if_ffec.c revision 323410
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/ffec/if_ffec.c 323410 2017-09-11 01:01:00Z ian $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/fdt/fdt_common.h>
82#include <dev/ffec/if_ffecreg.h>
83#include <dev/ofw/ofw_bus.h>
84#include <dev/ofw/ofw_bus_subr.h>
85#include <dev/mii/mii.h>
86#include <dev/mii/miivar.h>
87#include "miibus_if.h"
88
89/*
90 * There are small differences in the hardware on various SoCs.  Not every SoC
91 * we support has its own FECTYPE; most work as GENERIC and only the ones that
92 * need different handling get their own entry.  In addition to the types in
93 * this list, there are some flags below that can be ORed into the upper bits.
94 */
95enum {
96	FECTYPE_NONE,
97	FECTYPE_GENERIC,
98	FECTYPE_IMX53,
99	FECTYPE_IMX6,
100	FECTYPE_MVF,
101};
102
103/*
104 * Flags that describe general differences between the FEC hardware in various
105 * SoCs.  These are ORed into the FECTYPE enum values.
106 */
107#define	FECTYPE_MASK		0x0000ffff
108#define	FECFLAG_GBE		(0x0001 << 16)
109
110/*
111 * Table of supported FDT compat strings and their associated FECTYPE values.
112 */
113static struct ofw_compat_data compat_data[] = {
114	{"fsl,imx51-fec",	FECTYPE_GENERIC},
115	{"fsl,imx53-fec",	FECTYPE_IMX53},
116	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
117	{"fsl,imx6ul-fec",	FECTYPE_IMX6},
118	{"fsl,mvf600-fec",	FECTYPE_MVF},
119	{"fsl,mvf-fec",		FECTYPE_MVF},
120	{NULL,		 	FECTYPE_NONE},
121};
122
123/*
124 * Driver data and defines.
125 */
126#define	RX_DESC_COUNT	64
127#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
128#define	TX_DESC_COUNT	64
129#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
130
131#define	WATCHDOG_TIMEOUT_SECS	5
132#define	STATS_HARVEST_INTERVAL	3
133
134struct ffec_bufmap {
135	struct mbuf	*mbuf;
136	bus_dmamap_t	map;
137};
138
139enum {
140	PHY_CONN_UNKNOWN,
141	PHY_CONN_MII,
142	PHY_CONN_RMII,
143	PHY_CONN_RGMII
144};
145
146struct ffec_softc {
147	device_t		dev;
148	device_t		miibus;
149	struct mii_data *	mii_softc;
150	struct ifnet		*ifp;
151	int			if_flags;
152	struct mtx		mtx;
153	struct resource		*irq_res;
154	struct resource		*mem_res;
155	void *			intr_cookie;
156	struct callout		ffec_callout;
157	uint8_t			phy_conn_type;
158	uint8_t			fectype;
159	boolean_t		link_is_up;
160	boolean_t		is_attached;
161	boolean_t		is_detaching;
162	int			tx_watchdog_count;
163	int			stats_harvest_count;
164
165	bus_dma_tag_t		rxdesc_tag;
166	bus_dmamap_t		rxdesc_map;
167	struct ffec_hwdesc	*rxdesc_ring;
168	bus_addr_t		rxdesc_ring_paddr;
169	bus_dma_tag_t		rxbuf_tag;
170	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
171	uint32_t		rx_idx;
172
173	bus_dma_tag_t		txdesc_tag;
174	bus_dmamap_t		txdesc_map;
175	struct ffec_hwdesc	*txdesc_ring;
176	bus_addr_t		txdesc_ring_paddr;
177	bus_dma_tag_t		txbuf_tag;
178	struct ffec_bufmap	txbuf_map[TX_DESC_COUNT];
179	uint32_t		tx_idx_head;
180	uint32_t		tx_idx_tail;
181	int			txcount;
182};
183
184#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
185#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
186#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
187	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
188#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
189#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
190#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
191
192static void ffec_init_locked(struct ffec_softc *sc);
193static void ffec_stop_locked(struct ffec_softc *sc);
194static void ffec_txstart_locked(struct ffec_softc *sc);
195static void ffec_txfinish_locked(struct ffec_softc *sc);
196
197static inline uint16_t
198RD2(struct ffec_softc *sc, bus_size_t off)
199{
200
201	return (bus_read_2(sc->mem_res, off));
202}
203
204static inline void
205WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
206{
207
208	bus_write_2(sc->mem_res, off, val);
209}
210
211static inline uint32_t
212RD4(struct ffec_softc *sc, bus_size_t off)
213{
214
215	return (bus_read_4(sc->mem_res, off));
216}
217
218static inline void
219WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
220{
221
222	bus_write_4(sc->mem_res, off, val);
223}
224
225static inline uint32_t
226next_rxidx(struct ffec_softc *sc, uint32_t curidx)
227{
228
229	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
230}
231
232static inline uint32_t
233next_txidx(struct ffec_softc *sc, uint32_t curidx)
234{
235
236	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
237}
238
239static void
240ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
241{
242
243	if (error != 0)
244		return;
245	*(bus_addr_t *)arg = segs[0].ds_addr;
246}
247
248static void
249ffec_miigasket_setup(struct ffec_softc *sc)
250{
251	uint32_t ifmode;
252
253	/*
254	 * We only need the gasket for MII and RMII connections on certain SoCs.
255	 */
256
257	switch (sc->fectype & FECTYPE_MASK)
258	{
259	case FECTYPE_IMX53:
260		break;
261	default:
262		return;
263	}
264
265	switch (sc->phy_conn_type)
266	{
267	case PHY_CONN_MII:
268		ifmode = 0;
269		break;
270	case PHY_CONN_RMII:
271		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
272		break;
273	default:
274		return;
275	}
276
277	/*
278	 * Disable the gasket, configure for either MII or RMII, then enable.
