if_ffec.c revision 271826
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/ffec/if_ffec.c 271826 2014-09-18 20:58:04Z glebius $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/ffec/if_ffecreg.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86#include "miibus_if.h"
87
88/*
89 * There are small differences in the hardware on various SoCs.  Not every SoC
90 * we support has its own FECTYPE; most work as GENERIC and only the ones that
91 * need different handling get their own entry.  In addition to the types in
92 * this list, there are some flags below that can be ORed into the upper bits.
93 */
94enum {
95	FECTYPE_NONE,
96	FECTYPE_GENERIC,
97	FECTYPE_IMX53,
98	FECTYPE_IMX6,
99	FECTYPE_MVF,
100};
101
102/*
103 * Flags that describe general differences between the FEC hardware in various
104 * SoCs.  These are ORed into the FECTYPE enum values.
105 */
106#define	FECTYPE_MASK		0x0000ffff
107#define	FECFLAG_GBE		(0x0001 << 16)
108
109/*
110 * Table of supported FDT compat strings and their associated FECTYPE values.
111 */
112static struct ofw_compat_data compat_data[] = {
113	{"fsl,imx51-fec",	FECTYPE_GENERIC},
114	{"fsl,imx53-fec",	FECTYPE_IMX53},
115	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
116	{"fsl,mvf600-fec",	FECTYPE_MVF},
117	{"fsl,mvf-fec",		FECTYPE_MVF},
118	{NULL,		 	FECTYPE_NONE},
119};
120
121/*
122 * Driver data and defines.
123 */
124#define	RX_DESC_COUNT	64
125#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
126#define	TX_DESC_COUNT	64
127#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
128
129#define	WATCHDOG_TIMEOUT_SECS	5
130#define	STATS_HARVEST_INTERVAL	3
131
132struct ffec_bufmap {
133	struct mbuf	*mbuf;
134	bus_dmamap_t	map;
135};
136
137enum {
138	PHY_CONN_UNKNOWN,
139	PHY_CONN_MII,
140	PHY_CONN_RMII,
141	PHY_CONN_RGMII
142};
143
144struct ffec_softc {
145	device_t		dev;
146	device_t		miibus;
147	struct mii_data *	mii_softc;
148	struct ifnet		*ifp;
149	int			if_flags;
150	struct mtx		mtx;
151	struct resource		*irq_res;
152	struct resource		*mem_res;
153	void *			intr_cookie;
154	struct callout		ffec_callout;
155	uint8_t			phy_conn_type;
156	uint8_t			fectype;
157	boolean_t		link_is_up;
158	boolean_t		is_attached;
159	boolean_t		is_detaching;
160	int			tx_watchdog_count;
161	int			stats_harvest_count;
162
163	bus_dma_tag_t		rxdesc_tag;
164	bus_dmamap_t		rxdesc_map;
165	struct ffec_hwdesc	*rxdesc_ring;
166	bus_addr_t		rxdesc_ring_paddr;
167	bus_dma_tag_t		rxbuf_tag;
168	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
169	uint32_t		rx_idx;
170
171	bus_dma_tag_t		txdesc_tag;
172	bus_dmamap_t		txdesc_map;
173	struct ffec_hwdesc	*txdesc_ring;
174	bus_addr_t		txdesc_ring_paddr;
175	bus_dma_tag_t		txbuf_tag;
176	struct ffec_bufmap	txbuf_map[RX_DESC_COUNT];
177	uint32_t		tx_idx_head;
178	uint32_t		tx_idx_tail;
179	int			txcount;
180};
181
182#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
183#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
184#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
185	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
186#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
187#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
188#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
189
190static void ffec_init_locked(struct ffec_softc *sc);
191static void ffec_stop_locked(struct ffec_softc *sc);
192static void ffec_txstart_locked(struct ffec_softc *sc);
193static void ffec_txfinish_locked(struct ffec_softc *sc);
194
195static inline uint16_t
196RD2(struct ffec_softc *sc, bus_size_t off)
197{
198
199	return (bus_read_2(sc->mem_res, off));
200}
201
202static inline void
203WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
204{
205
206	bus_write_2(sc->mem_res, off, val);
207}
208
209static inline uint32_t
210RD4(struct ffec_softc *sc, bus_size_t off)
211{
212
213	return (bus_read_4(sc->mem_res, off));
214}
215
216static inline void
217WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
218{
219
220	bus_write_4(sc->mem_res, off, val);
221}
222
223static inline uint32_t
224next_rxidx(struct ffec_softc *sc, uint32_t curidx)
225{
226
227	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
228}
229
230static inline uint32_t
231next_txidx(struct ffec_softc *sc, uint32_t curidx)
232{
233
234	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
235}
236
237static void
238ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
239{
240
241	if (error != 0)
242		return;
243	*(bus_addr_t *)arg = segs[0].ds_addr;
244}
245
246static void
247ffec_miigasket_setup(struct ffec_softc *sc)
248{
249	uint32_t ifmode;
250
251	/*
252	 * We only need the gasket for MII and RMII connections on certain SoCs.
253	 */
254
255	switch (sc->fectype & FECTYPE_MASK)
256	{
257	case FECTYPE_IMX53:
258		break;
259	default:
260		return;
261	}
262
263	switch (sc->phy_conn_type)
264	{
265	case PHY_CONN_MII:
266		ifmode = 0;
267		break;
268	case PHY_CONN_RMII:
269		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
270		break;
271	default:
272		return;
273	}
274
275	/*
276	 * Disable the gasket, configure for either MII or RMII, then enable.
