if_ffec.c revision 256806
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/ffec/if_ffec.c 256806 2013-10-20 21:07:38Z ian $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/ffec/if_ffecreg.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86#include "miibus_if.h"
87
88/*
89 * Driver data and defines.
90 */
91#define	RX_DESC_COUNT	64
92#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
93#define	TX_DESC_COUNT	64
94#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
95
96#define	WATCHDOG_TIMEOUT_SECS	5
97#define	STATS_HARVEST_INTERVAL	3
98
99struct ffec_bufmap {
100	struct mbuf	*mbuf;
101	bus_dmamap_t	map;
102};
103
104enum {
105	PHY_CONN_UNKNOWN,
106	PHY_CONN_MII,
107	PHY_CONN_RMII,
108	PHY_CONN_RGMII
109};
110
111enum {
112	FECTYPE_GENERIC,
113	FECTYPE_IMX51,
114	FECTYPE_IMX53,
115	FECTYPE_IMX6,
116};
117
118struct ffec_softc {
119	device_t		dev;
120	device_t		miibus;
121	struct mii_data *	mii_softc;
122	struct ifnet		*ifp;
123	int			if_flags;
124	struct mtx		mtx;
125	struct resource		*irq_res;
126	struct resource		*mem_res;
127	void *			intr_cookie;
128	struct callout		ffec_callout;
129	uint8_t			phy_conn_type;
130	uint8_t			fectype;
131	boolean_t		link_is_up;
132	boolean_t		is_attached;
133	boolean_t		is_detaching;
134	int			tx_watchdog_count;
135	int			stats_harvest_count;
136
137	bus_dma_tag_t		rxdesc_tag;
138	bus_dmamap_t		rxdesc_map;
139	struct ffec_hwdesc	*rxdesc_ring;
140	bus_addr_t		rxdesc_ring_paddr;
141	bus_dma_tag_t		rxbuf_tag;
142	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
143	uint32_t		rx_idx;
144
145	bus_dma_tag_t		txdesc_tag;
146	bus_dmamap_t		txdesc_map;
147	struct ffec_hwdesc	*txdesc_ring;
148	bus_addr_t		txdesc_ring_paddr;
149	bus_dma_tag_t		txbuf_tag;
150	struct ffec_bufmap	txbuf_map[RX_DESC_COUNT];
151	uint32_t		tx_idx_head;
152	uint32_t		tx_idx_tail;
153	int			txcount;
154};
155
156#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
157#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
158#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
159	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
160#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
161#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
162#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
163
164static void ffec_init_locked(struct ffec_softc *sc);
165static void ffec_stop_locked(struct ffec_softc *sc);
166static void ffec_txstart_locked(struct ffec_softc *sc);
167static void ffec_txfinish_locked(struct ffec_softc *sc);
168
169static inline uint16_t
170RD2(struct ffec_softc *sc, bus_size_t off)
171{
172
173	return (bus_read_2(sc->mem_res, off));
174}
175
176static inline void
177WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
178{
179
180	bus_write_2(sc->mem_res, off, val);
181}
182
183static inline uint32_t
184RD4(struct ffec_softc *sc, bus_size_t off)
185{
186
187	return (bus_read_4(sc->mem_res, off));
188}
189
190static inline void
191WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
192{
193
194	bus_write_4(sc->mem_res, off, val);
195}
196
197static inline uint32_t
198next_rxidx(struct ffec_softc *sc, uint32_t curidx)
199{
200
201	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
202}
203
204static inline uint32_t
205next_txidx(struct ffec_softc *sc, uint32_t curidx)
206{
207
208	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
209}
210
211static void
212ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
213{
214
215	if (error != 0)
216		return;
217	*(bus_addr_t *)arg = segs[0].ds_addr;
218}
219
220static void
221ffec_miigasket_setup(struct ffec_softc *sc)
222{
223	uint32_t ifmode;
224
225	/*
226	 * We only need the gasket for MII and RMII connections on certain SoCs.
227	 */
228
229	switch (sc->fectype)
230	{
231	case FECTYPE_IMX53:
232		break;
233	default:
234		return;
235	}
236
237	switch (sc->phy_conn_type)
238	{
239	case PHY_CONN_MII:
240		ifmode = 0;
241		break;
242	case PHY_CONN_RMII:
243		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
244		break;
245	default:
246		return;
247	}
248
249	/*
250	 * Disable the gasket, configure for either MII or RMII, then enable.
251	 */
252
253	WR2(sc, FEC_MIIGSK_ENR, 0);
254	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
255		continue;
256
257	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
258
259	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
260	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
261		continue;
262}
263
264static boolean_t
265ffec_miibus_iowait(struct ffec_softc *sc)
266{
267	uint32_t timeout;
268
269	for (timeout = 10000; timeout != 0; --timeout)
270		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
271			return (true);
272
273	return (false);
274}
275
276static int
277ffec_miibus_readreg(device_t dev, int phy, int reg)
278{
279	struct ffec_softc *sc;
280	int val;
281
282	sc = device_get_softc(dev);
283
284	WR4(sc, FEC_IER_REG, FEC_IER_MII);
285
286	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
287	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
288	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
289	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
290
291	if (!ffec_miibus_iowait(sc)) {
292		device_printf(dev, "timeout waiting for mii read\n");
293		return (-1); /* All-ones is a symptom of bad mdio. */
294	}
295
296	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
297
298	return (val);
299}
300
301static int
302ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
303{
304	struct ffec_softc *sc;
305
306	sc = device_get_softc(dev);
307
308	WR4(sc, FEC_IER_REG, FEC_IER_MII);
309
310	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
311	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
312	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
313	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
314	    (val & FEC_MMFR_DATA_MASK));
315
316	if (!ffec_miibus_iowait(sc)) {
317		device_printf(dev, "timeout waiting for mii write\n");
318		return (-1);
319	}
320
321	return (0);
322}
323
324static void
325ffec_miibus_statchg(device_t dev)
326{
327	struct ffec_softc *sc;
328	struct mii_data *mii;
329	uint32_t ecr, rcr, tcr;
330
331	/*
332	 * Called by the MII bus driver when the PHY establishes link to set the
333	 * MAC interface registers.
