if_ffec.c revision 331722
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/ffec/if_ffec.c 331722 2018-03-29 02:50:57Z eadler $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/fdt/fdt_common.h>
82#include <dev/ffec/if_ffecreg.h>
83#include <dev/ofw/ofw_bus.h>
84#include <dev/ofw/ofw_bus_subr.h>
85#include <dev/mii/mii.h>
86#include <dev/mii/miivar.h>
87#include <dev/mii/mii_fdt.h>
88#include "miibus_if.h"
89
90/*
91 * There are small differences in the hardware on various SoCs.  Not every SoC
92 * we support has its own FECTYPE; most work as GENERIC and only the ones that
93 * need different handling get their own entry.  In addition to the types in
94 * this list, there are some flags below that can be ORed into the upper bits.
95 */
96enum {
97	FECTYPE_NONE,
98	FECTYPE_GENERIC,
99	FECTYPE_IMX53,
100	FECTYPE_IMX6,	/* imx6 and imx7 */
101	FECTYPE_MVF,
102};
103
104/*
105 * Flags that describe general differences between the FEC hardware in various
106 * SoCs.  These are ORed into the FECTYPE enum values in the ofw_compat_data, so
107 * the low 8 bits are reserved for the type enum.  In the softc, the type and
108 * flags are put into separate members, so that you don't need to mask the flags
109 * out of the type to compare it.
110 */
111#define	FECTYPE_MASK		0x000000ff
112#define	FECFLAG_GBE		(1 <<  8)
113#define	FECFLAG_AVB		(1 <<  9)
114#define	FECFLAG_RACC		(1 << 10)
115
116/*
117 * Table of supported FDT compat strings and their associated FECTYPE values.
118 */
119static struct ofw_compat_data compat_data[] = {
120	{"fsl,imx51-fec",	FECTYPE_GENERIC},
121	{"fsl,imx53-fec",	FECTYPE_IMX53},
122	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE },
123	{"fsl,imx6ul-fec",	FECTYPE_IMX6 | FECFLAG_RACC },
124	{"fsl,imx7d-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE |
125				FECFLAG_AVB },
126	{"fsl,mvf600-fec",	FECTYPE_MVF  | FECFLAG_RACC },
127	{"fsl,mvf-fec",		FECTYPE_MVF},
128	{NULL,		 	FECTYPE_NONE},
129};
130
131/*
132 * Driver data and defines.
133 */
134#define	RX_DESC_COUNT	64
135#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
136#define	TX_DESC_COUNT	64
137#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
138
139#define	WATCHDOG_TIMEOUT_SECS	5
140
141#define	MAX_IRQ_COUNT 3
142
143struct ffec_bufmap {
144	struct mbuf	*mbuf;
145	bus_dmamap_t	map;
146};
147
148struct ffec_softc {
149	device_t		dev;
150	device_t		miibus;
151	struct mii_data *	mii_softc;
152	struct ifnet		*ifp;
153	int			if_flags;
154	struct mtx		mtx;
155	struct resource		*irq_res[MAX_IRQ_COUNT];
156	struct resource		*mem_res;
157	void *			intr_cookie[MAX_IRQ_COUNT];
158	struct callout		ffec_callout;
159	mii_contype_t		phy_conn_type;
160	uint32_t		fecflags;
161	uint8_t			fectype;
162	boolean_t		link_is_up;
163	boolean_t		is_attached;
164	boolean_t		is_detaching;
165	int			tx_watchdog_count;
166	int			rxbuf_align;
167	int			txbuf_align;
168
169	bus_dma_tag_t		rxdesc_tag;
170	bus_dmamap_t		rxdesc_map;
171	struct ffec_hwdesc	*rxdesc_ring;
172	bus_addr_t		rxdesc_ring_paddr;
173	bus_dma_tag_t		rxbuf_tag;
174	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
175	uint32_t		rx_idx;
176
177	bus_dma_tag_t		txdesc_tag;
178	bus_dmamap_t		txdesc_map;
179	struct ffec_hwdesc	*txdesc_ring;
180	bus_addr_t		txdesc_ring_paddr;
181	bus_dma_tag_t		txbuf_tag;
182	struct ffec_bufmap	txbuf_map[TX_DESC_COUNT];
183	uint32_t		tx_idx_head;
184	uint32_t		tx_idx_tail;
185	int			txcount;
186};
187
188static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = {
189	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
190	{ SYS_RES_IRQ,		1,	RF_ACTIVE | RF_OPTIONAL },
191	{ SYS_RES_IRQ,		2,	RF_ACTIVE | RF_OPTIONAL },
192	RESOURCE_SPEC_END
193};
194
195#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
196#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
197#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
198	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
199#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
200#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
201#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
202
203static void ffec_init_locked(struct ffec_softc *sc);
204static void ffec_stop_locked(struct ffec_softc *sc);
205static void ffec_txstart_locked(struct ffec_softc *sc);
206static void ffec_txfinish_locked(struct ffec_softc *sc);
207
208static inline uint16_t
209RD2(struct ffec_softc *sc, bus_size_t off)
210{
211
212	return (bus_read_2(sc->mem_res, off));
213}
214
215static inline void
216WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
217{
218
219	bus_write_2(sc->mem_res, off, val);
220}
221
222static inline uint32_t
223RD4(struct ffec_softc *sc, bus_size_t off)
224{
225
226	return (bus_read_4(sc->mem_res, off));
227}
228
229static inline void
230WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
231{
232
233	bus_write_4(sc->mem_res, off, val);
234}
235
236static inline uint32_t
237next_rxidx(struct ffec_softc *sc, uint32_t curidx)
238{
239
240	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
241}
242
243static inline uint32_t
244next_txidx(struct ffec_softc *sc, uint32_t curidx)
245{
246
247	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
248}
249
250static void
251ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
252{
253
254	if (error != 0)
255		return;
256	*(bus_addr_t *)arg = segs[0].ds_addr;
257}
258
259static void
260ffec_miigasket_setup(struct ffec_softc *sc)
261{
262	uint32_t ifmode;
263
264	/*
265	 * We only need the gasket for MII and RMII connections on certain SoCs.
266	 */
267
268	switch (sc->fectype)
269	{
270	case FECTYPE_IMX53:
271		break;
272	default:
273		return;
274	}
275
276	switch (sc->phy_conn_type)
277	{
278	case MII_CONTYPE_MII:
279		ifmode = 0;
280		break;
281	case MII_CONTYPE_RMII:
282		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
283		break;
284	default:
285		return;
286	}
287
288	/*
289	 * Disable the gasket, configure for either MII or RMII, then enable.