277	 */
278
279	WR2(sc, FEC_MIIGSK_ENR, 0);
280	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
281		continue;
282
283	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
284
285	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
286	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
287		continue;
288}
289
290static boolean_t
291ffec_miibus_iowait(struct ffec_softc *sc)
292{
293	uint32_t timeout;
294
295	for (timeout = 10000; timeout != 0; --timeout)
296		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
297			return (true);
298
299	return (false);
300}
301
302static int
303ffec_miibus_readreg(device_t dev, int phy, int reg)
304{
305	struct ffec_softc *sc;
306	int val;
307
308	sc = device_get_softc(dev);
309
310	WR4(sc, FEC_IER_REG, FEC_IER_MII);
311
312	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
313	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
314	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
315	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
316
317	if (!ffec_miibus_iowait(sc)) {
318		device_printf(dev, "timeout waiting for mii read\n");
319		return (-1); /* All-ones is a symptom of bad mdio. */
320	}
321
322	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
323
324	return (val);
325}
326
327static int
328ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
329{
330	struct ffec_softc *sc;
331
332	sc = device_get_softc(dev);
333
334	WR4(sc, FEC_IER_REG, FEC_IER_MII);
335
336	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
337	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
338	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
339	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
340	    (val & FEC_MMFR_DATA_MASK));
341
342	if (!ffec_miibus_iowait(sc)) {
343		device_printf(dev, "timeout waiting for mii write\n");
344		return (-1);
345	}
346
347	return (0);
348}
349
350static void
351ffec_miibus_statchg(device_t dev)
352{
353	struct ffec_softc *sc;
354	struct mii_data *mii;
355	uint32_t ecr, rcr, tcr;
356
357	/*
358	 * Called by the MII bus driver when the PHY establishes link to set the
359	 * MAC interface registers.
360	 */
361
362	sc = device_get_softc(dev);
363
364	FFEC_ASSERT_LOCKED(sc);
365
366	mii = sc->mii_softc;
367
368	if (mii->mii_media_status & IFM_ACTIVE)
369		sc->link_is_up = true;
370	else
371		sc->link_is_up = false;
372
373	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
374	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
375	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
376	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
377
378	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
379	switch (sc->phy_conn_type) {
380	case PHY_CONN_MII:
381		break;
382	case PHY_CONN_RMII:
383		rcr |= FEC_RCR_RMII_MODE;
384		break;
385	case PHY_CONN_RGMII:
386		rcr |= FEC_RCR_RGMII_EN;
387		break;
388	}
389
390	switch (IFM_SUBTYPE(mii->mii_media_active)) {
391	case IFM_1000_T:
392	case IFM_1000_SX:
393		ecr |= FEC_ECR_SPEED;
394		break;
395	case IFM_100_TX:
396		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
397		break;
398	case IFM_10_T:
399		rcr |= FEC_RCR_RMII_10T;
400		break;
401	case IFM_NONE:
402		sc->link_is_up = false;
403		return;
404	default:
405		sc->link_is_up = false;
406		device_printf(dev, "Unsupported media %u\n",
407		    IFM_SUBTYPE(mii->mii_media_active));
408		return;
409	}
410
411	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
412		tcr |= FEC_TCR_FDEN;
413	else
414		rcr |= FEC_RCR_DRT;
415
416	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
417		rcr |= FEC_RCR_FCE;
418
419	WR4(sc, FEC_RCR_REG, rcr);
420	WR4(sc, FEC_TCR_REG, tcr);
421	WR4(sc, FEC_ECR_REG, ecr);
422}
423
424static void
425ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
426{
427	struct ffec_softc *sc;
428	struct mii_data *mii;
429
430
431	sc = ifp->if_softc;
432	mii = sc->mii_softc;
433	FFEC_LOCK(sc);
434	mii_pollstat(mii);
435	ifmr->ifm_active = mii->mii_media_active;
436	ifmr->ifm_status = mii->mii_media_status;
437	FFEC_UNLOCK(sc);
438}
439
440static int
441ffec_media_change_locked(struct ffec_softc *sc)
442{
443
444	return (mii_mediachg(sc->mii_softc));
445}
446
447static int
448ffec_media_change(struct ifnet * ifp)
449{
450	struct ffec_softc *sc;
451	int error;
452
453	sc = ifp->if_softc;
454
455	FFEC_LOCK(sc);
456	error = ffec_media_change_locked(sc);
457	FFEC_UNLOCK(sc);
458	return (error);
459}
460
461static void ffec_clear_stats(struct ffec_softc *sc)
462{
463
464	WR4(sc, FEC_RMON_R_PACKETS, 0);
465	WR4(sc, FEC_RMON_R_MC_PKT, 0);
466	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
467	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
468	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
469	WR4(sc, FEC_RMON_R_FRAG, 0);
470	WR4(sc, FEC_RMON_R_JAB, 0);
471	WR4(sc, FEC_RMON_T_PACKETS, 0);
472	WR4(sc, FEC_RMON_T_MC_PKT, 0);
473	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
474	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
475	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
476	WR4(sc, FEC_RMON_T_FRAG, 0);
477	WR4(sc, FEC_RMON_T_JAB, 0);
478	WR4(sc, FEC_RMON_T_COL, 0);
479}
480
481static void
482ffec_harvest_stats(struct ffec_softc *sc)
483{
484	struct ifnet *ifp;
485
486	/* We don't need to harvest too often. */
487	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
488		return;
489
490	/*
491	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
492	 * been too long just go ahead and do it anyway, the worst that'll
493	 * happen is we'll lose a packet count or two as we clear at the end.
494	 */
495	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
496	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
497		return;
498
499	sc->stats_harvest_count = 0;
500	ifp = sc->ifp;
501
502	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
503	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
504	if_inc_counter(ifp, IFCOUNTER_IERRORS,
505	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
506	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
507	    RD4(sc, FEC_RMON_R_JAB));
508
509	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
510	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
511	if_inc_counter(ifp, IFCOUNTER_OERRORS,
512	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
513	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
514	    RD4(sc, FEC_RMON_T_JAB));
515
516	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
517
518	ffec_clear_stats(sc);
519}
520
521static void
522ffec_tick(void *arg)
523{
524	struct ffec_softc *sc;
525	struct ifnet *ifp;
526	int link_was_up;
527
528	sc = arg;
529
530	FFEC_ASSERT_LOCKED(sc);
531
532	ifp = sc->ifp;
533
534	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
535	    return;
536
537	/*
538	 * Typical tx watchdog.  If this fires it indicates that we enqueued
539	 * packets for output and never got a txdone interrupt for them.  Maybe
540	 * it's a missed interrupt somehow, just pretend we got one.
