if_fxp.c revision 111119
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 111119 2003-02-19 05:47:46Z imp $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39		/* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <vm/vm.h>		/* for vtophys */
64#include <vm/pmap.h>		/* for vtophys */
65#include <machine/clock.h>	/* for DELAY */
66
67#include <net/if_types.h>
68#include <net/if_vlan_var.h>
69
70#include <pci/pcivar.h>
71#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72
73#include <dev/mii/mii.h>
74#include <dev/mii/miivar.h>
75
76#include <dev/fxp/if_fxpreg.h>
77#include <dev/fxp/if_fxpvar.h>
78#include <dev/fxp/rcvbundl.h>
79
80MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81#include "miibus_if.h"
82
83/*
84 * NOTE!  On the Alpha, we have an alignment constraint.  The
85 * card DMAs the packet immediately following the RFA.  However,
86 * the first thing in the packet is a 14-byte Ethernet header.
87 * This means that the packet is misaligned.  To compensate,
88 * we actually offset the RFA 2 bytes into the cluster.  This
89 * alignes the packet after the Ethernet header at a 32-bit
90 * boundary.  HOWEVER!  This means that the RFA is misaligned!
91 */
92#define	RFA_ALIGNMENT_FUDGE	2
93
94/*
95 * Set initial transmit threshold at 64 (512 bytes). This is
96 * increased by 64 (512 bytes) at a time, to maximum of 192
97 * (1536 bytes), if an underrun occurs.
98 */
99static int tx_threshold = 64;
100
101/*
102 * The configuration byte map has several undefined fields which
103 * must be one or must be zero.  Set up a template for these bits
104 * only, (assuming a 82557 chip) leaving the actual configuration
105 * to fxp_init.
106 *
107 * See struct fxp_cb_config for the bit definitions.
108 */
109static u_char fxp_cb_config_template[] = {
110	0x0, 0x0,		/* cb_status */
111	0x0, 0x0,		/* cb_command */
112	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113	0x0,	/*  0 */
114	0x0,	/*  1 */
115	0x0,	/*  2 */
116	0x0,	/*  3 */
117	0x0,	/*  4 */
118	0x0,	/*  5 */
119	0x32,	/*  6 */
120	0x0,	/*  7 */
121	0x0,	/*  8 */
122	0x0,	/*  9 */
123	0x6,	/* 10 */
124	0x0,	/* 11 */
125	0x0,	/* 12 */
126	0x0,	/* 13 */
127	0xf2,	/* 14 */
128	0x48,	/* 15 */
129	0x0,	/* 16 */
130	0x40,	/* 17 */
131	0xf0,	/* 18 */
132	0x0,	/* 19 */
133	0x3f,	/* 20 */
134	0x5	/* 21 */
135};
136
137struct fxp_ident {
138	u_int16_t	devid;
139	char 		*name;
140};
141
142/*
143 * Claim various Intel PCI device identifiers for this driver.  The
144 * sub-vendor and sub-device field are extensively used to identify
145 * particular variants, but we don't currently differentiate between
146 * them.
147 */
148static struct fxp_ident fxp_ident_table[] = {
149    { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150    { 0x2449,		"Intel Pro/100 Ethernet" },
151    { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152    { 0x1029,		"Intel Pro/100 Ethernet" },
153    { 0x1030,		"Intel Pro/100 Ethernet" },
154    { 0x1031,		"Intel Pro/100 Ethernet" },
155    { 0x1032,		"Intel Pro/100 Ethernet" },
156    { 0x1033,		"Intel Pro/100 Ethernet" },
157    { 0x1034,		"Intel Pro/100 Ethernet" },
158    { 0x1035,		"Intel Pro/100 Ethernet" },
159    { 0x1036,		"Intel Pro/100 Ethernet" },
160    { 0x1037,		"Intel Pro/100 Ethernet" },
161    { 0x1038,		"Intel Pro/100 Ethernet" },
162    { 0x1039,		"Intel Pro/100 Ethernet" },
163    { 0x103A,		"Intel Pro/100 Ethernet" },
164    { 0x103B,		"Intel Pro/100 Ethernet" },
165    { 0x103C,		"Intel Pro/100 Ethernet" },
166    { 0x103D,		"Intel Pro/100 Ethernet" },
167    { 0x103E,		"Intel Pro/100 Ethernet" },
168    { 0x1059,		"Intel Pro/100 M Mobile Connection" },
169    { 0,		NULL },
170};
171
172static int		fxp_probe(device_t dev);
173static int		fxp_attach(device_t dev);
174static int		fxp_detach(device_t dev);
175static int		fxp_shutdown(device_t dev);
176static int		fxp_suspend(device_t dev);
177static int		fxp_resume(device_t dev);
178
179static void		fxp_intr(void *xsc);
180static void 		fxp_init(void *xsc);
181static void 		fxp_tick(void *xsc);
182static void		fxp_powerstate_d0(device_t dev);
183static void 		fxp_start(struct ifnet *ifp);
184static void		fxp_stop(struct fxp_softc *sc);
185static void 		fxp_release(struct fxp_softc *sc);
186static int		fxp_ioctl(struct ifnet *ifp, u_long command,
187			    caddr_t data);
188static void 		fxp_watchdog(struct ifnet *ifp);
189static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
190static int		fxp_mc_addrs(struct fxp_softc *sc);
191static void		fxp_mc_setup(struct fxp_softc *sc);
192static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
193			    int autosize);
194static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
195			    u_int16_t data);
196static void		fxp_autosize_eeprom(struct fxp_softc *sc);
197static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
198			    int offset, int words);
199static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
200			    int offset, int words);
201static int		fxp_ifmedia_upd(struct ifnet *ifp);
202static void		fxp_ifmedia_sts(struct ifnet *ifp,
203			    struct ifmediareq *ifmr);
204static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
205static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
206			    struct ifmediareq *ifmr);
207static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
208static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
209			    int value);
210static void		fxp_load_ucode(struct fxp_softc *sc);
211static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
212			    int low, int high);
213static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
214static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
215static __inline void	fxp_lwcopy(volatile u_int32_t *src,
216			    volatile u_int32_t *dst);
217static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
218static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
219static __inline void	fxp_dma_wait(volatile u_int16_t *status,
220			    struct fxp_softc *sc);
221
222static device_method_t fxp_methods[] = {
223	/* Device interface */
224	DEVMETHOD(device_probe,		fxp_probe),
225	DEVMETHOD(device_attach,	fxp_attach),
226	DEVMETHOD(device_detach,	fxp_detach),
227	DEVMETHOD(device_shutdown,	fxp_shutdown),
228	DEVMETHOD(device_suspend,	fxp_suspend),
229	DEVMETHOD(device_resume,	fxp_resume),
230
231	/* MII interface */
232	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
233	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
234
235	{ 0, 0 }
236};
237
238static driver_t fxp_driver = {
239	"fxp",
240	fxp_methods,
241	sizeof(struct fxp_softc),
242};
243
244static devclass_t fxp_devclass;
245
246DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
247DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
248DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
249
250static int fxp_rnr;
251SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
252
253/*
254 * Inline function to copy a 16-bit aligned 32-bit quantity.
255 */
256static __inline void
257fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
258{
259#ifdef __i386__
260	*dst = *src;
261#else
262	volatile u_int16_t *a = (volatile u_int16_t *)src;
263	volatile u_int16_t *b = (volatile u_int16_t *)dst;
264
265	b[0] = a[0];
266	b[1] = a[1];
267#endif
268}
269
270/*
271 * Wait for the previous command to be accepted (but not necessarily
272 * completed).