279	 */
280
281	WR2(sc, FEC_MIIGSK_ENR, 0);
282	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
283		continue;
284
285	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
286
287	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
288	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
289		continue;
290}
291
292static boolean_t
293ffec_miibus_iowait(struct ffec_softc *sc)
294{
295	uint32_t timeout;
296
297	for (timeout = 10000; timeout != 0; --timeout)
298		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
299			return (true);
300
301	return (false);
302}
303
304static int
305ffec_miibus_readreg(device_t dev, int phy, int reg)
306{
307	struct ffec_softc *sc;
308	int val;
309
310	sc = device_get_softc(dev);
311
312	WR4(sc, FEC_IER_REG, FEC_IER_MII);
313
314	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
315	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
316	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
317	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
318
319	if (!ffec_miibus_iowait(sc)) {
320		device_printf(dev, "timeout waiting for mii read\n");
321		return (-1); /* All-ones is a symptom of bad mdio. */
322	}
323
324	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
325
326	return (val);
327}
328
329static int
330ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
331{
332	struct ffec_softc *sc;
333
334	sc = device_get_softc(dev);
335
336	WR4(sc, FEC_IER_REG, FEC_IER_MII);
337
338	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
339	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
340	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
341	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
342	    (val & FEC_MMFR_DATA_MASK));
343
344	if (!ffec_miibus_iowait(sc)) {
345		device_printf(dev, "timeout waiting for mii write\n");
346		return (-1);
347	}
348
349	return (0);
350}
351
352static void
353ffec_miibus_statchg(device_t dev)
354{
355	struct ffec_softc *sc;
356	struct mii_data *mii;
357	uint32_t ecr, rcr, tcr;
358
359	/*
360	 * Called by the MII bus driver when the PHY establishes link to set the
361	 * MAC interface registers.
362	 */
363
364	sc = device_get_softc(dev);
365
366	FFEC_ASSERT_LOCKED(sc);
367
368	mii = sc->mii_softc;
369
370	if (mii->mii_media_status & IFM_ACTIVE)
371		sc->link_is_up = true;
372	else
373		sc->link_is_up = false;
374
375	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
376	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
377	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
378	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
379
380	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
381	switch (sc->phy_conn_type) {
382	case PHY_CONN_MII:
383		break;
384	case PHY_CONN_RMII:
385		rcr |= FEC_RCR_RMII_MODE;
386		break;
387	case PHY_CONN_RGMII:
388		rcr |= FEC_RCR_RGMII_EN;
389		break;
390	}
391
392	switch (IFM_SUBTYPE(mii->mii_media_active)) {
393	case IFM_1000_T:
394	case IFM_1000_SX:
395		ecr |= FEC_ECR_SPEED;
396		break;
397	case IFM_100_TX:
398		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
399		break;
400	case IFM_10_T:
401		rcr |= FEC_RCR_RMII_10T;
402		break;
403	case IFM_NONE:
404		sc->link_is_up = false;
405		return;
406	default:
407		sc->link_is_up = false;
408		device_printf(dev, "Unsupported media %u\n",
409		    IFM_SUBTYPE(mii->mii_media_active));
410		return;
411	}
412
413	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
414		tcr |= FEC_TCR_FDEN;
415	else
416		rcr |= FEC_RCR_DRT;
417
418	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
419		rcr |= FEC_RCR_FCE;
420
421	WR4(sc, FEC_RCR_REG, rcr);
422	WR4(sc, FEC_TCR_REG, tcr);
423	WR4(sc, FEC_ECR_REG, ecr);
424}
425
426static void
427ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
428{
429	struct ffec_softc *sc;
430	struct mii_data *mii;
431
432
433	sc = ifp->if_softc;
434	mii = sc->mii_softc;
435	FFEC_LOCK(sc);
436	mii_pollstat(mii);
437	ifmr->ifm_active = mii->mii_media_active;
438	ifmr->ifm_status = mii->mii_media_status;
439	FFEC_UNLOCK(sc);
440}
441
442static int
443ffec_media_change_locked(struct ffec_softc *sc)
444{
445
446	return (mii_mediachg(sc->mii_softc));
447}
448
449static int
450ffec_media_change(struct ifnet * ifp)
451{
452	struct ffec_softc *sc;
453	int error;
454
455	sc = ifp->if_softc;
456
457	FFEC_LOCK(sc);
458	error = ffec_media_change_locked(sc);
459	FFEC_UNLOCK(sc);
460	return (error);
461}
462
463static void ffec_clear_stats(struct ffec_softc *sc)
464{
465
466	WR4(sc, FEC_RMON_R_PACKETS, 0);
467	WR4(sc, FEC_RMON_R_MC_PKT, 0);
468	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
469	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
470	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
471	WR4(sc, FEC_RMON_R_FRAG, 0);
472	WR4(sc, FEC_RMON_R_JAB, 0);
473	WR4(sc, FEC_RMON_T_PACKETS, 0);
474	WR4(sc, FEC_RMON_T_MC_PKT, 0);
475	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
476	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
477	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
478	WR4(sc, FEC_RMON_T_FRAG, 0);
479	WR4(sc, FEC_RMON_T_JAB, 0);
480	WR4(sc, FEC_RMON_T_COL, 0);
481}
482
483static void
484ffec_harvest_stats(struct ffec_softc *sc)
485{
486	struct ifnet *ifp;
487
488	/* We don't need to harvest too often. */
489	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
490		return;
491
492	/*
493	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
494	 * been too long just go ahead and do it anyway, the worst that'll
495	 * happen is we'll lose a packet count or two as we clear at the end.
496	 */
497	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
498	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
499		return;
500
501	sc->stats_harvest_count = 0;
502	ifp = sc->ifp;
503
504	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
505	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
506	if_inc_counter(ifp, IFCOUNTER_IERRORS,
507	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
508	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
509	    RD4(sc, FEC_RMON_R_JAB));
510
511	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
512	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
513	if_inc_counter(ifp, IFCOUNTER_OERRORS,
514	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
515	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
516	    RD4(sc, FEC_RMON_T_JAB));
517
518	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
519
520	ffec_clear_stats(sc);
521}
522
523static void
524ffec_tick(void *arg)
525{
526	struct ffec_softc *sc;
527	struct ifnet *ifp;
528	int link_was_up;
529
530	sc = arg;
531
532	FFEC_ASSERT_LOCKED(sc);
533
534	ifp = sc->ifp;
535
536	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
537	    return;
538
539	/*
540	 * Typical tx watchdog.  If this fires it indicates that we enqueued
541	 * packets for output and never got a txdone interrupt for them.  Maybe
542	 * it's a missed interrupt somehow, just pretend we got one.
