if_fxp.c revision 102052
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 102052 2002-08-18 07:05:00Z sobomax $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39		/* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <vm/vm.h>		/* for vtophys */
64#include <vm/pmap.h>		/* for vtophys */
65#include <machine/clock.h>	/* for DELAY */
66
67#include <net/if_types.h>
68#include <net/if_vlan_var.h>
69
70#include <pci/pcivar.h>
71#include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72
73#include <dev/mii/mii.h>
74#include <dev/mii/miivar.h>
75
76#include <dev/fxp/if_fxpreg.h>
77#include <dev/fxp/if_fxpvar.h>
78#include <dev/fxp/rcvbundl.h>
79
80MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81#include "miibus_if.h"
82
83/*
84 * NOTE!  On the Alpha, we have an alignment constraint.  The
85 * card DMAs the packet immediately following the RFA.  However,
86 * the first thing in the packet is a 14-byte Ethernet header.
87 * This means that the packet is misaligned.  To compensate,
88 * we actually offset the RFA 2 bytes into the cluster.  This
89 * alignes the packet after the Ethernet header at a 32-bit
90 * boundary.  HOWEVER!  This means that the RFA is misaligned!
91 */
92#define	RFA_ALIGNMENT_FUDGE	2
93
94/*
95 * Set initial transmit threshold at 64 (512 bytes). This is
96 * increased by 64 (512 bytes) at a time, to maximum of 192
97 * (1536 bytes), if an underrun occurs.
98 */
99static int tx_threshold = 64;
100
101/*
102 * The configuration byte map has several undefined fields which
103 * must be one or must be zero.  Set up a template for these bits
104 * only, (assuming a 82557 chip) leaving the actual configuration
105 * to fxp_init.
106 *
107 * See struct fxp_cb_config for the bit definitions.
108 */
109static u_char fxp_cb_config_template[] = {
110	0x0, 0x0,		/* cb_status */
111	0x0, 0x0,		/* cb_command */
112	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113	0x0,	/*  0 */
114	0x0,	/*  1 */
115	0x0,	/*  2 */
116	0x0,	/*  3 */
117	0x0,	/*  4 */
118	0x0,	/*  5 */
119	0x32,	/*  6 */
120	0x0,	/*  7 */
121	0x0,	/*  8 */
122	0x0,	/*  9 */
123	0x6,	/* 10 */
124	0x0,	/* 11 */
125	0x0,	/* 12 */
126	0x0,	/* 13 */
127	0xf2,	/* 14 */
128	0x48,	/* 15 */
129	0x0,	/* 16 */
130	0x40,	/* 17 */
131	0xf0,	/* 18 */
132	0x0,	/* 19 */
133	0x3f,	/* 20 */
134	0x5	/* 21 */
135};
136
137struct fxp_ident {
138	u_int16_t	devid;
139	char 		*name;
140};
141
142/*
143 * Claim various Intel PCI device identifiers for this driver.  The
144 * sub-vendor and sub-device field are extensively used to identify
145 * particular variants, but we don't currently differentiate between
146 * them.
147 */
148static struct fxp_ident fxp_ident_table[] = {
149    { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150    { 0x2449,		"Intel Pro/100 Ethernet" },
151    { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152    { 0x1029,		"Intel Pro/100 Ethernet" },
153    { 0x1030,		"Intel Pro/100 Ethernet" },
154    { 0x1031,		"Intel Pro/100 Ethernet" },
155    { 0x1032,		"Intel Pro/100 Ethernet" },
156    { 0x1033,		"Intel Pro/100 Ethernet" },
157    { 0x1034,		"Intel Pro/100 Ethernet" },
158    { 0x1035,		"Intel Pro/100 Ethernet" },
159    { 0x1036,		"Intel Pro/100 Ethernet" },
160    { 0x1037,		"Intel Pro/100 Ethernet" },
161    { 0x1038,		"Intel Pro/100 Ethernet" },
162    { 0x1039,		"Intel Pro/100 Ethernet" },
163    { 0x103A,		"Intel Pro/100 Ethernet" },
164    { 0,		NULL },
165};
166
167static int		fxp_probe(device_t dev);
168static int		fxp_attach(device_t dev);
169static int		fxp_detach(device_t dev);
170static int		fxp_shutdown(device_t dev);
171static int		fxp_suspend(device_t dev);
172static int		fxp_resume(device_t dev);
173
174static void		fxp_intr(void *xsc);
175static void 		fxp_init(void *xsc);
176static void 		fxp_tick(void *xsc);
177static void		fxp_powerstate_d0(device_t dev);
178static void 		fxp_start(struct ifnet *ifp);
179static void		fxp_stop(struct fxp_softc *sc);
180static void 		fxp_release(struct fxp_softc *sc);
181static int		fxp_ioctl(struct ifnet *ifp, u_long command,
182			    caddr_t data);
183static void 		fxp_watchdog(struct ifnet *ifp);
184static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
185static int		fxp_mc_addrs(struct fxp_softc *sc);
186static void		fxp_mc_setup(struct fxp_softc *sc);
187static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
188			    int autosize);
189static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
190			    u_int16_t data);
191static void		fxp_autosize_eeprom(struct fxp_softc *sc);
192static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
193			    int offset, int words);
194static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
195			    int offset, int words);
196static int		fxp_ifmedia_upd(struct ifnet *ifp);
197static void		fxp_ifmedia_sts(struct ifnet *ifp,
198			    struct ifmediareq *ifmr);
199static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
200static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
201			    struct ifmediareq *ifmr);
202static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
203static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
204			    int value);
205static void		fxp_load_ucode(struct fxp_softc *sc);
206static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
207			    int low, int high);
208static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
209static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
210static __inline void	fxp_lwcopy(volatile u_int32_t *src,
211			    volatile u_int32_t *dst);
212static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
213static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
214static __inline void	fxp_dma_wait(volatile u_int16_t *status,
215			    struct fxp_softc *sc);
216
217static device_method_t fxp_methods[] = {
218	/* Device interface */
219	DEVMETHOD(device_probe,		fxp_probe),
220	DEVMETHOD(device_attach,	fxp_attach),
221	DEVMETHOD(device_detach,	fxp_detach),
222	DEVMETHOD(device_shutdown,	fxp_shutdown),
223	DEVMETHOD(device_suspend,	fxp_suspend),
224	DEVMETHOD(device_resume,	fxp_resume),
225
226	/* MII interface */
227	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
228	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
229
230	{ 0, 0 }
231};
232
233static driver_t fxp_driver = {
234	"fxp",
235	fxp_methods,
236	sizeof(struct fxp_softc),
237};
238
239static devclass_t fxp_devclass;
240
241DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
242DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
243DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
244
245static int fxp_rnr;
246SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
247
248/*
249 * Inline function to copy a 16-bit aligned 32-bit quantity.
250 */
251static __inline void
252fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
253{
254#ifdef __i386__
255	*dst = *src;
256#else
257	volatile u_int16_t *a = (volatile u_int16_t *)src;
258	volatile u_int16_t *b = (volatile u_int16_t *)dst;
259
260	b[0] = a[0];
261	b[1] = a[1];
262#endif
263}
264
265/*
266 * Wait for the previous command to be accepted (but not necessarily
267 * completed).
268 */
269static __inline void
270fxp_scb_wait(struct fxp_softc *sc)
271{
272	int i = 10000;
273
274	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
275		DELAY(2);
276	if (i == 0)
277		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
278		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
279		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
280		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
281		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
282}
283
284static __inline void
285fxp_scb_cmd(struct fxp_softc *sc, int cmd)
286{
287
288	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
289		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
290		fxp_scb_wait(sc);
291	}
292	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
293}
294
295static __inline void
296fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
297{
298	int i = 10000;
299
300	while (!(*status & FXP_CB_STATUS_C) && --i)
301		DELAY(2);
302	if (i == 0)
303		device_printf(sc->dev, "DMA timeout\n");
304}
305
306/*
307 * Return identification string if this is device is ours.