290	 */
291
292	WR2(sc, FEC_MIIGSK_ENR, 0);
293	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
294		continue;
295
296	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
297
298	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
299	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
300		continue;
301}
302
303static boolean_t
304ffec_miibus_iowait(struct ffec_softc *sc)
305{
306	uint32_t timeout;
307
308	for (timeout = 10000; timeout != 0; --timeout)
309		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
310			return (true);
311
312	return (false);
313}
314
315static int
316ffec_miibus_readreg(device_t dev, int phy, int reg)
317{
318	struct ffec_softc *sc;
319	int val;
320
321	sc = device_get_softc(dev);
322
323	WR4(sc, FEC_IER_REG, FEC_IER_MII);
324
325	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
326	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
327	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
328	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
329
330	if (!ffec_miibus_iowait(sc)) {
331		device_printf(dev, "timeout waiting for mii read\n");
332		return (-1); /* All-ones is a symptom of bad mdio. */
333	}
334
335	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
336
337	return (val);
338}
339
340static int
341ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
342{
343	struct ffec_softc *sc;
344
345	sc = device_get_softc(dev);
346
347	WR4(sc, FEC_IER_REG, FEC_IER_MII);
348
349	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
350	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
351	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
352	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
353	    (val & FEC_MMFR_DATA_MASK));
354
355	if (!ffec_miibus_iowait(sc)) {
356		device_printf(dev, "timeout waiting for mii write\n");
357		return (-1);
358	}
359
360	return (0);
361}
362
363static void
364ffec_miibus_statchg(device_t dev)
365{
366	struct ffec_softc *sc;
367	struct mii_data *mii;
368	uint32_t ecr, rcr, tcr;
369
370	/*
371	 * Called by the MII bus driver when the PHY establishes link to set the
372	 * MAC interface registers.
373	 */
374
375	sc = device_get_softc(dev);
376
377	FFEC_ASSERT_LOCKED(sc);
378
379	mii = sc->mii_softc;
380
381	if (mii->mii_media_status & IFM_ACTIVE)
382		sc->link_is_up = true;
383	else
384		sc->link_is_up = false;
385
386	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
387	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
388	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
389	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
390
391	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
392	switch (sc->phy_conn_type) {
393	case MII_CONTYPE_RMII:
394		rcr |= FEC_RCR_RMII_MODE;
395		break;
396	case MII_CONTYPE_RGMII:
397	case MII_CONTYPE_RGMII_ID:
398	case MII_CONTYPE_RGMII_RXID:
399	case MII_CONTYPE_RGMII_TXID:
400		rcr |= FEC_RCR_RGMII_EN;
401		break;
402	default:
403		break;
404	}
405
406	switch (IFM_SUBTYPE(mii->mii_media_active)) {
407	case IFM_1000_T:
408	case IFM_1000_SX:
409		ecr |= FEC_ECR_SPEED;
410		break;
411	case IFM_100_TX:
412		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
413		break;
414	case IFM_10_T:
415		rcr |= FEC_RCR_RMII_10T;
416		break;
417	case IFM_NONE:
418		sc->link_is_up = false;
419		return;
420	default:
421		sc->link_is_up = false;
422		device_printf(dev, "Unsupported media %u\n",
423		    IFM_SUBTYPE(mii->mii_media_active));
424		return;
425	}
426
427	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
428		tcr |= FEC_TCR_FDEN;
429	else
430		rcr |= FEC_RCR_DRT;
431
432	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
433		rcr |= FEC_RCR_FCE;
434
435	WR4(sc, FEC_RCR_REG, rcr);
436	WR4(sc, FEC_TCR_REG, tcr);
437	WR4(sc, FEC_ECR_REG, ecr);
438}
439
440static void
441ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
442{
443	struct ffec_softc *sc;
444	struct mii_data *mii;
445
446
447	sc = ifp->if_softc;
448	mii = sc->mii_softc;
449	FFEC_LOCK(sc);
450	mii_pollstat(mii);
451	ifmr->ifm_active = mii->mii_media_active;
452	ifmr->ifm_status = mii->mii_media_status;
453	FFEC_UNLOCK(sc);
454}
455
456static int
457ffec_media_change_locked(struct ffec_softc *sc)
458{
459
460	return (mii_mediachg(sc->mii_softc));
461}
462
463static int
464ffec_media_change(struct ifnet * ifp)
465{
466	struct ffec_softc *sc;
467	int error;
468
469	sc = ifp->if_softc;
470
471	FFEC_LOCK(sc);
472	error = ffec_media_change_locked(sc);
473	FFEC_UNLOCK(sc);
474	return (error);
475}
476
477static void ffec_clear_stats(struct ffec_softc *sc)
478{
479	uint32_t mibc;
480
481	mibc = RD4(sc, FEC_MIBC_REG);
482
483	/*
484	 * On newer hardware the statistic regs are cleared by toggling a bit in
485	 * the mib control register.  On older hardware the clear procedure is
486	 * to disable statistics collection, zero the regs, then re-enable.
487	 */
488	if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) {
489		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR);
490		WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR);
491	} else {
492		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS);
493
494		WR4(sc, FEC_IEEE_R_DROP, 0);
495		WR4(sc, FEC_IEEE_R_MACERR, 0);
496		WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
497		WR4(sc, FEC_RMON_R_FRAG, 0);
498		WR4(sc, FEC_RMON_R_JAB, 0);
499		WR4(sc, FEC_RMON_R_MC_PKT, 0);
500		WR4(sc, FEC_RMON_R_OVERSIZE, 0);
501		WR4(sc, FEC_RMON_R_PACKETS, 0);
502		WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
503		WR4(sc, FEC_RMON_T_COL, 0);
504		WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
505		WR4(sc, FEC_RMON_T_FRAG, 0);
506		WR4(sc, FEC_RMON_T_JAB, 0);
507		WR4(sc, FEC_RMON_T_MC_PKT, 0);
508		WR4(sc, FEC_RMON_T_OVERSIZE , 0);
509		WR4(sc, FEC_RMON_T_PACKETS, 0);
510		WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
511
512		WR4(sc, FEC_MIBC_REG, mibc);
513	}
514}
515
516static void
517ffec_harvest_stats(struct ffec_softc *sc)
518{
519	struct ifnet *ifp;
520
521	ifp = sc->ifp;
522
523	/*
524	 * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter"
525	 *   so it's really just another type of input error.
526	 * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops.