543	 */
544	if (sc->tx_watchdog_count > 0) {
545		if (--sc->tx_watchdog_count == 0) {
546			ffec_txfinish_locked(sc);
547		}
548	}
549
550	/* Gather stats from hardware counters. */
551	ffec_harvest_stats(sc);
552
553	/* Check the media status. */
554	link_was_up = sc->link_is_up;
555	mii_tick(sc->mii_softc);
556	if (sc->link_is_up && !link_was_up)
557		ffec_txstart_locked(sc);
558
559	/* Schedule another check one second from now. */
560	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
561}
562
563inline static uint32_t
564ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
565    uint32_t len)
566{
567	uint32_t nidx;
568	uint32_t flags;
569
570	nidx = next_txidx(sc, idx);
571
572	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
573	if (paddr == 0 || len == 0) {
574		flags = 0;
575		--sc->txcount;
576	} else {
577		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
578		++sc->txcount;
579	}
580	if (nidx == 0)
581		flags |= FEC_TXDESC_WRAP;
582
583	/*
584	 * The hardware requires 32-bit physical addresses.  We set up the dma
585	 * tag to indicate that, so the cast to uint32_t should never lose
586	 * significant bits.
587	 */
588	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
589	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
590
591	return (nidx);
592}
593
594static int
595ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
596{
597	struct mbuf * m;
598	int error, nsegs;
599	struct bus_dma_segment seg;
600
601	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
602		return (ENOMEM);
603	*mp = m;
604
605	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
606	    m, &seg, &nsegs, 0);
607	if (error != 0) {
608		return (ENOMEM);
609	}
610	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
611	    BUS_DMASYNC_PREWRITE);
612
613	sc->txbuf_map[idx].mbuf = m;
614	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
615
616	return (0);
617
618}
619
620static void
621ffec_txstart_locked(struct ffec_softc *sc)
622{
623	struct ifnet *ifp;
624	struct mbuf *m;
625	int enqueued;
626
627	FFEC_ASSERT_LOCKED(sc);
628
629	if (!sc->link_is_up)
630		return;
631
632	ifp = sc->ifp;
633
634	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
635		return;
636
637	enqueued = 0;
638
639	for (;;) {
640		if (sc->txcount == (TX_DESC_COUNT-1)) {
641			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
642			break;
643		}
644		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
645		if (m == NULL)
646			break;
647		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
648			IFQ_DRV_PREPEND(&ifp->if_snd, m);
649			break;
650		}
651		BPF_MTAP(ifp, m);
652		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
653		++enqueued;
654	}
655
656	if (enqueued != 0) {
657		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
658		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
659		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
660		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
661	}
662}
663
664static void
665ffec_txstart(struct ifnet *ifp)
666{
667	struct ffec_softc *sc = ifp->if_softc;
668
669	FFEC_LOCK(sc);
670	ffec_txstart_locked(sc);
671	FFEC_UNLOCK(sc);
672}
673
674static void
675ffec_txfinish_locked(struct ffec_softc *sc)
676{
677	struct ifnet *ifp;
678	struct ffec_hwdesc *desc;
679	struct ffec_bufmap *bmap;
680	boolean_t retired_buffer;
681
682	FFEC_ASSERT_LOCKED(sc);
683
684	/* XXX Can't set PRE|POST right now, but we need both. */
685	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
686	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
687	ifp = sc->ifp;
688	retired_buffer = false;
689	while (sc->tx_idx_tail != sc->tx_idx_head) {
690		desc = &sc->txdesc_ring[sc->tx_idx_tail];
691		if (desc->flags_len & FEC_TXDESC_READY)
692			break;
693		retired_buffer = true;
694		bmap = &sc->txbuf_map[sc->tx_idx_tail];
695		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
696		    BUS_DMASYNC_POSTWRITE);
697		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
698		m_freem(bmap->mbuf);
699		bmap->mbuf = NULL;
700		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
701		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
702	}
703
704	/*
705	 * If we retired any buffers, there will be open tx slots available in
706	 * the descriptor ring, go try to start some new output.
707	 */
708	if (retired_buffer) {
709		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
710		ffec_txstart_locked(sc);
711	}
712
713	/* If there are no buffers outstanding, muzzle the watchdog. */
714	if (sc->tx_idx_tail == sc->tx_idx_head) {
715		sc->tx_watchdog_count = 0;
716	}
717}
718
719inline static uint32_t
720ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
721{
722	uint32_t nidx;
723
724	/*
725	 * The hardware requires 32-bit physical addresses.  We set up the dma
726	 * tag to indicate that, so the cast to uint32_t should never lose
727	 * significant bits.
728	 */
729	nidx = next_rxidx(sc, idx);
730	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
731	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
732		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
733
734	return (nidx);
735}
736
737static int
738ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
739{
740	int error, nsegs;
741	struct bus_dma_segment seg;
742
743	/*
744	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
745	 * the buffer to allow the data to be re-aligned after receiving it (by
746	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
747	 * have to ensure that the beginning of the buffer is aligned to the
748	 * hardware's requirements.
749	 */
750	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
751
752	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
753	    m, &seg, &nsegs, 0);
754	if (error != 0) {
755		return (error);
756	}
757
758	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
759	    BUS_DMASYNC_PREREAD);
760
761	sc->rxbuf_map[idx].mbuf = m;
762	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
763
764	return (0);
765}
766
767static struct mbuf *
768ffec_alloc_mbufcl(struct ffec_softc *sc)
769{
770	struct mbuf *m;
771
772	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
773	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
774
775	return (m);
776}
777
778static void
779ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
780{
781	struct mbuf *m, *newmbuf;
782	struct ffec_bufmap *bmap;
783	uint8_t *dst, *src;
784	int error;
785
786	/*
787	 *  First try to get a new mbuf to plug into this slot in the rx ring.
788	 *  If that fails, drop the current packet and recycle the current
789	 *  mbuf, which is still mapped and loaded.