308 */
309static int
310fxp_probe(device_t dev)
311{
312	u_int16_t devid;
313	struct fxp_ident *ident;
314
315	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
316		devid = pci_get_device(dev);
317		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
318			if (ident->devid == devid) {
319				device_set_desc(dev, ident->name);
320				return (0);
321			}
322		}
323	}
324	return (ENXIO);
325}
326
327static void
328fxp_powerstate_d0(device_t dev)
329{
330#if __FreeBSD_version >= 430002
331	u_int32_t iobase, membase, irq;
332
333	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
334		/* Save important PCI config data. */
335		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
336		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
337		irq = pci_read_config(dev, PCIR_INTLINE, 4);
338
339		/* Reset the power state. */
340		device_printf(dev, "chip is in D%d power mode "
341		    "-- setting to D0\n", pci_get_powerstate(dev));
342
343		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
344
345		/* Restore PCI config data. */
346		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
347		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
348		pci_write_config(dev, PCIR_INTLINE, irq, 4);
349	}
350#endif
351}
352
353static int
354fxp_attach(device_t dev)
355{
356	int error = 0;
357	struct fxp_softc *sc = device_get_softc(dev);
358	struct ifnet *ifp;
359	u_int32_t val;
360	u_int16_t data;
361	int i, rid, m1, m2, prefer_iomap;
362	int s;
363
364	bzero(sc, sizeof(*sc));
365	sc->dev = dev;
366	callout_handle_init(&sc->stat_ch);
367	sysctl_ctx_init(&sc->sysctl_ctx);
368	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
369	    MTX_DEF | MTX_RECURSE);
370
371	s = splimp();
372
373	/*
374	 * Enable bus mastering. Enable memory space too, in case
375	 * BIOS/Prom forgot about it.
376	 */
377	val = pci_read_config(dev, PCIR_COMMAND, 2);
378	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
379	pci_write_config(dev, PCIR_COMMAND, val, 2);
380	val = pci_read_config(dev, PCIR_COMMAND, 2);
381
382	fxp_powerstate_d0(dev);
383
384	/*
385	 * Figure out which we should try first - memory mapping or i/o mapping?
386	 * We default to memory mapping. Then we accept an override from the
387	 * command line. Then we check to see which one is enabled.
388	 */
389	m1 = PCIM_CMD_MEMEN;
390	m2 = PCIM_CMD_PORTEN;
391	prefer_iomap = 0;
392	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
393	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
394		m1 = PCIM_CMD_PORTEN;
395		m2 = PCIM_CMD_MEMEN;
396	}
397
398	if (val & m1) {
399		sc->rtp =
400		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
401		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
402		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
403	                                     0, ~0, 1, RF_ACTIVE);
404	}
405	if (sc->mem == NULL && (val & m2)) {
406		sc->rtp =
407		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
408		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
409		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
410                                            0, ~0, 1, RF_ACTIVE);
411	}
412
413	if (!sc->mem) {
414		device_printf(dev, "could not map device registers\n");
415		error = ENXIO;
416		goto fail;
417        }
418	if (bootverbose) {
419		device_printf(dev, "using %s space register mapping\n",
420		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
421	}
422
423	sc->sc_st = rman_get_bustag(sc->mem);
424	sc->sc_sh = rman_get_bushandle(sc->mem);
425
426	/*
427	 * Allocate our interrupt.
428	 */
429	rid = 0;
430	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
431				 RF_SHAREABLE | RF_ACTIVE);
432	if (sc->irq == NULL) {
433		device_printf(dev, "could not map interrupt\n");
434		error = ENXIO;
435		goto fail;
436	}
437
438	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
439			       fxp_intr, sc, &sc->ih);
440	if (error) {
441		device_printf(dev, "could not setup irq\n");
442		goto fail;
443	}
444
445	/*
446	 * Reset to a stable state.
447	 */
448	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449	DELAY(10);
450
451	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
452	    M_DEVBUF, M_NOWAIT | M_ZERO);
453	if (sc->cbl_base == NULL)
454		goto failmem;
455
456	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
457	    M_NOWAIT | M_ZERO);
458	if (sc->fxp_stats == NULL)
459		goto failmem;
460
461	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
462	if (sc->mcsp == NULL)
463		goto failmem;
464
465	/*
466	 * Pre-allocate our receive buffers.
467	 */
468	for (i = 0; i < FXP_NRFABUFS; i++) {
469		if (fxp_add_rfabuf(sc, NULL) != 0) {
470			goto failmem;
471		}
472	}
473
474	/*
475	 * Find out how large of an SEEPROM we have.
476	 */
477	fxp_autosize_eeprom(sc);
478
479	/*
480	 * Determine whether we must use the 503 serial interface.
481	 */
482	fxp_read_eeprom(sc, &data, 6, 1);
483	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
484	    (data & FXP_PHY_SERIAL_ONLY))
485		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
486
487	/*
488	 * Create the sysctl tree
489	 */
490	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
491	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
492	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
493	if (sc->sysctl_tree == NULL)
494		goto fail;
495	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
496	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
497	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
498	    "FXP driver receive interrupt microcode bundling delay");
499	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
500	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
501	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
502	    "FXP driver receive interrupt microcode bundle size limit");
503
504	/*
505	 * Pull in device tunables.
506	 */
507	sc->tunable_int_delay = TUNABLE_INT_DELAY;
508	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
509	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
510	    "int_delay", &sc->tunable_int_delay);
511	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
512	    "bundle_max", &sc->tunable_bundle_max);
513
514	/*
515	 * Find out the chip revision; lump all 82557 revs together.
516	 */
517	fxp_read_eeprom(sc, &data, 5, 1);
518	if ((data >> 8) == 1)
519		sc->revision = FXP_REV_82557;
520	else
521		sc->revision = pci_get_revid(dev);
522
523	/*
524	 * Enable workarounds for certain chip revision deficiencies.
525	 *
526	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
527	 * some systems based a normal 82559 design, have a defect where
528	 * the chip can cause a PCI protocol violation if it receives
529	 * a CU_RESUME command when it is entering the IDLE state.  The
530	 * workaround is to disable Dynamic Standby Mode, so the chip never
531	 * deasserts CLKRUN#, and always remains in an active state.
532	 *
533	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
534	 */
535	i = pci_get_device(dev);
536	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
537	    sc->revision >= FXP_REV_82559_A0) {
538		fxp_read_eeprom(sc, &data, 10, 1);
539		if (data & 0x02) {			/* STB enable */
540			u_int16_t cksum;
541			int i;
542
543			device_printf(dev,
544			    "Disabling dynamic standby mode in EEPROM\n");
545			data &= ~0x02;
546			fxp_write_eeprom(sc, &data, 10, 1);
547			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
548			cksum = 0;
549			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
550				fxp_read_eeprom(sc, &data, i, 1);
551				cksum += data;
552			}
553			i = (1 << sc->eeprom_size) - 1;
554			cksum = 0xBABA - cksum;
555			fxp_read_eeprom(sc, &data, i, 1);
556			fxp_write_eeprom(sc, &cksum, i, 1);
557			device_printf(dev,
558			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
559			    i, data, cksum);
560#if 1
561			/*
562			 * If the user elects to continue, try the software
563			 * workaround, as it is better than nothing.
564			 */
565			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
566#endif
567		}
568	}
569
570	/*
571	 * If we are not a 82557 chip, we can enable extended features.
572	 */
573	if (sc->revision != FXP_REV_82557) {
574		/*
575		 * If MWI is enabled in the PCI configuration, and there
576		 * is a valid cacheline size (8 or 16 dwords), then tell
577		 * the board to turn on MWI.