541	 */
542	if (sc->tx_watchdog_count > 0) {
543		if (--sc->tx_watchdog_count == 0) {
544			ffec_txfinish_locked(sc);
545		}
546	}
547
548	/* Gather stats from hardware counters. */
549	ffec_harvest_stats(sc);
550
551	/* Check the media status. */
552	link_was_up = sc->link_is_up;
553	mii_tick(sc->mii_softc);
554	if (sc->link_is_up && !link_was_up)
555		ffec_txstart_locked(sc);
556
557	/* Schedule another check one second from now. */
558	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
559}
560
561inline static uint32_t
562ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
563    uint32_t len)
564{
565	uint32_t nidx;
566	uint32_t flags;
567
568	nidx = next_txidx(sc, idx);
569
570	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
571	if (paddr == 0 || len == 0) {
572		flags = 0;
573		--sc->txcount;
574	} else {
575		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
576		++sc->txcount;
577	}
578	if (nidx == 0)
579		flags |= FEC_TXDESC_WRAP;
580
581	/*
582	 * The hardware requires 32-bit physical addresses.  We set up the dma
583	 * tag to indicate that, so the cast to uint32_t should never lose
584	 * significant bits.
585	 */
586	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
587	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
588
589	return (nidx);
590}
591
592static int
593ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
594{
595	struct mbuf * m;
596	int error, nsegs;
597	struct bus_dma_segment seg;
598
599	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
600		return (ENOMEM);
601	*mp = m;
602
603	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
604	    m, &seg, &nsegs, 0);
605	if (error != 0) {
606		return (ENOMEM);
607	}
608	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
609	    BUS_DMASYNC_PREWRITE);
610
611	sc->txbuf_map[idx].mbuf = m;
612	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
613
614	return (0);
615
616}
617
618static void
619ffec_txstart_locked(struct ffec_softc *sc)
620{
621	struct ifnet *ifp;
622	struct mbuf *m;
623	int enqueued;
624
625	FFEC_ASSERT_LOCKED(sc);
626
627	if (!sc->link_is_up)
628		return;
629
630	ifp = sc->ifp;
631
632	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
633		return;
634
635	enqueued = 0;
636
637	for (;;) {
638		if (sc->txcount == (TX_DESC_COUNT-1)) {
639			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
640			break;
641		}
642		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
643		if (m == NULL)
644			break;
645		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
646			IFQ_DRV_PREPEND(&ifp->if_snd, m);
647			break;
648		}
649		BPF_MTAP(ifp, m);
650		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
651		++enqueued;
652	}
653
654	if (enqueued != 0) {
655		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
656		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
657	}
658}
659
660static void
661ffec_txstart(struct ifnet *ifp)
662{
663	struct ffec_softc *sc = ifp->if_softc;
664
665	FFEC_LOCK(sc);
666	ffec_txstart_locked(sc);
667	FFEC_UNLOCK(sc);
668}
669
670static void
671ffec_txfinish_locked(struct ffec_softc *sc)
672{
673	struct ifnet *ifp;
674	struct ffec_hwdesc *desc;
675	struct ffec_bufmap *bmap;
676	boolean_t retired_buffer;
677
678	FFEC_ASSERT_LOCKED(sc);
679
680	ifp = sc->ifp;
681	retired_buffer = false;
682	while (sc->tx_idx_tail != sc->tx_idx_head) {
683		desc = &sc->txdesc_ring[sc->tx_idx_tail];
684		if (desc->flags_len & FEC_TXDESC_READY)
685			break;
686		retired_buffer = true;
687		bmap = &sc->txbuf_map[sc->tx_idx_tail];
688		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
689		    BUS_DMASYNC_POSTWRITE);
690		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
691		m_freem(bmap->mbuf);
692		bmap->mbuf = NULL;
693		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
694		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
695	}
696
697	/*
698	 * If we retired any buffers, there will be open tx slots available in
699	 * the descriptor ring, go try to start some new output.
700	 */
701	if (retired_buffer) {
702		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
703		ffec_txstart_locked(sc);
704	}
705
706	/* If there are no buffers outstanding, muzzle the watchdog. */
707	if (sc->tx_idx_tail == sc->tx_idx_head) {
708		sc->tx_watchdog_count = 0;
709	}
710}
711
712inline static uint32_t
713ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
714{
715	uint32_t nidx;
716
717	/*
718	 * The hardware requires 32-bit physical addresses.  We set up the dma
719	 * tag to indicate that, so the cast to uint32_t should never lose
720	 * significant bits.
721	 */
722	nidx = next_rxidx(sc, idx);
723	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
724	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
725		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
726
727	return (nidx);
728}
729
730static int
731ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
732{
733	int error, nsegs;
734	struct bus_dma_segment seg;
735
736	/*
737	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
738	 * the buffer to allow the data to be re-aligned after receiving it (by
739	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
740	 * have to ensure that the beginning of the buffer is aligned to the
741	 * hardware's requirements.
742	 */
743	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
744
745	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
746	    m, &seg, &nsegs, 0);
747	if (error != 0) {
748		return (error);
749	}
750
751	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
752	    BUS_DMASYNC_PREREAD);
753
754	sc->rxbuf_map[idx].mbuf = m;
755	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
756
757	return (0);
758}
759
760static struct mbuf *
761ffec_alloc_mbufcl(struct ffec_softc *sc)
762{
763	struct mbuf *m;
764
765	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
766	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
767
768	return (m);
769}
770
771static void
772ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
773{
774	struct mbuf *m, *newmbuf;
775	struct ffec_bufmap *bmap;
776	uint8_t *dst, *src;
777	int error;
778
779	/*
780	 *  First try to get a new mbuf to plug into this slot in the rx ring.