790	 */
791	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
792		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
793		ffec_setup_rxdesc(sc, sc->rx_idx,
794		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
795		return;
796	}
797
798	/*
799	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
800	 *  boundary for the upper layers.  The hardware requires receive
801	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
802	 *  leaving the protocol header unaligned.  We used m_adj() after
803	 *  allocating the buffer to leave empty space at the start of the
804	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
805	 *  shuffle all the data backwards 2 bytes and adjust m_data.
806	 *
807	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
808	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
809	 *  feature, but for them could we speed this up by copying just the
810	 *  protocol headers into their own small mbuf then chaining the cluster
811	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
812	 *  the biggest header is, instead of the whole 1530ish-byte frame.
813	 */
814
815	FFEC_UNLOCK(sc);
816
817	bmap = &sc->rxbuf_map[sc->rx_idx];
818	len -= ETHER_CRC_LEN;
819	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
820	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
821	m = bmap->mbuf;
822	bmap->mbuf = NULL;
823	m->m_len = len;
824	m->m_pkthdr.len = len;
825	m->m_pkthdr.rcvif = sc->ifp;
826
827	src = mtod(m, uint8_t*);
828	dst = src - ETHER_ALIGN;
829	bcopy(src, dst, len);
830	m->m_data = dst;
831	sc->ifp->if_input(sc->ifp, m);
832
833	FFEC_LOCK(sc);
834
835	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
836		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
837		/* XXX Now what?  We've got a hole in the rx ring. */
838	}
839
840}
841
842static void
843ffec_rxfinish_locked(struct ffec_softc *sc)
844{
845	struct ffec_hwdesc *desc;
846	int len;
847	boolean_t produced_empty_buffer;
848
849	FFEC_ASSERT_LOCKED(sc);
850
851	/* XXX Can't set PRE|POST right now, but we need both. */
852	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
853	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
854	produced_empty_buffer = false;
855	for (;;) {
856		desc = &sc->rxdesc_ring[sc->rx_idx];
857		if (desc->flags_len & FEC_RXDESC_EMPTY)
858			break;
859		produced_empty_buffer = true;
860		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
861		if (len < 64) {
862			/*
863			 * Just recycle the descriptor and continue.           .
864			 */
865			ffec_setup_rxdesc(sc, sc->rx_idx,
866			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
867		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
868			/*
869			 * The entire frame is not in this buffer.  Impossible.
870			 * Recycle the descriptor and continue.
871			 *
872			 * XXX what's the right way to handle this? Probably we
873			 * should stop/init the hardware because this should
874			 * just really never happen when we have buffers bigger
875			 * than the maximum frame size.
876			 */
877			device_printf(sc->dev,
878			    "fec_rxfinish: received frame without LAST bit set");
879			ffec_setup_rxdesc(sc, sc->rx_idx,
880			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
881		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
882			/*
883			 *  Something went wrong with receiving the frame, we
884			 *  don't care what (the hardware has counted the error
885			 *  in the stats registers already), we just reuse the
886			 *  same mbuf, which is still dma-mapped, by resetting
887			 *  the rx descriptor.
888			 */
889			ffec_setup_rxdesc(sc, sc->rx_idx,
890			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
891		} else {
892			/*
893			 *  Normal case: a good frame all in one buffer.
894			 */
895			ffec_rxfinish_onebuf(sc, len);
896		}
897		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
898	}
899
900	if (produced_empty_buffer) {
901		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
902		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
903		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
904	}
905}
906
907static void
908ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
909{
910	uint32_t palr, paur, rnd;
911
912	/*
913	 * Try to recover a MAC address from the running hardware. If there's
914	 * something non-zero there, assume the bootloader did the right thing
915	 * and just use it.
916	 *
917	 * Otherwise, set the address to a convenient locally assigned address,
918	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
919	 * assigned bit set, and the broadcast/multicast bit clear.
920	 */
921	palr = RD4(sc, FEC_PALR_REG);
922	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
923	if ((palr | paur) != 0) {
924		hwaddr[0] = palr >> 24;
925		hwaddr[1] = palr >> 16;
926		hwaddr[2] = palr >>  8;
927		hwaddr[3] = palr >>  0;
928		hwaddr[4] = paur >> 24;
929		hwaddr[5] = paur >> 16;
930	} else {
931		rnd = arc4random() & 0x00ffffff;
932		hwaddr[0] = 'b';
933		hwaddr[1] = 's';
934		hwaddr[2] = 'd';
935		hwaddr[3] = rnd >> 16;
936		hwaddr[4] = rnd >>  8;
937		hwaddr[5] = rnd >>  0;
938	}
939
940	if (bootverbose) {
941		device_printf(sc->dev,
942		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
943		    hwaddr[0], hwaddr[1], hwaddr[2],
944		    hwaddr[3], hwaddr[4], hwaddr[5]);
945	}
946}
947
948static void
949ffec_setup_rxfilter(struct ffec_softc *sc)
950{
951	struct ifnet *ifp;
952	struct ifmultiaddr *ifma;
953	uint8_t *eaddr;
954	uint32_t crc;
955	uint64_t ghash, ihash;
956
957	FFEC_ASSERT_LOCKED(sc);
958
959	ifp = sc->ifp;
960
961	/*
962	 * Set the multicast (group) filter hash.
963	 */
964	if ((ifp->if_flags & IFF_ALLMULTI))
965		ghash = 0xffffffffffffffffLLU;
966	else {
967		ghash = 0;
968		if_maddr_rlock(ifp);
969		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
970			if (ifma->ifma_addr->sa_family != AF_LINK)
971				continue;
972			/* 6 bits from MSB in LE CRC32 are used for hash. */
973			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
974			    ifma->ifma_addr), ETHER_ADDR_LEN);
975			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
976		}
977		if_maddr_runlock(ifp);
978	}
979	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
980	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
981
982	/*
983	 * Set the individual address filter hash.
984	 *
985	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
986	 * seems to support the concept of MAC address aliases, does such a
987	 * thing even exist?
988	 */
989	if ((ifp->if_flags & IFF_PROMISC))
990		ihash = 0xffffffffffffffffLLU;
991	else {
992		ihash = 0;
993	}
994	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
995	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
996
997	/*
998	 * Set the primary address.