578		 */
579		if (val & PCIM_CMD_MWRICEN &&
580		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
581			sc->flags |= FXP_FLAG_MWI_ENABLE;
582
583		/* turn on the extended TxCB feature */
584		sc->flags |= FXP_FLAG_EXT_TXCB;
585
586		/* enable reception of long frames for VLAN */
587		sc->flags |= FXP_FLAG_LONG_PKT_EN;
588	}
589
590	/*
591	 * Read MAC address.
592	 */
593	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
594	device_printf(dev, "Ethernet address %6D%s\n",
595	    sc->arpcom.ac_enaddr, ":",
596	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
597	if (bootverbose) {
598		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
599		    pci_get_vendor(dev), pci_get_device(dev),
600		    pci_get_subvendor(dev), pci_get_subdevice(dev),
601		    pci_get_revid(dev));
602		fxp_read_eeprom(sc, &data, 10, 1);
603		device_printf(dev, "Dynamic Standby mode is %s\n",
604		    data & 0x02 ? "enabled" : "disabled");
605	}
606
607	/*
608	 * If this is only a 10Mbps device, then there is no MII, and
609	 * the PHY will use a serial interface instead.
610	 *
611	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
612	 * doesn't have a programming interface of any sort.  The
613	 * media is sensed automatically based on how the link partner
614	 * is configured.  This is, in essence, manual configuration.
615	 */
616	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
617		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
618		    fxp_serial_ifmedia_sts);
619		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
620		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
621	} else {
622		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
623		    fxp_ifmedia_sts)) {
624	                device_printf(dev, "MII without any PHY!\n");
625			error = ENXIO;
626			goto fail;
627		}
628	}
629
630	ifp = &sc->arpcom.ac_if;
631	ifp->if_unit = device_get_unit(dev);
632	ifp->if_name = "fxp";
633	ifp->if_output = ether_output;
634	ifp->if_baudrate = 100000000;
635	ifp->if_init = fxp_init;
636	ifp->if_softc = sc;
637	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638	ifp->if_ioctl = fxp_ioctl;
639	ifp->if_start = fxp_start;
640	ifp->if_watchdog = fxp_watchdog;
641
642	/*
643	 * Attach the interface.
644	 */
645	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
646
647	/*
648	 * Tell the upper layer(s) we support long frames.
649	 */
650	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
651
652	/*
653	 * Let the system queue as many packets as we have available
654	 * TX descriptors.
655	 */
656	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
657
658	splx(s);
659	return (0);
660
661failmem:
662	device_printf(dev, "Failed to malloc memory\n");
663	error = ENOMEM;
664fail:
665	splx(s);
666	fxp_release(sc);
667	return (error);
668}
669
670/*
671 * release all resources
672 */
673static void
674fxp_release(struct fxp_softc *sc)
675{
676
677	bus_generic_detach(sc->dev);
678	if (sc->miibus)
679		device_delete_child(sc->dev, sc->miibus);
680
681	if (sc->cbl_base)
682		free(sc->cbl_base, M_DEVBUF);
683	if (sc->fxp_stats)
684		free(sc->fxp_stats, M_DEVBUF);
685	if (sc->mcsp)
686		free(sc->mcsp, M_DEVBUF);
687	if (sc->rfa_headm)
688		m_freem(sc->rfa_headm);
689
690	if (sc->ih)
691		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
692	if (sc->irq)
693		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
694	if (sc->mem)
695		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
696
697        sysctl_ctx_free(&sc->sysctl_ctx);
698
699	mtx_destroy(&sc->sc_mtx);
700}
701
702/*
703 * Detach interface.
704 */
705static int
706fxp_detach(device_t dev)
707{
708	struct fxp_softc *sc = device_get_softc(dev);
709	int s;
710
711	/* disable interrupts */
712	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
713
714	s = splimp();
715
716	/*
717	 * Stop DMA and drop transmit queue.
718	 */
719	fxp_stop(sc);
720
721	/*
722	 * Close down routes etc.
723	 */
724	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
725
726	/*
727	 * Free all media structures.
728	 */
729	ifmedia_removeall(&sc->sc_media);
730
731	splx(s);
732
733	/* Release our allocated resources. */
734	fxp_release(sc);
735
736	return (0);
737}
738
739/*
740 * Device shutdown routine. Called at system shutdown after sync. The
741 * main purpose of this routine is to shut off receiver DMA so that
742 * kernel memory doesn't get clobbered during warmboot.
743 */
744static int
745fxp_shutdown(device_t dev)
746{
747	/*
748	 * Make sure that DMA is disabled prior to reboot. Not doing
749	 * do could allow DMA to corrupt kernel memory during the
750	 * reboot before the driver initializes.
751	 */
752	fxp_stop((struct fxp_softc *) device_get_softc(dev));
753	return (0);
754}
755
756/*
757 * Device suspend routine.  Stop the interface and save some PCI
758 * settings in case the BIOS doesn't restore them properly on
759 * resume.
760 */
761static int
762fxp_suspend(device_t dev)
763{
764	struct fxp_softc *sc = device_get_softc(dev);
765	int i, s;
766
767	s = splimp();
768
769	fxp_stop(sc);
770
771	for (i = 0; i < 5; i++)
772		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
773	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
774	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
775	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
776	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
777
778	sc->suspended = 1;
779
780	splx(s);
781	return (0);
782}
783
784/*
785 * Device resume routine.  Restore some PCI settings in case the BIOS
786 * doesn't, re-enable busmastering, and restart the interface if
787 * appropriate.
788 */
789static int
790fxp_resume(device_t dev)
791{
792	struct fxp_softc *sc = device_get_softc(dev);
793	struct ifnet *ifp = &sc->sc_if;
794	u_int16_t pci_command;
795	int i, s;
796
797	s = splimp();
798
799	fxp_powerstate_d0(dev);
800
801	/* better way to do this? */
802	for (i = 0; i < 5; i++)
803		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
804	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
805	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
806	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
807	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
808
809	/* reenable busmastering */
810	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
811	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
812	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
813
814	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
815	DELAY(10);
816
817	/* reinitialize interface if necessary */
818	if (ifp->if_flags & IFF_UP)
819		fxp_init(sc);
820
821	sc->suspended = 0;
822
823	splx(s);
824	return (0);
825}
826
827static void
828fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
829{
830	u_int16_t reg;
831	int x;
832
833	/*
834	 * Shift in data.
835	 */
836	for (x = 1 << (length - 1); x; x >>= 1) {
837		if (data & x)
838			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
839		else
840			reg = FXP_EEPROM_EECS;
841		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
842		DELAY(1);
843		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
844		DELAY(1);
845		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
846		DELAY(1);
847	}
848}
849
850/*
851 * Read from the serial EEPROM. Basically, you manually shift in
852 * the read opcode (one bit at a time) and then shift in the address,
853 * and then you shift out the data (all of this one bit at a time).
854 * The word size is 16 bits, so you have to provide the address for
855 * every 16 bits of data.
856 */
857static u_int16_t
858fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
859{
860	u_int16_t reg, data;
861	int x;
862
863	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
864	/*
865	 * Shift in read opcode.
866	 */
867	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
868	/*
869	 * Shift in address.
870	 */
871	data = 0;
872	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
873		if (offset & x)
874			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
875		else
876			reg = FXP_EEPROM_EECS;
877		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
878		DELAY(1);
879		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
880		DELAY(1);
881		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
882		DELAY(1);
883		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
884		data++;
885		if (autosize && reg == 0) {
886			sc->eeprom_size = data;
887			break;
888		}
889	}
890	/*
891	 * Shift out data.
892	 */
893	data = 0;
894	reg = FXP_EEPROM_EECS;
895	for (x = 1 << 15; x; x >>= 1) {
896		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
897		DELAY(1);
898		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
899			data |= x;
900		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
901		DELAY(1);
902	}
903	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
904	DELAY(1);
905
906	return (data);
907}
908
909static void
910fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
911{
912	int i;
913
914	/*
915	 * Erase/write enable.