334	 */
335
336	sc = device_get_softc(dev);
337
338	FFEC_ASSERT_LOCKED(sc);
339
340	mii = sc->mii_softc;
341
342	if (mii->mii_media_status & IFM_ACTIVE)
343		sc->link_is_up = true;
344	else
345		sc->link_is_up = false;
346
347	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
348	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
349	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
350	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
351
352	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
353	switch (sc->phy_conn_type) {
354	case PHY_CONN_MII:
355		break;
356	case PHY_CONN_RMII:
357		rcr |= FEC_RCR_RMII_MODE;
358		break;
359	case PHY_CONN_RGMII:
360		rcr |= FEC_RCR_RGMII_EN;
361		break;
362	}
363
364	switch (IFM_SUBTYPE(mii->mii_media_active)) {
365	case IFM_1000_T:
366	case IFM_1000_SX:
367		ecr |= FEC_ECR_SPEED;
368		break;
369	case IFM_100_TX:
370		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
371		break;
372	case IFM_10_T:
373		rcr |= FEC_RCR_RMII_10T;
374		break;
375	case IFM_NONE:
376		sc->link_is_up = false;
377		return;
378	default:
379		sc->link_is_up = false;
380		device_printf(dev, "Unsupported media %u\n",
381		    IFM_SUBTYPE(mii->mii_media_active));
382		return;
383	}
384
385	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
386		tcr |= FEC_TCR_FDEN;
387	else
388		rcr |= FEC_RCR_DRT;
389
390	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
391		rcr |= FEC_RCR_FCE;
392
393	WR4(sc, FEC_RCR_REG, rcr);
394	WR4(sc, FEC_TCR_REG, tcr);
395	WR4(sc, FEC_ECR_REG, ecr);
396}
397
398static void
399ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
400{
401	struct ffec_softc *sc;
402	struct mii_data *mii;
403
404
405	sc = ifp->if_softc;
406	mii = sc->mii_softc;
407	FFEC_LOCK(sc);
408	mii_pollstat(mii);
409	ifmr->ifm_active = mii->mii_media_active;
410	ifmr->ifm_status = mii->mii_media_status;
411	FFEC_UNLOCK(sc);
412}
413
414static int
415ffec_media_change_locked(struct ffec_softc *sc)
416{
417
418	return (mii_mediachg(sc->mii_softc));
419}
420
421static int
422ffec_media_change(struct ifnet * ifp)
423{
424	struct ffec_softc *sc;
425	int error;
426
427	sc = ifp->if_softc;
428
429	FFEC_LOCK(sc);
430	error = ffec_media_change_locked(sc);
431	FFEC_UNLOCK(sc);
432	return (error);
433}
434
435static void ffec_clear_stats(struct ffec_softc *sc)
436{
437
438	WR4(sc, FEC_RMON_R_PACKETS, 0);
439	WR4(sc, FEC_RMON_R_MC_PKT, 0);
440	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
441	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
442	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
443	WR4(sc, FEC_RMON_R_FRAG, 0);
444	WR4(sc, FEC_RMON_R_JAB, 0);
445	WR4(sc, FEC_RMON_T_PACKETS, 0);
446	WR4(sc, FEC_RMON_T_MC_PKT, 0);
447	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
448	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
449	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
450	WR4(sc, FEC_RMON_T_FRAG, 0);
451	WR4(sc, FEC_RMON_T_JAB, 0);
452	WR4(sc, FEC_RMON_T_COL, 0);
453}
454
455static void
456ffec_harvest_stats(struct ffec_softc *sc)
457{
458	struct ifnet *ifp;
459
460	/* We don't need to harvest too often. */
461	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
462		return;
463
464	/*
465	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
466	 * been too long just go ahead and do it anyway, the worst that'll
467	 * happen is we'll lose a packet count or two as we clear at the end.
468	 */
469	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
470	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
471		return;
472
473	sc->stats_harvest_count = 0;
474	ifp = sc->ifp;
475
476	ifp->if_ipackets   += RD4(sc, FEC_RMON_R_PACKETS);
477	ifp->if_imcasts    += RD4(sc, FEC_RMON_R_MC_PKT);
478	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_CRC_ALIGN);
479	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_UNDERSIZE);
480	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_OVERSIZE);
481	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_FRAG);
482	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_JAB);
483
484	ifp->if_opackets   += RD4(sc, FEC_RMON_T_PACKETS);
485	ifp->if_omcasts    += RD4(sc, FEC_RMON_T_MC_PKT);
486	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_CRC_ALIGN);
487	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_UNDERSIZE);
488	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_OVERSIZE );
489	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_FRAG);
490	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_JAB);
491
492	ifp->if_collisions += RD4(sc, FEC_RMON_T_COL);
493
494	ffec_clear_stats(sc);
495}
496
497static void
498ffec_tick(void *arg)
499{
500	struct ffec_softc *sc;
501	struct ifnet *ifp;
502	int link_was_up;
503
504	sc = arg;
505
506	FFEC_ASSERT_LOCKED(sc);
507
508	ifp = sc->ifp;
509
510	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
511	    return;
512
513	/*
514	 * Typical tx watchdog.  If this fires it indicates that we enqueued
515	 * packets for output and never got a txdone interrupt for them.  Maybe
516	 * it's a missed interrupt somehow, just pretend we got one.
517	 */
518	if (sc->tx_watchdog_count > 0) {
519		if (--sc->tx_watchdog_count == 0) {
520			ffec_txfinish_locked(sc);
521		}
522	}
523
524	/* Gather stats from hardware counters. */
525	ffec_harvest_stats(sc);
526
527	/* Check the media status. */
528	link_was_up = sc->link_is_up;
529	mii_tick(sc->mii_softc);
530	if (sc->link_is_up && !link_was_up)
531		ffec_txstart_locked(sc);
532
533	/* Schedule another check one second from now. */
534	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
535}
536
537inline static uint32_t
538ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
539    uint32_t len)
540{
541	uint32_t nidx;
542	uint32_t flags;
543
544	nidx = next_txidx(sc, idx);
545
546	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
547	if (paddr == 0 || len == 0) {
548		flags = 0;
549		--sc->txcount;
550	} else {
551		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
552		++sc->txcount;
553	}
554	if (nidx == 0)
555		flags |= FEC_TXDESC_WRAP;
556
557	/*
558	 * The hardware requires 32-bit physical addresses.  We set up the dma
559	 * tag to indicate that, so the cast to uint32_t should never lose
560	 * significant bits.