273 */
274static __inline void
275fxp_scb_wait(struct fxp_softc *sc)
276{
277	int i = 10000;
278
279	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
280		DELAY(2);
281	if (i == 0)
282		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
283		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
284		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
285		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
286		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
287}
288
289static __inline void
290fxp_scb_cmd(struct fxp_softc *sc, int cmd)
291{
292
293	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
294		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
295		fxp_scb_wait(sc);
296	}
297	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
298}
299
300static __inline void
301fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
302{
303	int i = 10000;
304
305	while (!(*status & FXP_CB_STATUS_C) && --i)
306		DELAY(2);
307	if (i == 0)
308		device_printf(sc->dev, "DMA timeout\n");
309}
310
311/*
312 * Return identification string if this is device is ours.
313 */
314static int
315fxp_probe(device_t dev)
316{
317	u_int16_t devid;
318	struct fxp_ident *ident;
319
320	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
321		devid = pci_get_device(dev);
322		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
323			if (ident->devid == devid) {
324				device_set_desc(dev, ident->name);
325				return (0);
326			}
327		}
328	}
329	return (ENXIO);
330}
331
332static void
333fxp_powerstate_d0(device_t dev)
334{
335#if __FreeBSD_version >= 430002
336	u_int32_t iobase, membase, irq;
337
338	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
339		/* Save important PCI config data. */
340		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
341		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
342		irq = pci_read_config(dev, PCIR_INTLINE, 4);
343
344		/* Reset the power state. */
345		device_printf(dev, "chip is in D%d power mode "
346		    "-- setting to D0\n", pci_get_powerstate(dev));
347
348		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
349
350		/* Restore PCI config data. */
351		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
352		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
353		pci_write_config(dev, PCIR_INTLINE, irq, 4);
354	}
355#endif
356}
357
358static int
359fxp_attach(device_t dev)
360{
361	int error = 0;
362	struct fxp_softc *sc = device_get_softc(dev);
363	struct ifnet *ifp;
364	u_int32_t val;
365	u_int16_t data;
366	int i, rid, m1, m2, prefer_iomap;
367	int s;
368
369	bzero(sc, sizeof(*sc));
370	sc->dev = dev;
371	callout_handle_init(&sc->stat_ch);
372	sysctl_ctx_init(&sc->sysctl_ctx);
373	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
374	    MTX_DEF | MTX_RECURSE);
375
376	s = splimp();
377
378	/*
379	 * Enable bus mastering. Enable memory space too, in case
380	 * BIOS/Prom forgot about it.
381	 */
382	val = pci_read_config(dev, PCIR_COMMAND, 2);
383	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
384	pci_write_config(dev, PCIR_COMMAND, val, 2);
385	val = pci_read_config(dev, PCIR_COMMAND, 2);
386
387	fxp_powerstate_d0(dev);
388
389	/*
390	 * Figure out which we should try first - memory mapping or i/o mapping?
391	 * We default to memory mapping. Then we accept an override from the
392	 * command line. Then we check to see which one is enabled.
393	 */
394	m1 = PCIM_CMD_MEMEN;
395	m2 = PCIM_CMD_PORTEN;
396	prefer_iomap = 0;
397	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
398	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
399		m1 = PCIM_CMD_PORTEN;
400		m2 = PCIM_CMD_MEMEN;
401	}
402
403	if (val & m1) {
404		sc->rtp =
405		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
406		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
407		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
408	                                     0, ~0, 1, RF_ACTIVE);
409	}
410	if (sc->mem == NULL && (val & m2)) {
411		sc->rtp =
412		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
413		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
414		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
415                                            0, ~0, 1, RF_ACTIVE);
416	}
417
418	if (!sc->mem) {
419		device_printf(dev, "could not map device registers\n");
420		error = ENXIO;
421		goto fail;
422        }
423	if (bootverbose) {
424		device_printf(dev, "using %s space register mapping\n",
425		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
426	}
427
428	sc->sc_st = rman_get_bustag(sc->mem);
429	sc->sc_sh = rman_get_bushandle(sc->mem);
430
431	/*
432	 * Allocate our interrupt.
433	 */
434	rid = 0;
435	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
436				 RF_SHAREABLE | RF_ACTIVE);
437	if (sc->irq == NULL) {
438		device_printf(dev, "could not map interrupt\n");
439		error = ENXIO;
440		goto fail;
441	}
442
443	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
444			       fxp_intr, sc, &sc->ih);
445	if (error) {
446		device_printf(dev, "could not setup irq\n");
447		goto fail;
448	}
449
450	/*
451	 * Reset to a stable state.
452	 */
453	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
454	DELAY(10);
455
456	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
457	    M_DEVBUF, M_NOWAIT | M_ZERO);
458	if (sc->cbl_base == NULL)
459		goto failmem;
460
461	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
462	    M_NOWAIT | M_ZERO);
463	if (sc->fxp_stats == NULL)
464		goto failmem;
465
466	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
467	if (sc->mcsp == NULL)
468		goto failmem;
469
470	/*
471	 * Pre-allocate our receive buffers.
472	 */
473	for (i = 0; i < FXP_NRFABUFS; i++) {
474		if (fxp_add_rfabuf(sc, NULL) != 0) {
475			goto failmem;
476		}
477	}
478
479	/*
480	 * Find out how large of an SEEPROM we have.
481	 */
482	fxp_autosize_eeprom(sc);
483
484	/*
485	 * Determine whether we must use the 503 serial interface.
486	 */
487	fxp_read_eeprom(sc, &data, 6, 1);
488	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
489	    (data & FXP_PHY_SERIAL_ONLY))
490		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
491
492	/*
493	 * Create the sysctl tree
494	 */
495	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
496	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
497	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
498	if (sc->sysctl_tree == NULL)
499		goto fail;
500	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
501	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
502	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
503	    "FXP driver receive interrupt microcode bundling delay");
504	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
505	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
506	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
507	    "FXP driver receive interrupt microcode bundle size limit");
508
509	/*
510	 * Pull in device tunables.
511	 */
512	sc->tunable_int_delay = TUNABLE_INT_DELAY;
513	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
514	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515	    "int_delay", &sc->tunable_int_delay);
516	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517	    "bundle_max", &sc->tunable_bundle_max);
518
519	/*
520	 * Find out the chip revision; lump all 82557 revs together.
521	 */
522	fxp_read_eeprom(sc, &data, 5, 1);
523	if ((data >> 8) == 1)
524		sc->revision = FXP_REV_82557;
525	else
526		sc->revision = pci_get_revid(dev);
527
528	/*
529	 * Enable workarounds for certain chip revision deficiencies.
530	 *
531	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
532	 * some systems based a normal 82559 design, have a defect where
533	 * the chip can cause a PCI protocol violation if it receives
534	 * a CU_RESUME command when it is entering the IDLE state.  The
535	 * workaround is to disable Dynamic Standby Mode, so the chip never
536	 * deasserts CLKRUN#, and always remains in an active state.
537	 *
538	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
539	 */
540	i = pci_get_device(dev);
541	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
542	    sc->revision >= FXP_REV_82559_A0) {
543		fxp_read_eeprom(sc, &data, 10, 1);
544		if (data & 0x02) {			/* STB enable */
545			u_int16_t cksum;
546			int i;
547
548			device_printf(dev,
549			    "Disabling dynamic standby mode in EEPROM\n");
550			data &= ~0x02;
551			fxp_write_eeprom(sc, &data, 10, 1);
552			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
553			cksum = 0;
554			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
555				fxp_read_eeprom(sc, &data, i, 1);
556				cksum += data;
557			}
558			i = (1 << sc->eeprom_size) - 1;
559			cksum = 0xBABA - cksum;
560			fxp_read_eeprom(sc, &data, i, 1);
561			fxp_write_eeprom(sc, &cksum, i, 1);
562			device_printf(dev,
563			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
564			    i, data, cksum);
565#if 1
566			/*
567			 * If the user elects to continue, try the software
568			 * workaround, as it is better than nothing.
569			 */
570			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
571#endif
572		}
573	}
574
575	/*
576	 * If we are not a 82557 chip, we can enable extended features.