916	 */
917	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
918	fxp_eeprom_shiftin(sc, 0x4, 3);
919	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
920	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
921	DELAY(1);
922	/*
923	 * Shift in write opcode, address, data.
924	 */
925	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
926	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
927	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
928	fxp_eeprom_shiftin(sc, data, 16);
929	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
930	DELAY(1);
931	/*
932	 * Wait for EEPROM to finish up.
933	 */
934	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
935	DELAY(1);
936	for (i = 0; i < 1000; i++) {
937		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
938			break;
939		DELAY(50);
940	}
941	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942	DELAY(1);
943	/*
944	 * Erase/write disable.
945	 */
946	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947	fxp_eeprom_shiftin(sc, 0x4, 3);
948	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
949	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
950	DELAY(1);
951}
952
953/*
954 * From NetBSD:
955 *
956 * Figure out EEPROM size.
957 *
958 * 559's can have either 64-word or 256-word EEPROMs, the 558
959 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
960 * talks about the existance of 16 to 256 word EEPROMs.
961 *
962 * The only known sizes are 64 and 256, where the 256 version is used
963 * by CardBus cards to store CIS information.
964 *
965 * The address is shifted in msb-to-lsb, and after the last
966 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
967 * after which follows the actual data. We try to detect this zero, by
968 * probing the data-out bit in the EEPROM control register just after
969 * having shifted in a bit. If the bit is zero, we assume we've
970 * shifted enough address bits. The data-out should be tri-state,
971 * before this, which should translate to a logical one.
972 */
973static void
974fxp_autosize_eeprom(struct fxp_softc *sc)
975{
976
977	/* guess maximum size of 256 words */
978	sc->eeprom_size = 8;
979
980	/* autosize */
981	(void) fxp_eeprom_getword(sc, 0, 1);
982}
983
984static void
985fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
986{
987	int i;
988
989	for (i = 0; i < words; i++)
990		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
991}
992
993static void
994fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
995{
996	int i;
997
998	for (i = 0; i < words; i++)
999		fxp_eeprom_putword(sc, offset + i, data[i]);
1000}
1001
1002/*
1003 * Start packet transmission on the interface.
1004 */
1005static void
1006fxp_start(struct ifnet *ifp)
1007{
1008	struct fxp_softc *sc = ifp->if_softc;
1009	struct fxp_cb_tx *txp;
1010
1011	/*
1012	 * See if we need to suspend xmit until the multicast filter
1013	 * has been reprogrammed (which can only be done at the head
1014	 * of the command chain).
1015	 */
1016	if (sc->need_mcsetup) {
1017		return;
1018	}
1019
1020	txp = NULL;
1021
1022	/*
1023	 * We're finished if there is nothing more to add to the list or if
1024	 * we're all filled up with buffers to transmit.
1025	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1026	 *       a NOP command when needed.
1027	 */
1028	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1029		struct mbuf *m, *mb_head;
1030		int segment;
1031
1032		/*
1033		 * Grab a packet to transmit.
1034		 */
1035		IF_DEQUEUE(&ifp->if_snd, mb_head);
1036
1037		/*
1038		 * Get pointer to next available tx desc.
1039		 */
1040		txp = sc->cbl_last->next;
1041
1042		/*
1043		 * Go through each of the mbufs in the chain and initialize
1044		 * the transmit buffer descriptors with the physical address
1045		 * and size of the mbuf.
1046		 */
1047tbdinit:
1048		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1049			if (m->m_len != 0) {
1050				if (segment == FXP_NTXSEG)
1051					break;
1052				txp->tbd[segment].tb_addr =
1053				    vtophys(mtod(m, vm_offset_t));
1054				txp->tbd[segment].tb_size = m->m_len;
1055				segment++;
1056			}
1057		}
1058		if (m != NULL) {
1059			struct mbuf *mn;
1060
1061			/*
1062			 * We ran out of segments. We have to recopy this
1063			 * mbuf chain first. Bail out if we can't get the
1064			 * new buffers.
1065			 */
1066			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1067			if (mn == NULL) {
1068				m_freem(mb_head);
1069				break;
1070			}
1071			if (mb_head->m_pkthdr.len > MHLEN) {
1072				MCLGET(mn, M_DONTWAIT);
1073				if ((mn->m_flags & M_EXT) == 0) {
1074					m_freem(mn);
1075					m_freem(mb_head);
1076					break;
1077				}
1078			}
1079			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1080			    mtod(mn, caddr_t));
1081			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1082			m_freem(mb_head);
1083			mb_head = mn;
1084			goto tbdinit;
1085		}
1086
1087		txp->tbd_number = segment;
1088		txp->mb_head = mb_head;
1089		txp->cb_status = 0;
1090		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1091			txp->cb_command =
1092			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1093			    FXP_CB_COMMAND_S;
1094		} else {
1095			txp->cb_command =
1096			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1097			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1098			/*
1099			 * Set a 5 second timer just in case we don't hear
1100			 * from the card again.
1101			 */
1102			ifp->if_timer = 5;
1103		}
1104		txp->tx_threshold = tx_threshold;
1105
1106		/*
1107		 * Advance the end of list forward.
1108		 */
1109
1110#ifdef __alpha__
1111		/*
1112		 * On platforms which can't access memory in 16-bit
1113		 * granularities, we must prevent the card from DMA'ing
1114		 * up the status while we update the command field.
1115		 * This could cause us to overwrite the completion status.
1116		 */
1117		atomic_clear_short(&sc->cbl_last->cb_command,
1118		    FXP_CB_COMMAND_S);
1119#else
1120		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1121#endif /*__alpha__*/
1122		sc->cbl_last = txp;
1123
1124		/*
1125		 * Advance the beginning of the list forward if there are
1126		 * no other packets queued (when nothing is queued, cbl_first
1127		 * sits on the last TxCB that was sent out).
1128		 */
1129		if (sc->tx_queued == 0)
1130			sc->cbl_first = txp;
1131
1132		sc->tx_queued++;
1133
1134		/*
1135		 * Pass packet to bpf if there is a listener.
1136		 */
1137		if (ifp->if_bpf)
1138			bpf_mtap(ifp, mb_head);
1139	}
1140
1141	/*
1142	 * We're finished. If we added to the list, issue a RESUME to get DMA
1143	 * going again if suspended.
1144	 */
1145	if (txp != NULL) {
1146		fxp_scb_wait(sc);
1147		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1148	}
1149}
1150
1151static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1152
1153#ifdef DEVICE_POLLING
1154static poll_handler_t fxp_poll;
1155
1156static void
1157fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1158{
1159	struct fxp_softc *sc = ifp->if_softc;
1160	u_int8_t statack;
1161
1162	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1163		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1164		return;
1165	}
1166	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1167	    FXP_SCB_STATACK_FR;
1168	if (cmd == POLL_AND_CHECK_STATUS) {
1169		u_int8_t tmp;
1170
1171		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1172		if (tmp == 0xff || tmp == 0)
1173			return; /* nothing to do */
1174		tmp &= ~statack;
1175		/* ack what we can */
1176		if (tmp != 0)
1177			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1178		statack |= tmp;
1179	}
1180	fxp_intr_body(sc, statack, count);
1181}
1182#endif /* DEVICE_POLLING */
1183
1184/*
1185 * Process interface interrupts.
1186 */
1187static void
1188fxp_intr(void *xsc)
1189{
1190	struct fxp_softc *sc = xsc;
1191	u_int8_t statack;
1192
1193#ifdef DEVICE_POLLING
1194	struct ifnet *ifp = &sc->sc_if;
1195
1196	if (ifp->if_flags & IFF_POLLING)
1197		return;
1198	if (ether_poll_register(fxp_poll, ifp)) {
1199		/* disable interrupts */
1200		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1201		fxp_poll(ifp, 0, 1);
1202		return;
1203	}
1204#endif
1205
1206	if (sc->suspended) {
1207		return;
1208	}
1209
1210	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1211		/*
1212		 * It should not be possible to have all bits set; the
1213		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1214		 * all bits are set, this may indicate that the card has
1215		 * been physically ejected, so ignore it.
