t devid;
326	struct fxp_ident *ident;
327
328	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
329		devid = pci_get_device(dev);
330		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
331			if (ident->devid == devid) {
332				device_set_desc(dev, ident->name);
333				return (0);
334			}
335		}
336	}
337	return (ENXIO);
338}
339
340static void
341fxp_powerstate_d0(device_t dev)
342{
343#if __FreeBSD_version >= 430002
344	u_int32_t iobase, membase, irq;
345
346	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
347		/* Save important PCI config data. */
348		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
349		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
350		irq = pci_read_config(dev, PCIR_INTLINE, 4);
351
352		/* Reset the power state. */
353		device_printf(dev, "chip is in D%d power mode "
354		    "-- setting to D0\n", pci_get_powerstate(dev));
355
356		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
357
358		/* Restore PCI config data. */
359		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
360		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
361		pci_write_config(dev, PCIR_INTLINE, irq, 4);
362	}
363#endif
364}
365
366static int
367fxp_attach(device_t dev)
368{
369	int error = 0;
370	struct fxp_softc *sc = device_get_softc(dev);
371	struct ifnet *ifp;
372	u_int32_t val;
373	u_int16_t data;
374	int i, rid, m1, m2, prefer_iomap;
375	int s;
376
377	bzero(sc, sizeof(*sc));
378	sc->dev = dev;
379	callout_handle_init(&sc->stat_ch);
380	sysctl_ctx_init(&sc->sysctl_ctx);
381	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
382	    MTX_DEF | MTX_RECURSE);
383
384	s = splimp();
385
386	/*
387	 * Enable bus mastering. Enable memory space too, in case
388	 * BIOS/Prom forgot about it.
389	 */
390	val = pci_read_config(dev, PCIR_COMMAND, 2);
391	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
392	pci_write_config(dev, PCIR_COMMAND, val, 2);
393	val = pci_read_config(dev, PCIR_COMMAND, 2);
394
395	fxp_powerstate_d0(dev);
396
397	/*
398	 * Figure out which we should try first - memory mapping or i/o mapping?
399	 * We default to memory mapping. Then we accept an override from the
400	 * command line. Then we check to see which one is enabled.
401	 */
402	m1 = PCIM_CMD_MEMEN;
403	m2 = PCIM_CMD_PORTEN;
404	prefer_iomap = 0;
405	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
406	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
407		m1 = PCIM_CMD_PORTEN;
408		m2 = PCIM_CMD_MEMEN;
409	}
410
411	if (val & m1) {
412		sc->rtp =
413		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
414		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
415		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
416	                                     0, ~0, 1, RF_ACTIVE);
417	}
418	if (sc->mem == NULL && (val & m2)) {
419		sc->rtp =
420		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
421		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
422		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
423                                            0, ~0, 1, RF_ACTIVE);
424	}
425
426	if (!sc->mem) {
427		device_printf(dev, "could not map device registers\n");
428		error = ENXIO;
429		goto fail;
430        }
431	if (bootverbose) {
432		device_printf(dev, "using %s space register mapping\n",
433		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
434	}
435
436	sc->sc_st = rman_get_bustag(sc->mem);
437	sc->sc_sh = rman_get_bushandle(sc->mem);
438
439	/*
440	 * Allocate our interrupt.
441	 */
442	rid = 0;
443	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
444				 RF_SHAREABLE | RF_ACTIVE);
445	if (sc->irq == NULL) {
446		device_printf(dev, "could not map interrupt\n");
447		error = ENXIO;
448		goto fail;
449	}
450
451	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
452			       fxp_intr, sc, &sc->ih);
453	if (error) {
454		device_printf(dev, "could not setup irq\n");
455		goto fail;
456	}
457
458	/*
459	 * Reset to a stable state.
460	 */
461	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
462	DELAY(10);
463
464	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
465	    M_DEVBUF, M_NOWAIT | M_ZERO);
466	if (sc->cbl_base == NULL)
467		goto failmem;
468
469	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
470	    M_NOWAIT | M_ZERO);
471	if (sc->fxp_stats == NULL)
472		goto failmem;
473
474	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
475	if (sc->mcsp == NULL)
476		goto failmem;
477
478	/*
479	 * Pre-allocate our receive buffers.
480	 */
481	for (i = 0; i < FXP_NRFABUFS; i++) {
482		if (fxp_add_rfabuf(sc, NULL) != 0) {
483			goto failmem;
484		}
485	}
486
487	/*
488	 * Find out how large of an SEEPROM we have.
489	 */
490	fxp_autosize_eeprom(sc);
491
492	/*
493	 * Determine whether we must use the 503 serial interface.
494	 */
495	fxp_read_eeprom(sc, &data, 6, 1);
496	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
497	    (data & FXP_PHY_SERIAL_ONLY))
498		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
499
500	/*
501	 * Create the sysctl tree
502	 */
503	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
504	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
505	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
506	if (sc->sysctl_tree == NULL)
507		goto fail;
508	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
511	    "FXP driver receive interrupt microcode bundling delay");
512	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515	    "FXP driver receive interrupt microcode bundle size limit");
516
517	/*
518	 * Pull in device tunables.
519	 */
520	sc->tunable_int_delay = TUNABLE_INT_DELAY;
521	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
522	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
523	    "int_delay", &sc->tunable_int_delay);
524	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525	    "bundle_max", &sc->tunable_bundle_max);
526
527	/*
528	 * Find out the chip revision; lump all 82557 revs together.
529	 */
530	fxp_read_eeprom(sc, &data, 5, 1);
531	if ((data >> 8) == 1)
532		sc->revision = FXP_REV_82557;
533	else
534		sc->revision = pci_get_revid(dev);
535
536	/*
537	 * Enable workarounds for certain chip revision deficiencies.
538	 *
539	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
540	 * some systems based a normal 82559 design, have a defect where
541	 * the chip can cause a PCI protocol violation if it receives
542	 * a CU_RESUME command when it is entering the IDLE state.  The
543	 * workaround is to disable Dynamic Standby Mode, so the chip never
544	 * deasserts CLKRUN#, and always remains in an active state.
545	 *
546	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
547	 */
548	i = pci_get_device(dev);
549	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
550	    sc->revision >= FXP_REV_82559_A0) {
551		fxp_read_eeprom(sc, &data, 10, 1);
552		if (data & 0x02) {			/* STB enable */
553			u_int16_t cksum;
554			int i;
555
556			device_printf(dev,
557			    "Disabling dynamic standby mode in EEPROM\n");
558			data &= ~0x02;
559			fxp_write_eeprom(sc, &data, 10, 1);
560			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
561			cksum = 0;
562			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
563				fxp_read_eeprom(sc, &data, i, 1);
564				cksum += data;
565			}
566			i = (1 << sc->eeprom_size) - 1;
567			cksum = 0xBABA - cksum;
568			fxp_read_eeprom(sc, &data, i, 1);
569			fxp_write_eeprom(sc, &cksum, i, 1);
570			device_printf(dev,
571			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
572			    i, data, cksum);
573#if 1
574			/*
575			 * If the user elects to continue, try the software
576			 * workaround, as it is better than nothing.
577			 */
578			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
579#endif
580		}
581	}
582
583	/*
584	 * If we are not a 82557 chip, we can enable extended features.
585	 */
586	if (sc->revision != FXP_REV_82557) {
587		/*
588		 * If MWI is enabled in the PCI configuration, and there
589		 * is a valid cacheline size (8 or 16 dwords), then tell
590		 * the board to turn on MWI.