577	 */
578	if (sc->revision != FXP_REV_82557) {
579		/*
580		 * If MWI is enabled in the PCI configuration, and there
581		 * is a valid cacheline size (8 or 16 dwords), then tell
582		 * the board to turn on MWI.
583		 */
584		if (val & PCIM_CMD_MWRICEN &&
585		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
586			sc->flags |= FXP_FLAG_MWI_ENABLE;
587
588		/* turn on the extended TxCB feature */
589		sc->flags |= FXP_FLAG_EXT_TXCB;
590
591		/* enable reception of long frames for VLAN */
592		sc->flags |= FXP_FLAG_LONG_PKT_EN;
593	}
594
595	/*
596	 * Read MAC address.
597	 */
598	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
599	device_printf(dev, "Ethernet address %6D%s\n",
600	    sc->arpcom.ac_enaddr, ":",
601	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
602	if (bootverbose) {
603		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
604		    pci_get_vendor(dev), pci_get_device(dev),
605		    pci_get_subvendor(dev), pci_get_subdevice(dev),
606		    pci_get_revid(dev));
607		fxp_read_eeprom(sc, &data, 10, 1);
608		device_printf(dev, "Dynamic Standby mode is %s\n",
609		    data & 0x02 ? "enabled" : "disabled");
610	}
611
612	/*
613	 * If this is only a 10Mbps device, then there is no MII, and
614	 * the PHY will use a serial interface instead.
615	 *
616	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
617	 * doesn't have a programming interface of any sort.  The
618	 * media is sensed automatically based on how the link partner
619	 * is configured.  This is, in essence, manual configuration.
620	 */
621	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
622		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
623		    fxp_serial_ifmedia_sts);
624		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
625		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
626	} else {
627		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
628		    fxp_ifmedia_sts)) {
629	                device_printf(dev, "MII without any PHY!\n");
630			error = ENXIO;
631			goto fail;
632		}
633	}
634
635	ifp = &sc->arpcom.ac_if;
636	ifp->if_unit = device_get_unit(dev);
637	ifp->if_name = "fxp";
638	ifp->if_output = ether_output;
639	ifp->if_baudrate = 100000000;
640	ifp->if_init = fxp_init;
641	ifp->if_softc = sc;
642	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643	ifp->if_ioctl = fxp_ioctl;
644	ifp->if_start = fxp_start;
645	ifp->if_watchdog = fxp_watchdog;
646
647	/*
648	 * Attach the interface.
649	 */
650	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
651
652	/*
653	 * Tell the upper layer(s) we support long frames.
654	 */
655	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
656	ifp->if_capabilities |= IFCAP_VLAN_MTU;
657
658	/*
659	 * Let the system queue as many packets as we have available
660	 * TX descriptors.
661	 */
662	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
663
664	splx(s);
665	return (0);
666
667failmem:
668	device_printf(dev, "Failed to malloc memory\n");
669	error = ENOMEM;
670fail:
671	splx(s);
672	fxp_release(sc);
673	return (error);
674}
675
676/*
677 * release all resources
678 */
679static void
680fxp_release(struct fxp_softc *sc)
681{
682
683	bus_generic_detach(sc->dev);
684	if (sc->miibus)
685		device_delete_child(sc->dev, sc->miibus);
686
687	if (sc->cbl_base)
688		free(sc->cbl_base, M_DEVBUF);
689	if (sc->fxp_stats)
690		free(sc->fxp_stats, M_DEVBUF);
691	if (sc->mcsp)
692		free(sc->mcsp, M_DEVBUF);
693	if (sc->rfa_headm)
694		m_freem(sc->rfa_headm);
695
696	if (sc->ih)
697		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
698	if (sc->irq)
699		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
700	if (sc->mem)
701		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
702
703        sysctl_ctx_free(&sc->sysctl_ctx);
704
705	mtx_destroy(&sc->sc_mtx);
706}
707
708/*
709 * Detach interface.
710 */
711static int
712fxp_detach(device_t dev)
713{
714	struct fxp_softc *sc = device_get_softc(dev);
715	int s;
716
717	/* disable interrupts */
718	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
719
720	s = splimp();
721
722	/*
723	 * Stop DMA and drop transmit queue.
724	 */
725	fxp_stop(sc);
726
727	/*
728	 * Close down routes etc.
729	 */
730	ether_ifdetach(&sc->arpcom.ac_if);
731
732	/*
733	 * Free all media structures.
734	 */
735	ifmedia_removeall(&sc->sc_media);
736
737	splx(s);
738
739	/* Release our allocated resources. */
740	fxp_release(sc);
741
742	return (0);
743}
744
745/*
746 * Device shutdown routine. Called at system shutdown after sync. The
747 * main purpose of this routine is to shut off receiver DMA so that
748 * kernel memory doesn't get clobbered during warmboot.
749 */
750static int
751fxp_shutdown(device_t dev)
752{
753	/*
754	 * Make sure that DMA is disabled prior to reboot. Not doing
755	 * do could allow DMA to corrupt kernel memory during the
756	 * reboot before the driver initializes.
757	 */
758	fxp_stop((struct fxp_softc *) device_get_softc(dev));
759	return (0);
760}
761
762/*
763 * Device suspend routine.  Stop the interface and save some PCI
764 * settings in case the BIOS doesn't restore them properly on
765 * resume.
766 */
767static int
768fxp_suspend(device_t dev)
769{
770	struct fxp_softc *sc = device_get_softc(dev);
771	int i, s;
772
773	s = splimp();
774
775	fxp_stop(sc);
776
777	for (i = 0; i < 5; i++)
778		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
779	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
780	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
781	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
782	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
783
784	sc->suspended = 1;
785
786	splx(s);
787	return (0);
788}
789
790/*
791 * Device resume routine.  Restore some PCI settings in case the BIOS
792 * doesn't, re-enable busmastering, and restart the interface if
793 * appropriate.
794 */
795static int
796fxp_resume(device_t dev)
797{
798	struct fxp_softc *sc = device_get_softc(dev);
799	struct ifnet *ifp = &sc->sc_if;
800	u_int16_t pci_command;
801	int i, s;
802
803	s = splimp();
804
805	fxp_powerstate_d0(dev);
806
807	/* better way to do this? */
808	for (i = 0; i < 5; i++)
809		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
810	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
811	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
812	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
813	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
814
815	/* reenable busmastering */
816	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
817	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
818	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
819
820	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
821	DELAY(10);
822
823	/* reinitialize interface if necessary */
824	if (ifp->if_flags & IFF_UP)
825		fxp_init(sc);
826
827	sc->suspended = 0;
828
829	splx(s);
830	return (0);
831}
832
833static void
834fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
835{
836	u_int16_t reg;
837	int x;
838
839	/*
840	 * Shift in data.
841	 */
842	for (x = 1 << (length - 1); x; x >>= 1) {
843		if (data & x)
844			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
845		else
846			reg = FXP_EEPROM_EECS;
847		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
848		DELAY(1);
849		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
850		DELAY(1);
851		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
852		DELAY(1);
853	}
854}
855
856/*
857 * Read from the serial EEPROM. Basically, you manually shift in
858 * the read opcode (one bit at a time) and then shift in the address,
859 * and then you shift out the data (all of this one bit at a time).
860 * The word size is 16 bits, so you have to provide the address for
861 * every 16 bits of data.
862 */
863static u_int16_t
864fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
865{
866	u_int16_t reg, data;
867	int x;
868
869	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
870	/*
871	 * Shift in read opcode.
872	 */
873	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
874	/*
875	 * Shift in address.
876	 */
877	data = 0;
878	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
879		if (offset & x)
880			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
881		else
882			reg = FXP_EEPROM_EECS;
883		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884		DELAY(1);
885		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
886		DELAY(1);
887		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
888		DELAY(1);
889		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
890		data++;
891		if (autosize && reg == 0) {
892			sc->eeprom_size = data;
893			break;
894		}
895	}
896	/*
897	 * Shift out data.