1216		 */
1217		if (statack == 0xff)
1218			return;
1219
1220		/*
1221		 * First ACK all the interrupts in this pass.
1222		 */
1223		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1224		fxp_intr_body(sc, statack, -1);
1225	}
1226}
1227
1228static void
1229fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1230{
1231	struct ifnet *ifp = &sc->sc_if;
1232	struct mbuf *m;
1233	struct fxp_rfa *rfa;
1234	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1235
1236	if (rnr)
1237		fxp_rnr++;
1238
1239	/*
1240	 * Free any finished transmit mbuf chains.
1241	 *
1242	 * Handle the CNA event likt a CXTNO event. It used to
1243	 * be that this event (control unit not ready) was not
1244	 * encountered, but it is now with the SMPng modifications.
1245	 * The exact sequence of events that occur when the interface
1246	 * is brought up are different now, and if this event
1247	 * goes unhandled, the configuration/rxfilter setup sequence
1248	 * can stall for several seconds. The result is that no
1249	 * packets go out onto the wire for about 5 to 10 seconds
1250	 * after the interface is ifconfig'ed for the first time.
1251	 */
1252	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1253		struct fxp_cb_tx *txp;
1254
1255		for (txp = sc->cbl_first; sc->tx_queued &&
1256		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1257		    txp = txp->next) {
1258			if (txp->mb_head != NULL) {
1259				m_freem(txp->mb_head);
1260				txp->mb_head = NULL;
1261			}
1262			sc->tx_queued--;
1263		}
1264		sc->cbl_first = txp;
1265		ifp->if_timer = 0;
1266		if (sc->tx_queued == 0) {
1267			if (sc->need_mcsetup)
1268				fxp_mc_setup(sc);
1269		}
1270		/*
1271		 * Try to start more packets transmitting.
1272		 */
1273		if (ifp->if_snd.ifq_head != NULL)
1274			fxp_start(ifp);
1275	}
1276
1277	/*
1278	 * Just return if nothing happened on the receive side.
1279	 */
1280	if ( (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) == 0)
1281		return;
1282
1283	/*
1284	 * Process receiver interrupts. If a no-resource (RNR)
1285	 * condition exists, get whatever packets we can and
1286	 * re-start the receiver.
1287	 * When using polling, we do not process the list to completion,
1288	 * so when we get an RNR interrupt we must defer the restart
1289	 * until we hit the last buffer with the C bit set.
1290	 * If we run out of cycles and rfa_headm has the C bit set,
1291	 * record the pending RNR in an unused status bit, so that the
1292	 * info will be used in the subsequent polling cycle.
1293	 */
1294
1295#define	FXP_RFA_RNRMARK		0x4000	/* used to mark a pending RNR intr */
1296
1297	for (;;) {
1298		m = sc->rfa_headm;
1299		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1300		    RFA_ALIGNMENT_FUDGE);
1301
1302#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1303		if (count >= 0 && count-- == 0)
1304			break;
1305#endif /* DEVICE_POLLING */
1306
1307		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1308			break;
1309
1310		if (rfa->rfa_status & FXP_RFA_RNRMARK)
1311			rnr = 1;
1312		/*
1313		 * Remove first packet from the chain.
1314		 */
1315		sc->rfa_headm = m->m_next;
1316		m->m_next = NULL;
1317
1318		/*
1319		 * Add a new buffer to the receive chain.
1320		 * If this fails, the old buffer is recycled
1321		 * instead.
1322		 */
1323		if (fxp_add_rfabuf(sc, m) == 0) {
1324			int total_len;
1325
1326			/*
1327			 * Fetch packet length (the top 2 bits of
1328			 * actual_size are flags set by the controller
1329			 * upon completion), and drop the packet in case
1330			 * of bogus length or CRC errors.
1331			 */
1332			total_len = rfa->actual_size & 0x3fff;
1333			if (total_len < sizeof(struct ether_header) ||
1334			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1335				sizeof(struct fxp_rfa) ||
1336			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1337				m_freem(m);
1338				continue;
1339			}
1340
1341			m->m_pkthdr.len = m->m_len = total_len;
1342			ether_input(ifp, NULL, m);
1343		}
1344	}
1345	if (rnr) {
1346		if (rfa->rfa_status & FXP_RFA_STATUS_C)
1347			rfa->rfa_status |= FXP_RFA_RNRMARK;
1348		else {
1349			fxp_scb_wait(sc);
1350			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1351			    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1352				RFA_ALIGNMENT_FUDGE);
1353			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1354		}
1355	}
1356}
1357
1358/*
1359 * Update packet in/out/collision statistics. The i82557 doesn't
1360 * allow you to access these counters without doing a fairly
1361 * expensive DMA to get _all_ of the statistics it maintains, so
1362 * we do this operation here only once per second. The statistics
1363 * counters in the kernel are updated from the previous dump-stats
1364 * DMA and then a new dump-stats DMA is started. The on-chip
1365 * counters are zeroed when the DMA completes. If we can't start
1366 * the DMA immediately, we don't wait - we just prepare to read
1367 * them again next time.
1368 */
1369static void
1370fxp_tick(void *xsc)
1371{
1372	struct fxp_softc *sc = xsc;
1373	struct ifnet *ifp = &sc->sc_if;
1374	struct fxp_stats *sp = sc->fxp_stats;
1375	struct fxp_cb_tx *txp;
1376	int s;
1377
1378	ifp->if_opackets += sp->tx_good;
1379	ifp->if_collisions += sp->tx_total_collisions;
1380	if (sp->rx_good) {
1381		ifp->if_ipackets += sp->rx_good;
1382		sc->rx_idle_secs = 0;
1383	} else {
1384		/*
1385		 * Receiver's been idle for another second.
1386		 */
1387		sc->rx_idle_secs++;
1388	}
1389	ifp->if_ierrors +=
1390	    sp->rx_crc_errors +
1391	    sp->rx_alignment_errors +
1392	    sp->rx_rnr_errors +
1393	    sp->rx_overrun_errors;
1394	/*
1395	 * If any transmit underruns occured, bump up the transmit
1396	 * threshold by another 512 bytes (64 * 8).
1397	 */
1398	if (sp->tx_underruns) {
1399		ifp->if_oerrors += sp->tx_underruns;
1400		if (tx_threshold < 192)
1401			tx_threshold += 64;
1402	}
1403	s = splimp();
1404	/*
1405	 * Release any xmit buffers that have completed DMA. This isn't
1406	 * strictly necessary to do here, but it's advantagous for mbufs
1407	 * with external storage to be released in a timely manner rather
1408	 * than being defered for a potentially long time. This limits
1409	 * the delay to a maximum of one second.
1410	 */
1411	for (txp = sc->cbl_first; sc->tx_queued &&
1412	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1413	    txp = txp->next) {
1414		if (txp->mb_head != NULL) {
1415			m_freem(txp->mb_head);
1416			txp->mb_head = NULL;
1417		}
1418		sc->tx_queued--;
1419	}
1420	sc->cbl_first = txp;
1421	/*
1422	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1423	 * then assume the receiver has locked up and attempt to clear
1424	 * the condition by reprogramming the multicast filter. This is
1425	 * a work-around for a bug in the 82557 where the receiver locks
1426	 * up if it gets certain types of garbage in the syncronization
1427	 * bits prior to the packet header. This bug is supposed to only
1428	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1429	 * mode as well (perhaps due to a 10/100 speed transition).
1430	 */
1431	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1432		sc->rx_idle_secs = 0;
1433		fxp_mc_setup(sc);
1434	}
1435	/*
1436	 * If there is no pending command, start another stats
1437	 * dump. Otherwise punt for now.
1438	 */
1439	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1440		/*
1441		 * Start another stats dump.