999	 */
1000	eaddr = IF_LLADDR(ifp);
1001	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1002	    (eaddr[2] <<  8) | eaddr[3]);
1003	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1004}
1005
1006static void
1007ffec_stop_locked(struct ffec_softc *sc)
1008{
1009	struct ifnet *ifp;
1010	struct ffec_hwdesc *desc;
1011	struct ffec_bufmap *bmap;
1012	int idx;
1013
1014	FFEC_ASSERT_LOCKED(sc);
1015
1016	ifp = sc->ifp;
1017	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1018	sc->tx_watchdog_count = 0;
1019	sc->stats_harvest_count = 0;
1020
1021	/*
1022	 * Stop the hardware, mask all interrupts, and clear all current
1023	 * interrupt status bits.
1024	 */
1025	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1026	WR4(sc, FEC_IEM_REG, 0x00000000);
1027	WR4(sc, FEC_IER_REG, 0xffffffff);
1028
1029	/*
1030	 * Stop the media-check callout.  Do not use callout_drain() because
1031	 * we're holding a mutex the callout acquires, and if it's currently
1032	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1033	 * ffec_tick() routine will return without doing anything when it sees
1034	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1035	 */
1036	callout_stop(&sc->ffec_callout);
1037
1038	/*
1039	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1040	 * it's as if the bits were transmitted and then lost on the wire.
1041	 *
1042	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1043	 * back on the queue for when we get restarted later?
1044	 */
1045	idx = sc->tx_idx_tail;
1046	while (idx != sc->tx_idx_head) {
1047		desc = &sc->txdesc_ring[idx];
1048		bmap = &sc->txbuf_map[idx];
1049		if (desc->buf_paddr != 0) {
1050			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1051			m_freem(bmap->mbuf);
1052			bmap->mbuf = NULL;
1053			ffec_setup_txdesc(sc, idx, 0, 0);
1054		}
1055		idx = next_txidx(sc, idx);
1056	}
1057
1058	/*
1059	 * Discard all unprocessed receive buffers.  This amounts to just
1060	 * pretending that nothing ever got received into them.  We reuse the
1061	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1062	 * back on so they'll get reused when we start up again.
1063	 */
1064	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1065		desc = &sc->rxdesc_ring[idx];
1066		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1067	}
1068}
1069
1070static void
1071ffec_init_locked(struct ffec_softc *sc)
1072{
1073	struct ifnet *ifp = sc->ifp;
1074	uint32_t maxbuf, maxfl, regval;
1075
1076	FFEC_ASSERT_LOCKED(sc);
1077
1078	/*
1079	 * The hardware has a limit of 0x7ff as the max frame length (see
1080	 * comments for MRBR below), and we use mbuf clusters as receive
1081	 * buffers, and we currently are designed to receive an entire frame
1082	 * into a single buffer.
1083	 *
1084	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1085	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1086	 * and then that value has to be rounded up to the hardware's DMA
1087	 * alignment requirements, so all in all our buffer is that much smaller
1088	 * than MCLBYTES.
1089	 *
1090	 * The resulting value is used as the frame truncation length and the
1091	 * max buffer receive buffer size for now.  It'll become more complex
1092	 * when we support jumbo frames and receiving fragments of them into
1093	 * separate buffers.
1094	 */
1095	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1096	maxfl = min(maxbuf, 0x7ff);
1097
1098	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1099		return;
1100
1101	/* Mask all interrupts and clear all current interrupt status bits. */
1102	WR4(sc, FEC_IEM_REG, 0x00000000);
1103	WR4(sc, FEC_IER_REG, 0xffffffff);
1104
1105	/*
1106	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1107	 */
1108	ffec_setup_rxfilter(sc);
1109
1110	/*
1111	 * TFWR - Transmit FIFO watermark register.
1112	 *
1113	 * Set the transmit fifo watermark register to "store and forward" mode
1114	 * and also set a threshold of 128 bytes in the fifo before transmission
1115	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1116	 * supports STRFWD and when that bit is set, the watermark level in the
1117	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1118	 * to that bit is innocuous, and the TWFR bits get used instead.
1119	 */
1120	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1121
1122	/* RCR - Receive control register.
1123	 *
1124	 * Set max frame length + clean out anything left from u-boot.
1125	 */
1126	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1127
1128	/*
1129	 * TCR - Transmit control register.
1130	 *
1131	 * Clean out anything left from u-boot.  Any necessary values are set in
1132	 * ffec_miibus_statchg() based on the media type.
1133	 */
1134	WR4(sc, FEC_TCR_REG, 0);
1135
1136	/*
1137	 * OPD - Opcode/pause duration.
1138	 *
1139	 * XXX These magic numbers come from u-boot.
1140	 */
1141	WR4(sc, FEC_OPD_REG, 0x00010020);
1142
1143	/*
1144	 * FRSR - Fifo receive start register.
1145	 *
1146	 * This register does not exist on imx6, it is present on earlier
1147	 * hardware. The u-boot code sets this to a non-default value that's 32
1148	 * bytes larger than the default, with no clue as to why.  The default
1149	 * value should work fine, so there's no code to init it here.
1150	 */
1151
1152	/*
1153	 *  MRBR - Max RX buffer size.
1154	 *
1155	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1156	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1157	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1158	 *  receive loop in the hardware, where every rx descriptor in the ring
1159	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1160	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1161	 *  set, like maybe that's what enables jumbo frames, because in general
1162	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1163	 *  compatible" flag.
1164	 */
1165	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1166
1167	/*
1168	 * FTRL - Frame truncation length.
1169	 *
1170	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1171	 */
1172	WR4(sc, FEC_FTRL_REG, maxfl);
1173
1174	/*
1175	 * RDSR / TDSR descriptor ring pointers.
1176	 *
1177	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1178	 * internal current descriptor index values for both rings, so we zero
1179	 * our index values as well.
1180	 */
1181	sc->rx_idx = 0;
1182	sc->tx_idx_head = sc->tx_idx_tail = 0;
1183	sc->txcount = 0;
1184	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1185	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1186
1187	/*
1188	 * EIM - interrupt mask register.