591		 */
592		if (val & PCIM_CMD_MWRICEN &&
593		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
594			sc->flags |= FXP_FLAG_MWI_ENABLE;
595
596		/* turn on the extended TxCB feature */
597		sc->flags |= FXP_FLAG_EXT_TXCB;
598
599		/* enable reception of long frames for VLAN */
600		sc->flags |= FXP_FLAG_LONG_PKT_EN;
601	}
602
603	/*
604	 * Enable use of extended RFDs and TCBs for 82550
605	 * and later chips. Note: we need extended TXCB support
606	 * too, but that's already enabled by the code above.
607	 * Be careful to do this only on the right devices.
608	 */
609
610	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
611		sc->rfa_size = sizeof (struct fxp_rfa);
612		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
613		sc->flags |= FXP_FLAG_EXT_RFA;
614	} else {
615		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
616		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
617	}
618
619	/*
620	 * Read MAC address.
621	 */
622	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
623	device_printf(dev, "Ethernet address %6D%s\n",
624	    sc->arpcom.ac_enaddr, ":",
625	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
626	if (bootverbose) {
627		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
628		    pci_get_vendor(dev), pci_get_device(dev),
629		    pci_get_subvendor(dev), pci_get_subdevice(dev),
630		    pci_get_revid(dev));
631		fxp_read_eeprom(sc, &data, 10, 1);
632		device_printf(dev, "Dynamic Standby mode is %s\n",
633		    data & 0x02 ? "enabled" : "disabled");
634	}
635
636	/*
637	 * If this is only a 10Mbps device, then there is no MII, and
638	 * the PHY will use a serial interface instead.
639	 *
640	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
641	 * doesn't have a programming interface of any sort.  The
642	 * media is sensed automatically based on how the link partner
643	 * is configured.  This is, in essence, manual configuration.
644	 */
645	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
646		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
647		    fxp_serial_ifmedia_sts);
648		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
649		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
650	} else {
651		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
652		    fxp_ifmedia_sts)) {
653	                device_printf(dev, "MII without any PHY!\n");
654			error = ENXIO;
655			goto fail;
656		}
657	}
658
659	ifp = &sc->arpcom.ac_if;
660	ifp->if_unit = device_get_unit(dev);
661	ifp->if_name = "fxp";
662	ifp->if_output = ether_output;
663	ifp->if_baudrate = 100000000;
664	ifp->if_init = fxp_init;
665	ifp->if_softc = sc;
666	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
667	ifp->if_ioctl = fxp_ioctl;
668	ifp->if_start = fxp_start;
669	ifp->if_watchdog = fxp_watchdog;
670
671	/* Enable checksum offload for 82550 or better chips */
672
673	if (sc->flags & FXP_FLAG_EXT_RFA) {
674		ifp->if_hwassist = FXP_CSUM_FEATURES;
675		ifp->if_capabilities = IFCAP_HWCSUM;
676		ifp->if_capenable = ifp->if_capabilities;
677	}
678
679	/*
680	 * Attach the interface.
681	 */
682	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
683
684	/*
685	 * Tell the upper layer(s) we support long frames.
686	 */
687	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
688	ifp->if_capabilities |= IFCAP_VLAN_MTU;
689
690	/*
691	 * Let the system queue as many packets as we have available
692	 * TX descriptors.
693	 */
694	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
695
696	splx(s);
697	return (0);
698
699failmem:
700	device_printf(dev, "Failed to malloc memory\n");
701	error = ENOMEM;
702fail:
703	splx(s);
704	fxp_release(sc);
705	return (error);
706}
707
708/*
709 * release all resources
710 */
711static void
712fxp_release(struct fxp_softc *sc)
713{
714
715	bus_generic_detach(sc->dev);
716	if (sc->miibus)
717		device_delete_child(sc->dev, sc->miibus);
718
719	if (sc->cbl_base)
720		free(sc->cbl_base, M_DEVBUF);
721	if (sc->fxp_stats)
722		free(sc->fxp_stats, M_DEVBUF);
723	if (sc->mcsp)
724		free(sc->mcsp, M_DEVBUF);
725	if (sc->rfa_headm)
726		m_freem(sc->rfa_headm);
727
728	if (sc->ih)
729		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
730	if (sc->irq)
731		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
732	if (sc->mem)
733		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
734
735        sysctl_ctx_free(&sc->sysctl_ctx);
736
737	mtx_destroy(&sc->sc_mtx);
738}
739
740/*
741 * Detach interface.
742 */
743static int
744fxp_detach(device_t dev)
745{
746	struct fxp_softc *sc = device_get_softc(dev);
747	int s;
748
749	/* disable interrupts */
750	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
751
752	s = splimp();
753
754	/*
755	 * Stop DMA and drop transmit queue.
756	 */
757	fxp_stop(sc);
758
759	/*
760	 * Close down routes etc.
761	 */
762	ether_ifdetach(&sc->arpcom.ac_if);
763
764	/*
765	 * Free all media structures.
766	 */
767	ifmedia_removeall(&sc->sc_media);
768
769	splx(s);
770
771	/* Release our allocated resources. */
772	fxp_release(sc);
773
774	return (0);
775}
776
777/*
778 * Device shutdown routine. Called at system shutdown after sync. The
779 * main purpose of this routine is to shut off receiver DMA so that
780 * kernel memory doesn't get clobbered during warmboot.
781 */
782static int
783fxp_shutdown(device_t dev)
784{
785	/*
786	 * Make sure that DMA is disabled prior to reboot. Not doing
787	 * do could allow DMA to corrupt kernel memory during the
788	 * reboot before the driver initializes.
789	 */
790	fxp_stop((struct fxp_softc *) device_get_softc(dev));
791	return (0);
792}
793
794/*
795 * Device suspend routine.  Stop the interface and save some PCI
796 * settings in case the BIOS doesn't restore them properly on
797 * resume.
798 */
799static int
800fxp_suspend(device_t dev)
801{
802	struct fxp_softc *sc = device_get_softc(dev);
803	int i, s;
804
805	s = splimp();
806
807	fxp_stop(sc);
808
809	for (i = 0; i < 5; i++)
810		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
811	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
812	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
813	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
814	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
815
816	sc->suspended = 1;
817
818	splx(s);
819	return (0);
820}
821
822/*
823 * Device resume routine.  Restore some PCI settings in case the BIOS
824 * doesn't, re-enable busmastering, and restart the interface if
825 * appropriate.
826 */
827static int
828fxp_resume(device_t dev)
829{
830	struct fxp_softc *sc = device_get_softc(dev);
831	struct ifnet *ifp = &sc->sc_if;
832	u_int16_t pci_command;
833	int i, s;
834
835	s = splimp();
836
837	fxp_powerstate_d0(dev);
838
839	/* better way to do this? */
840	for (i = 0; i < 5; i++)
841		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
842	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
843	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
844	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
845	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
846
847	/* reenable busmastering */
848	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
849	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
850	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
851
852	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
853	DELAY(10);
854
855	/* reinitialize interface if necessary */
856	if (ifp->if_flags & IFF_UP)
857		fxp_init(sc);
858
859	sc->suspended = 0;
860
861	splx(s);
862	return (0);
863}
864
865static void
866fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
867{
868	u_int16_t reg;
869	int x;
870
871	/*
872	 * Shift in data.