781	 *  If that fails, drop the current packet and recycle the current
782	 *  mbuf, which is still mapped and loaded.
783	 */
784	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
785		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
786		ffec_setup_rxdesc(sc, sc->rx_idx,
787		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
788		return;
789	}
790
791	/*
792	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
793	 *  boundary for the upper layers.  The hardware requires receive
794	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
795	 *  leaving the protocol header unaligned.  We used m_adj() after
796	 *  allocating the buffer to leave empty space at the start of the
797	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
798	 *  shuffle all the data backwards 2 bytes and adjust m_data.
799	 *
800	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
801	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
802	 *  feature, but for them could we speed this up by copying just the
803	 *  protocol headers into their own small mbuf then chaining the cluster
804	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
805	 *  the biggest header is, instead of the whole 1530ish-byte frame.
806	 */
807
808	FFEC_UNLOCK(sc);
809
810	bmap = &sc->rxbuf_map[sc->rx_idx];
811	len -= ETHER_CRC_LEN;
812	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
813	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
814	m = bmap->mbuf;
815	bmap->mbuf = NULL;
816	m->m_len = len;
817	m->m_pkthdr.len = len;
818	m->m_pkthdr.rcvif = sc->ifp;
819
820	src = mtod(m, uint8_t*);
821	dst = src - ETHER_ALIGN;
822	bcopy(src, dst, len);
823	m->m_data = dst;
824	sc->ifp->if_input(sc->ifp, m);
825
826	FFEC_LOCK(sc);
827
828	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
829		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
830		/* XXX Now what?  We've got a hole in the rx ring. */
831	}
832
833}
834
835static void
836ffec_rxfinish_locked(struct ffec_softc *sc)
837{
838	struct ffec_hwdesc *desc;
839	int len;
840	boolean_t produced_empty_buffer;
841
842	FFEC_ASSERT_LOCKED(sc);
843
844	produced_empty_buffer = false;
845	for (;;) {
846		desc = &sc->rxdesc_ring[sc->rx_idx];
847		if (desc->flags_len & FEC_RXDESC_EMPTY)
848			break;
849		produced_empty_buffer = true;
850		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
851		if (len < 64) {
852			/*
853			 * Just recycle the descriptor and continue.           .
854			 */
855			ffec_setup_rxdesc(sc, sc->rx_idx,
856			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
857		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
858			/*
859			 * The entire frame is not in this buffer.  Impossible.
860			 * Recycle the descriptor and continue.
861			 *
862			 * XXX what's the right way to handle this? Probably we
863			 * should stop/init the hardware because this should
864			 * just really never happen when we have buffers bigger
865			 * than the maximum frame size.
866			 */
867			device_printf(sc->dev,
868			    "fec_rxfinish: received frame without LAST bit set");
869			ffec_setup_rxdesc(sc, sc->rx_idx,
870			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
871		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
872			/*
873			 *  Something went wrong with receiving the frame, we
874			 *  don't care what (the hardware has counted the error
875			 *  in the stats registers already), we just reuse the
876			 *  same mbuf, which is still dma-mapped, by resetting
877			 *  the rx descriptor.
878			 */
879			ffec_setup_rxdesc(sc, sc->rx_idx,
880			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
881		} else {
882			/*
883			 *  Normal case: a good frame all in one buffer.
884			 */
885			ffec_rxfinish_onebuf(sc, len);
886		}
887		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
888	}
889
890	if (produced_empty_buffer) {
891		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
892	}
893}
894
895static void
896ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
897{
898	uint32_t palr, paur, rnd;
899
900	/*
901	 * Try to recover a MAC address from the running hardware. If there's
902	 * something non-zero there, assume the bootloader did the right thing
903	 * and just use it.
904	 *
905	 * Otherwise, set the address to a convenient locally assigned address,
906	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
907	 * assigned bit set, and the broadcast/multicast bit clear.
908	 */
909	palr = RD4(sc, FEC_PALR_REG);
910	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
911	if ((palr | paur) != 0) {
912		hwaddr[0] = palr >> 24;
913		hwaddr[1] = palr >> 16;
914		hwaddr[2] = palr >>  8;
915		hwaddr[3] = palr >>  0;
916		hwaddr[4] = paur >> 24;
917		hwaddr[5] = paur >> 16;
918	} else {
919		rnd = arc4random() & 0x00ffffff;
920		hwaddr[0] = 'b';
921		hwaddr[1] = 's';
922		hwaddr[2] = 'd';
923		hwaddr[3] = rnd >> 16;
924		hwaddr[4] = rnd >>  8;
925		hwaddr[5] = rnd >>  0;
926	}
927
928	if (bootverbose) {
929		device_printf(sc->dev,
930		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
931		    hwaddr[0], hwaddr[1], hwaddr[2],
932		    hwaddr[3], hwaddr[4], hwaddr[5]);
933	}
934}
935
936static void
937ffec_setup_rxfilter(struct ffec_softc *sc)
938{
939	struct ifnet *ifp;
940	struct ifmultiaddr *ifma;
941	uint8_t *eaddr;
942	uint32_t crc;
943	uint64_t ghash, ihash;
944
945	FFEC_ASSERT_LOCKED(sc);
946
947	ifp = sc->ifp;
948
949	/*
950	 * Set the multicast (group) filter hash.
951	 */
952	if ((ifp->if_flags & IFF_ALLMULTI))
953		ghash = 0xffffffffffffffffLLU;
954	else {
955		ghash = 0;
956		if_maddr_rlock(ifp);
957		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
958			if (ifma->ifma_addr->sa_family != AF_LINK)
959				continue;
960			/* 6 bits from MSB in LE CRC32 are used for hash. */
961			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
962			    ifma->ifma_addr), ETHER_ADDR_LEN);
963			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
964		}
965		if_maddr_runlock(ifp);
966	}
967	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
968	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
969
970	/*
971	 * Set the individual address filter hash.