1189	 *
1190	 * We always enable the same set of interrupts while running; unlike
1191	 * some drivers there's no need to change the mask on the fly depending
1192	 * on what operations are in progress.
1193	 */
1194	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1195
1196	/*
1197	 * MIBC - MIB control (hardware stats).
1198	 */
1199	regval = RD4(sc, FEC_MIBC_REG);
1200	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1201	ffec_clear_stats(sc);
1202	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1203
1204	/*
1205	 * ECR - Ethernet control register.
1206	 *
1207	 * This must happen after all the other config registers are set.  If
1208	 * we're running on little-endian hardware, also set the flag for byte-
1209	 * swapping descriptor ring entries.  This flag doesn't exist on older
1210	 * hardware, but it can be safely set -- the bit position it occupies
1211	 * was unused.
1212	 */
1213	regval = RD4(sc, FEC_ECR_REG);
1214#if _BYTE_ORDER == _LITTLE_ENDIAN
1215	regval |= FEC_ECR_DBSWP;
1216#endif
1217	regval |= FEC_ECR_ETHEREN;
1218	WR4(sc, FEC_ECR_REG, regval);
1219
1220	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1221
1222       /*
1223	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1224	* set up the remaining config registers based on the current media.
1225	*/
1226	mii_mediachg(sc->mii_softc);
1227	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1228
1229	/*
1230	 * Tell the hardware that receive buffers are available.  They were made
1231	 * available in ffec_attach() or ffec_stop().
1232	 */
1233	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1234}
1235
1236static void
1237ffec_init(void *if_softc)
1238{
1239	struct ffec_softc *sc = if_softc;
1240
1241	FFEC_LOCK(sc);
1242	ffec_init_locked(sc);
1243	FFEC_UNLOCK(sc);
1244}
1245
1246static void
1247ffec_intr(void *arg)
1248{
1249	struct ffec_softc *sc;
1250	uint32_t ier;
1251
1252	sc = arg;
1253
1254	FFEC_LOCK(sc);
1255
1256	ier = RD4(sc, FEC_IER_REG);
1257
1258	if (ier & FEC_IER_TXF) {
1259		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1260		ffec_txfinish_locked(sc);
1261	}
1262
1263	if (ier & FEC_IER_RXF) {
1264		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1265		ffec_rxfinish_locked(sc);
1266	}
1267
1268	/*
1269	 * We actually don't care about most errors, because the hardware copes
1270	 * with them just fine, discarding the incoming bad frame, or forcing a
1271	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1272	 * stats registers.  The one that really matters is EBERR (DMA bus
1273	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1274	 * have to restart it here.  It should never happen.
1275	 */
1276	if (ier & FEC_IER_EBERR) {
1277		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1278		device_printf(sc->dev,
1279		    "Ethernet DMA error, restarting controller.\n");
1280		ffec_stop_locked(sc);
1281		ffec_init_locked(sc);
1282	}
1283
1284	FFEC_UNLOCK(sc);
1285
1286}
1287
1288static int
1289ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1290{
1291	struct ffec_softc *sc;
1292	struct mii_data *mii;
1293	struct ifreq *ifr;
1294	int mask, error;
1295
1296	sc = ifp->if_softc;
1297	ifr = (struct ifreq *)data;
1298
1299	error = 0;
1300	switch (cmd) {
1301	case SIOCSIFFLAGS:
1302		FFEC_LOCK(sc);
1303		if (ifp->if_flags & IFF_UP) {
1304			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1305				if ((ifp->if_flags ^ sc->if_flags) &
1306				    (IFF_PROMISC | IFF_ALLMULTI))
1307					ffec_setup_rxfilter(sc);
1308			} else {
1309				if (!sc->is_detaching)
1310					ffec_init_locked(sc);
1311			}
1312		} else {
1313			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1314				ffec_stop_locked(sc);
1315		}
1316		sc->if_flags = ifp->if_flags;
1317		FFEC_UNLOCK(sc);
1318		break;
1319
1320	case SIOCADDMULTI:
1321	case SIOCDELMULTI:
1322		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1323			FFEC_LOCK(sc);
1324			ffec_setup_rxfilter(sc);
1325			FFEC_UNLOCK(sc);
1326		}
1327		break;
1328
1329	case SIOCSIFMEDIA:
1330	case SIOCGIFMEDIA:
1331		mii = sc->mii_softc;
1332		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1333		break;
1334
1335	case SIOCSIFCAP:
1336		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1337		if (mask & IFCAP_VLAN_MTU) {
1338			/* No work to do except acknowledge the change took. */
1339			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1340		}
1341		break;
1342
1343	default:
1344		error = ether_ioctl(ifp, cmd, data);
1345		break;
1346	}
1347
1348	return (error);
1349}
1350
1351static int
1352ffec_detach(device_t dev)
1353{
1354	struct ffec_softc *sc;
1355	bus_dmamap_t map;
1356	int idx;
1357
1358	/*
1359	 * NB: This function can be called internally to unwind a failure to
1360	 * attach. Make sure a resource got allocated/created before destroying.