873	 */
874	for (x = 1 << (length - 1); x; x >>= 1) {
875		if (data & x)
876			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
877		else
878			reg = FXP_EEPROM_EECS;
879		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880		DELAY(1);
881		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
882		DELAY(1);
883		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884		DELAY(1);
885	}
886}
887
888/*
889 * Read from the serial EEPROM. Basically, you manually shift in
890 * the read opcode (one bit at a time) and then shift in the address,
891 * and then you shift out the data (all of this one bit at a time).
892 * The word size is 16 bits, so you have to provide the address for
893 * every 16 bits of data.
894 */
895static u_int16_t
896fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
897{
898	u_int16_t reg, data;
899	int x;
900
901	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
902	/*
903	 * Shift in read opcode.
904	 */
905	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
906	/*
907	 * Shift in address.
908	 */
909	data = 0;
910	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
911		if (offset & x)
912			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
913		else
914			reg = FXP_EEPROM_EECS;
915		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916		DELAY(1);
917		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918		DELAY(1);
919		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
920		DELAY(1);
921		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
922		data++;
923		if (autosize && reg == 0) {
924			sc->eeprom_size = data;
925			break;
926		}
927	}
928	/*
929	 * Shift out data.
930	 */
931	data = 0;
932	reg = FXP_EEPROM_EECS;
933	for (x = 1 << 15; x; x >>= 1) {
934		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
935		DELAY(1);
936		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
937			data |= x;
938		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
939		DELAY(1);
940	}
941	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942	DELAY(1);
943
944	return (data);
945}
946
947static void
948fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
949{
950	int i;
951
952	/*
953	 * Erase/write enable.
954	 */
955	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956	fxp_eeprom_shiftin(sc, 0x4, 3);
957	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
958	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
959	DELAY(1);
960	/*
961	 * Shift in write opcode, address, data.
962	 */
963	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
964	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
965	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
966	fxp_eeprom_shiftin(sc, data, 16);
967	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
968	DELAY(1);
969	/*
970	 * Wait for EEPROM to finish up.
971	 */
972	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
973	DELAY(1);
974	for (i = 0; i < 1000; i++) {
975		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
976			break;
977		DELAY(50);
978	}
979	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
980	DELAY(1);
981	/*
982	 * Erase/write disable.
983	 */
984	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
985	fxp_eeprom_shiftin(sc, 0x4, 3);
986	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
987	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
988	DELAY(1);
989}
990
991/*
992 * From NetBSD:
993 *
994 * Figure out EEPROM size.
995 *
996 * 559's can have either 64-word or 256-word EEPROMs, the 558
997 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
998 * talks about the existance of 16 to 256 word EEPROMs.
999 *
1000 * The only known sizes are 64 and 256, where the 256 version is used
1001 * by CardBus cards to store CIS information.
1002 *
1003 * The address is shifted in msb-to-lsb, and after the last
1004 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1005 * after which follows the actual data. We try to detect this zero, by
1006 * probing the data-out bit in the EEPROM control register just after
1007 * having shifted in a bit. If the bit is zero, we assume we've
1008 * shifted enough address bits. The data-out should be tri-state,
1009 * before this, which should translate to a logical one.
1010 */
1011static void
1012fxp_autosize_eeprom(struct fxp_softc *sc)
1013{
1014
1015	/* guess maximum size of 256 words */
1016	sc->eeprom_size = 8;
1017
1018	/* autosize */
1019	(void) fxp_eeprom_getword(sc, 0, 1);
1020}
1021
1022static void
1023fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1024{
1025	int i;
1026
1027	for (i = 0; i < words; i++)
1028		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1029}
1030
1031static void
1032fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1033{
1034	int i;
1035
1036	for (i = 0; i < words; i++)
1037		fxp_eeprom_putword(sc, offset + i, data[i]);
1038}
1039
1040/*
1041 * Start packet transmission on the interface.
1042 */
1043static void
1044fxp_start(struct ifnet *ifp)
1045{
1046	struct fxp_softc *sc = ifp->if_softc;
1047	struct fxp_cb_tx *txp;
1048	volatile struct fxp_tbd *bdptr;
1049
1050	/*
1051	 * See if we need to suspend xmit until the multicast filter
1052	 * has been reprogrammed (which can only be done at the head
1053	 * of the command chain).
1054	 */
1055	if (sc->need_mcsetup) {
1056		return;
1057	}
1058
1059	txp = NULL;
1060
1061	/*
1062	 * We're finished if there is nothing more to add to the list or if
1063	 * we're all filled up with buffers to transmit.
1064	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1065	 *       a NOP command when needed.
1066	 */
1067	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1068		struct mbuf *m, *mb_head;
1069		int segment;
1070
1071		/*
1072		 * Grab a packet to transmit.
1073		 */
1074		IF_DEQUEUE(&ifp->if_snd, mb_head);
1075
1076		/*
1077		 * Get pointer to next available tx desc.
1078		 */
1079		txp = sc->cbl_last->next;
1080
1081		/*
1082		 * If this is an 82550/82551, then we're using extended
1083		 * TxCBs _and_ we're using checksum offload. This means
1084		 * that the TxCB is really an IPCB. One major difference
1085		 * between the two is that with plain extended TxCBs,
1086		 * the bottom half of the TxCB contains two entries from
1087		 * the TBD array, whereas IPCBs contain just one entry:
1088		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1089		 * checksum offload control bits. So to make things work
1090		 * right, we have to start filling in the TBD array
1091		 * starting from a different place depending on whether
1092		 * the chip is an 82550/82551 or not.
1093		 */
1094
1095		bdptr = &txp->tbd[0];
1096		if (sc->flags & FXP_FLAG_EXT_RFA)
1097			bdptr++;
1098
1099		/*
1100		 * Deal with TCP/IP checksum offload. Note that
1101		 * in order for TCP checksum offload to work,
1102		 * the pseudo header checksum must have already
1103		 * been computed and stored in the checksum field
1104		 * in the TCP header. The stack should have
1105		 * already done this for us.
1106		 */
1107
1108		if (mb_head->m_pkthdr.csum_flags) {
1109			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1110				txp->ipcb_ip_activation_high =
1111				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1112				txp->ipcb_ip_schedule =
1113				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1114				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1115					txp->ipcb_ip_schedule |=
1116					    FXP_IPCB_TCP_PACKET;
1117			}
1118#ifdef FXP_IP_CSUM_WAR
1119		/*
1120		 * XXX The 82550 chip appears to have trouble
1121		 * dealing with IP header checksums in very small
1122		 * datagrams, namely fragments from 1 to 3 bytes
1123		 * in size. For example, say you want to transmit
1124		 * a UDP packet of 1473 bytes. The packet will be
1125		 * fragmented over two IP datagrams, the latter
1126		 * containing only one byte of data. The 82550 will
1127		 * botch the header checksum on the 1-byte fragment.
1128		 * As long as the datagram contains 4 or more bytes
1129		 * of data, you're ok.
1130		 *
1131                 * The following code attempts to work around this
1132		 * problem: if the datagram is less than 38 bytes
1133		 * in size (14 bytes ether header, 20 bytes IP header,
1134		 * plus 4 bytes of data), we punt and compute the IP
1135		 * header checksum by hand. This workaround doesn't
1136		 * work very well, however, since it can be fooled
1137		 * by things like VLAN tags and IP options that make
1138		 * the header sizes/offsets vary.