561	 */
562	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
563	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
564
565	return (nidx);
566}
567
568static int
569ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
570{
571	struct mbuf * m;
572	int error, nsegs;
573	struct bus_dma_segment seg;
574
575	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
576		return (ENOMEM);
577	*mp = m;
578
579	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
580	    m, &seg, &nsegs, 0);
581	if (error != 0) {
582		return (ENOMEM);
583	}
584	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
585	    BUS_DMASYNC_PREWRITE);
586
587	sc->txbuf_map[idx].mbuf = m;
588	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
589
590	return (0);
591
592}
593
594static void
595ffec_txstart_locked(struct ffec_softc *sc)
596{
597	struct ifnet *ifp;
598	struct mbuf *m;
599	int enqueued;
600
601	FFEC_ASSERT_LOCKED(sc);
602
603	if (!sc->link_is_up)
604		return;
605
606	ifp = sc->ifp;
607
608	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
609		return;
610
611	enqueued = 0;
612
613	for (;;) {
614		if (sc->txcount == (TX_DESC_COUNT-1)) {
615			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
616			break;
617		}
618		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
619		if (m == NULL)
620			break;
621		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
622			IFQ_DRV_PREPEND(&ifp->if_snd, m);
623			break;
624		}
625		BPF_MTAP(ifp, m);
626		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
627		++enqueued;
628	}
629
630	if (enqueued != 0) {
631		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
632		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
633	}
634}
635
636static void
637ffec_txstart(struct ifnet *ifp)
638{
639	struct ffec_softc *sc = ifp->if_softc;
640
641	FFEC_LOCK(sc);
642	ffec_txstart_locked(sc);
643	FFEC_UNLOCK(sc);
644}
645
646static void
647ffec_txfinish_locked(struct ffec_softc *sc)
648{
649	struct ifnet *ifp;
650	struct ffec_hwdesc *desc;
651	struct ffec_bufmap *bmap;
652	boolean_t retired_buffer;
653
654	FFEC_ASSERT_LOCKED(sc);
655
656	ifp = sc->ifp;
657	retired_buffer = false;
658	while (sc->tx_idx_tail != sc->tx_idx_head) {
659		desc = &sc->txdesc_ring[sc->tx_idx_tail];
660		if (desc->flags_len & FEC_TXDESC_READY)
661			break;
662		retired_buffer = true;
663		bmap = &sc->txbuf_map[sc->tx_idx_tail];
664		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
665		    BUS_DMASYNC_POSTWRITE);
666		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
667		m_freem(bmap->mbuf);
668		bmap->mbuf = NULL;
669		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
670		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
671	}
672
673	/*
674	 * If we retired any buffers, there will be open tx slots available in
675	 * the descriptor ring, go try to start some new output.
676	 */
677	if (retired_buffer) {
678		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
679		ffec_txstart_locked(sc);
680	}
681
682	/* If there are no buffers outstanding, muzzle the watchdog. */
683	if (sc->tx_idx_tail == sc->tx_idx_head) {
684		sc->tx_watchdog_count = 0;
685	}
686}
687
688inline static uint32_t
689ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
690{
691	uint32_t nidx;
692
693	/*
694	 * The hardware requires 32-bit physical addresses.  We set up the dma
695	 * tag to indicate that, so the cast to uint32_t should never lose
696	 * significant bits.
697	 */
698	nidx = next_rxidx(sc, idx);
699	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
700	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
701		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
702
703	return (nidx);
704}
705
706static int
707ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
708{
709	int error, nsegs;
710	struct bus_dma_segment seg;
711
712	/*
713	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
714	 * the buffer to allow the data to be re-aligned after receiving it (by
715	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
716	 * have to ensure that the beginning of the buffer is aligned to the
717	 * hardware's requirements.
718	 */
719	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
720
721	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
722	    m, &seg, &nsegs, 0);
723	if (error != 0) {
724		return (error);
725	}
726
727	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
728	    BUS_DMASYNC_PREREAD);
729
730	sc->rxbuf_map[idx].mbuf = m;
731	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
732
733	return (0);
734}
735
736static struct mbuf *
737ffec_alloc_mbufcl(struct ffec_softc *sc)
738{
739	struct mbuf *m;
740
741	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
742	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
743
744	return (m);
745}
746
747static void
748ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
749{
750	struct mbuf *m, *newmbuf;
751	struct ffec_bufmap *bmap;
752	uint8_t *dst, *src;
753	int error;
754
755	/*
756	 *  First try to get a new mbuf to plug into this slot in the rx ring.
757	 *  If that fails, drop the current packet and recycle the current
758	 *  mbuf, which is still mapped and loaded.
759	 */
760	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
761		++sc->ifp->if_iqdrops;
762		ffec_setup_rxdesc(sc, sc->rx_idx,
763		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
764		return;
765	}
766
767	/*
768	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
769	 *  boundary for the upper layers.  The hardware requires receive
770	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
771	 *  leaving the protocol header unaligned.  We used m_adj() after
772	 *  allocating the buffer to leave empty space at the start of the
773	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
774	 *  shuffle all the data backwards 2 bytes and adjust m_data.
775	 *
776	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
777	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
778	 *  feature, but for them could we speed this up by copying just the
779	 *  protocol headers into their own small mbuf then chaining the cluster
780	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
781	 *  the biggest header is, instead of the whole 1530ish-byte frame.