898	 */
899	data = 0;
900	reg = FXP_EEPROM_EECS;
901	for (x = 1 << 15; x; x >>= 1) {
902		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
903		DELAY(1);
904		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
905			data |= x;
906		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
907		DELAY(1);
908	}
909	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
910	DELAY(1);
911
912	return (data);
913}
914
915static void
916fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
917{
918	int i;
919
920	/*
921	 * Erase/write enable.
922	 */
923	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
924	fxp_eeprom_shiftin(sc, 0x4, 3);
925	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
926	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
927	DELAY(1);
928	/*
929	 * Shift in write opcode, address, data.
930	 */
931	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
932	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
933	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
934	fxp_eeprom_shiftin(sc, data, 16);
935	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
936	DELAY(1);
937	/*
938	 * Wait for EEPROM to finish up.
939	 */
940	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941	DELAY(1);
942	for (i = 0; i < 1000; i++) {
943		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
944			break;
945		DELAY(50);
946	}
947	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
948	DELAY(1);
949	/*
950	 * Erase/write disable.
951	 */
952	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953	fxp_eeprom_shiftin(sc, 0x4, 3);
954	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
955	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
956	DELAY(1);
957}
958
959/*
960 * From NetBSD:
961 *
962 * Figure out EEPROM size.
963 *
964 * 559's can have either 64-word or 256-word EEPROMs, the 558
965 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
966 * talks about the existance of 16 to 256 word EEPROMs.
967 *
968 * The only known sizes are 64 and 256, where the 256 version is used
969 * by CardBus cards to store CIS information.
970 *
971 * The address is shifted in msb-to-lsb, and after the last
972 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
973 * after which follows the actual data. We try to detect this zero, by
974 * probing the data-out bit in the EEPROM control register just after
975 * having shifted in a bit. If the bit is zero, we assume we've
976 * shifted enough address bits. The data-out should be tri-state,
977 * before this, which should translate to a logical one.
978 */
979static void
980fxp_autosize_eeprom(struct fxp_softc *sc)
981{
982
983	/* guess maximum size of 256 words */
984	sc->eeprom_size = 8;
985
986	/* autosize */
987	(void) fxp_eeprom_getword(sc, 0, 1);
988}
989
990static void
991fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
992{
993	int i;
994
995	for (i = 0; i < words; i++)
996		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
997}
998
999static void
1000fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1001{
1002	int i;
1003
1004	for (i = 0; i < words; i++)
1005		fxp_eeprom_putword(sc, offset + i, data[i]);
1006}
1007
1008/*
1009 * Start packet transmission on the interface.
1010 */
1011static void
1012fxp_start(struct ifnet *ifp)
1013{
1014	struct fxp_softc *sc = ifp->if_softc;
1015	struct fxp_cb_tx *txp;
1016
1017	/*
1018	 * See if we need to suspend xmit until the multicast filter
1019	 * has been reprogrammed (which can only be done at the head
1020	 * of the command chain).
1021	 */
1022	if (sc->need_mcsetup) {
1023		return;
1024	}
1025
1026	txp = NULL;
1027
1028	/*
1029	 * We're finished if there is nothing more to add to the list or if
1030	 * we're all filled up with buffers to transmit.
1031	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1032	 *       a NOP command when needed.
1033	 */
1034	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1035		struct mbuf *m, *mb_head;
1036		int segment;
1037
1038		/*
1039		 * Grab a packet to transmit.
1040		 */
1041		IF_DEQUEUE(&ifp->if_snd, mb_head);
1042
1043		/*
1044		 * Get pointer to next available tx desc.
1045		 */
1046		txp = sc->cbl_last->next;
1047
1048		/*
1049		 * Go through each of the mbufs in the chain and initialize
1050		 * the transmit buffer descriptors with the physical address
1051		 * and size of the mbuf.
1052		 */
1053tbdinit:
1054		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1055			if (m->m_len != 0) {
1056				if (segment == FXP_NTXSEG)
1057					break;
1058				txp->tbd[segment].tb_addr =
1059				    vtophys(mtod(m, vm_offset_t));
1060				txp->tbd[segment].tb_size = m->m_len;
1061				segment++;
1062			}
1063		}
1064		if (m != NULL) {
1065			struct mbuf *mn;
1066
1067			/*
1068			 * We ran out of segments. We have to recopy this
1069			 * mbuf chain first. Bail out if we can't get the
1070			 * new buffers.
1071			 */
1072			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1073			if (mn == NULL) {
1074				m_freem(mb_head);
1075				break;
1076			}
1077			if (mb_head->m_pkthdr.len > MHLEN) {
1078				MCLGET(mn, M_DONTWAIT);
1079				if ((mn->m_flags & M_EXT) == 0) {
1080					m_freem(mn);
1081					m_freem(mb_head);
1082					break;
1083				}
1084			}
1085			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1086			    mtod(mn, caddr_t));
1087			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1088			m_freem(mb_head);
1089			mb_head = mn;
1090			goto tbdinit;
1091		}
1092
1093		txp->tbd_number = segment;
1094		txp->mb_head = mb_head;
1095		txp->cb_status = 0;
1096		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1097			txp->cb_command =
1098			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1099			    FXP_CB_COMMAND_S;
1100		} else {
1101			txp->cb_command =
1102			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1103			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1104			/*
1105			 * Set a 5 second timer just in case we don't hear
1106			 * from the card again.
1107			 */
1108			ifp->if_timer = 5;
1109		}
1110		txp->tx_threshold = tx_threshold;
1111
1112		/*
1113		 * Advance the end of list forward.
1114		 */
1115
1116#ifdef __alpha__
1117		/*
1118		 * On platforms which can't access memory in 16-bit
1119		 * granularities, we must prevent the card from DMA'ing
1120		 * up the status while we update the command field.
1121		 * This could cause us to overwrite the completion status.
1122		 */
1123		atomic_clear_short(&sc->cbl_last->cb_command,
1124		    FXP_CB_COMMAND_S);
1125#else
1126		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1127#endif /*__alpha__*/
1128		sc->cbl_last = txp;
1129
1130		/*
1131		 * Advance the beginning of the list forward if there are
1132		 * no other packets queued (when nothing is queued, cbl_first
1133		 * sits on the last TxCB that was sent out).
1134		 */
1135		if (sc->tx_queued == 0)
1136			sc->cbl_first = txp;
1137
1138		sc->tx_queued++;
1139
1140		/*
1141		 * Pass packet to bpf if there is a listener.
1142		 */
1143		BPF_MTAP(ifp, mb_head);
1144	}
1145
1146	/*
1147	 * We're finished. If we added to the list, issue a RESUME to get DMA
1148	 * going again if suspended.
1149	 */
1150	if (txp != NULL) {
1151		fxp_scb_wait(sc);
1152		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1153	}
1154}
1155
1156static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1157
1158#ifdef DEVICE_POLLING
1159static poll_handler_t fxp_poll;
1160
1161static void
1162fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1163{
1164	struct fxp_softc *sc = ifp->if_softc;
1165	u_int8_t statack;
1166
1167	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1168		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1169		return;
1170	}
1171	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1172	    FXP_SCB_STATACK_FR;
1173	if (cmd == POLL_AND_CHECK_STATUS) {
1174		u_int8_t tmp;
1175
1176		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1177		if (tmp == 0xff || tmp == 0)
1178			return; /* nothing to do */
1179		tmp &= ~statack;
1180		/* ack what we can */
1181		if (tmp != 0)
1182			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1183		statack |= tmp;
1184	}
1185	fxp_intr_body(sc, statack, count);
1186}
1187#endif /* DEVICE_POLLING */
1188
1189/*
1190 * Process interface interrupts.