1139		 */
1140
1141			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1142				if (mb_head->m_pkthdr.len < 38) {
1143					struct ip *ip;
1144					mb_head->m_data += ETHER_HDR_LEN;
1145					ip = mtod(mb_head, struct ip *);
1146					ip->ip_sum = in_cksum(mb_head,
1147					    ip->ip_hl << 2);
1148					mb_head->m_data -= ETHER_HDR_LEN;
1149				} else {
1150					txp->ipcb_ip_activation_high =
1151					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1152					txp->ipcb_ip_schedule |=
1153					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1154				}
1155			}
1156#endif
1157		}
1158
1159		/*
1160		 * Go through each of the mbufs in the chain and initialize
1161		 * the transmit buffer descriptors with the physical address
1162		 * and size of the mbuf.
1163		 */
1164tbdinit:
1165		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1166			if (m->m_len != 0) {
1167				if (segment == (FXP_NTXSEG - 1))
1168					break;
1169				bdptr[segment].tb_addr =
1170				    vtophys(mtod(m, vm_offset_t));
1171				bdptr[segment].tb_size = m->m_len;
1172				segment++;
1173			}
1174		}
1175		if (m != NULL) {
1176			struct mbuf *mn;
1177
1178			/*
1179			 * We ran out of segments. We have to recopy this
1180			 * mbuf chain first. Bail out if we can't get the
1181			 * new buffers.
1182			 */
1183			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1184			if (mn == NULL) {
1185				m_freem(mb_head);
1186				break;
1187			}
1188			if (mb_head->m_pkthdr.len > MHLEN) {
1189				MCLGET(mn, M_DONTWAIT);
1190				if ((mn->m_flags & M_EXT) == 0) {
1191					m_freem(mn);
1192					m_freem(mb_head);
1193					break;
1194				}
1195			}
1196			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1197			    mtod(mn, caddr_t));
1198			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1199			m_freem(mb_head);
1200			mb_head = mn;
1201			goto tbdinit;
1202		}
1203
1204		txp->byte_count = 0;
1205		txp->tbd_number = segment;
1206		txp->mb_head = mb_head;
1207		txp->cb_status = 0;
1208		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1209			txp->cb_command =
1210			    sc->tx_cmd | FXP_CB_COMMAND_SF |
1211			    FXP_CB_COMMAND_S;
1212		} else {
1213			txp->cb_command =
1214			    sc->tx_cmd | FXP_CB_COMMAND_SF |
1215			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1216			/*
1217			 * Set a 5 second timer just in case we don't hear
1218			 * from the card again.
1219			 */
1220			ifp->if_timer = 5;
1221		}
1222		txp->tx_threshold = tx_threshold;
1223
1224		/*
1225		 * Advance the end of list forward.
1226		 */
1227
1228#ifdef __alpha__
1229		/*
1230		 * On platforms which can't access memory in 16-bit
1231		 * granularities, we must prevent the card from DMA'ing
1232		 * up the status while we update the command field.
1233		 * This could cause us to overwrite the completion status.
1234		 */
1235		atomic_clear_short(&sc->cbl_last->cb_command,
1236		    FXP_CB_COMMAND_S);
1237#else
1238		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1239#endif /*__alpha__*/
1240		sc->cbl_last = txp;
1241
1242		/*
1243		 * Advance the beginning of the list forward if there are
1244		 * no other packets queued (when nothing is queued, cbl_first
1245		 * sits on the last TxCB that was sent out).
1246		 */
1247		if (sc->tx_queued == 0)
1248			sc->cbl_first = txp;
1249
1250		sc->tx_queued++;
1251
1252		/*
1253		 * Pass packet to bpf if there is a listener.
1254		 */
1255		BPF_MTAP(ifp, mb_head);
1256	}
1257
1258	/*
1259	 * We're finished. If we added to the list, issue a RESUME to get DMA
1260	 * going again if suspended.
1261	 */
1262	if (txp != NULL) {
1263		fxp_scb_wait(sc);
1264		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1265	}
1266}
1267
1268static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1269
1270#ifdef DEVICE_POLLING
1271static poll_handler_t fxp_poll;
1272
1273static void
1274fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1275{
1276	struct fxp_softc *sc = ifp->if_softc;
1277	u_int8_t statack;
1278
1279	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1280		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1281		return;
1282	}
1283	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1284	    FXP_SCB_STATACK_FR;
1285	if (cmd == POLL_AND_CHECK_STATUS) {
1286		u_int8_t tmp;
1287
1288		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1289		if (tmp == 0xff || tmp == 0)
1290			return; /* nothing to do */
1291		tmp &= ~statack;
1292		/* ack what we can */
1293		if (tmp != 0)
1294			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1295		statack |= tmp;
1296	}
1297	fxp_intr_body(sc, statack, count);
1298}
1299#endif /* DEVICE_POLLING */
1300
1301/*
1302 * Process interface interrupts.
1303 */
1304static void
1305fxp_intr(void *xsc)
1306{
1307	struct fxp_softc *sc = xsc;
1308	u_int8_t statack;
1309
1310#ifdef DEVICE_POLLING
1311	struct ifnet *ifp = &sc->sc_if;
1312
1313	if (ifp->if_flags & IFF_POLLING)
1314		return;
1315	if (ether_poll_register(fxp_poll, ifp)) {
1316		/* disable interrupts */
1317		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1318		fxp_poll(ifp, 0, 1);
1319		return;
1320	}
1321#endif
1322
1323	if (sc->suspended) {
1324		return;
1325	}
1326
1327	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1328		/*
1329		 * It should not be possible to have all bits set; the
1330		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1331		 * all bits are set, this may indicate that the card has
1332		 * been physically ejected, so ignore it.
1333		 */
1334		if (statack == 0xff)
1335			return;
1336
1337		/*
1338		 * First ACK all the interrupts in this pass.
1339		 */
1340		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1341		fxp_intr_body(sc, statack, -1);
1342	}
1343}
1344
1345static void
1346fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1347{
1348	struct ifnet *ifp = &sc->sc_if;
1349	struct mbuf *m;
1350	struct fxp_rfa *rfa;
1351	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1352
1353	if (rnr)
1354		fxp_rnr++;
1355#ifdef DEVICE_POLLING
1356	/* Pick up a deferred RNR condition if `count' ran out last time. */
1357	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1358		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1359		rnr = 1;
1360	}
1361#endif
1362
1363	/*
1364	 * Free any finished transmit mbuf chains.
1365	 *
1366	 * Handle the CNA event likt a CXTNO event. It used to
1367	 * be that this event (control unit not ready) was not
1368	 * encountered, but it is now with the SMPng modifications.
1369	 * The exact sequence of events that occur when the interface
1370	 * is brought up are different now, and if this event
1371	 * goes unhandled, the configuration/rxfilter setup sequence
1372	 * can stall for several seconds. The result is that no
1373	 * packets go out onto the wire for about 5 to 10 seconds
1374	 * after the interface is ifconfig'ed for the first time.
1375	 */
1376	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1377		struct fxp_cb_tx *txp;
1378
1379		for (txp = sc->cbl_first; sc->tx_queued &&
1380		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1381		    txp = txp->next) {
1382			if (txp->mb_head != NULL) {
1383				m_freem(txp->mb_head);
1384				txp->mb_head = NULL;
1385				/* clear this to reset csum offload bits */
1386				txp->tbd[0].tb_addr = 0;
1387			}
1388			sc->tx_queued--;
1389		}
1390		sc->cbl_first = txp;
1391		ifp->if_timer = 0;
1392		if (sc->tx_queued == 0) {
1393			if (sc->need_mcsetup)
1394				fxp_mc_setup(sc);
1395		}
1396		/*
1397		 * Try to start more packets transmitting.
1398		 */
1399		if (ifp->if_snd.ifq_head != NULL)
1400			fxp_start(ifp);
1401	}
1402
1403	/*
1404	 * Just return if nothing happened on the receive side.