527	 */
528	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
529	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
530	if_inc_counter(ifp, IFCOUNTER_IERRORS,
531	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
532	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
533	    RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP));
534
535	if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR));
536
537	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
538	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
539	if_inc_counter(ifp, IFCOUNTER_OERRORS,
540	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
541	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
542	    RD4(sc, FEC_RMON_T_JAB));
543
544	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
545
546	ffec_clear_stats(sc);
547}
548
549static void
550ffec_tick(void *arg)
551{
552	struct ffec_softc *sc;
553	struct ifnet *ifp;
554	int link_was_up;
555
556	sc = arg;
557
558	FFEC_ASSERT_LOCKED(sc);
559
560	ifp = sc->ifp;
561
562	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
563	    return;
564
565	/*
566	 * Typical tx watchdog.  If this fires it indicates that we enqueued
567	 * packets for output and never got a txdone interrupt for them.  Maybe
568	 * it's a missed interrupt somehow, just pretend we got one.
569	 */
570	if (sc->tx_watchdog_count > 0) {
571		if (--sc->tx_watchdog_count == 0) {
572			ffec_txfinish_locked(sc);
573		}
574	}
575
576	/* Gather stats from hardware counters. */
577	ffec_harvest_stats(sc);
578
579	/* Check the media status. */
580	link_was_up = sc->link_is_up;
581	mii_tick(sc->mii_softc);
582	if (sc->link_is_up && !link_was_up)
583		ffec_txstart_locked(sc);
584
585	/* Schedule another check one second from now. */
586	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
587}
588
589inline static uint32_t
590ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
591    uint32_t len)
592{
593	uint32_t nidx;
594	uint32_t flags;
595
596	nidx = next_txidx(sc, idx);
597
598	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
599	if (paddr == 0 || len == 0) {
600		flags = 0;
601		--sc->txcount;
602	} else {
603		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
604		++sc->txcount;
605	}
606	if (nidx == 0)
607		flags |= FEC_TXDESC_WRAP;
608
609	/*
610	 * The hardware requires 32-bit physical addresses.  We set up the dma
611	 * tag to indicate that, so the cast to uint32_t should never lose
612	 * significant bits.
613	 */
614	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
615	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
616
617	return (nidx);
618}
619
620static int
621ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
622{
623	struct mbuf * m;
624	int error, nsegs;
625	struct bus_dma_segment seg;
626
627	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
628		return (ENOMEM);
629	*mp = m;
630
631	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
632	    m, &seg, &nsegs, 0);
633	if (error != 0) {
634		return (ENOMEM);
635	}
636	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
637	    BUS_DMASYNC_PREWRITE);
638
639	sc->txbuf_map[idx].mbuf = m;
640	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
641
642	return (0);
643
644}
645
646static void
647ffec_txstart_locked(struct ffec_softc *sc)
648{
649	struct ifnet *ifp;
650	struct mbuf *m;
651	int enqueued;
652
653	FFEC_ASSERT_LOCKED(sc);
654
655	if (!sc->link_is_up)
656		return;
657
658	ifp = sc->ifp;
659
660	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
661		return;
662
663	enqueued = 0;
664
665	for (;;) {
666		if (sc->txcount == (TX_DESC_COUNT-1)) {
667			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
668			break;
669		}
670		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
671		if (m == NULL)
672			break;
673		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
674			IFQ_DRV_PREPEND(&ifp->if_snd, m);
675			break;
676		}
677		BPF_MTAP(ifp, m);
678		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
679		++enqueued;
680	}
681
682	if (enqueued != 0) {
683		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
684		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
685		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
686		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
687	}
688}
689
690static void
691ffec_txstart(struct ifnet *ifp)
692{
693	struct ffec_softc *sc = ifp->if_softc;
694
695	FFEC_LOCK(sc);
696	ffec_txstart_locked(sc);
697	FFEC_UNLOCK(sc);
698}
699
700static void
701ffec_txfinish_locked(struct ffec_softc *sc)
702{
703	struct ifnet *ifp;
704	struct ffec_hwdesc *desc;
705	struct ffec_bufmap *bmap;
706	boolean_t retired_buffer;
707
708	FFEC_ASSERT_LOCKED(sc);
709
710	/* XXX Can't set PRE|POST right now, but we need both. */
711	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
712	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
713	ifp = sc->ifp;
714	retired_buffer = false;
715	while (sc->tx_idx_tail != sc->tx_idx_head) {
716		desc = &sc->txdesc_ring[sc->tx_idx_tail];
717		if (desc->flags_len & FEC_TXDESC_READY)
718			break;
719		retired_buffer = true;
720		bmap = &sc->txbuf_map[sc->tx_idx_tail];
721		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
722		    BUS_DMASYNC_POSTWRITE);
723		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
724		m_freem(bmap->mbuf);
725		bmap->mbuf = NULL;
726		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
727		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
728	}
729
730	/*
731	 * If we retired any buffers, there will be open tx slots available in
732	 * the descriptor ring, go try to start some new output.
733	 */
734	if (retired_buffer) {
735		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
736		ffec_txstart_locked(sc);
737	}
738
739	/* If there are no buffers outstanding, muzzle the watchdog. */
740	if (sc->tx_idx_tail == sc->tx_idx_head) {
741		sc->tx_watchdog_count = 0;
742	}
743}
744
745inline static uint32_t
746ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
747{
748	uint32_t nidx;
749
750	/*
751	 * The hardware requires 32-bit physical addresses.  We set up the dma
752	 * tag to indicate that, so the cast to uint32_t should never lose
753	 * significant bits.
754	 */
755	nidx = next_rxidx(sc, idx);
756	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
757	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
758		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
759
760	return (nidx);
761}
762
763static int
764ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
765{
766	int error, nsegs;
767	struct bus_dma_segment seg;
768
769	if (!(sc->fecflags & FECFLAG_RACC)) {
770		/*
771		 * The RACC[SHIFT16] feature is not available.  So, we need to
772		 * leave at least ETHER_ALIGN bytes free at the beginning of the
773		 * buffer to allow the data to be re-aligned after receiving it
774		 * (by copying it backwards ETHER_ALIGN bytes in the same
775		 * buffer).  We also have to ensure that the beginning of the
776		 * buffer is aligned to the hardware's requirements.