1191 */
1192static void
1193fxp_intr(void *xsc)
1194{
1195	struct fxp_softc *sc = xsc;
1196	u_int8_t statack;
1197
1198#ifdef DEVICE_POLLING
1199	struct ifnet *ifp = &sc->sc_if;
1200
1201	if (ifp->if_flags & IFF_POLLING)
1202		return;
1203	if (ether_poll_register(fxp_poll, ifp)) {
1204		/* disable interrupts */
1205		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1206		fxp_poll(ifp, 0, 1);
1207		return;
1208	}
1209#endif
1210
1211	if (sc->suspended) {
1212		return;
1213	}
1214
1215	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1216		/*
1217		 * It should not be possible to have all bits set; the
1218		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1219		 * all bits are set, this may indicate that the card has
1220		 * been physically ejected, so ignore it.
1221		 */
1222		if (statack == 0xff)
1223			return;
1224
1225		/*
1226		 * First ACK all the interrupts in this pass.
1227		 */
1228		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1229		fxp_intr_body(sc, statack, -1);
1230	}
1231}
1232
1233static void
1234fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1235{
1236	struct ifnet *ifp = &sc->sc_if;
1237	struct mbuf *m;
1238	struct fxp_rfa *rfa;
1239	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1240
1241	if (rnr)
1242		fxp_rnr++;
1243#ifdef DEVICE_POLLING
1244	/* Pick up a deferred RNR condition if `count' ran out last time. */
1245	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1246		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1247		rnr = 1;
1248	}
1249#endif
1250
1251	/*
1252	 * Free any finished transmit mbuf chains.
1253	 *
1254	 * Handle the CNA event likt a CXTNO event. It used to
1255	 * be that this event (control unit not ready) was not
1256	 * encountered, but it is now with the SMPng modifications.
1257	 * The exact sequence of events that occur when the interface
1258	 * is brought up are different now, and if this event
1259	 * goes unhandled, the configuration/rxfilter setup sequence
1260	 * can stall for several seconds. The result is that no
1261	 * packets go out onto the wire for about 5 to 10 seconds
1262	 * after the interface is ifconfig'ed for the first time.
1263	 */
1264	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1265		struct fxp_cb_tx *txp;
1266
1267		for (txp = sc->cbl_first; sc->tx_queued &&
1268		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1269		    txp = txp->next) {
1270			if (txp->mb_head != NULL) {
1271				m_freem(txp->mb_head);
1272				txp->mb_head = NULL;
1273			}
1274			sc->tx_queued--;
1275		}
1276		sc->cbl_first = txp;
1277		ifp->if_timer = 0;
1278		if (sc->tx_queued == 0) {
1279			if (sc->need_mcsetup)
1280				fxp_mc_setup(sc);
1281		}
1282		/*
1283		 * Try to start more packets transmitting.
1284		 */
1285		if (ifp->if_snd.ifq_head != NULL)
1286			fxp_start(ifp);
1287	}
1288
1289	/*
1290	 * Just return if nothing happened on the receive side.
1291	 */
1292	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1293		return;
1294
1295	/*
1296	 * Process receiver interrupts. If a no-resource (RNR)
1297	 * condition exists, get whatever packets we can and
1298	 * re-start the receiver.
1299	 *
1300	 * When using polling, we do not process the list to completion,
1301	 * so when we get an RNR interrupt we must defer the restart
1302	 * until we hit the last buffer with the C bit set.
1303	 * If we run out of cycles and rfa_headm has the C bit set,
1304	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1305	 * that the info will be used in the subsequent polling cycle.
1306	 */
1307	for (;;) {
1308		m = sc->rfa_headm;
1309		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1310		    RFA_ALIGNMENT_FUDGE);
1311
1312#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1313		if (count >= 0 && count-- == 0) {
1314			if (rnr) {
1315				/* Defer RNR processing until the next time. */
1316				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1317				rnr = 0;
1318			}
1319			break;
1320		}
1321#endif /* DEVICE_POLLING */
1322
1323		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1324			break;
1325
1326		/*
1327		 * Remove first packet from the chain.
1328		 */
1329		sc->rfa_headm = m->m_next;
1330		m->m_next = NULL;
1331
1332		/*
1333		 * Add a new buffer to the receive chain.
1334		 * If this fails, the old buffer is recycled
1335		 * instead.
1336		 */
1337		if (fxp_add_rfabuf(sc, m) == 0) {
1338			int total_len;
1339
1340			/*
1341			 * Fetch packet length (the top 2 bits of
1342			 * actual_size are flags set by the controller
1343			 * upon completion), and drop the packet in case
1344			 * of bogus length or CRC errors.
1345			 */
1346			total_len = rfa->actual_size & 0x3fff;
1347			if (total_len < sizeof(struct ether_header) ||
1348			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1349				sizeof(struct fxp_rfa) ||
1350			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1351				m_freem(m);
1352				continue;
1353			}
1354
1355			m->m_pkthdr.len = m->m_len = total_len;
1356			m->m_pkthdr.rcvif = ifp;
1357
1358			(*ifp->if_input)(ifp, m);
1359		}
1360	}
1361	if (rnr) {
1362		fxp_scb_wait(sc);
1363		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1364		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1365		    RFA_ALIGNMENT_FUDGE);
1366		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1367	}
1368}
1369
1370/*
1371 * Update packet in/out/collision statistics. The i82557 doesn't
1372 * allow you to access these counters without doing a fairly
1373 * expensive DMA to get _all_ of the statistics it maintains, so
1374 * we do this operation here only once per second. The statistics
1375 * counters in the kernel are updated from the previous dump-stats
1376 * DMA and then a new dump-stats DMA is started. The on-chip
1377 * counters are zeroed when the DMA completes. If we can't start
1378 * the DMA immediately, we don't wait - we just prepare to read
1379 * them again next time.
1380 */
1381static void
1382fxp_tick(void *xsc)
1383{
1384	struct fxp_softc *sc = xsc;
1385	struct ifnet *ifp = &sc->sc_if;
1386	struct fxp_stats *sp = sc->fxp_stats;
1387	struct fxp_cb_tx *txp;
1388	int s;
1389
1390	ifp->if_opackets += sp->tx_good;
1391	ifp->if_collisions += sp->tx_total_collisions;
1392	if (sp->rx_good) {
1393		ifp->if_ipackets += sp->rx_good;
1394		sc->rx_idle_secs = 0;
1395	} else {
1396		/*
1397		 * Receiver's been idle for another second.
1398		 */
1399		sc->rx_idle_secs++;
1400	}
1401	ifp->if_ierrors +=
1402	    sp->rx_crc_errors +
1403	    sp->rx_alignment_errors +
1404	    sp->rx_rnr_errors +
1405	    sp->rx_overrun_errors;
1406	/*
1407	 * If any transmit underruns occured, bump up the transmit
1408	 * threshold by another 512 bytes (64 * 8).
1409	 */
1410	if (sp->tx_underruns) {
1411		ifp->if_oerrors += sp->tx_underruns;
1412		if (tx_threshold < 192)
1413			tx_threshold += 64;
1414	}
1415	s = splimp();
1416	/*
1417	 * Release any xmit buffers that have completed DMA. This isn't
1418	 * strictly necessary to do here, but it's advantagous for mbufs
1419	 * with external storage to be released in a timely manner rather
1420	 * than being defered for a potentially long time. This limits
1421	 * the delay to a maximum of one second.
1422	 */
1423	for (txp = sc->cbl_first; sc->tx_queued &&
1424	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1425	    txp = txp->next) {
1426		if (txp->mb_head != NULL) {
1427			m_freem(txp->mb_head);
1428			txp->mb_head = NULL;
1429		}
1430		sc->tx_queued--;
1431	}
1432	sc->cbl_first = txp;
1433	/*
1434	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1435	 * then assume the receiver has locked up and attempt to clear
1436	 * the condition by reprogramming the multicast filter. This is
1437	 * a work-around for a bug in the 82557 where the receiver locks
1438	 * up if it gets certain types of garbage in the syncronization
1439	 * bits prior to the packet header. This bug is supposed to only
1440	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1441	 * mode as well (perhaps due to a 10/100 speed transition).