1405	 */
1406	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1407		return;
1408
1409	/*
1410	 * Process receiver interrupts. If a no-resource (RNR)
1411	 * condition exists, get whatever packets we can and
1412	 * re-start the receiver.
1413	 *
1414	 * When using polling, we do not process the list to completion,
1415	 * so when we get an RNR interrupt we must defer the restart
1416	 * until we hit the last buffer with the C bit set.
1417	 * If we run out of cycles and rfa_headm has the C bit set,
1418	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1419	 * that the info will be used in the subsequent polling cycle.
1420	 */
1421	for (;;) {
1422		m = sc->rfa_headm;
1423		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1424		    RFA_ALIGNMENT_FUDGE);
1425
1426#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1427		if (count >= 0 && count-- == 0) {
1428			if (rnr) {
1429				/* Defer RNR processing until the next time. */
1430				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1431				rnr = 0;
1432			}
1433			break;
1434		}
1435#endif /* DEVICE_POLLING */
1436
1437		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1438			break;
1439
1440		/*
1441		 * Remove first packet from the chain.
1442		 */
1443		sc->rfa_headm = m->m_next;
1444		m->m_next = NULL;
1445
1446		/*
1447		 * Add a new buffer to the receive chain.
1448		 * If this fails, the old buffer is recycled
1449		 * instead.
1450		 */
1451		if (fxp_add_rfabuf(sc, m) == 0) {
1452			int total_len;
1453
1454			/*
1455			 * Fetch packet length (the top 2 bits of
1456			 * actual_size are flags set by the controller
1457			 * upon completion), and drop the packet in case
1458			 * of bogus length or CRC errors.
1459			 */
1460			total_len = rfa->actual_size & 0x3fff;
1461			if (total_len < sizeof(struct ether_header) ||
1462			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1463				sizeof(struct fxp_rfa) ||
1464			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1465				m_freem(m);
1466				continue;
1467			}
1468
1469                        /* Do IP checksum checking. */
1470			if (rfa->rfa_status & FXP_RFA_STATUS_PARSE) {
1471				if (rfa->rfax_csum_sts &
1472				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1473					m->m_pkthdr.csum_flags |=
1474					    CSUM_IP_CHECKED;
1475				if (rfa->rfax_csum_sts &
1476				    FXP_RFDX_CS_IP_CSUM_VALID)
1477					m->m_pkthdr.csum_flags |=
1478					    CSUM_IP_VALID;
1479				if ((rfa->rfax_csum_sts &
1480				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1481				    (rfa->rfax_csum_sts &
1482				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1483					m->m_pkthdr.csum_flags |=
1484					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1485					m->m_pkthdr.csum_data = 0xffff;
1486				}
1487			}
1488
1489			m->m_pkthdr.len = m->m_len = total_len;
1490			m->m_pkthdr.rcvif = ifp;
1491
1492			(*ifp->if_input)(ifp, m);
1493		}
1494	}
1495	if (rnr) {
1496		fxp_scb_wait(sc);
1497		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1498		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1499		    RFA_ALIGNMENT_FUDGE);
1500		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1501	}
1502}
1503
1504/*
1505 * Update packet in/out/collision statistics. The i82557 doesn't
1506 * allow you to access these counters without doing a fairly
1507 * expensive DMA to get _all_ of the statistics it maintains, so
1508 * we do this operation here only once per second. The statistics
1509 * counters in the kernel are updated from the previous dump-stats
1510 * DMA and then a new dump-stats DMA is started. The on-chip
1511 * counters are zeroed when the DMA completes. If we can't start
1512 * the DMA immediately, we don't wait - we just prepare to read
1513 * them again next time.
1514 */
1515static void
1516fxp_tick(void *xsc)
1517{
1518	struct fxp_softc *sc = xsc;
1519	struct ifnet *ifp = &sc->sc_if;
1520	struct fxp_stats *sp = sc->fxp_stats;
1521	struct fxp_cb_tx *txp;
1522	int s;
1523
1524	ifp->if_opackets += sp->tx_good;
1525	ifp->if_collisions += sp->tx_total_collisions;
1526	if (sp->rx_good) {
1527		ifp->if_ipackets += sp->rx_good;
1528		sc->rx_idle_secs = 0;
1529	} else {
1530		/*
1531		 * Receiver's been idle for another second.
1532		 */
1533		sc->rx_idle_secs++;
1534	}
1535	ifp->if_ierrors +=
1536	    sp->rx_crc_errors +
1537	    sp->rx_alignment_errors +
1538	    sp->rx_rnr_errors +
1539	    sp->rx_overrun_errors;
1540	/*
1541	 * If any transmit underruns occured, bump up the transmit
1542	 * threshold by another 512 bytes (64 * 8).
1543	 */
1544	if (sp->tx_underruns) {
1545		ifp->if_oerrors += sp->tx_underruns;
1546		if (tx_threshold < 192)
1547			tx_threshold += 64;
1548	}
1549	s = splimp();
1550	/*
1551	 * Release any xmit buffers that have completed DMA. This isn't
1552	 * strictly necessary to do here, but it's advantagous for mbufs
1553	 * with external storage to be released in a timely manner rather
1554	 * than being defered for a potentially long time. This limits
1555	 * the delay to a maximum of one second.
1556	 */
1557	for (txp = sc->cbl_first; sc->tx_queued &&
1558	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1559	    txp = txp->next) {
1560		if (txp->mb_head != NULL) {
1561			m_freem(txp->mb_head);
1562			txp->mb_head = NULL;
1563			/* clear this to reset csum offload bits */
1564			txp->tbd[0].tb_addr = 0;
1565		}
1566		sc->tx_queued--;
1567	}
1568	sc->cbl_first = txp;
1569	/*
1570	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1571	 * then assume the receiver has locked up and attempt to clear
1572	 * the condition by reprogramming the multicast filter. This is
1573	 * a work-around for a bug in the 82557 where the receiver locks
1574	 * up if it gets certain types of garbage in the syncronization
1575	 * bits prior to the packet header. This bug is supposed to only
1576	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1577	 * mode as well (perhaps due to a 10/100 speed transition).
1578	 */
1579	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1580		sc->rx_idle_secs = 0;
1581		fxp_mc_setup(sc);
1582	}
1583	/*
1584	 * If there is no pending command, start another stats
1585	 * dump. Otherwise punt for now.
1586	 */
1587	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1588		/*
1589		 * Start another stats dump.
1590		 */
1591		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1592	} else {
1593		/*
1594		 * A previous command is still waiting to be accepted.
1595		 * Just zero our copy of the stats and wait for the
1596		 * next timer event to update them.
1597		 */
1598		sp->tx_good = 0;
1599		sp->tx_underruns = 0;
1600		sp->tx_total_collisions = 0;
1601
1602		sp->rx_good = 0;
1603		sp->rx_crc_errors = 0;
1604		sp->rx_alignment_errors = 0;
1605		sp->rx_rnr_errors = 0;
1606		sp->rx_overrun_errors = 0;
1607	}
1608	if (sc->miibus != NULL)
1609		mii_tick(device_get_softc(sc->miibus));
1610	splx(s);
1611	/*
1612	 * Schedule another timeout one second from now.
1613	 */
1614	sc->stat_ch = timeout(fxp_tick, sc, hz);
1615}
1616
1617/*
1618 * Stop the interface. Cancels the statistics updater and resets
1619 * the interface.