1361	 */
1362
1363	sc = device_get_softc(dev);
1364
1365	if (sc->is_attached) {
1366		FFEC_LOCK(sc);
1367		sc->is_detaching = true;
1368		ffec_stop_locked(sc);
1369		FFEC_UNLOCK(sc);
1370		callout_drain(&sc->ffec_callout);
1371		ether_ifdetach(sc->ifp);
1372	}
1373
1374	/* XXX no miibus detach? */
1375
1376	/* Clean up RX DMA resources and free mbufs. */
1377	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1378		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1379			bus_dmamap_unload(sc->rxbuf_tag, map);
1380			bus_dmamap_destroy(sc->rxbuf_tag, map);
1381			m_freem(sc->rxbuf_map[idx].mbuf);
1382		}
1383	}
1384	if (sc->rxbuf_tag != NULL)
1385		bus_dma_tag_destroy(sc->rxbuf_tag);
1386	if (sc->rxdesc_map != NULL) {
1387		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1388		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1389	}
1390	if (sc->rxdesc_tag != NULL)
1391	bus_dma_tag_destroy(sc->rxdesc_tag);
1392
1393	/* Clean up TX DMA resources. */
1394	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1395		if ((map = sc->txbuf_map[idx].map) != NULL) {
1396			/* TX maps are already unloaded. */
1397			bus_dmamap_destroy(sc->txbuf_tag, map);
1398		}
1399	}
1400	if (sc->txbuf_tag != NULL)
1401		bus_dma_tag_destroy(sc->txbuf_tag);
1402	if (sc->txdesc_map != NULL) {
1403		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1404		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1405	}
1406	if (sc->txdesc_tag != NULL)
1407	bus_dma_tag_destroy(sc->txdesc_tag);
1408
1409	/* Release bus resources. */
1410	if (sc->intr_cookie)
1411		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1412
1413	if (sc->irq_res != NULL)
1414		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1415
1416	if (sc->mem_res != NULL)
1417		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1418
1419	FFEC_LOCK_DESTROY(sc);
1420	return (0);
1421}
1422
1423static int
1424ffec_attach(device_t dev)
1425{
1426	struct ffec_softc *sc;
1427	struct ifnet *ifp = NULL;
1428	struct mbuf *m;
1429	void *dummy;
1430	phandle_t ofw_node;
1431	int error, phynum, rid;
1432	uint8_t eaddr[ETHER_ADDR_LEN];
1433	char phy_conn_name[32];
1434	uint32_t idx, mscr;
1435
1436	sc = device_get_softc(dev);
1437	sc->dev = dev;
1438
1439	FFEC_LOCK_INIT(sc);
1440
1441	/*
1442	 * There are differences in the implementation and features of the FEC
1443	 * hardware on different SoCs, so figure out what type we are.
1444	 */
1445	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1446
1447	/*
1448	 * We have to be told what kind of electrical connection exists between
1449	 * the MAC and PHY or we can't operate correctly.
1450	 */
1451	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1452		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1453		error = ENXIO;
1454		goto out;
1455	}
1456	if (OF_searchprop(ofw_node, "phy-mode",
1457	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1458		if (strcasecmp(phy_conn_name, "mii") == 0)
1459			sc->phy_conn_type = PHY_CONN_MII;
1460		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1461			sc->phy_conn_type = PHY_CONN_RMII;
1462		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1463			sc->phy_conn_type = PHY_CONN_RGMII;
1464	}
1465	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1466		device_printf(sc->dev, "No valid 'phy-mode' "
1467		    "property found in FDT data for device.\n");
1468		error = ENOATTR;
1469		goto out;
1470	}
1471
1472	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1473
1474	/* Allocate bus resources for accessing the hardware. */
1475	rid = 0;
1476	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1477	    RF_ACTIVE);
1478	if (sc->mem_res == NULL) {
1479		device_printf(dev, "could not allocate memory resources.\n");
1480		error = ENOMEM;
1481		goto out;
1482	}
1483	rid = 0;
1484	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1485	    RF_ACTIVE);
1486	if (sc->irq_res == NULL) {
1487		device_printf(dev, "could not allocate interrupt resources.\n");
1488		error = ENOMEM;
1489		goto out;
1490	}
1491
1492	/*
1493	 * Set up TX descriptor ring, descriptors, and dma maps.
1494	 */
1495	error = bus_dma_tag_create(
1496	    bus_get_dma_tag(dev),	/* Parent tag. */
1497	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1498	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1499	    BUS_SPACE_MAXADDR,		/* highaddr */
1500	    NULL, NULL,			/* filter, filterarg */
1501	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1502	    TX_DESC_SIZE,		/* maxsegsize */
1503	    0,				/* flags */
1504	    NULL, NULL,			/* lockfunc, lockarg */
1505	    &sc->txdesc_tag);
1506	if (error != 0) {
1507		device_printf(sc->dev,
1508		    "could not create TX ring DMA tag.\n");
1509		goto out;
1510	}
1511
1512	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1513	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1514	if (error != 0) {
1515		device_printf(sc->dev,
1516		    "could not allocate TX descriptor ring.\n");
1517		goto out;
1518	}
1519
1520	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1521	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1522	if (error != 0) {
1523		device_printf(sc->dev,
1524		    "could not load TX descriptor ring map.\n");
1525		goto out;
1526	}
1527
1528	error = bus_dma_tag_create(
1529	    bus_get_dma_tag(dev),	/* Parent tag. */
1530	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1531	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1532	    BUS_SPACE_MAXADDR,		/* highaddr */
1533	    NULL, NULL,			/* filter, filterarg */
1534	    MCLBYTES, 1, 		/* maxsize, nsegments */
1535	    MCLBYTES,			/* maxsegsize */
1536	    0,				/* flags */
1537	    NULL, NULL,			/* lockfunc, lockarg */
1538	    &sc->txbuf_tag);
1539	if (error != 0) {
1540		device_printf(sc->dev,
1541		    "could not create TX ring DMA tag.\n");
1542		goto out;
1543	}
1544
1545	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1546		error = bus_dmamap_create(sc->txbuf_tag, 0,
1547		    &sc->txbuf_map[idx].map);
1548		if (error != 0) {
1549			device_printf(sc->dev,
1550			    "could not create TX buffer DMA map.\n");
1551			goto out;
1552		}
1553		ffec_setup_txdesc(sc, idx, 0, 0);
1554	}
1555
1556	/*
1557	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1558	 */
1559	error = bus_dma_tag_create(
1560	    bus_get_dma_tag(dev),	/* Parent tag. */
1561	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1562	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1563	    BUS_SPACE_MAXADDR,		/* highaddr */
1564	    NULL, NULL,			/* filter, filterarg */
1565	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1566	    RX_DESC_SIZE,		/* maxsegsize */
1567	    0,				/* flags */
1568	    NULL, NULL,			/* lockfunc, lockarg */
1569	    &sc->rxdesc_tag);
1570	if (error != 0) {
1571		device_printf(sc->dev,