972	 *
973	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
974	 * seems to support the concept of MAC address aliases, does such a
975	 * thing even exist?
976	 */
977	if ((ifp->if_flags & IFF_PROMISC))
978		ihash = 0xffffffffffffffffLLU;
979	else {
980		ihash = 0;
981	}
982	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
983	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
984
985	/*
986	 * Set the primary address.
987	 */
988	eaddr = IF_LLADDR(ifp);
989	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
990	    (eaddr[2] <<  8) | eaddr[3]);
991	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
992}
993
994static void
995ffec_stop_locked(struct ffec_softc *sc)
996{
997	struct ifnet *ifp;
998	struct ffec_hwdesc *desc;
999	struct ffec_bufmap *bmap;
1000	int idx;
1001
1002	FFEC_ASSERT_LOCKED(sc);
1003
1004	ifp = sc->ifp;
1005	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1006	sc->tx_watchdog_count = 0;
1007	sc->stats_harvest_count = 0;
1008
1009	/*
1010	 * Stop the hardware, mask all interrupts, and clear all current
1011	 * interrupt status bits.
1012	 */
1013	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1014	WR4(sc, FEC_IEM_REG, 0x00000000);
1015	WR4(sc, FEC_IER_REG, 0xffffffff);
1016
1017	/*
1018	 * Stop the media-check callout.  Do not use callout_drain() because
1019	 * we're holding a mutex the callout acquires, and if it's currently
1020	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1021	 * ffec_tick() routine will return without doing anything when it sees
1022	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1023	 */
1024	callout_stop(&sc->ffec_callout);
1025
1026	/*
1027	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1028	 * it's as if the bits were transmitted and then lost on the wire.
1029	 *
1030	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1031	 * back on the queue for when we get restarted later?
1032	 */
1033	idx = sc->tx_idx_tail;
1034	while (idx != sc->tx_idx_head) {
1035		desc = &sc->txdesc_ring[idx];
1036		bmap = &sc->txbuf_map[idx];
1037		if (desc->buf_paddr != 0) {
1038			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1039			m_freem(bmap->mbuf);
1040			bmap->mbuf = NULL;
1041			ffec_setup_txdesc(sc, idx, 0, 0);
1042		}
1043		idx = next_txidx(sc, idx);
1044	}
1045
1046	/*
1047	 * Discard all unprocessed receive buffers.  This amounts to just
1048	 * pretending that nothing ever got received into them.  We reuse the
1049	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1050	 * back on so they'll get reused when we start up again.
1051	 */
1052	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1053		desc = &sc->rxdesc_ring[idx];
1054		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1055	}
1056}
1057
1058static void
1059ffec_init_locked(struct ffec_softc *sc)
1060{
1061	struct ifnet *ifp = sc->ifp;
1062	uint32_t maxbuf, maxfl, regval;
1063
1064	FFEC_ASSERT_LOCKED(sc);
1065
1066	/*
1067	 * The hardware has a limit of 0x7ff as the max frame length (see
1068	 * comments for MRBR below), and we use mbuf clusters as receive
1069	 * buffers, and we currently are designed to receive an entire frame
1070	 * into a single buffer.
1071	 *
1072	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1073	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1074	 * and then that value has to be rounded up to the hardware's DMA
1075	 * alignment requirements, so all in all our buffer is that much smaller
1076	 * than MCLBYTES.
1077	 *
1078	 * The resulting value is used as the frame truncation length and the
1079	 * max buffer receive buffer size for now.  It'll become more complex
1080	 * when we support jumbo frames and receiving fragments of them into
1081	 * separate buffers.
1082	 */
1083	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1084	maxfl = min(maxbuf, 0x7ff);
1085
1086	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1087		return;
1088
1089	/* Mask all interrupts and clear all current interrupt status bits. */
1090	WR4(sc, FEC_IEM_REG, 0x00000000);
1091	WR4(sc, FEC_IER_REG, 0xffffffff);
1092
1093	/*
1094	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1095	 */
1096	ffec_setup_rxfilter(sc);
1097
1098	/*
1099	 * TFWR - Transmit FIFO watermark register.
1100	 *
1101	 * Set the transmit fifo watermark register to "store and forward" mode
1102	 * and also set a threshold of 128 bytes in the fifo before transmission
1103	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1104	 * supports STRFWD and when that bit is set, the watermark level in the
1105	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1106	 * to that bit is innocuous, and the TWFR bits get used instead.
1107	 */
1108	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1109
1110	/* RCR - Receive control register.
1111	 *
1112	 * Set max frame length + clean out anything left from u-boot.
1113	 */
1114	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1115
1116	/*
1117	 * TCR - Transmit control register.
1118	 *
1119	 * Clean out anything left from u-boot.  Any necessary values are set in
1120	 * ffec_miibus_statchg() based on the media type.
1121	 */
1122	WR4(sc, FEC_TCR_REG, 0);
1123
1124	/*
1125	 * OPD - Opcode/pause duration.
1126	 *
1127	 * XXX These magic numbers come from u-boot.
1128	 */
1129	WR4(sc, FEC_OPD_REG, 0x00010020);
1130
1131	/*
1132	 * FRSR - Fifo receive start register.
1133	 *
1134	 * This register does not exist on imx6, it is present on earlier
1135	 * hardware. The u-boot code sets this to a non-default value that's 32
1136	 * bytes larger than the default, with no clue as to why.  The default
1137	 * value should work fine, so there's no code to init it here.
1138	 */
1139
1140	/*
1141	 *  MRBR - Max RX buffer size.
1142	 *
1143	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1144	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1145	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1146	 *  receive loop in the hardware, where every rx descriptor in the ring
1147	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1148	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1149	 *  set, like maybe that's what enables jumbo frames, because in general
1150	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1151	 *  compatible" flag.