782	 */
783
784	FFEC_UNLOCK(sc);
785
786	bmap = &sc->rxbuf_map[sc->rx_idx];
787	len -= ETHER_CRC_LEN;
788	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
789	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
790	m = bmap->mbuf;
791	bmap->mbuf = NULL;
792	m->m_len = len;
793	m->m_pkthdr.len = len;
794	m->m_pkthdr.rcvif = sc->ifp;
795
796	src = mtod(m, uint8_t*);
797	dst = src - ETHER_ALIGN;
798	bcopy(src, dst, len);
799	m->m_data = dst;
800	sc->ifp->if_input(sc->ifp, m);
801
802	FFEC_LOCK(sc);
803
804	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
805		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
806		/* XXX Now what?  We've got a hole in the rx ring. */
807	}
808
809}
810
811static void
812ffec_rxfinish_locked(struct ffec_softc *sc)
813{
814	struct ffec_hwdesc *desc;
815	int len;
816	boolean_t produced_empty_buffer;
817
818	FFEC_ASSERT_LOCKED(sc);
819
820	produced_empty_buffer = false;
821	for (;;) {
822		desc = &sc->rxdesc_ring[sc->rx_idx];
823		if (desc->flags_len & FEC_RXDESC_EMPTY)
824			break;
825		produced_empty_buffer = true;
826		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
827		if (len < 64) {
828			/*
829			 * Just recycle the descriptor and continue.           .
830			 */
831			ffec_setup_rxdesc(sc, sc->rx_idx,
832			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
833		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
834			/*
835			 * The entire frame is not in this buffer.  Impossible.
836			 * Recycle the descriptor and continue.
837			 *
838			 * XXX what's the right way to handle this? Probably we
839			 * should stop/init the hardware because this should
840			 * just really never happen when we have buffers bigger
841			 * than the maximum frame size.
842			 */
843			device_printf(sc->dev,
844			    "fec_rxfinish: received frame without LAST bit set");
845			ffec_setup_rxdesc(sc, sc->rx_idx,
846			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
847		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
848			/*
849			 *  Something went wrong with receiving the frame, we
850			 *  don't care what (the hardware has counted the error
851			 *  in the stats registers already), we just reuse the
852			 *  same mbuf, which is still dma-mapped, by resetting
853			 *  the rx descriptor.
854			 */
855			ffec_setup_rxdesc(sc, sc->rx_idx,
856			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
857		} else {
858			/*
859			 *  Normal case: a good frame all in one buffer.
860			 */
861			ffec_rxfinish_onebuf(sc, len);
862		}
863		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
864	}
865
866	if (produced_empty_buffer) {
867		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
868	}
869}
870
871static void
872ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
873{
874	uint32_t palr, paur, rnd;
875
876	/*
877	 * Try to recover a MAC address from the running hardware. If there's
878	 * something non-zero there, assume the bootloader did the right thing
879	 * and just use it.
880	 *
881	 * Otherwise, set the address to a convenient locally assigned address,
882	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
883	 * assigned bit set, and the broadcast/multicast bit clear.
884	 */
885	palr = RD4(sc, FEC_PALR_REG);
886	paur = RD4(sc, FEC_PAUR_REG);
887	if ((palr | paur) != 0) {
888		hwaddr[0] = palr >> 24;
889		hwaddr[1] = palr >> 16;
890		hwaddr[2] = palr >>  8;
891		hwaddr[3] = palr >>  0;
892		hwaddr[4] = paur >> 24;
893		hwaddr[5] = paur >> 16;
894		return;
895	} else {
896		rnd = arc4random() & 0x00ffffff;
897		hwaddr[0] = 'b';
898		hwaddr[1] = 's';
899		hwaddr[2] = 'd';
900		hwaddr[3] = rnd >> 16;
901		hwaddr[4] = rnd >>  8;
902		hwaddr[5] = rnd >>  0;
903	}
904
905	if (bootverbose) {
906		device_printf(sc->dev,
907		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
908		    hwaddr[0], hwaddr[1], hwaddr[2],
909		    hwaddr[3], hwaddr[4], hwaddr[5]);
910	}
911}
912
913static void
914ffec_setup_rxfilter(struct ffec_softc *sc)
915{
916	struct ifnet *ifp;
917	struct ifmultiaddr *ifma;
918	uint8_t *eaddr;
919	uint32_t crc;
920	uint64_t ghash, ihash;
921
922	FFEC_ASSERT_LOCKED(sc);
923
924	ifp = sc->ifp;
925
926	/*
927	 * Set the multicast (group) filter hash.
928	 */
929	if ((ifp->if_flags & IFF_ALLMULTI))
930		ghash = 0xffffffffffffffffLLU;
931	else {
932		ghash = 0;
933		if_maddr_rlock(ifp);
934		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
935			if (ifma->ifma_addr->sa_family != AF_LINK)
936				continue;
937			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
938			    ifma->ifma_addr), ETHER_ADDR_LEN);
939			ghash |= 1 << (crc & 0x3f);
940		}
941		if_maddr_runlock(ifp);
942	}
943	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
944	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
945
946	/*
947	 * Set the individual address filter hash.
948	 *
949	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
950	 * seems to support the concept of MAC address aliases, does such a
951	 * thing even exist?
952	 */
953	if ((ifp->if_flags & IFF_PROMISC))
954		ihash = 0xffffffffffffffffLLU;
955	else {
956		ihash = 0;
957	}
958	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
959	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
960
961	/*
962	 * Set the primary address.
963	 */
964	eaddr = IF_LLADDR(ifp);
965	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
966	    (eaddr[2] <<  8) | eaddr[3]);
967	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
968}
969
970static void
971ffec_stop_locked(struct ffec_softc *sc)
972{
973	struct ifnet *ifp;
974	struct ffec_hwdesc *desc;
975	struct ffec_bufmap *bmap;
976	int idx;
977
978	FFEC_ASSERT_LOCKED(sc);
979
980	ifp = sc->ifp;
981	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
982	sc->tx_watchdog_count = 0;
983	sc->stats_harvest_count = 0;
984
985	/*
986	 * Stop the hardware, mask all interrupts, and clear all current
987	 * interrupt status bits.