777		 */
778		m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align));
779	}
780
781	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
782	    m, &seg, &nsegs, 0);
783	if (error != 0) {
784		return (error);
785	}
786
787	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
788	    BUS_DMASYNC_PREREAD);
789
790	sc->rxbuf_map[idx].mbuf = m;
791	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
792
793	return (0);
794}
795
796static struct mbuf *
797ffec_alloc_mbufcl(struct ffec_softc *sc)
798{
799	struct mbuf *m;
800
801	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
802	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
803
804	return (m);
805}
806
807static void
808ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
809{
810	struct mbuf *m, *newmbuf;
811	struct ffec_bufmap *bmap;
812	uint8_t *dst, *src;
813	int error;
814
815	/*
816	 *  First try to get a new mbuf to plug into this slot in the rx ring.
817	 *  If that fails, drop the current packet and recycle the current
818	 *  mbuf, which is still mapped and loaded.
819	 */
820	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
821		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
822		ffec_setup_rxdesc(sc, sc->rx_idx,
823		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
824		return;
825	}
826
827	FFEC_UNLOCK(sc);
828
829	bmap = &sc->rxbuf_map[sc->rx_idx];
830	len -= ETHER_CRC_LEN;
831	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
832	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
833	m = bmap->mbuf;
834	bmap->mbuf = NULL;
835	m->m_len = len;
836	m->m_pkthdr.len = len;
837	m->m_pkthdr.rcvif = sc->ifp;
838
839	/*
840	 * Align the protocol headers in the receive buffer on a 32-bit
841	 * boundary.  Newer hardware does the alignment for us.  On hardware
842	 * that doesn't support this feature, we have to copy-align the data.
843	 *
844	 *  XXX for older hardware, could we speed this up by copying just the
845	 *  protocol headers into their own small mbuf then chaining the cluster
846	 *  to it? That way we'd only need to copy like 64 bytes or whatever the
847	 *  biggest header is, instead of the whole 1530ish-byte frame.
848	 */
849	if (sc->fecflags & FECFLAG_RACC) {
850		m->m_data = mtod(m, uint8_t *) + 2;
851	} else {
852		src = mtod(m, uint8_t*);
853		dst = src - ETHER_ALIGN;
854		bcopy(src, dst, len);
855		m->m_data = dst;
856	}
857	sc->ifp->if_input(sc->ifp, m);
858
859	FFEC_LOCK(sc);
860
861	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
862		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
863		/* XXX Now what?  We've got a hole in the rx ring. */
864	}
865
866}
867
868static void
869ffec_rxfinish_locked(struct ffec_softc *sc)
870{
871	struct ffec_hwdesc *desc;
872	int len;
873	boolean_t produced_empty_buffer;
874
875	FFEC_ASSERT_LOCKED(sc);
876
877	/* XXX Can't set PRE|POST right now, but we need both. */
878	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
879	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
880	produced_empty_buffer = false;
881	for (;;) {
882		desc = &sc->rxdesc_ring[sc->rx_idx];
883		if (desc->flags_len & FEC_RXDESC_EMPTY)
884			break;
885		produced_empty_buffer = true;
886		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
887		if (len < 64) {
888			/*
889			 * Just recycle the descriptor and continue.           .
890			 */
891			ffec_setup_rxdesc(sc, sc->rx_idx,
892			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
893		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
894			/*
895			 * The entire frame is not in this buffer.  Impossible.
896			 * Recycle the descriptor and continue.
897			 *
898			 * XXX what's the right way to handle this? Probably we
899			 * should stop/init the hardware because this should
900			 * just really never happen when we have buffers bigger
901			 * than the maximum frame size.
902			 */
903			device_printf(sc->dev,
904			    "fec_rxfinish: received frame without LAST bit set");
905			ffec_setup_rxdesc(sc, sc->rx_idx,
906			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
907		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
908			/*
909			 *  Something went wrong with receiving the frame, we
910			 *  don't care what (the hardware has counted the error
911			 *  in the stats registers already), we just reuse the
912			 *  same mbuf, which is still dma-mapped, by resetting
913			 *  the rx descriptor.
914			 */
915			ffec_setup_rxdesc(sc, sc->rx_idx,
916			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
917		} else {
918			/*
919			 *  Normal case: a good frame all in one buffer.
920			 */
921			ffec_rxfinish_onebuf(sc, len);
922		}
923		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
924	}
925
926	if (produced_empty_buffer) {
927		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
928		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
929		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
930	}
931}
932
933static void
934ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
935{
936	uint32_t palr, paur, rnd;
937
938	/*
939	 * Try to recover a MAC address from the running hardware. If there's
940	 * something non-zero there, assume the bootloader did the right thing
941	 * and just use it.
942	 *
943	 * Otherwise, set the address to a convenient locally assigned address,
944	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
945	 * assigned bit set, and the broadcast/multicast bit clear.
946	 */
947	palr = RD4(sc, FEC_PALR_REG);
948	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
949	if ((palr | paur) != 0) {
950		hwaddr[0] = palr >> 24;
951		hwaddr[1] = palr >> 16;
952		hwaddr[2] = palr >>  8;
953		hwaddr[3] = palr >>  0;
954		hwaddr[4] = paur >> 24;
955		hwaddr[5] = paur >> 16;
956	} else {
957		rnd = arc4random() & 0x00ffffff;
958		hwaddr[0] = 'b';
959		hwaddr[1] = 's';
960		hwaddr[2] = 'd';
961		hwaddr[3] = rnd >> 16;
962		hwaddr[4] = rnd >>  8;
963		hwaddr[5] = rnd >>  0;
964	}
965
966	if (bootverbose) {
967		device_printf(sc->dev,
968		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
969		    hwaddr[0], hwaddr[1], hwaddr[2],
970		    hwaddr[3], hwaddr[4], hwaddr[5]);
971	}
972}
973
974static void
975ffec_setup_rxfilter(struct ffec_softc *sc)
976{
977	struct ifnet *ifp;
978	struct ifmultiaddr *ifma;
979	uint8_t *eaddr;
980	uint32_t crc;
981	uint64_t ghash, ihash;
982
983	FFEC_ASSERT_LOCKED(sc);
984
985	ifp = sc->ifp;
986
987	/*
988	 * Set the multicast (group) filter hash.
989	 */
990	if ((ifp->if_flags & IFF_ALLMULTI))
991		ghash = 0xffffffffffffffffLLU;
992	else {
993		ghash = 0;
994		if_maddr_rlock(ifp);
995		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
996			if (ifma->ifma_addr->sa_family != AF_LINK)
997				continue;
998			/* 6 bits from MSB in LE CRC32 are used for hash. */
999			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1000			    ifma->ifma_addr), ETHER_ADDR_LEN);
1001			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
1002		}
1003		if_maddr_runlock(ifp);
1004	}
1005	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
1006	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
1007
1008	/*
1009	 * Set the individual address filter hash.