1442		 */
1443		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1444	} else {
1445		/*
1446		 * A previous command is still waiting to be accepted.
1447		 * Just zero our copy of the stats and wait for the
1448		 * next timer event to update them.
1449		 */
1450		sp->tx_good = 0;
1451		sp->tx_underruns = 0;
1452		sp->tx_total_collisions = 0;
1453
1454		sp->rx_good = 0;
1455		sp->rx_crc_errors = 0;
1456		sp->rx_alignment_errors = 0;
1457		sp->rx_rnr_errors = 0;
1458		sp->rx_overrun_errors = 0;
1459	}
1460	if (sc->miibus != NULL)
1461		mii_tick(device_get_softc(sc->miibus));
1462	splx(s);
1463	/*
1464	 * Schedule another timeout one second from now.
1465	 */
1466	sc->stat_ch = timeout(fxp_tick, sc, hz);
1467}
1468
1469/*
1470 * Stop the interface. Cancels the statistics updater and resets
1471 * the interface.
1472 */
1473static void
1474fxp_stop(struct fxp_softc *sc)
1475{
1476	struct ifnet *ifp = &sc->sc_if;
1477	struct fxp_cb_tx *txp;
1478	int i;
1479
1480	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1481	ifp->if_timer = 0;
1482
1483#ifdef DEVICE_POLLING
1484	ether_poll_deregister(ifp);
1485#endif
1486	/*
1487	 * Cancel stats updater.
1488	 */
1489	untimeout(fxp_tick, sc, sc->stat_ch);
1490
1491	/*
1492	 * Issue software reset, which also unloads the microcode.
1493	 */
1494	sc->flags &= ~FXP_FLAG_UCODE;
1495	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1496	DELAY(50);
1497
1498	/*
1499	 * Release any xmit buffers.
1500	 */
1501	txp = sc->cbl_base;
1502	if (txp != NULL) {
1503		for (i = 0; i < FXP_NTXCB; i++) {
1504			if (txp[i].mb_head != NULL) {
1505				m_freem(txp[i].mb_head);
1506				txp[i].mb_head = NULL;
1507			}
1508		}
1509	}
1510	sc->tx_queued = 0;
1511
1512	/*
1513	 * Free all the receive buffers then reallocate/reinitialize
1514	 */
1515	if (sc->rfa_headm != NULL)
1516		m_freem(sc->rfa_headm);
1517	sc->rfa_headm = NULL;
1518	sc->rfa_tailm = NULL;
1519	for (i = 0; i < FXP_NRFABUFS; i++) {
1520		if (fxp_add_rfabuf(sc, NULL) != 0) {
1521			/*
1522			 * This "can't happen" - we're at splimp()
1523			 * and we just freed all the buffers we need
1524			 * above.
1525			 */
1526			panic("fxp_stop: no buffers!");
1527		}
1528	}
1529}
1530
1531/*
1532 * Watchdog/transmission transmit timeout handler. Called when a
1533 * transmission is started on the interface, but no interrupt is
1534 * received before the timeout. This usually indicates that the
1535 * card has wedged for some reason.
1536 */
1537static void
1538fxp_watchdog(struct ifnet *ifp)
1539{
1540	struct fxp_softc *sc = ifp->if_softc;
1541
1542	device_printf(sc->dev, "device timeout\n");
1543	ifp->if_oerrors++;
1544
1545	fxp_init(sc);
1546}
1547
1548static void
1549fxp_init(void *xsc)
1550{
1551	struct fxp_softc *sc = xsc;
1552	struct ifnet *ifp = &sc->sc_if;
1553	struct fxp_cb_config *cbp;
1554	struct fxp_cb_ias *cb_ias;
1555	struct fxp_cb_tx *txp;
1556	struct fxp_cb_mcs *mcsp;
1557	int i, prm, s;
1558
1559	s = splimp();
1560	/*
1561	 * Cancel any pending I/O
1562	 */
1563	fxp_stop(sc);
1564
1565	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1566
1567	/*
1568	 * Initialize base of CBL and RFA memory. Loading with zero
1569	 * sets it up for regular linear addressing.
1570	 */
1571	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1572	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1573
1574	fxp_scb_wait(sc);
1575	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1576
1577	/*
1578	 * Initialize base of dump-stats buffer.
1579	 */
1580	fxp_scb_wait(sc);
1581	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1582	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1583
1584	/*
1585	 * Attempt to load microcode if requested.
1586	 */
1587	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1588		fxp_load_ucode(sc);
1589
1590	/*
1591	 * Initialize the multicast address list.
1592	 */
1593	if (fxp_mc_addrs(sc)) {
1594		mcsp = sc->mcsp;
1595		mcsp->cb_status = 0;
1596		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1597		mcsp->link_addr = -1;
1598		/*
1599	 	 * Start the multicast setup command.
1600		 */
1601		fxp_scb_wait(sc);
1602		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1603		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1604		/* ...and wait for it to complete. */
1605		fxp_dma_wait(&mcsp->cb_status, sc);
1606	}
1607
1608	/*
1609	 * We temporarily use memory that contains the TxCB list to
1610	 * construct the config CB. The TxCB list memory is rebuilt
1611	 * later.
1612	 */
1613	cbp = (struct fxp_cb_config *) sc->cbl_base;
1614
1615	/*
1616	 * This bcopy is kind of disgusting, but there are a bunch of must be
1617	 * zero and must be one bits in this structure and this is the easiest
1618	 * way to initialize them all to proper values.
1619	 */
1620	bcopy(fxp_cb_config_template,
1621		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1622		sizeof(fxp_cb_config_template));
1623
1624	cbp->cb_status =	0;
1625	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1626	cbp->link_addr =	-1;	/* (no) next command */
1627	cbp->byte_count =	22;	/* (22) bytes to config */
1628	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1629	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1630	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1631	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1632	cbp->type_enable =	0;	/* actually reserved */
1633	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1634	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1635	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1636	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1637	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1638	cbp->late_scb =		0;	/* (don't) defer SCB update */
1639	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1640	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1641	cbp->ci_int =		1;	/* interrupt on CU idle */
1642	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1643	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1644	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1645	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1646	cbp->disc_short_rx =	!prm;	/* discard short packets */
1647	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1648	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1649	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1650	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1651	cbp->csma_dis =		0;	/* (don't) disable link */
1652	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1653	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1654	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1655	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1656	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1657	cbp->nsai =		1;	/* (don't) disable source addr insert */
1658	cbp->preamble_length =	2;	/* (7 byte) preamble */
1659	cbp->loopback =		0;	/* (don't) loopback */
1660	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1661	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1662	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1663	cbp->promiscuous =	prm;	/* promiscuous mode */
1664	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1665	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1666	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1667	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1668	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1669
1670	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1671	cbp->padding =		1;	/* (do) pad short tx packets */
1672	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1673	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1674	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1675	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1676					/* must set wake_en in PMCSR also */
1677	cbp->force_fdx =	0;	/* (don't) force full duplex */
1678	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1679	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1680	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1681
1682	if (sc->revision == FXP_REV_82557) {
1683		/*
1684		 * The 82557 has no hardware flow control, the values
1685		 * below are the defaults for the chip.
1686		 */
1687		cbp->fc_delay_lsb =	0;
1688		cbp->fc_delay_msb =	0x40;
1689		cbp->pri_fc_thresh =	3;
1690		cbp->tx_fc_dis =	0;
1691		cbp->rx_fc_restop =	0;
1692		cbp->rx_fc_restart =	0;
1693		cbp->fc_filter =	0;
1694		cbp->pri_fc_loc =	1;
1695	} else {
1696		cbp->fc_delay_lsb =	0x1f;
1697		cbp->fc_delay_msb =	0x01;
1698		cbp->pri_fc_thresh =	3;
1699		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1700		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1701		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1702		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1703		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1704	}
1705
1706	/*
1707	 * Start the config command/DMA.