988	 */
989	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
990	WR4(sc, FEC_IEM_REG, 0x00000000);
991	WR4(sc, FEC_IER_REG, 0xffffffff);
992
993	/*
994	 * Stop the media-check callout.  Do not use callout_drain() because
995	 * we're holding a mutex the callout acquires, and if it's currently
996	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
997	 * ffec_tick() routine will return without doing anything when it sees
998	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
999	 */
1000	callout_stop(&sc->ffec_callout);
1001
1002	/*
1003	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1004	 * it's as if the bits were transmitted and then lost on the wire.
1005	 *
1006	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1007	 * back on the queue for when we get restarted later?
1008	 */
1009	idx = sc->tx_idx_tail;
1010	while (idx != sc->tx_idx_head) {
1011		desc = &sc->txdesc_ring[idx];
1012		bmap = &sc->txbuf_map[idx];
1013		if (desc->buf_paddr != 0) {
1014			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1015			m_freem(bmap->mbuf);
1016			bmap->mbuf = NULL;
1017			ffec_setup_txdesc(sc, idx, 0, 0);
1018		}
1019		idx = next_txidx(sc, idx);
1020	}
1021
1022	/*
1023	 * Discard all unprocessed receive buffers.  This amounts to just
1024	 * pretending that nothing ever got received into them.  We reuse the
1025	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1026	 * back on so they'll get reused when we start up again.
1027	 */
1028	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1029		desc = &sc->rxdesc_ring[idx];
1030		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1031	}
1032}
1033
1034static void
1035ffec_init_locked(struct ffec_softc *sc)
1036{
1037	struct ifnet *ifp = sc->ifp;
1038	uint32_t maxbuf, maxfl, regval;
1039
1040	FFEC_ASSERT_LOCKED(sc);
1041
1042	/*
1043	 * The hardware has a limit of 0x7ff as the max frame length (see
1044	 * comments for MRBR below), and we use mbuf clusters as receive
1045	 * buffers, and we currently are designed to receive an entire frame
1046	 * into a single buffer.
1047	 *
1048	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1049	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1050	 * and then that value has to be rounded up to the hardware's DMA
1051	 * alignment requirements, so all in all our buffer is that much smaller
1052	 * than MCLBYTES.
1053	 *
1054	 * The resulting value is used as the frame truncation length and the
1055	 * max buffer receive buffer size for now.  It'll become more complex
1056	 * when we support jumbo frames and receiving fragments of them into
1057	 * separate buffers.
1058	 */
1059	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1060	maxfl = min(maxbuf, 0x7ff);
1061
1062	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1063		return;
1064
1065	/* Mask all interrupts and clear all current interrupt status bits. */
1066	WR4(sc, FEC_IEM_REG, 0x00000000);
1067	WR4(sc, FEC_IER_REG, 0xffffffff);
1068
1069	/*
1070	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1071	 */
1072	ffec_setup_rxfilter(sc);
1073
1074	/*
1075	 * TFWR - Transmit FIFO watermark register.
1076	 *
1077	 * Set the transmit fifo watermark register to "store and forward" mode
1078	 * and also set a threshold of 128 bytes in the fifo before transmission
1079	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1080	 * supports STRFWD and when that bit is set, the watermark level in the
1081	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1082	 * to that bit is innocuous, and the TWFR bits get used instead.
1083	 */
1084	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1085
1086	/* RCR - Receive control register.
1087	 *
1088	 * Set max frame length + clean out anything left from u-boot.
1089	 */
1090	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1091
1092	/*
1093	 * TCR - Transmit control register.
1094	 *
1095	 * Clean out anything left from u-boot.  Any necessary values are set in
1096	 * ffec_miibus_statchg() based on the media type.
1097	 */
1098	WR4(sc, FEC_TCR_REG, 0);
1099
1100	/*
1101	 * OPD - Opcode/pause duration.
1102	 *
1103	 * XXX These magic numbers come from u-boot.
1104	 */
1105	WR4(sc, FEC_OPD_REG, 0x00010020);
1106
1107	/*
1108	 * FRSR - Fifo receive start register.
1109	 *
1110	 * This register does not exist on imx6, it is present on earlier
1111	 * hardware. The u-boot code sets this to a non-default value that's 32
1112	 * bytes larger than the default, with no clue as to why.  The default
1113	 * value should work fine, so there's no code to init it here.
1114	 */
1115
1116	/*
1117	 *  MRBR - Max RX buffer size.
1118	 *
1119	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1120	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1121	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1122	 *  receive loop in the hardware, where every rx descriptor in the ring
1123	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1124	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1125	 *  set, like maybe that's what enables jumbo frames, because in general
1126	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1127	 *  compatible" flag.
1128	 */
1129	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1130
1131	/*
1132	 * FTRL - Frame truncation length.
1133	 *
1134	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1135	 */
1136	WR4(sc, FEC_FTRL_REG, maxfl);
1137
1138	/*
1139	 * RDSR / TDSR descriptor ring pointers.
1140	 *
1141	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1142	 * internal current descriptor index values for both rings, so we zero
1143	 * our index values as well.
1144	 */
1145	sc->rx_idx = 0;
1146	sc->tx_idx_head = sc->tx_idx_tail = 0;
1147	sc->txcount = 0;
1148	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1149	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1150
1151	/*
1152	 * EIM - interrupt mask register.
1153	 *
1154	 * We always enable the same set of interrupts while running; unlike
1155	 * some drivers there's no need to change the mask on the fly depending
1156	 * on what operations are in progress.
1157	 */
1158	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1159
1160	/*
1161	 * MIBC - MIB control (hardware stats).
1162	 */
1163	regval = RD4(sc, FEC_MIBC_REG);
1164	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1165	ffec_clear_stats(sc);
1166	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1167
1168	/*
1169	 * ECR - Ethernet control register.
1170	 *
1171	 * This must happen after all the other config registers are set.  If
1172	 * we're running on little-endian hardware, also set the flag for byte-
1173	 * swapping descriptor ring entries.  This flag doesn't exist on older
1174	 * hardware, but it can be safely set -- the bit position it occupies
1175	 * was unused.