1620 */
1621static void
1622fxp_stop(struct fxp_softc *sc)
1623{
1624	struct ifnet *ifp = &sc->sc_if;
1625	struct fxp_cb_tx *txp;
1626	int i;
1627
1628	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1629	ifp->if_timer = 0;
1630
1631#ifdef DEVICE_POLLING
1632	ether_poll_deregister(ifp);
1633#endif
1634	/*
1635	 * Cancel stats updater.
1636	 */
1637	untimeout(fxp_tick, sc, sc->stat_ch);
1638
1639	/*
1640	 * Issue software reset, which also unloads the microcode.
1641	 */
1642	sc->flags &= ~FXP_FLAG_UCODE;
1643	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1644	DELAY(50);
1645
1646	/*
1647	 * Release any xmit buffers.
1648	 */
1649	txp = sc->cbl_base;
1650	if (txp != NULL) {
1651		for (i = 0; i < FXP_NTXCB; i++) {
1652			if (txp[i].mb_head != NULL) {
1653				m_freem(txp[i].mb_head);
1654				txp[i].mb_head = NULL;
1655				/* clear this to reset csum offload bits */
1656				txp[i].tbd[0].tb_addr = 0;
1657			}
1658		}
1659	}
1660	sc->tx_queued = 0;
1661
1662	/*
1663	 * Free all the receive buffers then reallocate/reinitialize
1664	 */
1665	if (sc->rfa_headm != NULL)
1666		m_freem(sc->rfa_headm);
1667	sc->rfa_headm = NULL;
1668	sc->rfa_tailm = NULL;
1669	for (i = 0; i < FXP_NRFABUFS; i++) {
1670		if (fxp_add_rfabuf(sc, NULL) != 0) {
1671			/*
1672			 * This "can't happen" - we're at splimp()
1673			 * and we just freed all the buffers we need
1674			 * above.
1675			 */
1676			panic("fxp_stop: no buffers!");
1677		}
1678	}
1679}
1680
1681/*
1682 * Watchdog/transmission transmit timeout handler. Called when a
1683 * transmission is started on the interface, but no interrupt is
1684 * received before the timeout. This usually indicates that the
1685 * card has wedged for some reason.
1686 */
1687static void
1688fxp_watchdog(struct ifnet *ifp)
1689{
1690	struct fxp_softc *sc = ifp->if_softc;
1691
1692	device_printf(sc->dev, "device timeout\n");
1693	ifp->if_oerrors++;
1694
1695	fxp_init(sc);
1696}
1697
1698static void
1699fxp_init(void *xsc)
1700{
1701	struct fxp_softc *sc = xsc;
1702	struct ifnet *ifp = &sc->sc_if;
1703	struct fxp_cb_config *cbp;
1704	struct fxp_cb_ias *cb_ias;
1705	struct fxp_cb_tx *txp;
1706	struct fxp_cb_mcs *mcsp;
1707	int i, prm, s;
1708
1709	s = splimp();
1710	/*
1711	 * Cancel any pending I/O
1712	 */
1713	fxp_stop(sc);
1714
1715	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1716
1717	/*
1718	 * Initialize base of CBL and RFA memory. Loading with zero
1719	 * sets it up for regular linear addressing.
1720	 */
1721	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1722	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1723
1724	fxp_scb_wait(sc);
1725	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1726
1727	/*
1728	 * Initialize base of dump-stats buffer.
1729	 */
1730	fxp_scb_wait(sc);
1731	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1732	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1733
1734	/*
1735	 * Attempt to load microcode if requested.
1736	 */
1737	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1738		fxp_load_ucode(sc);
1739
1740	/*
1741	 * Initialize the multicast address list.
1742	 */
1743	if (fxp_mc_addrs(sc)) {
1744		mcsp = sc->mcsp;
1745		mcsp->cb_status = 0;
1746		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1747		mcsp->link_addr = -1;
1748		/*
1749	 	 * Start the multicast setup command.
1750		 */
1751		fxp_scb_wait(sc);
1752		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1753		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1754		/* ...and wait for it to complete. */
1755		fxp_dma_wait(&mcsp->cb_status, sc);
1756	}
1757
1758	/*
1759	 * We temporarily use memory that contains the TxCB list to
1760	 * construct the config CB. The TxCB list memory is rebuilt
1761	 * later.
1762	 */
1763	cbp = (struct fxp_cb_config *) sc->cbl_base;
1764
1765	/*
1766	 * This bcopy is kind of disgusting, but there are a bunch of must be
1767	 * zero and must be one bits in this structure and this is the easiest
1768	 * way to initialize them all to proper values.
1769	 */
1770	bcopy(fxp_cb_config_template,
1771		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1772		sizeof(fxp_cb_config_template));
1773
1774	cbp->cb_status =	0;
1775	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1776	cbp->link_addr =	-1;	/* (no) next command */
1777	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1778	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1779	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1780	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1781	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1782	cbp->type_enable =	0;	/* actually reserved */
1783	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1784	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1785	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1786	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1787	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1788	cbp->late_scb =		0;	/* (don't) defer SCB update */
1789	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1790	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1791	cbp->ci_int =		1;	/* interrupt on CU idle */
1792	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1793	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1794	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1795	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1796	cbp->disc_short_rx =	!prm;	/* discard short packets */
1797	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1798	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1799	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1800	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
1801	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1802	cbp->csma_dis =		0;	/* (don't) disable link */
1803	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1804	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1805	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1806	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1807	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1808	cbp->nsai =		1;	/* (don't) disable source addr insert */
1809	cbp->preamble_length =	2;	/* (7 byte) preamble */
1810	cbp->loopback =		0;	/* (don't) loopback */
1811	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1812	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1813	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1814	cbp->promiscuous =	prm;	/* promiscuous mode */
1815	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1816	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1817	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1818	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1819	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1820
1821	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1822	cbp->padding =		1;	/* (do) pad short tx packets */
1823	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1824	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1825	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1826	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1827					/* must set wake_en in PMCSR also */
1828	cbp->force_fdx =	0;	/* (don't) force full duplex */
1829	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1830	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1831	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1832	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
1833
1834	if (sc->revision == FXP_REV_82557) {
1835		/*
1836		 * The 82557 has no hardware flow control, the values
1837		 * below are the defaults for the chip.
1838		 */
1839		cbp->fc_delay_lsb =	0;
1840		cbp->fc_delay_msb =	0x40;
1841		cbp->pri_fc_thresh =	3;
1842		cbp->tx_fc_dis =	0;
1843		cbp->rx_fc_restop =	0;
1844		cbp->rx_fc_restart =	0;
1845		cbp->fc_filter =	0;
1846		cbp->pri_fc_loc =	1;
1847	} else {
1848		cbp->fc_delay_lsb =	0x1f;
1849		cbp->fc_delay_msb =	0x01;
1850		cbp->pri_fc_thresh =	3;
1851		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1852		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1853		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1854		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1855		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1856	}
1857
1858	/*
1859	 * Start the config command/DMA.
1860	 */
1861	fxp_scb_wait(sc);
1862	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1863	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1864	/* ...and wait for it to complete. */
1865	fxp_dma_wait(&cbp->cb_status, sc);
1866
1867	/*
1868	 * Now initialize the station address. Temporarily use the TxCB
1869	 * memory area like we did above for the config CB.
1870	 */
1871	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1872	cb_ias->cb_status = 0;
1873	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1874	cb_ias->link_addr = -1;
1875	bcopy(sc->arpcom.ac_enaddr,
1876	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1877	    sizeof(sc->arpcom.ac_enaddr));
1878
1879	/*
1880	 * Start the IAS (Individual Address Setup) command/DMA.