1442	 */
1443	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1444		sc->rx_idle_secs = 0;
1445		fxp_mc_setup(sc);
1446	}
1447	/*
1448	 * If there is no pending command, start another stats
1449	 * dump. Otherwise punt for now.
1450	 */
1451	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1452		/*
1453		 * Start another stats dump.
1454		 */
1455		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1456	} else {
1457		/*
1458		 * A previous command is still waiting to be accepted.
1459		 * Just zero our copy of the stats and wait for the
1460		 * next timer event to update them.
1461		 */
1462		sp->tx_good = 0;
1463		sp->tx_underruns = 0;
1464		sp->tx_total_collisions = 0;
1465
1466		sp->rx_good = 0;
1467		sp->rx_crc_errors = 0;
1468		sp->rx_alignment_errors = 0;
1469		sp->rx_rnr_errors = 0;
1470		sp->rx_overrun_errors = 0;
1471	}
1472	if (sc->miibus != NULL)
1473		mii_tick(device_get_softc(sc->miibus));
1474	splx(s);
1475	/*
1476	 * Schedule another timeout one second from now.
1477	 */
1478	sc->stat_ch = timeout(fxp_tick, sc, hz);
1479}
1480
1481/*
1482 * Stop the interface. Cancels the statistics updater and resets
1483 * the interface.
1484 */
1485static void
1486fxp_stop(struct fxp_softc *sc)
1487{
1488	struct ifnet *ifp = &sc->sc_if;
1489	struct fxp_cb_tx *txp;
1490	int i;
1491
1492	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1493	ifp->if_timer = 0;
1494
1495#ifdef DEVICE_POLLING
1496	ether_poll_deregister(ifp);
1497#endif
1498	/*
1499	 * Cancel stats updater.
1500	 */
1501	untimeout(fxp_tick, sc, sc->stat_ch);
1502
1503	/*
1504	 * Issue software reset, which also unloads the microcode.
1505	 */
1506	sc->flags &= ~FXP_FLAG_UCODE;
1507	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1508	DELAY(50);
1509
1510	/*
1511	 * Release any xmit buffers.
1512	 */
1513	txp = sc->cbl_base;
1514	if (txp != NULL) {
1515		for (i = 0; i < FXP_NTXCB; i++) {
1516			if (txp[i].mb_head != NULL) {
1517				m_freem(txp[i].mb_head);
1518				txp[i].mb_head = NULL;
1519			}
1520		}
1521	}
1522	sc->tx_queued = 0;
1523
1524	/*
1525	 * Free all the receive buffers then reallocate/reinitialize
1526	 */
1527	if (sc->rfa_headm != NULL)
1528		m_freem(sc->rfa_headm);
1529	sc->rfa_headm = NULL;
1530	sc->rfa_tailm = NULL;
1531	for (i = 0; i < FXP_NRFABUFS; i++) {
1532		if (fxp_add_rfabuf(sc, NULL) != 0) {
1533			/*
1534			 * This "can't happen" - we're at splimp()
1535			 * and we just freed all the buffers we need
1536			 * above.
1537			 */
1538			panic("fxp_stop: no buffers!");
1539		}
1540	}
1541}
1542
1543/*
1544 * Watchdog/transmission transmit timeout handler. Called when a
1545 * transmission is started on the interface, but no interrupt is
1546 * received before the timeout. This usually indicates that the
1547 * card has wedged for some reason.
1548 */
1549static void
1550fxp_watchdog(struct ifnet *ifp)
1551{
1552	struct fxp_softc *sc = ifp->if_softc;
1553
1554	device_printf(sc->dev, "device timeout\n");
1555	ifp->if_oerrors++;
1556
1557	fxp_init(sc);
1558}
1559
1560static void
1561fxp_init(void *xsc)
1562{
1563	struct fxp_softc *sc = xsc;
1564	struct ifnet *ifp = &sc->sc_if;
1565	struct fxp_cb_config *cbp;
1566	struct fxp_cb_ias *cb_ias;
1567	struct fxp_cb_tx *txp;
1568	struct fxp_cb_mcs *mcsp;
1569	int i, prm, s;
1570
1571	s = splimp();
1572	/*
1573	 * Cancel any pending I/O
1574	 */
1575	fxp_stop(sc);
1576
1577	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1578
1579	/*
1580	 * Initialize base of CBL and RFA memory. Loading with zero
1581	 * sets it up for regular linear addressing.
1582	 */
1583	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1584	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1585
1586	fxp_scb_wait(sc);
1587	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1588
1589	/*
1590	 * Initialize base of dump-stats buffer.
1591	 */
1592	fxp_scb_wait(sc);
1593	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1594	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1595
1596	/*
1597	 * Attempt to load microcode if requested.
1598	 */
1599	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1600		fxp_load_ucode(sc);
1601
1602	/*
1603	 * Initialize the multicast address list.
1604	 */
1605	if (fxp_mc_addrs(sc)) {
1606		mcsp = sc->mcsp;
1607		mcsp->cb_status = 0;
1608		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1609		mcsp->link_addr = -1;
1610		/*
1611	 	 * Start the multicast setup command.
1612		 */
1613		fxp_scb_wait(sc);
1614		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1615		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1616		/* ...and wait for it to complete. */
1617		fxp_dma_wait(&mcsp->cb_status, sc);
1618	}
1619
1620	/*
1621	 * We temporarily use memory that contains the TxCB list to
1622	 * construct the config CB. The TxCB list memory is rebuilt
1623	 * later.
1624	 */
1625	cbp = (struct fxp_cb_config *) sc->cbl_base;
1626
1627	/*
1628	 * This bcopy is kind of disgusting, but there are a bunch of must be
1629	 * zero and must be one bits in this structure and this is the easiest
1630	 * way to initialize them all to proper values.
1631	 */
1632	bcopy(fxp_cb_config_template,
1633		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1634		sizeof(fxp_cb_config_template));
1635
1636	cbp->cb_status =	0;
1637	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1638	cbp->link_addr =	-1;	/* (no) next command */
1639	cbp->byte_count =	22;	/* (22) bytes to config */
1640	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1641	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1642	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1643	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1644	cbp->type_enable =	0;	/* actually reserved */
1645	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1646	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1647	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1648	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1649	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1650	cbp->late_scb =		0;	/* (don't) defer SCB update */
1651	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1652	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1653	cbp->ci_int =		1;	/* interrupt on CU idle */
1654	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1655	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1656	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1657	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1658	cbp->disc_short_rx =	!prm;	/* discard short packets */
1659	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1660	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1661	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1662	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1663	cbp->csma_dis =		0;	/* (don't) disable link */
1664	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1665	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1666	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1667	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1668	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1669	cbp->nsai =		1;	/* (don't) disable source addr insert */
1670	cbp->preamble_length =	2;	/* (7 byte) preamble */
1671	cbp->loopback =		0;	/* (don't) loopback */
1672	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1673	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1674	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1675	cbp->promiscuous =	prm;	/* promiscuous mode */
1676	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1677	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1678	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1679	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1680	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1681
1682	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1683	cbp->padding =		1;	/* (do) pad short tx packets */
1684	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1685	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1686	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1687	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1688					/* must set wake_en in PMCSR also */
1689	cbp->force_fdx =	0;	/* (don't) force full duplex */
1690	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1691	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1692	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1693
1694	if (sc->revision == FXP_REV_82557) {
1695		/*
1696		 * The 82557 has no hardware flow control, the values
1697		 * below are the defaults for the chip.
1698		 */
1699		cbp->fc_delay_lsb =	0;
1700		cbp->fc_delay_msb =	0x40;
1701		cbp->pri_fc_thresh =	3;
1702		cbp->tx_fc_dis =	0;
1703		cbp->rx_fc_restop =	0;
1704		cbp->rx_fc_restart =	0;
1705		cbp->fc_filter =	0;
1706		cbp->pri_fc_loc =	1;
1707	} else {
1708		cbp->fc_delay_lsb =	0x1f;
1709		cbp->fc_delay_msb =	0x01;
1710		cbp->pri_fc_thresh =	3;
1711		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1712		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1713		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1714		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1715		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1716	}
1717
1718	/*
1719	 * Start the config command/DMA.