1176	 */
1177	regval = RD4(sc, FEC_ECR_REG);
1178#if _BYTE_ORDER == _LITTLE_ENDIAN
1179	regval |= FEC_ECR_DBSWP;
1180#endif
1181	regval |= FEC_ECR_ETHEREN;
1182	WR4(sc, FEC_ECR_REG, regval);
1183
1184	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1185
1186       /*
1187	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1188	* set up the remaining config registers based on the current media.
1189	*/
1190	mii_mediachg(sc->mii_softc);
1191	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1192
1193	/*
1194	 * Tell the hardware that receive buffers are available.  They were made
1195	 * available in ffec_attach() or ffec_stop().
1196	 */
1197	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1198}
1199
1200static void
1201ffec_init(void *if_softc)
1202{
1203	struct ffec_softc *sc = if_softc;
1204
1205	FFEC_LOCK(sc);
1206	ffec_init_locked(sc);
1207	FFEC_UNLOCK(sc);
1208}
1209
1210static void
1211ffec_intr(void *arg)
1212{
1213	struct ffec_softc *sc;
1214	uint32_t ier;
1215
1216	sc = arg;
1217
1218	FFEC_LOCK(sc);
1219
1220	ier = RD4(sc, FEC_IER_REG);
1221
1222	if (ier & FEC_IER_TXF) {
1223		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1224		ffec_txfinish_locked(sc);
1225	}
1226
1227	if (ier & FEC_IER_RXF) {
1228		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1229		ffec_rxfinish_locked(sc);
1230	}
1231
1232	/*
1233	 * We actually don't care about most errors, because the hardware copes
1234	 * with them just fine, discarding the incoming bad frame, or forcing a
1235	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1236	 * stats registers.  The one that really matters is EBERR (DMA bus
1237	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1238	 * have to restart it here.  It should never happen.
1239	 */
1240	if (ier & FEC_IER_EBERR) {
1241		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1242		device_printf(sc->dev,
1243		    "Ethernet DMA error, restarting controller.\n");
1244		ffec_stop_locked(sc);
1245		ffec_init_locked(sc);
1246	}
1247
1248	FFEC_UNLOCK(sc);
1249
1250}
1251
1252static int
1253ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1254{
1255	struct ffec_softc *sc;
1256	struct mii_data *mii;
1257	struct ifreq *ifr;
1258	int mask, error;
1259
1260	sc = ifp->if_softc;
1261	ifr = (struct ifreq *)data;
1262
1263	error = 0;
1264	switch (cmd) {
1265	case SIOCSIFFLAGS:
1266		FFEC_LOCK(sc);
1267		if (ifp->if_flags & IFF_UP) {
1268			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1269				if ((ifp->if_flags ^ sc->if_flags) &
1270				    (IFF_PROMISC | IFF_ALLMULTI))
1271					ffec_setup_rxfilter(sc);
1272			} else {
1273				if (!sc->is_detaching)
1274					ffec_init_locked(sc);
1275			}
1276		} else {
1277			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1278				ffec_stop_locked(sc);
1279		}
1280		sc->if_flags = ifp->if_flags;
1281		FFEC_UNLOCK(sc);
1282		break;
1283
1284	case SIOCADDMULTI:
1285	case SIOCDELMULTI:
1286		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1287			FFEC_LOCK(sc);
1288			ffec_setup_rxfilter(sc);
1289			FFEC_UNLOCK(sc);
1290		}
1291		break;
1292
1293	case SIOCSIFMEDIA:
1294	case SIOCGIFMEDIA:
1295		mii = sc->mii_softc;
1296		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1297		break;
1298
1299	case SIOCSIFCAP:
1300		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1301		if (mask & IFCAP_VLAN_MTU) {
1302			/* No work to do except acknowledge the change took. */
1303			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1304		}
1305		break;
1306
1307	default:
1308		error = ether_ioctl(ifp, cmd, data);
1309		break;
1310	}
1311
1312	return (error);
1313}
1314
1315static int
1316ffec_detach(device_t dev)
1317{
1318	struct ffec_softc *sc;
1319	bus_dmamap_t map;
1320	int idx;
1321
1322	/*
1323	 * NB: This function can be called internally to unwind a failure to
1324	 * attach. Make sure a resource got allocated/created before destroying.
1325	 */
1326
1327	sc = device_get_softc(dev);
1328
1329	if (sc->is_attached) {
1330		FFEC_LOCK(sc);
1331		sc->is_detaching = true;
1332		ffec_stop_locked(sc);
1333		FFEC_UNLOCK(sc);
1334		callout_drain(&sc->ffec_callout);
1335		ether_ifdetach(sc->ifp);
1336	}
1337
1338	/* XXX no miibus detach? */
1339
1340	/* Clean up RX DMA resources and free mbufs. */
1341	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1342		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1343			bus_dmamap_unload(sc->rxbuf_tag, map);
1344			bus_dmamap_destroy(sc->rxbuf_tag, map);
1345			m_freem(sc->rxbuf_map[idx].mbuf);
1346		}
1347	}
1348	if (sc->rxbuf_tag != NULL)
1349		bus_dma_tag_destroy(sc->rxbuf_tag);
1350	if (sc->rxdesc_map != NULL) {
1351		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1352		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1353	}
1354	if (sc->rxdesc_tag != NULL)
1355	bus_dma_tag_destroy(sc->rxdesc_tag);
1356
1357	/* Clean up TX DMA resources. */
1358	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1359		if ((map = sc->txbuf_map[idx].map) != NULL) {
1360			/* TX maps are already unloaded. */
1361			bus_dmamap_destroy(sc->txbuf_tag, map);
1362		}
1363	}
1364	if (sc->txbuf_tag != NULL)
1365		bus_dma_tag_destroy(sc->txbuf_tag);
1366	if (sc->txdesc_map != NULL) {
1367		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1368		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1369	}
1370	if (sc->txdesc_tag != NULL)
1371	bus_dma_tag_destroy(sc->txdesc_tag);
1372
1373	/* Release bus resources. */
1374	if (sc->intr_cookie)
1375		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1376
1377	if (sc->irq_res != NULL)
1378		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1379
1380	if (sc->mem_res != NULL)
1381		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1382
1383	FFEC_LOCK_DESTROY(sc);
1384	return (0);
1385}
1386
1387static int
1388ffec_attach(device_t dev)
1389{
1390	struct ffec_softc *sc;
1391	struct ifnet *ifp = NULL;
1392	struct mbuf *m;
1393	phandle_t ofw_node;
1394	int error, rid;
1395	uint8_t eaddr[ETHER_ADDR_LEN];
1396	char phy_conn_name[32];
1397	uint32_t idx, mscr;
1398
1399	sc = device_get_softc(dev);
1400	sc->dev = dev;
1401
1402	FFEC_LOCK_INIT(sc);
1403
1404	/*
1405	 * There are differences in the implementation and features of the FEC
1406	 * hardware on different SoCs, so figure out what type we are.