1881	 */
1882	fxp_scb_wait(sc);
1883	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1884	/* ...and wait for it to complete. */
1885	fxp_dma_wait(&cb_ias->cb_status, sc);
1886
1887	/*
1888	 * Initialize transmit control block (TxCB) list.
1889	 */
1890
1891	txp = sc->cbl_base;
1892	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1893	for (i = 0; i < FXP_NTXCB; i++) {
1894		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1895		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1896		txp[i].link_addr =
1897		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1898		if (sc->flags & FXP_FLAG_EXT_TXCB)
1899			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1900		else
1901			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1902		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1903	}
1904	/*
1905	 * Set the suspend flag on the first TxCB and start the control
1906	 * unit. It will execute the NOP and then suspend.
1907	 */
1908	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1909	sc->cbl_first = sc->cbl_last = txp;
1910	sc->tx_queued = 1;
1911
1912	fxp_scb_wait(sc);
1913	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1914
1915	/*
1916	 * Initialize receiver buffer area - RFA.
1917	 */
1918	fxp_scb_wait(sc);
1919	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1920	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1921	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1922
1923	/*
1924	 * Set current media.
1925	 */
1926	if (sc->miibus != NULL)
1927		mii_mediachg(device_get_softc(sc->miibus));
1928
1929	ifp->if_flags |= IFF_RUNNING;
1930	ifp->if_flags &= ~IFF_OACTIVE;
1931
1932	/*
1933	 * Enable interrupts.
1934	 */
1935#ifdef DEVICE_POLLING
1936	/*
1937	 * ... but only do that if we are not polling. And because (presumably)
1938	 * the default is interrupts on, we need to disable them explicitly!
1939	 */
1940	if ( ifp->if_flags & IFF_POLLING )
1941		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1942	else
1943#endif /* DEVICE_POLLING */
1944	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1945	splx(s);
1946
1947	/*
1948	 * Start stats updater.
1949	 */
1950	sc->stat_ch = timeout(fxp_tick, sc, hz);
1951}
1952
1953static int
1954fxp_serial_ifmedia_upd(struct ifnet *ifp)
1955{
1956
1957	return (0);
1958}
1959
1960static void
1961fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1962{
1963
1964	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1965}
1966
1967/*
1968 * Change media according to request.
1969 */
1970static int
1971fxp_ifmedia_upd(struct ifnet *ifp)
1972{
1973	struct fxp_softc *sc = ifp->if_softc;
1974	struct mii_data *mii;
1975
1976	mii = device_get_softc(sc->miibus);
1977	mii_mediachg(mii);
1978	return (0);
1979}
1980
1981/*
1982 * Notify the world which media we're using.
1983 */
1984static void
1985fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1986{
1987	struct fxp_softc *sc = ifp->if_softc;
1988	struct mii_data *mii;
1989
1990	mii = device_get_softc(sc->miibus);
1991	mii_pollstat(mii);
1992	ifmr->ifm_active = mii->mii_media_active;
1993	ifmr->ifm_status = mii->mii_media_status;
1994
1995	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1996		sc->cu_resume_bug = 1;
1997	else
1998		sc->cu_resume_bug = 0;
1999}
2000
2001/*
2002 * Add a buffer to the end of the RFA buffer list.
2003 * Return 0 if successful, 1 for failure. A failure results in
2004 * adding the 'oldm' (if non-NULL) on to the end of the list -
2005 * tossing out its old contents and recycling it.
2006 * The RFA struct is stuck at the beginning of mbuf cluster and the
2007 * data pointer is fixed up to point just past it.
2008 */
2009static int
2010fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
2011{
2012	u_int32_t v;
2013	struct mbuf *m;
2014	struct fxp_rfa *rfa, *p_rfa;
2015
2016	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2017	if (m == NULL) { /* try to recycle the old mbuf instead */
2018		if (oldm == NULL)
2019			return 1;
2020		m = oldm;
2021		m->m_data = m->m_ext.ext_buf;
2022	}
2023
2024	/*
2025	 * Move the data pointer up so that the incoming data packet
2026	 * will be 32-bit aligned.
2027	 */
2028	m->m_data += RFA_ALIGNMENT_FUDGE;
2029
2030	/*
2031	 * Get a pointer to the base of the mbuf cluster and move
2032	 * data start past it.
2033	 */
2034	rfa = mtod(m, struct fxp_rfa *);
2035	m->m_data += sc->rfa_size;
2036	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
2037	    RFA_ALIGNMENT_FUDGE);
2038
2039	/*
2040	 * Initialize the rest of the RFA.  Note that since the RFA
2041	 * is misaligned, we cannot store values directly.  Instead,
2042	 * we use an optimized, inline copy.
2043	 */
2044
2045	rfa->rfa_status = 0;
2046	rfa->rfa_control = FXP_RFA_CONTROL_EL;
2047	rfa->actual_size = 0;
2048
2049	v = -1;
2050	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
2051	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
2052
2053	/*
2054	 * If there are other buffers already on the list, attach this
2055	 * one to the end by fixing up the tail to point to this one.
2056	 */
2057	if (sc->rfa_headm != NULL) {
2058		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
2059		    RFA_ALIGNMENT_FUDGE);
2060		sc->rfa_tailm->m_next = m;
2061		v = vtophys(rfa);
2062		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2063		p_rfa->rfa_control = 0;
2064	} else {
2065		sc->rfa_headm = m;
2066	}
2067	sc->rfa_tailm = m;
2068
2069	return (m == oldm);
2070}
2071
2072static volatile int
2073fxp_miibus_readreg(device_t dev, int phy, int reg)
2074{
2075	struct fxp_softc *sc = device_get_softc(dev);
2076	int count = 10000;
2077	int value;
2078
2079	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2080	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2081
2082	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2083	    && count--)
2084		DELAY(10);
2085
2086	if (count <= 0)
2087		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2088
2089	return (value & 0xffff);
2090}
2091
2092static void
2093fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2094{
2095	struct fxp_softc *sc = device_get_softc(dev);
2096	int count = 10000;
2097
2098	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2099	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2100	    (value & 0xffff));
2101
2102	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2103	    count--)
2104		DELAY(10);
2105
2106	if (count <= 0)
2107		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2108}
2109
2110static int
2111fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2112{
2113	struct fxp_softc *sc = ifp->if_softc;
2114	struct ifreq *ifr = (struct ifreq *)data;
2115	struct mii_data *mii;
2116	int s, error = 0;
2117
2118	s = splimp();
2119
2120	switch (command) {
2121	case SIOCSIFFLAGS:
2122		if (ifp->if_flags & IFF_ALLMULTI)
2123			sc->flags |= FXP_FLAG_ALL_MCAST;
2124		else
2125			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2126
2127		/*
2128		 * If interface is marked up and not running, then start it.
2129		 * If it is marked down and running, stop it.
2130		 * XXX If it's up then re-initialize it. This is so flags
2131		 * such as IFF_PROMISC are handled.
2132		 */
2133		if (ifp->if_flags & IFF_UP) {
2134			fxp_init(sc);
2135		} else {
2136			if (ifp->if_flags & IFF_RUNNING)
2137				fxp_stop(sc);
2138		}
2139		break;
2140
2141	case SIOCADDMULTI:
2142	case SIOCDELMULTI:
2143		if (ifp->if_flags & IFF_ALLMULTI)
2144			sc->flags |= FXP_FLAG_ALL_MCAST;
2145		else
2146			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2147		/*
2148		 * Multicast list has changed; set the hardware filter
2149		 * accordingly.