1720	 */
1721	fxp_scb_wait(sc);
1722	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1723	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1724	/* ...and wait for it to complete. */
1725	fxp_dma_wait(&cbp->cb_status, sc);
1726
1727	/*
1728	 * Now initialize the station address. Temporarily use the TxCB
1729	 * memory area like we did above for the config CB.
1730	 */
1731	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1732	cb_ias->cb_status = 0;
1733	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1734	cb_ias->link_addr = -1;
1735	bcopy(sc->arpcom.ac_enaddr,
1736	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1737	    sizeof(sc->arpcom.ac_enaddr));
1738
1739	/*
1740	 * Start the IAS (Individual Address Setup) command/DMA.
1741	 */
1742	fxp_scb_wait(sc);
1743	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1744	/* ...and wait for it to complete. */
1745	fxp_dma_wait(&cb_ias->cb_status, sc);
1746
1747	/*
1748	 * Initialize transmit control block (TxCB) list.
1749	 */
1750
1751	txp = sc->cbl_base;
1752	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1753	for (i = 0; i < FXP_NTXCB; i++) {
1754		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1755		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1756		txp[i].link_addr =
1757		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1758		if (sc->flags & FXP_FLAG_EXT_TXCB)
1759			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1760		else
1761			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1762		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1763	}
1764	/*
1765	 * Set the suspend flag on the first TxCB and start the control
1766	 * unit. It will execute the NOP and then suspend.
1767	 */
1768	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1769	sc->cbl_first = sc->cbl_last = txp;
1770	sc->tx_queued = 1;
1771
1772	fxp_scb_wait(sc);
1773	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1774
1775	/*
1776	 * Initialize receiver buffer area - RFA.
1777	 */
1778	fxp_scb_wait(sc);
1779	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1780	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1781	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1782
1783	/*
1784	 * Set current media.
1785	 */
1786	if (sc->miibus != NULL)
1787		mii_mediachg(device_get_softc(sc->miibus));
1788
1789	ifp->if_flags |= IFF_RUNNING;
1790	ifp->if_flags &= ~IFF_OACTIVE;
1791
1792	/*
1793	 * Enable interrupts.
1794	 */
1795#ifdef DEVICE_POLLING
1796	/*
1797	 * ... but only do that if we are not polling. And because (presumably)
1798	 * the default is interrupts on, we need to disable them explicitly!
1799	 */
1800	if ( ifp->if_flags & IFF_POLLING )
1801		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1802	else
1803#endif /* DEVICE_POLLING */
1804	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1805	splx(s);
1806
1807	/*
1808	 * Start stats updater.
1809	 */
1810	sc->stat_ch = timeout(fxp_tick, sc, hz);
1811}
1812
1813static int
1814fxp_serial_ifmedia_upd(struct ifnet *ifp)
1815{
1816
1817	return (0);
1818}
1819
1820static void
1821fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1822{
1823
1824	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1825}
1826
1827/*
1828 * Change media according to request.
1829 */
1830static int
1831fxp_ifmedia_upd(struct ifnet *ifp)
1832{
1833	struct fxp_softc *sc = ifp->if_softc;
1834	struct mii_data *mii;
1835
1836	mii = device_get_softc(sc->miibus);
1837	mii_mediachg(mii);
1838	return (0);
1839}
1840
1841/*
1842 * Notify the world which media we're using.
1843 */
1844static void
1845fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1846{
1847	struct fxp_softc *sc = ifp->if_softc;
1848	struct mii_data *mii;
1849
1850	mii = device_get_softc(sc->miibus);
1851	mii_pollstat(mii);
1852	ifmr->ifm_active = mii->mii_media_active;
1853	ifmr->ifm_status = mii->mii_media_status;
1854
1855	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1856		sc->cu_resume_bug = 1;
1857	else
1858		sc->cu_resume_bug = 0;
1859}
1860
1861/*
1862 * Add a buffer to the end of the RFA buffer list.
1863 * Return 0 if successful, 1 for failure. A failure results in
1864 * adding the 'oldm' (if non-NULL) on to the end of the list -
1865 * tossing out its old contents and recycling it.
1866 * The RFA struct is stuck at the beginning of mbuf cluster and the
1867 * data pointer is fixed up to point just past it.
1868 */
1869static int
1870fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1871{
1872	u_int32_t v;
1873	struct mbuf *m;
1874	struct fxp_rfa *rfa, *p_rfa;
1875
1876	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1877	if (m == NULL) { /* try to recycle the old mbuf instead */
1878		if (oldm == NULL)
1879			return 1;
1880		m = oldm;
1881		m->m_data = m->m_ext.ext_buf;
1882	}
1883
1884	/*
1885	 * Move the data pointer up so that the incoming data packet
1886	 * will be 32-bit aligned.
1887	 */
1888	m->m_data += RFA_ALIGNMENT_FUDGE;
1889
1890	/*
1891	 * Get a pointer to the base of the mbuf cluster and move
1892	 * data start past it.
1893	 */
1894	rfa = mtod(m, struct fxp_rfa *);
1895	m->m_data += sizeof(struct fxp_rfa);
1896	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1897
1898	/*
1899	 * Initialize the rest of the RFA.  Note that since the RFA
1900	 * is misaligned, we cannot store values directly.  Instead,
1901	 * we use an optimized, inline copy.
1902	 */
1903
1904	rfa->rfa_status = 0;
1905	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1906	rfa->actual_size = 0;
1907
1908	v = -1;
1909	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1910	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1911
1912	/*
1913	 * If there are other buffers already on the list, attach this
1914	 * one to the end by fixing up the tail to point to this one.
1915	 */
1916	if (sc->rfa_headm != NULL) {
1917		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1918		    RFA_ALIGNMENT_FUDGE);
1919		sc->rfa_tailm->m_next = m;
1920		v = vtophys(rfa);
1921		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1922		p_rfa->rfa_control = 0;
1923	} else {
1924		sc->rfa_headm = m;
1925	}
1926	sc->rfa_tailm = m;
1927
1928	return (m == oldm);
1929}
1930
1931static volatile int
1932fxp_miibus_readreg(device_t dev, int phy, int reg)
1933{
1934	struct fxp_softc *sc = device_get_softc(dev);
1935	int count = 10000;
1936	int value;
1937
1938	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1939	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1940
1941	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1942	    && count--)
1943		DELAY(10);
1944
1945	if (count <= 0)
1946		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1947
1948	return (value & 0xffff);
1949}
1950
1951static void
1952fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1953{
1954	struct fxp_softc *sc = device_get_softc(dev);
1955	int count = 10000;
1956
1957	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1958	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1959	    (value & 0xffff));
1960
1961	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1962	    count--)
1963		DELAY(10);
1964
1965	if (count <= 0)
1966		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1967}
1968
1969static int
1970fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1971{
1972	struct fxp_softc *sc = ifp->if_softc;
1973	struct ifreq *ifr = (struct ifreq *)data;
1974	struct mii_data *mii;
1975	int s, error = 0;
1976
1977	s = splimp();
1978
1979	switch (command) {
1980	case SIOCSIFFLAGS:
1981		if (ifp->if_flags & IFF_ALLMULTI)
1982			sc->flags |= FXP_FLAG_ALL_MCAST;
1983		else
1984			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1985
1986		/*
1987		 * If interface is marked up and not running, then start it.
1988		 * If it is marked down and running, stop it.
1989		 * XXX If it's up then re-initialize it. This is so flags
1990		 * such as IFF_PROMISC are handled.