1010	 *
1011	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
1012	 * seems to support the concept of MAC address aliases, does such a
1013	 * thing even exist?
1014	 */
1015	if ((ifp->if_flags & IFF_PROMISC))
1016		ihash = 0xffffffffffffffffLLU;
1017	else {
1018		ihash = 0;
1019	}
1020	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
1021	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
1022
1023	/*
1024	 * Set the primary address.
1025	 */
1026	eaddr = IF_LLADDR(ifp);
1027	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1028	    (eaddr[2] <<  8) | eaddr[3]);
1029	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1030}
1031
1032static void
1033ffec_stop_locked(struct ffec_softc *sc)
1034{
1035	struct ifnet *ifp;
1036	struct ffec_hwdesc *desc;
1037	struct ffec_bufmap *bmap;
1038	int idx;
1039
1040	FFEC_ASSERT_LOCKED(sc);
1041
1042	ifp = sc->ifp;
1043	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1044	sc->tx_watchdog_count = 0;
1045
1046	/*
1047	 * Stop the hardware, mask all interrupts, and clear all current
1048	 * interrupt status bits.
1049	 */
1050	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1051	WR4(sc, FEC_IEM_REG, 0x00000000);
1052	WR4(sc, FEC_IER_REG, 0xffffffff);
1053
1054	/*
1055	 * Stop the media-check callout.  Do not use callout_drain() because
1056	 * we're holding a mutex the callout acquires, and if it's currently
1057	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1058	 * ffec_tick() routine will return without doing anything when it sees
1059	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1060	 */
1061	callout_stop(&sc->ffec_callout);
1062
1063	/*
1064	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1065	 * it's as if the bits were transmitted and then lost on the wire.
1066	 *
1067	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1068	 * back on the queue for when we get restarted later?
1069	 */
1070	idx = sc->tx_idx_tail;
1071	while (idx != sc->tx_idx_head) {
1072		desc = &sc->txdesc_ring[idx];
1073		bmap = &sc->txbuf_map[idx];
1074		if (desc->buf_paddr != 0) {
1075			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1076			m_freem(bmap->mbuf);
1077			bmap->mbuf = NULL;
1078			ffec_setup_txdesc(sc, idx, 0, 0);
1079		}
1080		idx = next_txidx(sc, idx);
1081	}
1082
1083	/*
1084	 * Discard all unprocessed receive buffers.  This amounts to just
1085	 * pretending that nothing ever got received into them.  We reuse the
1086	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1087	 * back on so they'll get reused when we start up again.
1088	 */
1089	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1090		desc = &sc->rxdesc_ring[idx];
1091		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1092	}
1093}
1094
1095static void
1096ffec_init_locked(struct ffec_softc *sc)
1097{
1098	struct ifnet *ifp = sc->ifp;
1099	uint32_t maxbuf, maxfl, regval;
1100
1101	FFEC_ASSERT_LOCKED(sc);
1102
1103	/*
1104	 * The hardware has a limit of 0x7ff as the max frame length (see
1105	 * comments for MRBR below), and we use mbuf clusters as receive
1106	 * buffers, and we currently are designed to receive an entire frame
1107	 * into a single buffer.
1108	 *
1109	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1110	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1111	 * and then that value has to be rounded up to the hardware's DMA
1112	 * alignment requirements, so all in all our buffer is that much smaller
1113	 * than MCLBYTES.
1114	 *
1115	 * The resulting value is used as the frame truncation length and the
1116	 * max buffer receive buffer size for now.  It'll become more complex
1117	 * when we support jumbo frames and receiving fragments of them into
1118	 * separate buffers.
1119	 */
1120	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align);
1121	maxfl = min(maxbuf, 0x7ff);
1122
1123	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1124		return;
1125
1126	/* Mask all interrupts and clear all current interrupt status bits. */
1127	WR4(sc, FEC_IEM_REG, 0x00000000);
1128	WR4(sc, FEC_IER_REG, 0xffffffff);
1129
1130	/*
1131	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1132	 */
1133	ffec_setup_rxfilter(sc);
1134
1135	/*
1136	 * TFWR - Transmit FIFO watermark register.
1137	 *
1138	 * Set the transmit fifo watermark register to "store and forward" mode
1139	 * and also set a threshold of 128 bytes in the fifo before transmission
1140	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1141	 * supports STRFWD and when that bit is set, the watermark level in the
1142	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1143	 * to that bit is innocuous, and the TWFR bits get used instead.
1144	 */
1145	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1146
1147	/* RCR - Receive control register.
1148	 *
1149	 * Set max frame length + clean out anything left from u-boot.
1150	 */
1151	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1152
1153	/*
1154	 * TCR - Transmit control register.
1155	 *
1156	 * Clean out anything left from u-boot.  Any necessary values are set in
1157	 * ffec_miibus_statchg() based on the media type.
1158	 */
1159	WR4(sc, FEC_TCR_REG, 0);
1160
1161	/*
1162	 * OPD - Opcode/pause duration.
1163	 *
1164	 * XXX These magic numbers come from u-boot.
1165	 */
1166	WR4(sc, FEC_OPD_REG, 0x00010020);
1167
1168	/*
1169	 * FRSR - Fifo receive start register.
1170	 *
1171	 * This register does not exist on imx6, it is present on earlier
1172	 * hardware. The u-boot code sets this to a non-default value that's 32
1173	 * bytes larger than the default, with no clue as to why.  The default
1174	 * value should work fine, so there's no code to init it here.
1175	 */
1176
1177	/*
1178	 *  MRBR - Max RX buffer size.
1179	 *
1180	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1181	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1182	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1183	 *  receive loop in the hardware, where every rx descriptor in the ring
1184	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1185	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1186	 *  set, like maybe that's what enables jumbo frames, because in general
1187	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1188	 *  compatible" flag.
1189	 */
1190	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1191
1192	/*
1193	 * FTRL - Frame truncation length.
1194	 *
1195	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1196	 */
1197	WR4(sc, FEC_FTRL_REG, maxfl);
1198
1199	/*
1200	 * RDSR / TDSR descriptor ring pointers.
1201	 *
1202	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1203	 * internal current descriptor index values for both rings, so we zero
1204	 * our index values as well.
1205	 */
1206	sc->rx_idx = 0;
1207	sc->tx_idx_head = sc->tx_idx_tail = 0;
1208	sc->txcount = 0;
1209	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1210	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1211
1212	/*
1213	 * EIM - interrupt mask register.
1214	 *
1215	 * We always enable the same set of interrupts while running; unlike
1216	 * some drivers there's no need to change the mask on the fly depending
1217	 * on what operations are in progress.