1152	 */
1153	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1154
1155	/*
1156	 * FTRL - Frame truncation length.
1157	 *
1158	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1159	 */
1160	WR4(sc, FEC_FTRL_REG, maxfl);
1161
1162	/*
1163	 * RDSR / TDSR descriptor ring pointers.
1164	 *
1165	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1166	 * internal current descriptor index values for both rings, so we zero
1167	 * our index values as well.
1168	 */
1169	sc->rx_idx = 0;
1170	sc->tx_idx_head = sc->tx_idx_tail = 0;
1171	sc->txcount = 0;
1172	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1173	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1174
1175	/*
1176	 * EIM - interrupt mask register.
1177	 *
1178	 * We always enable the same set of interrupts while running; unlike
1179	 * some drivers there's no need to change the mask on the fly depending
1180	 * on what operations are in progress.
1181	 */
1182	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1183
1184	/*
1185	 * MIBC - MIB control (hardware stats).
1186	 */
1187	regval = RD4(sc, FEC_MIBC_REG);
1188	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1189	ffec_clear_stats(sc);
1190	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1191
1192	/*
1193	 * ECR - Ethernet control register.
1194	 *
1195	 * This must happen after all the other config registers are set.  If
1196	 * we're running on little-endian hardware, also set the flag for byte-
1197	 * swapping descriptor ring entries.  This flag doesn't exist on older
1198	 * hardware, but it can be safely set -- the bit position it occupies
1199	 * was unused.
1200	 */
1201	regval = RD4(sc, FEC_ECR_REG);
1202#if _BYTE_ORDER == _LITTLE_ENDIAN
1203	regval |= FEC_ECR_DBSWP;
1204#endif
1205	regval |= FEC_ECR_ETHEREN;
1206	WR4(sc, FEC_ECR_REG, regval);
1207
1208	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1209
1210       /*
1211	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1212	* set up the remaining config registers based on the current media.
1213	*/
1214	mii_mediachg(sc->mii_softc);
1215	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1216
1217	/*
1218	 * Tell the hardware that receive buffers are available.  They were made
1219	 * available in ffec_attach() or ffec_stop().
1220	 */
1221	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1222}
1223
1224static void
1225ffec_init(void *if_softc)
1226{
1227	struct ffec_softc *sc = if_softc;
1228
1229	FFEC_LOCK(sc);
1230	ffec_init_locked(sc);
1231	FFEC_UNLOCK(sc);
1232}
1233
1234static void
1235ffec_intr(void *arg)
1236{
1237	struct ffec_softc *sc;
1238	uint32_t ier;
1239
1240	sc = arg;
1241
1242	FFEC_LOCK(sc);
1243
1244	ier = RD4(sc, FEC_IER_REG);
1245
1246	if (ier & FEC_IER_TXF) {
1247		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1248		ffec_txfinish_locked(sc);
1249	}
1250
1251	if (ier & FEC_IER_RXF) {
1252		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1253		ffec_rxfinish_locked(sc);
1254	}
1255
1256	/*
1257	 * We actually don't care about most errors, because the hardware copes
1258	 * with them just fine, discarding the incoming bad frame, or forcing a
1259	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1260	 * stats registers.  The one that really matters is EBERR (DMA bus
1261	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1262	 * have to restart it here.  It should never happen.
1263	 */
1264	if (ier & FEC_IER_EBERR) {
1265		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1266		device_printf(sc->dev,
1267		    "Ethernet DMA error, restarting controller.\n");
1268		ffec_stop_locked(sc);
1269		ffec_init_locked(sc);
1270	}
1271
1272	FFEC_UNLOCK(sc);
1273
1274}
1275
1276static int
1277ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1278{
1279	struct ffec_softc *sc;
1280	struct mii_data *mii;
1281	struct ifreq *ifr;
1282	int mask, error;
1283
1284	sc = ifp->if_softc;
1285	ifr = (struct ifreq *)data;
1286
1287	error = 0;
1288	switch (cmd) {
1289	case SIOCSIFFLAGS:
1290		FFEC_LOCK(sc);
1291		if (ifp->if_flags & IFF_UP) {
1292			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1293				if ((ifp->if_flags ^ sc->if_flags) &
1294				    (IFF_PROMISC | IFF_ALLMULTI))
1295					ffec_setup_rxfilter(sc);
1296			} else {
1297				if (!sc->is_detaching)
1298					ffec_init_locked(sc);
1299			}
1300		} else {
1301			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1302				ffec_stop_locked(sc);
1303		}
1304		sc->if_flags = ifp->if_flags;
1305		FFEC_UNLOCK(sc);
1306		break;
1307
1308	case SIOCADDMULTI:
1309	case SIOCDELMULTI:
1310		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1311			FFEC_LOCK(sc);
1312			ffec_setup_rxfilter(sc);
1313			FFEC_UNLOCK(sc);
1314		}
1315		break;
1316
1317	case SIOCSIFMEDIA:
1318	case SIOCGIFMEDIA:
1319		mii = sc->mii_softc;
1320		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1321		break;
1322
1323	case SIOCSIFCAP:
1324		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1325		if (mask & IFCAP_VLAN_MTU) {
1326			/* No work to do except acknowledge the change took. */
1327			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1328		}
1329		break;
1330
1331	default:
1332		error = ether_ioctl(ifp, cmd, data);
1333		break;
1334	}
1335
1336	return (error);
1337}
1338
1339static int
1340ffec_detach(device_t dev)
1341{
1342	struct ffec_softc *sc;
1343	bus_dmamap_t map;
1344	int idx;
1345
1346	/*
1347	 * NB: This function can be called internally to unwind a failure to
1348	 * attach. Make sure a resource got allocated/created before destroying.