1991		 */
1992		if (ifp->if_flags & IFF_UP) {
1993			fxp_init(sc);
1994		} else {
1995			if (ifp->if_flags & IFF_RUNNING)
1996				fxp_stop(sc);
1997		}
1998		break;
1999
2000	case SIOCADDMULTI:
2001	case SIOCDELMULTI:
2002		if (ifp->if_flags & IFF_ALLMULTI)
2003			sc->flags |= FXP_FLAG_ALL_MCAST;
2004		else
2005			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2006		/*
2007		 * Multicast list has changed; set the hardware filter
2008		 * accordingly.
2009		 */
2010		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2011			fxp_mc_setup(sc);
2012		/*
2013		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2014		 * again rather than else {}.
2015		 */
2016		if (sc->flags & FXP_FLAG_ALL_MCAST)
2017			fxp_init(sc);
2018		error = 0;
2019		break;
2020
2021	case SIOCSIFMEDIA:
2022	case SIOCGIFMEDIA:
2023		if (sc->miibus != NULL) {
2024			mii = device_get_softc(sc->miibus);
2025                        error = ifmedia_ioctl(ifp, ifr,
2026                            &mii->mii_media, command);
2027		} else {
2028                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2029		}
2030		break;
2031
2032	default:
2033		error = ether_ioctl(ifp, command, data);
2034	}
2035	splx(s);
2036	return (error);
2037}
2038
2039/*
2040 * Fill in the multicast address list and return number of entries.
2041 */
2042static int
2043fxp_mc_addrs(struct fxp_softc *sc)
2044{
2045	struct fxp_cb_mcs *mcsp = sc->mcsp;
2046	struct ifnet *ifp = &sc->sc_if;
2047	struct ifmultiaddr *ifma;
2048	int nmcasts;
2049
2050	nmcasts = 0;
2051	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2052#if __FreeBSD_version < 500000
2053		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2054#else
2055		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2056#endif
2057			if (ifma->ifma_addr->sa_family != AF_LINK)
2058				continue;
2059			if (nmcasts >= MAXMCADDR) {
2060				sc->flags |= FXP_FLAG_ALL_MCAST;
2061				nmcasts = 0;
2062				break;
2063			}
2064			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2065			    (void *)(uintptr_t)(volatile void *)
2066				&sc->mcsp->mc_addr[nmcasts][0], 6);
2067			nmcasts++;
2068		}
2069	}
2070	mcsp->mc_cnt = nmcasts * 6;
2071	return (nmcasts);
2072}
2073
2074/*
2075 * Program the multicast filter.
2076 *
2077 * We have an artificial restriction that the multicast setup command
2078 * must be the first command in the chain, so we take steps to ensure
2079 * this. By requiring this, it allows us to keep up the performance of
2080 * the pre-initialized command ring (esp. link pointers) by not actually
2081 * inserting the mcsetup command in the ring - i.e. its link pointer
2082 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2083 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2084 * lead into the regular TxCB ring when it completes.
2085 *
2086 * This function must be called at splimp.
2087 */
2088static void
2089fxp_mc_setup(struct fxp_softc *sc)
2090{
2091	struct fxp_cb_mcs *mcsp = sc->mcsp;
2092	struct ifnet *ifp = &sc->sc_if;
2093	int count;
2094
2095	/*
2096	 * If there are queued commands, we must wait until they are all
2097	 * completed. If we are already waiting, then add a NOP command
2098	 * with interrupt option so that we're notified when all commands
2099	 * have been completed - fxp_start() ensures that no additional
2100	 * TX commands will be added when need_mcsetup is true.
2101	 */
2102	if (sc->tx_queued) {
2103		struct fxp_cb_tx *txp;
2104
2105		/*
2106		 * need_mcsetup will be true if we are already waiting for the
2107		 * NOP command to be completed (see below). In this case, bail.
2108		 */
2109		if (sc->need_mcsetup)
2110			return;
2111		sc->need_mcsetup = 1;
2112
2113		/*
2114		 * Add a NOP command with interrupt so that we are notified
2115		 * when all TX commands have been processed.
2116		 */
2117		txp = sc->cbl_last->next;
2118		txp->mb_head = NULL;
2119		txp->cb_status = 0;
2120		txp->cb_command = FXP_CB_COMMAND_NOP |
2121		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2122		/*
2123		 * Advance the end of list forward.
2124		 */
2125		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2126		sc->cbl_last = txp;
2127		sc->tx_queued++;
2128		/*
2129		 * Issue a resume in case the CU has just suspended.
2130		 */
2131		fxp_scb_wait(sc);
2132		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2133		/*
2134		 * Set a 5 second timer just in case we don't hear from the
2135		 * card again.
2136		 */
2137		ifp->if_timer = 5;
2138
2139		return;
2140	}
2141	sc->need_mcsetup = 0;
2142
2143	/*
2144	 * Initialize multicast setup descriptor.
2145	 */
2146	mcsp->next = sc->cbl_base;
2147	mcsp->mb_head = NULL;
2148	mcsp->cb_status = 0;
2149	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2150	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2151	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2152	(void) fxp_mc_addrs(sc);
2153	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2154	sc->tx_queued = 1;
2155
2156	/*
2157	 * Wait until command unit is not active. This should never
2158	 * be the case when nothing is queued, but make sure anyway.
2159	 */
2160	count = 100;
2161	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2162	    FXP_SCB_CUS_ACTIVE && --count)
2163		DELAY(10);
2164	if (count == 0) {
2165		device_printf(sc->dev, "command queue timeout\n");
2166		return;
2167	}
2168
2169	/*
2170	 * Start the multicast setup command.
2171	 */
2172	fxp_scb_wait(sc);
2173	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2174	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2175
2176	ifp->if_timer = 2;
2177	return;
2178}
2179
2180static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2181static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2182static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2183static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2184static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2185static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2186
2187#define UCODE(x)	x, sizeof(x)
2188
2189struct ucode {
2190	u_int32_t	revision;
2191	u_int32_t	*ucode;
2192	int		length;
2193	u_short		int_delay_offset;
2194	u_short		bundle_max_offset;
2195} ucode_table[] = {
2196	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2197	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2198	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2199	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2200	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2201	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2202	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2203	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2204	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2205	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2206	{ 0, NULL, 0, 0, 0 }
2207};
2208
2209static void
2210fxp_load_ucode(struct fxp_softc *sc)
2211{
2212	struct ucode *uc;
2213	struct fxp_cb_ucode *cbp;
2214
2215	for (uc = ucode_table; uc->ucode != NULL; uc++)
2216		if (sc->revision == uc->revision)
2217			break;
2218	if (uc->ucode == NULL)
2219		return;
2220	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2221	cbp->cb_status = 0;
2222	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2223	cbp->link_addr = -1;    	/* (no) next command */
2224	memcpy(cbp->ucode, uc->ucode, uc->length);
2225	if (uc->int_delay_offset)
2226		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2227		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2228	if (uc->bundle_max_offset)
2229		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2230		    sc->tunable_bundle_max;
2231	/*
2232	 * Download the ucode to the chip.
2233	 */
2234	fxp_scb_wait(sc);
2235	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2236	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2237	/* ...and wait for it to complete. */
2238	fxp_dma_wait(&cbp->cb_status, sc);
2239	device_printf(sc->dev,
2240	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2241	    sc->tunable_int_delay,
2242	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2243	sc->flags |= FXP_FLAG_UCODE;
2244}
2245
2246static int
2247sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2248{
2249	int error, value;
2250
2251	value = *(int *)arg1;
2252	error = sysctl_handle_int(oidp, &value, 0, req);
2253	if (error || !req->newptr)
2254		return (error);
2255	if (value < low || value > high)
2256		return (EINVAL);
2257	*(int *)arg1 = value;
2258	return (0);
2259}
2260
2261/*
2262 * Interrupt delay is expressed in microseconds, a multiplier is used
2263 * to convert this to the appropriate clock ticks before using.
2264 */
2265static int
2266sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2267{
2268	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2269}
2270
2271static int
2272sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2273{
2274	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2275}
2276