1407	 */
1408	if (ofw_bus_is_compatible(dev, "fsl,imx51-fec"))
1409		sc->fectype = FECTYPE_IMX51;
1410	else if (ofw_bus_is_compatible(dev, "fsl,imx53-fec"))
1411		sc->fectype = FECTYPE_IMX53;
1412	else if (ofw_bus_is_compatible(dev, "fsl,imx6q-fec"))
1413		sc->fectype = FECTYPE_IMX6;
1414	else
1415		sc->fectype = FECTYPE_GENERIC;
1416
1417	/*
1418	 * We have to be told what kind of electrical connection exists between
1419	 * the MAC and PHY or we can't operate correctly.
1420	 */
1421	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1422		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1423		error = ENXIO;
1424		goto out;
1425	}
1426	if (OF_searchprop(ofw_node, "phy-mode",
1427	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1428		if (strcasecmp(phy_conn_name, "mii") == 0)
1429			sc->phy_conn_type = PHY_CONN_MII;
1430		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1431			sc->phy_conn_type = PHY_CONN_RMII;
1432		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1433			sc->phy_conn_type = PHY_CONN_RGMII;
1434	}
1435	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1436		device_printf(sc->dev, "No valid 'phy-mode' "
1437		    "property found in FDT data for device.\n");
1438		error = ENOATTR;
1439		goto out;
1440	}
1441
1442	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1443
1444	/* Allocate bus resources for accessing the hardware. */
1445	rid = 0;
1446	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1447	    RF_ACTIVE);
1448	if (sc->mem_res == NULL) {
1449		device_printf(dev, "could not allocate memory resources.\n");
1450		error = ENOMEM;
1451		goto out;
1452	}
1453	rid = 0;
1454	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1455	    RF_ACTIVE);
1456	if (sc->irq_res == NULL) {
1457		device_printf(dev, "could not allocate interrupt resources.\n");
1458		error = ENOMEM;
1459		goto out;
1460	}
1461
1462	/*
1463	 * Set up TX descriptor ring, descriptors, and dma maps.
1464	 */
1465	error = bus_dma_tag_create(
1466	    bus_get_dma_tag(dev),	/* Parent tag. */
1467	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1468	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1469	    BUS_SPACE_MAXADDR,		/* highaddr */
1470	    NULL, NULL,			/* filter, filterarg */
1471	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1472	    TX_DESC_SIZE,		/* maxsegsize */
1473	    0,				/* flags */
1474	    NULL, NULL,			/* lockfunc, lockarg */
1475	    &sc->txdesc_tag);
1476	if (error != 0) {
1477		device_printf(sc->dev,
1478		    "could not create TX ring DMA tag.\n");
1479		goto out;
1480	}
1481
1482	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1483	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1484	if (error != 0) {
1485		device_printf(sc->dev,
1486		    "could not allocate TX descriptor ring.\n");
1487		goto out;
1488	}
1489
1490	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1491	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1492	if (error != 0) {
1493		device_printf(sc->dev,
1494		    "could not load TX descriptor ring map.\n");
1495		goto out;
1496	}
1497
1498	error = bus_dma_tag_create(
1499	    bus_get_dma_tag(dev),	/* Parent tag. */
1500	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1501	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1502	    BUS_SPACE_MAXADDR,		/* highaddr */
1503	    NULL, NULL,			/* filter, filterarg */
1504	    MCLBYTES, 1, 		/* maxsize, nsegments */
1505	    MCLBYTES,			/* maxsegsize */
1506	    0,				/* flags */
1507	    NULL, NULL,			/* lockfunc, lockarg */
1508	    &sc->txbuf_tag);
1509	if (error != 0) {
1510		device_printf(sc->dev,
1511		    "could not create TX ring DMA tag.\n");
1512		goto out;
1513	}
1514
1515	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1516		error = bus_dmamap_create(sc->txbuf_tag, 0,
1517		    &sc->txbuf_map[idx].map);
1518		if (error != 0) {
1519			device_printf(sc->dev,
1520			    "could not create TX buffer DMA map.\n");
1521			goto out;
1522		}
1523		ffec_setup_txdesc(sc, idx, 0, 0);
1524	}
1525
1526	/*
1527	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1528	 */
1529	error = bus_dma_tag_create(
1530	    bus_get_dma_tag(dev),	/* Parent tag. */
1531	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1532	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1533	    BUS_SPACE_MAXADDR,		/* highaddr */
1534	    NULL, NULL,			/* filter, filterarg */
1535	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1536	    RX_DESC_SIZE,		/* maxsegsize */
1537	    0,				/* flags */
1538	    NULL, NULL,			/* lockfunc, lockarg */
1539	    &sc->rxdesc_tag);
1540	if (error != 0) {
1541		device_printf(sc->dev,
1542		    "could not create RX ring DMA tag.\n");
1543		goto out;
1544	}
1545
1546	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1547	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1548	if (error != 0) {
1549		device_printf(sc->dev,
1550		    "could not allocate RX descriptor ring.\n");
1551		goto out;
1552	}
1553
1554	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1555	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1556	if (error != 0) {
1557		device_printf(sc->dev,
1558		    "could not load RX descriptor ring map.\n");
1559		goto out;
1560	}
1561
1562	error = bus_dma_tag_create(
1563	    bus_get_dma_tag(dev),	/* Parent tag. */
1564	    1, 0,			/* alignment, boundary */
1565	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1566	    BUS_SPACE_MAXADDR,		/* highaddr */
1567	    NULL, NULL,			/* filter, filterarg */
1568	    MCLBYTES, 1, 		/* maxsize, nsegments */
1569	    MCLBYTES,			/* maxsegsize */
1570	    0,				/* flags */
1571	    NULL, NULL,			/* lockfunc, lockarg */
1572	    &sc->rxbuf_tag);
1573	if (error != 0) {
1574		device_printf(sc->dev,
1575		    "could not create RX buf DMA tag.\n");
1576		goto out;
1577	}
1578
1579	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1580		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1581		    &sc->rxbuf_map[idx].map);
1582		if (error != 0) {
1583			device_printf(sc->dev,
1584			    "could not create RX buffer DMA map.\n");
1585			goto out;
1586		}
1587		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1588			device_printf(dev, "Could not alloc mbuf\n");
1589			error = ENOMEM;
1590			goto out;
1591		}
1592		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1593			device_printf(sc->dev,
1594			    "could not create new RX buffer.\n");
1595			goto out;
1596		}
1597	}
1598
1599	/* Try to get the MAC address from the hardware before resetting it. */
1600	ffec_get_hwaddr(sc, eaddr);
1601
1602	/* Reset the hardware.  Disables all interrupts. */
1603	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1604
1605	/* Setup interrupt handler. */
1606	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1607	    NULL, ffec_intr, sc, &sc->intr_cookie);
1608	if (error != 0) {
1609		device_printf(dev, "could not setup interrupt handler.\n");
1610		goto out;
1611	}
1612
1613	/*
1614	 * Set up the PHY control register.