1349	 */
1350
1351	sc = device_get_softc(dev);
1352
1353	if (sc->is_attached) {
1354		FFEC_LOCK(sc);
1355		sc->is_detaching = true;
1356		ffec_stop_locked(sc);
1357		FFEC_UNLOCK(sc);
1358		callout_drain(&sc->ffec_callout);
1359		ether_ifdetach(sc->ifp);
1360	}
1361
1362	/* XXX no miibus detach? */
1363
1364	/* Clean up RX DMA resources and free mbufs. */
1365	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1366		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1367			bus_dmamap_unload(sc->rxbuf_tag, map);
1368			bus_dmamap_destroy(sc->rxbuf_tag, map);
1369			m_freem(sc->rxbuf_map[idx].mbuf);
1370		}
1371	}
1372	if (sc->rxbuf_tag != NULL)
1373		bus_dma_tag_destroy(sc->rxbuf_tag);
1374	if (sc->rxdesc_map != NULL) {
1375		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1376		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1377	}
1378	if (sc->rxdesc_tag != NULL)
1379	bus_dma_tag_destroy(sc->rxdesc_tag);
1380
1381	/* Clean up TX DMA resources. */
1382	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1383		if ((map = sc->txbuf_map[idx].map) != NULL) {
1384			/* TX maps are already unloaded. */
1385			bus_dmamap_destroy(sc->txbuf_tag, map);
1386		}
1387	}
1388	if (sc->txbuf_tag != NULL)
1389		bus_dma_tag_destroy(sc->txbuf_tag);
1390	if (sc->txdesc_map != NULL) {
1391		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1392		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1393	}
1394	if (sc->txdesc_tag != NULL)
1395	bus_dma_tag_destroy(sc->txdesc_tag);
1396
1397	/* Release bus resources. */
1398	if (sc->intr_cookie)
1399		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1400
1401	if (sc->irq_res != NULL)
1402		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1403
1404	if (sc->mem_res != NULL)
1405		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1406
1407	FFEC_LOCK_DESTROY(sc);
1408	return (0);
1409}
1410
1411static int
1412ffec_attach(device_t dev)
1413{
1414	struct ffec_softc *sc;
1415	struct ifnet *ifp = NULL;
1416	struct mbuf *m;
1417	phandle_t ofw_node;
1418	int error, rid;
1419	uint8_t eaddr[ETHER_ADDR_LEN];
1420	char phy_conn_name[32];
1421	uint32_t idx, mscr;
1422
1423	sc = device_get_softc(dev);
1424	sc->dev = dev;
1425
1426	FFEC_LOCK_INIT(sc);
1427
1428	/*
1429	 * There are differences in the implementation and features of the FEC
1430	 * hardware on different SoCs, so figure out what type we are.
1431	 */
1432	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1433
1434	/*
1435	 * We have to be told what kind of electrical connection exists between
1436	 * the MAC and PHY or we can't operate correctly.
1437	 */
1438	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1439		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1440		error = ENXIO;
1441		goto out;
1442	}
1443	if (OF_searchprop(ofw_node, "phy-mode",
1444	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1445		if (strcasecmp(phy_conn_name, "mii") == 0)
1446			sc->phy_conn_type = PHY_CONN_MII;
1447		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1448			sc->phy_conn_type = PHY_CONN_RMII;
1449		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1450			sc->phy_conn_type = PHY_CONN_RGMII;
1451	}
1452	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1453		device_printf(sc->dev, "No valid 'phy-mode' "
1454		    "property found in FDT data for device.\n");
1455		error = ENOATTR;
1456		goto out;
1457	}
1458
1459	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1460
1461	/* Allocate bus resources for accessing the hardware. */
1462	rid = 0;
1463	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1464	    RF_ACTIVE);
1465	if (sc->mem_res == NULL) {
1466		device_printf(dev, "could not allocate memory resources.\n");
1467		error = ENOMEM;
1468		goto out;
1469	}
1470	rid = 0;
1471	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1472	    RF_ACTIVE);
1473	if (sc->irq_res == NULL) {
1474		device_printf(dev, "could not allocate interrupt resources.\n");
1475		error = ENOMEM;
1476		goto out;
1477	}
1478
1479	/*
1480	 * Set up TX descriptor ring, descriptors, and dma maps.