1708	 */
1709	fxp_scb_wait(sc);
1710	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1711	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1712	/* ...and wait for it to complete. */
1713	fxp_dma_wait(&cbp->cb_status, sc);
1714
1715	/*
1716	 * Now initialize the station address. Temporarily use the TxCB
1717	 * memory area like we did above for the config CB.
1718	 */
1719	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1720	cb_ias->cb_status = 0;
1721	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1722	cb_ias->link_addr = -1;
1723	bcopy(sc->arpcom.ac_enaddr,
1724	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1725	    sizeof(sc->arpcom.ac_enaddr));
1726
1727	/*
1728	 * Start the IAS (Individual Address Setup) command/DMA.
1729	 */
1730	fxp_scb_wait(sc);
1731	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1732	/* ...and wait for it to complete. */
1733	fxp_dma_wait(&cb_ias->cb_status, sc);
1734
1735	/*
1736	 * Initialize transmit control block (TxCB) list.
1737	 */
1738
1739	txp = sc->cbl_base;
1740	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1741	for (i = 0; i < FXP_NTXCB; i++) {
1742		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1743		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1744		txp[i].link_addr =
1745		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1746		if (sc->flags & FXP_FLAG_EXT_TXCB)
1747			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1748		else
1749			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1750		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1751	}
1752	/*
1753	 * Set the suspend flag on the first TxCB and start the control
1754	 * unit. It will execute the NOP and then suspend.
1755	 */
1756	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1757	sc->cbl_first = sc->cbl_last = txp;
1758	sc->tx_queued = 1;
1759
1760	fxp_scb_wait(sc);
1761	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1762
1763	/*
1764	 * Initialize receiver buffer area - RFA.
1765	 */
1766	fxp_scb_wait(sc);
1767	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1768	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1769	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1770
1771	/*
1772	 * Set current media.
1773	 */
1774	if (sc->miibus != NULL)
1775		mii_mediachg(device_get_softc(sc->miibus));
1776
1777	ifp->if_flags |= IFF_RUNNING;
1778	ifp->if_flags &= ~IFF_OACTIVE;
1779
1780	/*
1781	 * Enable interrupts.
1782	 */
1783#ifdef DEVICE_POLLING
1784	/*
1785	 * ... but only do that if we are not polling. And because (presumably)
1786	 * the default is interrupts on, we need to disable them explicitly!
1787	 */
1788	if ( ifp->if_flags & IFF_POLLING )
1789		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1790	else
1791#endif /* DEVICE_POLLING */
1792	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1793	splx(s);
1794
1795	/*
1796	 * Start stats updater.
1797	 */
1798	sc->stat_ch = timeout(fxp_tick, sc, hz);
1799}
1800
1801static int
1802fxp_serial_ifmedia_upd(struct ifnet *ifp)
1803{
1804
1805	return (0);
1806}
1807
1808static void
1809fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1810{
1811
1812	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1813}
1814
1815/*
1816 * Change media according to request.
1817 */
1818static int
1819fxp_ifmedia_upd(struct ifnet *ifp)
1820{
1821	struct fxp_softc *sc = ifp->if_softc;
1822	struct mii_data *mii;
1823
1824	mii = device_get_softc(sc->miibus);
1825	mii_mediachg(mii);
1826	return (0);
1827}
1828
1829/*
1830 * Notify the world which media we're using.
1831 */
1832static void
1833fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1834{
1835	struct fxp_softc *sc = ifp->if_softc;
1836	struct mii_data *mii;
1837
1838	mii = device_get_softc(sc->miibus);
1839	mii_pollstat(mii);
1840	ifmr->ifm_active = mii->mii_media_active;
1841	ifmr->ifm_status = mii->mii_media_status;
1842
1843	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1844		sc->cu_resume_bug = 1;
1845	else
1846		sc->cu_resume_bug = 0;
1847}
1848
1849/*
1850 * Add a buffer to the end of the RFA buffer list.
1851 * Return 0 if successful, 1 for failure. A failure results in
1852 * adding the 'oldm' (if non-NULL) on to the end of the list -
1853 * tossing out its old contents and recycling it.
1854 * The RFA struct is stuck at the beginning of mbuf cluster and the
1855 * data pointer is fixed up to point just past it.
1856 */
1857static int
1858fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1859{
1860	u_int32_t v;
1861	struct mbuf *m;
1862	struct fxp_rfa *rfa, *p_rfa;
1863
1864	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1865	if (m == NULL) { /* try to recycle the old mbuf instead */
1866		if (oldm == NULL)
1867			return 1;
1868		m = oldm;
1869		m->m_data = m->m_ext.ext_buf;
1870	}
1871
1872	/*
1873	 * Move the data pointer up so that the incoming data packet
1874	 * will be 32-bit aligned.
1875	 */
1876	m->m_data += RFA_ALIGNMENT_FUDGE;
1877
1878	/*
1879	 * Get a pointer to the base of the mbuf cluster and move
1880	 * data start past it.
1881	 */
1882	rfa = mtod(m, struct fxp_rfa *);
1883	m->m_data += sizeof(struct fxp_rfa);
1884	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1885
1886	/*
1887	 * Initialize the rest of the RFA.  Note that since the RFA
1888	 * is misaligned, we cannot store values directly.  Instead,
1889	 * we use an optimized, inline copy.
1890	 */
1891
1892	rfa->rfa_status = 0;
1893	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1894	rfa->actual_size = 0;
1895
1896	v = -1;
1897	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1898	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1899
1900	/*
1901	 * If there are other buffers already on the list, attach this
1902	 * one to the end by fixing up the tail to point to this one.
1903	 */
1904	if (sc->rfa_headm != NULL) {
1905		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1906		    RFA_ALIGNMENT_FUDGE);
1907		sc->rfa_tailm->m_next = m;
1908		v = vtophys(rfa);
1909		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1910		p_rfa->rfa_control = 0;
1911	} else {
1912		sc->rfa_headm = m;
1913	}
1914	sc->rfa_tailm = m;
1915
1916	return (m == oldm);
1917}
1918
1919static volatile int
1920fxp_miibus_readreg(device_t dev, int phy, int reg)
1921{
1922	struct fxp_softc *sc = device_get_softc(dev);
1923	int count = 10000;
1924	int value;
1925
1926	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1927	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1928
1929	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1930	    && count--)
1931		DELAY(10);
1932
1933	if (count <= 0)
1934		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1935
1936	return (value & 0xffff);
1937}
1938
1939static void
1940fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1941{
1942	struct fxp_softc *sc = device_get_softc(dev);
1943	int count = 10000;
1944
1945	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1946	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1947	    (value & 0xffff));
1948
1949	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1950	    count--)
1951		DELAY(10);
1952
1953	if (count <= 0)
1954		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1955}
1956
1957static int
1958fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1959{
1960	struct fxp_softc *sc = ifp->if_softc;
1961	struct ifreq *ifr = (struct ifreq *)data;
1962	struct mii_data *mii;
1963	int s, error = 0;
1964
1965	s = splimp();
1966
1967	switch (command) {
1968	case SIOCSIFADDR:
1969	case SIOCGIFADDR:
1970	case SIOCSIFMTU:
1971		error = ether_ioctl(ifp, command, data);
1972		break;
1973
1974	case SIOCSIFFLAGS:
1975		if (ifp->if_flags & IFF_ALLMULTI)
1976			sc->flags |= FXP_FLAG_ALL_MCAST;
1977		else
1978			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1979
1980		/*
1981		 * If interface is marked up and not running, then start it.
1982		 * If it is marked down and running, stop it.
1983		 * XXX If it's up then re-initialize it. This is so flags
1984		 * such as IFF_PROMISC are handled.