1218	 */
1219	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1220
1221	/*
1222	 * MIBC - MIB control (hardware stats); clear all statistics regs, then
1223	 * enable collection of statistics.
1224	 */
1225	regval = RD4(sc, FEC_MIBC_REG);
1226	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1227	ffec_clear_stats(sc);
1228	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1229
1230	if (sc->fecflags & FECFLAG_RACC) {
1231		/*
1232		 * RACC - Receive Accelerator Function Configuration.
1233		 */
1234		regval = RD4(sc, FEC_RACC_REG);
1235		WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16);
1236	}
1237
1238	/*
1239	 * ECR - Ethernet control register.
1240	 *
1241	 * This must happen after all the other config registers are set.  If
1242	 * we're running on little-endian hardware, also set the flag for byte-
1243	 * swapping descriptor ring entries.  This flag doesn't exist on older
1244	 * hardware, but it can be safely set -- the bit position it occupies
1245	 * was unused.
1246	 */
1247	regval = RD4(sc, FEC_ECR_REG);
1248#if _BYTE_ORDER == _LITTLE_ENDIAN
1249	regval |= FEC_ECR_DBSWP;
1250#endif
1251	regval |= FEC_ECR_ETHEREN;
1252	WR4(sc, FEC_ECR_REG, regval);
1253
1254	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1255
1256       /*
1257	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1258	* set up the remaining config registers based on the current media.
1259	*/
1260	mii_mediachg(sc->mii_softc);
1261	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1262
1263	/*
1264	 * Tell the hardware that receive buffers are available.  They were made
1265	 * available in ffec_attach() or ffec_stop().
1266	 */
1267	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1268}
1269
1270static void
1271ffec_init(void *if_softc)
1272{
1273	struct ffec_softc *sc = if_softc;
1274
1275	FFEC_LOCK(sc);
1276	ffec_init_locked(sc);
1277	FFEC_UNLOCK(sc);
1278}
1279
1280static void
1281ffec_intr(void *arg)
1282{
1283	struct ffec_softc *sc;
1284	uint32_t ier;
1285
1286	sc = arg;
1287
1288	FFEC_LOCK(sc);
1289
1290	ier = RD4(sc, FEC_IER_REG);
1291
1292	if (ier & FEC_IER_TXF) {
1293		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1294		ffec_txfinish_locked(sc);
1295	}
1296
1297	if (ier & FEC_IER_RXF) {
1298		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1299		ffec_rxfinish_locked(sc);
1300	}
1301
1302	/*
1303	 * We actually don't care about most errors, because the hardware copes
1304	 * with them just fine, discarding the incoming bad frame, or forcing a
1305	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1306	 * stats registers.  The one that really matters is EBERR (DMA bus
1307	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1308	 * have to restart it here.  It should never happen.
1309	 */
1310	if (ier & FEC_IER_EBERR) {
1311		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1312		device_printf(sc->dev,
1313		    "Ethernet DMA error, restarting controller.\n");
1314		ffec_stop_locked(sc);
1315		ffec_init_locked(sc);
1316	}
1317
1318	FFEC_UNLOCK(sc);
1319
1320}
1321
1322static int
1323ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1324{
1325	struct ffec_softc *sc;
1326	struct mii_data *mii;
1327	struct ifreq *ifr;
1328	int mask, error;
1329
1330	sc = ifp->if_softc;
1331	ifr = (struct ifreq *)data;
1332
1333	error = 0;
1334	switch (cmd) {
1335	case SIOCSIFFLAGS:
1336		FFEC_LOCK(sc);
1337		if (ifp->if_flags & IFF_UP) {
1338			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1339				if ((ifp->if_flags ^ sc->if_flags) &
1340				    (IFF_PROMISC | IFF_ALLMULTI))
1341					ffec_setup_rxfilter(sc);
1342			} else {
1343				if (!sc->is_detaching)
1344					ffec_init_locked(sc);
1345			}
1346		} else {
1347			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1348				ffec_stop_locked(sc);
1349		}
1350		sc->if_flags = ifp->if_flags;
1351		FFEC_UNLOCK(sc);
1352		break;
1353
1354	case SIOCADDMULTI:
1355	case SIOCDELMULTI:
1356		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1357			FFEC_LOCK(sc);
1358			ffec_setup_rxfilter(sc);
1359			FFEC_UNLOCK(sc);
1360		}
1361		break;
1362
1363	case SIOCSIFMEDIA:
1364	case SIOCGIFMEDIA:
1365		mii = sc->mii_softc;
1366		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1367		break;
1368
1369	case SIOCSIFCAP:
1370		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1371		if (mask & IFCAP_VLAN_MTU) {
1372			/* No work to do except acknowledge the change took. */
1373			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1374		}
1375		break;
1376
1377	default:
1378		error = ether_ioctl(ifp, cmd, data);
1379		break;
1380	}
1381
1382	return (error);
1383}
1384
1385static int
1386ffec_detach(device_t dev)
1387{
1388	struct ffec_softc *sc;
1389	bus_dmamap_t map;
1390	int idx, irq;
1391
1392	/*
1393	 * NB: This function can be called internally to unwind a failure to
1394	 * attach. Make sure a resource got allocated/created before destroying.