1615	 *
1616	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1617	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1618	 *
1619	 * XXX - Revisit this...
1620	 *
1621	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1622	 * code uses 10.  Both values seem to work, but I suspect many modern
1623	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1624	 *
1625	 * Different imx manuals use confusingly different terminology (things
1626	 * like "system clock" and "internal module clock") with examples that
1627	 * use frequencies that have nothing to do with ethernet, giving the
1628	 * vague impression that maybe the clock in question is the periphclock
1629	 * or something.  In fact, on an imx53 development board (FEC),
1630	 * measuring the mdio clock at the pin on the PHY and playing with
1631	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1632	 * aka periphclock) and 13 was the right divisor.
1633	 *
1634	 * All in all, it seems likely that 13 is a safe divisor for now,
1635	 * because if we really do need to base it on the peripheral clock
1636	 * speed, then we need a platform-independant get-clock-freq API.
1637	 */
1638	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1639	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1640		mscr |= FEC_MSCR_DIS_PRE;
1641		if (bootverbose)
1642			device_printf(dev, "PHY preamble disabled\n");
1643	}
1644	WR4(sc, FEC_MSCR_REG, mscr);
1645
1646	/* Set up the ethernet interface. */
1647	sc->ifp = ifp = if_alloc(IFT_ETHER);
1648
1649	ifp->if_softc = sc;
1650	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1651	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1652	ifp->if_capabilities = IFCAP_VLAN_MTU;
1653	ifp->if_capenable = ifp->if_capabilities;
1654	ifp->if_start = ffec_txstart;
1655	ifp->if_ioctl = ffec_ioctl;
1656	ifp->if_init = ffec_init;
1657	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1658	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1659	IFQ_SET_READY(&ifp->if_snd);
1660	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1661
1662#if 0 /* XXX The hardware keeps stats we could use for these. */
1663	ifp->if_linkmib = &sc->mibdata;
1664	ifp->if_linkmiblen = sizeof(sc->mibdata);
1665#endif
1666
1667	/* Set up the miigasket hardware (if any). */
1668	ffec_miigasket_setup(sc);
1669
1670	/* Attach the mii driver. */
1671	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1672	    ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1673	if (error != 0) {
1674		device_printf(dev, "PHY attach failed\n");
1675		goto out;
1676	}
1677	sc->mii_softc = device_get_softc(sc->miibus);
1678
1679	/* All ready to run, attach the ethernet interface. */
1680	ether_ifattach(ifp, eaddr);
1681	sc->is_attached = true;
1682
1683	error = 0;
1684out:
1685
1686	if (error != 0)
1687		ffec_detach(dev);
1688
1689	return (error);
1690}
1691
1692static int
1693ffec_probe(device_t dev)
1694{
1695
1696	if (ofw_bus_is_compatible(dev, "fsl,imx51-fec") ||
1697	    ofw_bus_is_compatible(dev, "fsl,imx53-fec")) {
1698		device_set_desc(dev, "Freescale Fast Ethernet Controller");
1699	} else if (ofw_bus_is_compatible(dev, "fsl,imx6q-fec")) {
1700		device_set_desc(dev, "Freescale Gigabit Ethernet Controller");
1701	} else {
1702		return (ENXIO);
1703	}
1704	return (BUS_PROBE_DEFAULT);
1705}
1706
1707
1708static device_method_t ffec_methods[] = {
1709	/* Device interface. */
1710	DEVMETHOD(device_probe,		ffec_probe),
1711	DEVMETHOD(device_attach,	ffec_attach),
1712	DEVMETHOD(device_detach,	ffec_detach),
1713
1714/*
1715	DEVMETHOD(device_shutdown,	ffec_shutdown),
1716	DEVMETHOD(device_suspend,	ffec_suspend),
1717	DEVMETHOD(device_resume,	ffec_resume),
1718*/
1719
1720	/* MII interface. */
1721	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1722	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1723	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1724
1725	DEVMETHOD_END
1726};
1727
1728static driver_t ffec_driver = {
1729	"ffec",
1730	ffec_methods,
1731	sizeof(struct ffec_softc)
1732};
1733
1734static devclass_t ffec_devclass;
1735
1736DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1737DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1738
1739MODULE_DEPEND(ffec, ether, 1, 1, 1);
1740MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1741