2150		 */
2151		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2152			fxp_mc_setup(sc);
2153		/*
2154		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2155		 * again rather than else {}.
2156		 */
2157		if (sc->flags & FXP_FLAG_ALL_MCAST)
2158			fxp_init(sc);
2159		error = 0;
2160		break;
2161
2162	case SIOCSIFMEDIA:
2163	case SIOCGIFMEDIA:
2164		if (sc->miibus != NULL) {
2165			mii = device_get_softc(sc->miibus);
2166                        error = ifmedia_ioctl(ifp, ifr,
2167                            &mii->mii_media, command);
2168		} else {
2169                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2170		}
2171		break;
2172
2173	default:
2174		error = ether_ioctl(ifp, command, data);
2175	}
2176	splx(s);
2177	return (error);
2178}
2179
2180/*
2181 * Fill in the multicast address list and return number of entries.
2182 */
2183static int
2184fxp_mc_addrs(struct fxp_softc *sc)
2185{
2186	struct fxp_cb_mcs *mcsp = sc->mcsp;
2187	struct ifnet *ifp = &sc->sc_if;
2188	struct ifmultiaddr *ifma;
2189	int nmcasts;
2190
2191	nmcasts = 0;
2192	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2193#if __FreeBSD_version < 500000
2194		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2195#else
2196		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2197#endif
2198			if (ifma->ifma_addr->sa_family != AF_LINK)
2199				continue;
2200			if (nmcasts >= MAXMCADDR) {
2201				sc->flags |= FXP_FLAG_ALL_MCAST;
2202				nmcasts = 0;
2203				break;
2204			}
2205			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2206			    (void *)(uintptr_t)(volatile void *)
2207				&sc->mcsp->mc_addr[nmcasts][0], 6);
2208			nmcasts++;
2209		}
2210	}
2211	mcsp->mc_cnt = nmcasts * 6;
2212	return (nmcasts);
2213}
2214
2215/*
2216 * Program the multicast filter.
2217 *
2218 * We have an artificial restriction that the multicast setup command
2219 * must be the first command in the chain, so we take steps to ensure
2220 * this. By requiring this, it allows us to keep up the performance of
2221 * the pre-initialized command ring (esp. link pointers) by not actually
2222 * inserting the mcsetup command in the ring - i.e. its link pointer
2223 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2224 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2225 * lead into the regular TxCB ring when it completes.
2226 *
2227 * This function must be called at splimp.
2228 */
2229static void
2230fxp_mc_setup(struct fxp_softc *sc)
2231{
2232	struct fxp_cb_mcs *mcsp = sc->mcsp;
2233	struct ifnet *ifp = &sc->sc_if;
2234	int count;
2235
2236	/*
2237	 * If there are queued commands, we must wait until they are all
2238	 * completed. If we are already waiting, then add a NOP command
2239	 * with interrupt option so that we're notified when all commands
2240	 * have been completed - fxp_start() ensures that no additional
2241	 * TX commands will be added when need_mcsetup is true.
2242	 */
2243	if (sc->tx_queued) {
2244		struct fxp_cb_tx *txp;
2245
2246		/*
2247		 * need_mcsetup will be true if we are already waiting for the
2248		 * NOP command to be completed (see below). In this case, bail.
2249		 */
2250		if (sc->need_mcsetup)
2251			return;
2252		sc->need_mcsetup = 1;
2253
2254		/*
2255		 * Add a NOP command with interrupt so that we are notified
2256		 * when all TX commands have been processed.
2257		 */
2258		txp = sc->cbl_last->next;
2259		txp->mb_head = NULL;
2260		txp->cb_status = 0;
2261		txp->cb_command = FXP_CB_COMMAND_NOP |
2262		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2263		/*
2264		 * Advance the end of list forward.
2265		 */
2266		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2267		sc->cbl_last = txp;
2268		sc->tx_queued++;
2269		/*
2270		 * Issue a resume in case the CU has just suspended.
2271		 */
2272		fxp_scb_wait(sc);
2273		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2274		/*
2275		 * Set a 5 second timer just in case we don't hear from the
2276		 * card again.
2277		 */
2278		ifp->if_timer = 5;
2279
2280		return;
2281	}
2282	sc->need_mcsetup = 0;
2283
2284	/*
2285	 * Initialize multicast setup descriptor.
2286	 */
2287	mcsp->next = sc->cbl_base;
2288	mcsp->mb_head = NULL;
2289	mcsp->cb_status = 0;
2290	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2291	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2292	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2293	(void) fxp_mc_addrs(sc);
2294	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2295	sc->tx_queued = 1;
2296
2297	/*
2298	 * Wait until command unit is not active. This should never
2299	 * be the case when nothing is queued, but make sure anyway.
2300	 */
2301	count = 100;
2302	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2303	    FXP_SCB_CUS_ACTIVE && --count)
2304		DELAY(10);
2305	if (count == 0) {
2306		device_printf(sc->dev, "command queue timeout\n");
2307		return;
2308	}
2309
2310	/*
2311	 * Start the multicast setup command.
2312	 */
2313	fxp_scb_wait(sc);
2314	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2315	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2316
2317	ifp->if_timer = 2;
2318	return;
2319}
2320
2321static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2322static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2323static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2324static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2325static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2326static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2327
2328#define UCODE(x)	x, sizeof(x)
2329
2330struct ucode {
2331	u_int32_t	revision;
2332	u_int32_t	*ucode;
2333	int		length;
2334	u_short		int_delay_offset;
2335	u_short		bundle_max_offset;
2336} ucode_table[] = {
2337	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2338	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2339	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2340	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2341	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2342	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2343	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2344	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2345	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2346	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2347	{ 0, NULL, 0, 0, 0 }
2348};
2349
2350static void
2351fxp_load_ucode(struct fxp_softc *sc)
2352{
2353	struct ucode *uc;
2354	struct fxp_cb_ucode *cbp;
2355
2356	for (uc = ucode_table; uc->ucode != NULL; uc++)
2357		if (sc->revision == uc->revision)
2358			break;
2359	if (uc->ucode == NULL)
2360		return;
2361	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2362	cbp->cb_status = 0;
2363	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2364	cbp->link_addr = -1;    	/* (no) next command */
2365	memcpy(cbp->ucode, uc->ucode, uc->length);
2366	if (uc->int_delay_offset)
2367		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2368		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2369	if (uc->bundle_max_offset)
2370		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2371		    sc->tunable_bundle_max;
2372	/*
2373	 * Download the ucode to the chip.
2374	 */
2375	fxp_scb_wait(sc);
2376	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2377	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2378	/* ...and wait for it to complete. */
2379	fxp_dma_wait(&cbp->cb_status, sc);
2380	device_printf(sc->dev,
2381	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2382	    sc->tunable_int_delay,
2383	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2384	sc->flags |= FXP_FLAG_UCODE;
2385}
2386
2387static int
2388sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2389{
2390	int error, value;
2391
2392	value = *(int *)arg1;
2393	error = sysctl_handle_int(oidp, &value, 0, req);
2394	if (error || !req->newptr)
2395		return (error);
2396	if (value < low || value > high)
2397		return (EINVAL);
2398	*(int *)arg1 = value;
2399	return (0);
2400}
2401
2402/*
2403 * Interrupt delay is expressed in microseconds, a multiplier is used
2404 * to convert this to the appropriate clock ticks before using.
2405 */
2406static int
2407sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2408{
2409	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2410}
2411
2412static int
2413sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2414{
2415	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2416}
2417