1395	 */
1396
1397	sc = device_get_softc(dev);
1398
1399	if (sc->is_attached) {
1400		FFEC_LOCK(sc);
1401		sc->is_detaching = true;
1402		ffec_stop_locked(sc);
1403		FFEC_UNLOCK(sc);
1404		callout_drain(&sc->ffec_callout);
1405		ether_ifdetach(sc->ifp);
1406	}
1407
1408	/* XXX no miibus detach? */
1409
1410	/* Clean up RX DMA resources and free mbufs. */
1411	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1412		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1413			bus_dmamap_unload(sc->rxbuf_tag, map);
1414			bus_dmamap_destroy(sc->rxbuf_tag, map);
1415			m_freem(sc->rxbuf_map[idx].mbuf);
1416		}
1417	}
1418	if (sc->rxbuf_tag != NULL)
1419		bus_dma_tag_destroy(sc->rxbuf_tag);
1420	if (sc->rxdesc_map != NULL) {
1421		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1422		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1423	}
1424	if (sc->rxdesc_tag != NULL)
1425	bus_dma_tag_destroy(sc->rxdesc_tag);
1426
1427	/* Clean up TX DMA resources. */
1428	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1429		if ((map = sc->txbuf_map[idx].map) != NULL) {
1430			/* TX maps are already unloaded. */
1431			bus_dmamap_destroy(sc->txbuf_tag, map);
1432		}
1433	}
1434	if (sc->txbuf_tag != NULL)
1435		bus_dma_tag_destroy(sc->txbuf_tag);
1436	if (sc->txdesc_map != NULL) {
1437		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1438		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1439	}
1440	if (sc->txdesc_tag != NULL)
1441		bus_dma_tag_destroy(sc->txdesc_tag);
1442
1443	/* Release bus resources. */
1444	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1445		if (sc->intr_cookie[irq] != NULL) {
1446			bus_teardown_intr(dev, sc->irq_res[irq],
1447			    sc->intr_cookie[irq]);
1448		}
1449	}
1450	bus_release_resources(dev, irq_res_spec, sc->irq_res);
1451
1452	if (sc->mem_res != NULL)
1453		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1454
1455	FFEC_LOCK_DESTROY(sc);
1456	return (0);
1457}
1458
1459static int
1460ffec_attach(device_t dev)
1461{
1462	struct ffec_softc *sc;
1463	struct ifnet *ifp = NULL;
1464	struct mbuf *m;
1465	void *dummy;
1466	uintptr_t typeflags;
1467	phandle_t ofw_node;
1468	uint32_t idx, mscr;
1469	int error, phynum, rid, irq;
1470	uint8_t eaddr[ETHER_ADDR_LEN];
1471
1472	sc = device_get_softc(dev);
1473	sc->dev = dev;
1474
1475	FFEC_LOCK_INIT(sc);
1476
1477	/*
1478	 * There are differences in the implementation and features of the FEC
1479	 * hardware on different SoCs, so figure out what type we are.
1480	 */
1481	typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1482	sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK);
1483	sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK);
1484
1485	if (sc->fecflags & FECFLAG_AVB) {
1486		sc->rxbuf_align = 64;
1487		sc->txbuf_align = 1;
1488	} else {
1489		sc->rxbuf_align = 16;
1490		sc->txbuf_align = 16;
1491	}
1492
1493	/*
1494	 * We have to be told what kind of electrical connection exists between
1495	 * the MAC and PHY or we can't operate correctly.
1496	 */
1497	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1498		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1499		error = ENXIO;
1500		goto out;
1501	}
1502	sc->phy_conn_type = mii_fdt_get_contype(ofw_node);
1503	if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) {
1504		device_printf(sc->dev, "No valid 'phy-mode' "
1505		    "property found in FDT data for device.\n");
1506		error = ENOATTR;
1507		goto out;
1508	}
1509
1510	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1511
1512	/* Allocate bus resources for accessing the hardware. */
1513	rid = 0;
1514	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1515	    RF_ACTIVE);
1516	if (sc->mem_res == NULL) {
1517		device_printf(dev, "could not allocate memory resources.\n");
1518		error = ENOMEM;
1519		goto out;
1520	}
1521
1522	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
1523	if (error != 0) {
1524		device_printf(dev, "could not allocate interrupt resources\n");
1525		goto out;
1526	}
1527
1528	/*
1529	 * Set up TX descriptor ring, descriptors, and dma maps.
1530	 */
1531	error = bus_dma_tag_create(
1532	    bus_get_dma_tag(dev),	/* Parent tag. */
1533	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1534	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1535	    BUS_SPACE_MAXADDR,		/* highaddr */
1536	    NULL, NULL,			/* filter, filterarg */
1537	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1538	    TX_DESC_SIZE,		/* maxsegsize */
1539	    0,				/* flags */
1540	    NULL, NULL,			/* lockfunc, lockarg */
1541	    &sc->txdesc_tag);
1542	if (error != 0) {
1543		device_printf(sc->dev,
1544		    "could not create TX ring DMA tag.\n");
1545		goto out;
1546	}
1547
1548	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1549	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1550	if (error != 0) {
1551		device_printf(sc->dev,
1552		    "could not allocate TX descriptor ring.\n");
1553		goto out;
1554	}
1555
1556	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1557	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1558	if (error != 0) {
1559		device_printf(sc->dev,
1560		    "could not load TX descriptor ring map.\n");
1561		goto out;
1562	}
1563
1564	error = bus_dma_tag_create(
1565	    bus_get_dma_tag(dev),	/* Parent tag. */
1566	    sc->txbuf_align, 0,		/* alignment, boundary */
1567	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1568	    BUS_SPACE_MAXADDR,		/* highaddr */
1569	    NULL, NULL,			/* filter, filterarg */
1570	    MCLBYTES, 1, 		/* maxsize, nsegments */
1571	    MCLBYTES,			/* maxsegsize */
1572	    0,				/* flags */
1573	    NULL, NULL,			/* lockfunc, lockarg */
1574	    &sc->txbuf_tag);
1575	if (error != 0) {
1576		device_printf(sc->dev,
1577		    "could not create TX ring DMA tag.\n");
1578		goto out;
1579	}
1580
1581	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1582		error = bus_dmamap_create(sc->txbuf_tag, 0,
1583		    &sc->txbuf_map[idx].map);
1584		if (error != 0) {
1585			device_printf(sc->dev,
1586			    "could not create TX buffer DMA map.\n");
1587			goto out;
1588		}
1589		ffec_setup_txdesc(sc, idx, 0, 0);
1590	}
1591
1592	/*
1593	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1594	 */
1595	error = bus_dma_tag_create(
1596	    bus_get_dma_tag(dev),	/* Parent tag. */
1597	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1598	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1599	    BUS_SPACE_MAXADDR,		/* highaddr */
1600	    NULL, NULL,			/* filter, filterarg */
1601	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1602	    RX_DESC_SIZE,		/* maxsegsize */
1603	    0,				/* flags */
1604	    NULL, NULL,			/* lockfunc, lockarg */
1605	    &sc->rxdesc_tag);
1606	if (error != 0) {
1607		device_printf(sc->dev,
1608		    "could not create RX ring DMA tag.\n");
1609		goto out;
1610	}
1611
1612	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1613	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1614	if (error != 0) {
1615		device_printf(sc->dev,
1616		    "could not allocate RX descriptor ring.\n");
1617		goto out;
1618	}
1619
1620	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1621	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1622	if (error != 0) {
1623		device_printf(sc->dev,
1624		    "could not load RX descriptor ring map.\n");
1625		goto out;
1626	}
1627
1628	error = bus_dma_tag_create(
1629	    bus_get_dma_tag(dev),	/* Parent tag. */
1630	    1, 0,			/* alignment, boundary */
1631	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1632	    BUS_SPACE_MAXADDR,		/* highaddr */
1633	    NULL, NULL,			/* filter, filterarg */
1634	    MCLBYTES, 1, 		/* maxsize, nsegments */
1635	    MCLBYTES,			/* maxsegsize */
1636	    0,				/* flags */
1637	    NULL, NULL,			/* lockfunc, lockarg */
1638	    &sc->rxbuf_tag);
1639	if (error != 0) {
1640		device_printf(sc->dev,
1641		    "could not create RX buf DMA tag.\n");
1642		goto out;
1643	}
1644
1645	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1646		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1647		    &sc->rxbuf_map[idx].map);
1648		if (error != 0) {
1649			device_printf(sc->dev,
1650			    "could not create RX buffer DMA map.\n");
1651			goto out;
1652		}
1653		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1654			device_printf(dev, "Could not alloc mbuf\n");
1655			error = ENOMEM;
1656			goto out;
1657		}
1658		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1659			device_printf(sc->dev,
1660			    "could not create new RX buffer.\n");
1661			goto out;
1662		}
1663	}
1664
1665	/* Try to get the MAC address from the hardware before resetting it. */
1666	ffec_get_hwaddr(sc, eaddr);
1667
1668	/*
1669	 * Reset the hardware.  Disables all interrupts.