1985		 */
1986		if (ifp->if_flags & IFF_UP) {
1987			fxp_init(sc);
1988		} else {
1989			if (ifp->if_flags & IFF_RUNNING)
1990				fxp_stop(sc);
1991		}
1992		break;
1993
1994	case SIOCADDMULTI:
1995	case SIOCDELMULTI:
1996		if (ifp->if_flags & IFF_ALLMULTI)
1997			sc->flags |= FXP_FLAG_ALL_MCAST;
1998		else
1999			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2000		/*
2001		 * Multicast list has changed; set the hardware filter
2002		 * accordingly.
2003		 */
2004		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2005			fxp_mc_setup(sc);
2006		/*
2007		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2008		 * again rather than else {}.
2009		 */
2010		if (sc->flags & FXP_FLAG_ALL_MCAST)
2011			fxp_init(sc);
2012		error = 0;
2013		break;
2014
2015	case SIOCSIFMEDIA:
2016	case SIOCGIFMEDIA:
2017		if (sc->miibus != NULL) {
2018			mii = device_get_softc(sc->miibus);
2019                        error = ifmedia_ioctl(ifp, ifr,
2020                            &mii->mii_media, command);
2021		} else {
2022                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2023		}
2024		break;
2025
2026	default:
2027		error = EINVAL;
2028	}
2029	splx(s);
2030	return (error);
2031}
2032
2033/*
2034 * Fill in the multicast address list and return number of entries.
2035 */
2036static int
2037fxp_mc_addrs(struct fxp_softc *sc)
2038{
2039	struct fxp_cb_mcs *mcsp = sc->mcsp;
2040	struct ifnet *ifp = &sc->sc_if;
2041	struct ifmultiaddr *ifma;
2042	int nmcasts;
2043
2044	nmcasts = 0;
2045	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2046#if __FreeBSD_version < 500000
2047		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2048#else
2049		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2050#endif
2051			if (ifma->ifma_addr->sa_family != AF_LINK)
2052				continue;
2053			if (nmcasts >= MAXMCADDR) {
2054				sc->flags |= FXP_FLAG_ALL_MCAST;
2055				nmcasts = 0;
2056				break;
2057			}
2058			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2059			    (void *)(uintptr_t)(volatile void *)
2060				&sc->mcsp->mc_addr[nmcasts][0], 6);
2061			nmcasts++;
2062		}
2063	}
2064	mcsp->mc_cnt = nmcasts * 6;
2065	return (nmcasts);
2066}
2067
2068/*
2069 * Program the multicast filter.
2070 *
2071 * We have an artificial restriction that the multicast setup command
2072 * must be the first command in the chain, so we take steps to ensure
2073 * this. By requiring this, it allows us to keep up the performance of
2074 * the pre-initialized command ring (esp. link pointers) by not actually
2075 * inserting the mcsetup command in the ring - i.e. its link pointer
2076 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2077 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2078 * lead into the regular TxCB ring when it completes.
2079 *
2080 * This function must be called at splimp.
2081 */
2082static void
2083fxp_mc_setup(struct fxp_softc *sc)
2084{
2085	struct fxp_cb_mcs *mcsp = sc->mcsp;
2086	struct ifnet *ifp = &sc->sc_if;
2087	int count;
2088
2089	/*
2090	 * If there are queued commands, we must wait until they are all
2091	 * completed. If we are already waiting, then add a NOP command
2092	 * with interrupt option so that we're notified when all commands
2093	 * have been completed - fxp_start() ensures that no additional
2094	 * TX commands will be added when need_mcsetup is true.
2095	 */
2096	if (sc->tx_queued) {
2097		struct fxp_cb_tx *txp;
2098
2099		/*
2100		 * need_mcsetup will be true if we are already waiting for the
2101		 * NOP command to be completed (see below). In this case, bail.
2102		 */
2103		if (sc->need_mcsetup)
2104			return;
2105		sc->need_mcsetup = 1;
2106
2107		/*
2108		 * Add a NOP command with interrupt so that we are notified
2109		 * when all TX commands have been processed.
2110		 */
2111		txp = sc->cbl_last->next;
2112		txp->mb_head = NULL;
2113		txp->cb_status = 0;
2114		txp->cb_command = FXP_CB_COMMAND_NOP |
2115		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2116		/*
2117		 * Advance the end of list forward.
2118		 */
2119		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2120		sc->cbl_last = txp;
2121		sc->tx_queued++;
2122		/*
2123		 * Issue a resume in case the CU has just suspended.
2124		 */
2125		fxp_scb_wait(sc);
2126		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2127		/*
2128		 * Set a 5 second timer just in case we don't hear from the
2129		 * card again.
2130		 */
2131		ifp->if_timer = 5;
2132
2133		return;
2134	}
2135	sc->need_mcsetup = 0;
2136
2137	/*
2138	 * Initialize multicast setup descriptor.
2139	 */
2140	mcsp->next = sc->cbl_base;
2141	mcsp->mb_head = NULL;
2142	mcsp->cb_status = 0;
2143	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2144	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2145	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2146	(void) fxp_mc_addrs(sc);
2147	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2148	sc->tx_queued = 1;
2149
2150	/*
2151	 * Wait until command unit is not active. This should never
2152	 * be the case when nothing is queued, but make sure anyway.
2153	 */
2154	count = 100;
2155	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2156	    FXP_SCB_CUS_ACTIVE && --count)
2157		DELAY(10);
2158	if (count == 0) {
2159		device_printf(sc->dev, "command queue timeout\n");
2160		return;
2161	}
2162
2163	/*
2164	 * Start the multicast setup command.
2165	 */
2166	fxp_scb_wait(sc);
2167	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2168	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2169
2170	ifp->if_timer = 2;
2171	return;
2172}
2173
2174static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2175static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2176static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2177static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2178static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2179static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2180
2181#define UCODE(x)	x, sizeof(x)
2182
2183struct ucode {
2184	u_int32_t	revision;
2185	u_int32_t	*ucode;
2186	int		length;
2187	u_short		int_delay_offset;
2188	u_short		bundle_max_offset;
2189} ucode_table[] = {
2190	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2191	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2192	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2193	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2194	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2195	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2196	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2197	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2198	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2199	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2200	{ 0, NULL, 0, 0, 0 }
2201};
2202
2203static void
2204fxp_load_ucode(struct fxp_softc *sc)
2205{
2206	struct ucode *uc;
2207	struct fxp_cb_ucode *cbp;
2208
2209	for (uc = ucode_table; uc->ucode != NULL; uc++)
2210		if (sc->revision == uc->revision)
2211			break;
2212	if (uc->ucode == NULL)
2213		return;
2214	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2215	cbp->cb_status = 0;
2216	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2217	cbp->link_addr = -1;    	/* (no) next command */
2218	memcpy(cbp->ucode, uc->ucode, uc->length);
2219	if (uc->int_delay_offset)
2220		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2221		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2222	if (uc->bundle_max_offset)
2223		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2224		    sc->tunable_bundle_max;
2225	/*
2226	 * Download the ucode to the chip.
2227	 */
2228	fxp_scb_wait(sc);
2229	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2230	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2231	/* ...and wait for it to complete. */
2232	fxp_dma_wait(&cbp->cb_status, sc);
2233	device_printf(sc->dev,
2234	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2235	    sc->tunable_int_delay,
2236	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2237	sc->flags |= FXP_FLAG_UCODE;
2238}
2239
2240static int
2241sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2242{
2243	int error, value;
2244
2245	value = *(int *)arg1;
2246	error = sysctl_handle_int(oidp, &value, 0, req);
2247	if (error || !req->newptr)
2248		return (error);
2249	if (value < low || value > high)
2250		return (EINVAL);
2251	*(int *)arg1 = value;
2252	return (0);
2253}
2254
2255/*
2256 * Interrupt delay is expressed in microseconds, a multiplier is used
2257 * to convert this to the appropriate clock ticks before using.
2258 */
2259static int
2260sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2261{
2262	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2263}
2264
2265static int
2266sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2267{
2268	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2269}
2270