1572		    "could not create RX ring DMA tag.\n");
1573		goto out;
1574	}
1575
1576	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1577	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1578	if (error != 0) {
1579		device_printf(sc->dev,
1580		    "could not allocate RX descriptor ring.\n");
1581		goto out;
1582	}
1583
1584	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1585	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1586	if (error != 0) {
1587		device_printf(sc->dev,
1588		    "could not load RX descriptor ring map.\n");
1589		goto out;
1590	}
1591
1592	error = bus_dma_tag_create(
1593	    bus_get_dma_tag(dev),	/* Parent tag. */
1594	    1, 0,			/* alignment, boundary */
1595	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1596	    BUS_SPACE_MAXADDR,		/* highaddr */
1597	    NULL, NULL,			/* filter, filterarg */
1598	    MCLBYTES, 1, 		/* maxsize, nsegments */
1599	    MCLBYTES,			/* maxsegsize */
1600	    0,				/* flags */
1601	    NULL, NULL,			/* lockfunc, lockarg */
1602	    &sc->rxbuf_tag);
1603	if (error != 0) {
1604		device_printf(sc->dev,
1605		    "could not create RX buf DMA tag.\n");
1606		goto out;
1607	}
1608
1609	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1610		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1611		    &sc->rxbuf_map[idx].map);
1612		if (error != 0) {
1613			device_printf(sc->dev,
1614			    "could not create RX buffer DMA map.\n");
1615			goto out;
1616		}
1617		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1618			device_printf(dev, "Could not alloc mbuf\n");
1619			error = ENOMEM;
1620			goto out;
1621		}
1622		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1623			device_printf(sc->dev,
1624			    "could not create new RX buffer.\n");
1625			goto out;
1626		}
1627	}
1628
1629	/* Try to get the MAC address from the hardware before resetting it. */
1630	ffec_get_hwaddr(sc, eaddr);
1631
1632	/* Reset the hardware.  Disables all interrupts. */
1633	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1634
1635	/* Setup interrupt handler. */
1636	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1637	    NULL, ffec_intr, sc, &sc->intr_cookie);
1638	if (error != 0) {
1639		device_printf(dev, "could not setup interrupt handler.\n");
1640		goto out;
1641	}
1642
1643	/*
1644	 * Set up the PHY control register.
1645	 *
1646	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1647	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1648	 *
1649	 * XXX - Revisit this...
1650	 *
1651	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1652	 * code uses 10.  Both values seem to work, but I suspect many modern
1653	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1654	 *
1655	 * Different imx manuals use confusingly different terminology (things
1656	 * like "system clock" and "internal module clock") with examples that
1657	 * use frequencies that have nothing to do with ethernet, giving the
1658	 * vague impression that maybe the clock in question is the periphclock
1659	 * or something.  In fact, on an imx53 development board (FEC),
1660	 * measuring the mdio clock at the pin on the PHY and playing with
1661	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1662	 * aka periphclock) and 13 was the right divisor.
1663	 *
1664	 * All in all, it seems likely that 13 is a safe divisor for now,
1665	 * because if we really do need to base it on the peripheral clock
1666	 * speed, then we need a platform-independant get-clock-freq API.
1667	 */
1668	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1669	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1670		mscr |= FEC_MSCR_DIS_PRE;
1671		if (bootverbose)
1672			device_printf(dev, "PHY preamble disabled\n");
1673	}
1674	WR4(sc, FEC_MSCR_REG, mscr);
1675
1676	/* Set up the ethernet interface. */
1677	sc->ifp = ifp = if_alloc(IFT_ETHER);
1678
1679	ifp->if_softc = sc;
1680	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1681	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1682	ifp->if_capabilities = IFCAP_VLAN_MTU;
1683	ifp->if_capenable = ifp->if_capabilities;
1684	ifp->if_start = ffec_txstart;
1685	ifp->if_ioctl = ffec_ioctl;
1686	ifp->if_init = ffec_init;
1687	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1688	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1689	IFQ_SET_READY(&ifp->if_snd);
1690	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1691
1692#if 0 /* XXX The hardware keeps stats we could use for these. */
1693	ifp->if_linkmib = &sc->mibdata;
1694	ifp->if_linkmiblen = sizeof(sc->mibdata);
1695#endif
1696
1697	/* Set up the miigasket hardware (if any). */
1698	ffec_miigasket_setup(sc);
1699
1700	/* Attach the mii driver. */
1701	if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1702		phynum = MII_PHY_ANY;
1703	}
1704	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1705	    ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1706	    (sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1707	if (error != 0) {
1708		device_printf(dev, "PHY attach failed\n");
1709		goto out;
1710	}
1711	sc->mii_softc = device_get_softc(sc->miibus);
1712
1713	/* All ready to run, attach the ethernet interface. */
1714	ether_ifattach(ifp, eaddr);
1715	sc->is_attached = true;
1716
1717	error = 0;
1718out:
1719
1720	if (error != 0)
1721		ffec_detach(dev);
1722
1723	return (error);
1724}
1725
1726static int
1727ffec_probe(device_t dev)
1728{
1729	uintptr_t fectype;
1730
1731	if (!ofw_bus_status_okay(dev))
1732		return (ENXIO);
1733
1734	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1735	if (fectype == FECTYPE_NONE)
1736		return (ENXIO);
1737
1738	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1739	    "Freescale Gigabit Ethernet Controller" :
1740	    "Freescale Fast Ethernet Controller");
1741
1742	return (BUS_PROBE_DEFAULT);
1743}
1744
1745
1746static device_method_t ffec_methods[] = {
1747	/* Device interface. */
1748	DEVMETHOD(device_probe,		ffec_probe),
1749	DEVMETHOD(device_attach,	ffec_attach),
1750	DEVMETHOD(device_detach,	ffec_detach),
1751
1752/*
1753	DEVMETHOD(device_shutdown,	ffec_shutdown),
1754	DEVMETHOD(device_suspend,	ffec_suspend),
1755	DEVMETHOD(device_resume,	ffec_resume),
1756*/
1757
1758	/* MII interface. */
1759	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1760	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1761	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1762
1763	DEVMETHOD_END
1764};
1765
1766static driver_t ffec_driver = {
1767	"ffec",
1768	ffec_methods,
1769	sizeof(struct ffec_softc)
1770};
1771
1772static devclass_t ffec_devclass;
1773
1774DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1775DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1776
1777MODULE_DEPEND(ffec, ether, 1, 1, 1);
1778MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1779