1670	 *
1671	 * When the FEC is connected to the AXI bus (indicated by AVB flag), a
1672	 * MAC reset while a bus transaction is pending can hang the bus.
1673	 * Instead of resetting, turn off the ENABLE bit, which allows the
1674	 * hardware to complete any in-progress transfers (appending a bad CRC
1675	 * to any partial packet) and release the AXI bus.  This could probably
1676	 * be done unconditionally for all hardware variants, but that hasn't
1677	 * been tested.
1678	 */
1679	if (sc->fecflags & FECFLAG_AVB)
1680		WR4(sc, FEC_ECR_REG, 0);
1681	else
1682		WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1683
1684	/* Setup interrupt handler. */
1685	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1686		if (sc->irq_res[irq] != NULL) {
1687			error = bus_setup_intr(dev, sc->irq_res[irq],
1688			    INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc,
1689			    &sc->intr_cookie[irq]);
1690			if (error != 0) {
1691				device_printf(dev,
1692				    "could not setup interrupt handler.\n");
1693				goto out;
1694			}
1695		}
1696	}
1697
1698	/*
1699	 * Set up the PHY control register.
1700	 *
1701	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1702	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1703	 *
1704	 * XXX - Revisit this...
1705	 *
1706	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1707	 * code uses 10.  Both values seem to work, but I suspect many modern
1708	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1709	 *
1710	 * Different imx manuals use confusingly different terminology (things
1711	 * like "system clock" and "internal module clock") with examples that
1712	 * use frequencies that have nothing to do with ethernet, giving the
1713	 * vague impression that maybe the clock in question is the periphclock
1714	 * or something.  In fact, on an imx53 development board (FEC),
1715	 * measuring the mdio clock at the pin on the PHY and playing with
1716	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1717	 * aka periphclock) and 13 was the right divisor.
1718	 *
1719	 * All in all, it seems likely that 13 is a safe divisor for now,
1720	 * because if we really do need to base it on the peripheral clock
1721	 * speed, then we need a platform-independant get-clock-freq API.
1722	 */
1723	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1724	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1725		mscr |= FEC_MSCR_DIS_PRE;
1726		if (bootverbose)
1727			device_printf(dev, "PHY preamble disabled\n");
1728	}
1729	WR4(sc, FEC_MSCR_REG, mscr);
1730
1731	/* Set up the ethernet interface. */
1732	sc->ifp = ifp = if_alloc(IFT_ETHER);
1733
1734	ifp->if_softc = sc;
1735	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1736	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1737	ifp->if_capabilities = IFCAP_VLAN_MTU;
1738	ifp->if_capenable = ifp->if_capabilities;
1739	ifp->if_start = ffec_txstart;
1740	ifp->if_ioctl = ffec_ioctl;
1741	ifp->if_init = ffec_init;
1742	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1743	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1744	IFQ_SET_READY(&ifp->if_snd);
1745	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1746
1747#if 0 /* XXX The hardware keeps stats we could use for these. */
1748	ifp->if_linkmib = &sc->mibdata;
1749	ifp->if_linkmiblen = sizeof(sc->mibdata);
1750#endif
1751
1752	/* Set up the miigasket hardware (if any). */
1753	ffec_miigasket_setup(sc);
1754
1755	/* Attach the mii driver. */
1756	if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1757		phynum = MII_PHY_ANY;
1758	}
1759	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1760	    ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1761	    (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1762	if (error != 0) {
1763		device_printf(dev, "PHY attach failed\n");
1764		goto out;
1765	}
1766	sc->mii_softc = device_get_softc(sc->miibus);
1767
1768	/* All ready to run, attach the ethernet interface. */
1769	ether_ifattach(ifp, eaddr);
1770	sc->is_attached = true;
1771
1772	error = 0;
1773out:
1774
1775	if (error != 0)
1776		ffec_detach(dev);
1777
1778	return (error);
1779}
1780
1781static int
1782ffec_probe(device_t dev)
1783{
1784	uintptr_t fectype;
1785
1786	if (!ofw_bus_status_okay(dev))
1787		return (ENXIO);
1788
1789	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1790	if (fectype == FECTYPE_NONE)
1791		return (ENXIO);
1792
1793	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1794	    "Freescale Gigabit Ethernet Controller" :
1795	    "Freescale Fast Ethernet Controller");
1796
1797	return (BUS_PROBE_DEFAULT);
1798}
1799
1800
1801static device_method_t ffec_methods[] = {
1802	/* Device interface. */
1803	DEVMETHOD(device_probe,		ffec_probe),
1804	DEVMETHOD(device_attach,	ffec_attach),
1805	DEVMETHOD(device_detach,	ffec_detach),
1806
1807/*
1808	DEVMETHOD(device_shutdown,	ffec_shutdown),
1809	DEVMETHOD(device_suspend,	ffec_suspend),
1810	DEVMETHOD(device_resume,	ffec_resume),
1811*/
1812
1813	/* MII interface. */
1814	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1815	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1816	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1817
1818	DEVMETHOD_END
1819};
1820
1821static driver_t ffec_driver = {
1822	"ffec",
1823	ffec_methods,
1824	sizeof(struct ffec_softc)
1825};
1826
1827static devclass_t ffec_devclass;
1828
1829DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1830DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1831
1832MODULE_DEPEND(ffec, ether, 1, 1, 1);
1833MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1834