1481	 */
1482	error = bus_dma_tag_create(
1483	    bus_get_dma_tag(dev),	/* Parent tag. */
1484	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1485	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1486	    BUS_SPACE_MAXADDR,		/* highaddr */
1487	    NULL, NULL,			/* filter, filterarg */
1488	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1489	    TX_DESC_SIZE,		/* maxsegsize */
1490	    0,				/* flags */
1491	    NULL, NULL,			/* lockfunc, lockarg */
1492	    &sc->txdesc_tag);
1493	if (error != 0) {
1494		device_printf(sc->dev,
1495		    "could not create TX ring DMA tag.\n");
1496		goto out;
1497	}
1498
1499	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1500	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1501	if (error != 0) {
1502		device_printf(sc->dev,
1503		    "could not allocate TX descriptor ring.\n");
1504		goto out;
1505	}
1506
1507	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1508	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1509	if (error != 0) {
1510		device_printf(sc->dev,
1511		    "could not load TX descriptor ring map.\n");
1512		goto out;
1513	}
1514
1515	error = bus_dma_tag_create(
1516	    bus_get_dma_tag(dev),	/* Parent tag. */
1517	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1518	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1519	    BUS_SPACE_MAXADDR,		/* highaddr */
1520	    NULL, NULL,			/* filter, filterarg */
1521	    MCLBYTES, 1, 		/* maxsize, nsegments */
1522	    MCLBYTES,			/* maxsegsize */
1523	    0,				/* flags */
1524	    NULL, NULL,			/* lockfunc, lockarg */
1525	    &sc->txbuf_tag);
1526	if (error != 0) {
1527		device_printf(sc->dev,
1528		    "could not create TX ring DMA tag.\n");
1529		goto out;
1530	}
1531
1532	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1533		error = bus_dmamap_create(sc->txbuf_tag, 0,
1534		    &sc->txbuf_map[idx].map);
1535		if (error != 0) {
1536			device_printf(sc->dev,
1537			    "could not create TX buffer DMA map.\n");
1538			goto out;
1539		}
1540		ffec_setup_txdesc(sc, idx, 0, 0);
1541	}
1542
1543	/*
1544	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1545	 */
1546	error = bus_dma_tag_create(
1547	    bus_get_dma_tag(dev),	/* Parent tag. */
1548	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1549	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1550	    BUS_SPACE_MAXADDR,		/* highaddr */
1551	    NULL, NULL,			/* filter, filterarg */
1552	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1553	    RX_DESC_SIZE,		/* maxsegsize */
1554	    0,				/* flags */
1555	    NULL, NULL,			/* lockfunc, lockarg */
1556	    &sc->rxdesc_tag);
1557	if (error != 0) {
1558		device_printf(sc->dev,
1559		    "could not create RX ring DMA tag.\n");
1560		goto out;
1561	}
1562
1563	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1564	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1565	if (error != 0) {
1566		device_printf(sc->dev,
1567		    "could not allocate RX descriptor ring.\n");
1568		goto out;
1569	}
1570
1571	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1572	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1573	if (error != 0) {
1574		device_printf(sc->dev,
1575		    "could not load RX descriptor ring map.\n");
1576		goto out;
1577	}
1578
1579	error = bus_dma_tag_create(
1580	    bus_get_dma_tag(dev),	/* Parent tag. */
1581	    1, 0,			/* alignment, boundary */
1582	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1583	    BUS_SPACE_MAXADDR,		/* highaddr */
1584	    NULL, NULL,			/* filter, filterarg */
1585	    MCLBYTES, 1, 		/* maxsize, nsegments */
1586	    MCLBYTES,			/* maxsegsize */
1587	    0,				/* flags */
1588	    NULL, NULL,			/* lockfunc, lockarg */
1589	    &sc->rxbuf_tag);
1590	if (error != 0) {
1591		device_printf(sc->dev,
1592		    "could not create RX buf DMA tag.\n");
1593		goto out;
1594	}
1595
1596	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1597		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1598		    &sc->rxbuf_map[idx].map);
1599		if (error != 0) {
1600			device_printf(sc->dev,
1601			    "could not create RX buffer DMA map.\n");
1602			goto out;
1603		}
1604		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1605			device_printf(dev, "Could not alloc mbuf\n");
1606			error = ENOMEM;
1607			goto out;
1608		}
1609		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1610			device_printf(sc->dev,
1611			    "could not create new RX buffer.\n");
1612			goto out;
1613		}
1614	}
1615
1616	/* Try to get the MAC address from the hardware before resetting it. */
1617	ffec_get_hwaddr(sc, eaddr);
1618
1619	/* Reset the hardware.  Disables all interrupts. */
1620	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1621
1622	/* Setup interrupt handler. */
1623	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1624	    NULL, ffec_intr, sc, &sc->intr_cookie);
1625	if (error != 0) {
1626		device_printf(dev, "could not setup interrupt handler.\n");
1627		goto out;
1628	}
1629
1630	/*
1631	 * Set up the PHY control register.
1632	 *
1633	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1634	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1635	 *
1636	 * XXX - Revisit this...
1637	 *
1638	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1639	 * code uses 10.  Both values seem to work, but I suspect many modern
1640	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1641	 *
1642	 * Different imx manuals use confusingly different terminology (things
1643	 * like "system clock" and "internal module clock") with examples that
1644	 * use frequencies that have nothing to do with ethernet, giving the
1645	 * vague impression that maybe the clock in question is the periphclock
1646	 * or something.  In fact, on an imx53 development board (FEC),
1647	 * measuring the mdio clock at the pin on the PHY and playing with
1648	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1649	 * aka periphclock) and 13 was the right divisor.
1650	 *
1651	 * All in all, it seems likely that 13 is a safe divisor for now,
1652	 * because if we really do need to base it on the peripheral clock
1653	 * speed, then we need a platform-independant get-clock-freq API.
1654	 */
1655	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1656	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1657		mscr |= FEC_MSCR_DIS_PRE;
1658		if (bootverbose)
1659			device_printf(dev, "PHY preamble disabled\n");
1660	}
1661	WR4(sc, FEC_MSCR_REG, mscr);
1662
1663	/* Set up the ethernet interface. */
1664	sc->ifp = ifp = if_alloc(IFT_ETHER);
1665
1666	ifp->if_softc = sc;
1667	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1668	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1669	ifp->if_capabilities = IFCAP_VLAN_MTU;
1670	ifp->if_capenable = ifp->if_capabilities;
1671	ifp->if_start = ffec_txstart;
1672	ifp->if_ioctl = ffec_ioctl;
1673	ifp->if_init = ffec_init;
1674	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1675	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1676	IFQ_SET_READY(&ifp->if_snd);
1677	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1678
1679#if 0 /* XXX The hardware keeps stats we could use for these. */
1680	ifp->if_linkmib = &sc->mibdata;
1681	ifp->if_linkmiblen = sizeof(sc->mibdata);
1682#endif
1683
1684	/* Set up the miigasket hardware (if any). */
1685	ffec_miigasket_setup(sc);
1686
1687	/* Attach the mii driver. */
1688	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1689	    ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1690	    (sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1691	if (error != 0) {
1692		device_printf(dev, "PHY attach failed\n");
1693		goto out;
1694	}
1695	sc->mii_softc = device_get_softc(sc->miibus);
1696
1697	/* All ready to run, attach the ethernet interface. */
1698	ether_ifattach(ifp, eaddr);
1699	sc->is_attached = true;
1700
1701	error = 0;
1702out:
1703
1704	if (error != 0)
1705		ffec_detach(dev);
1706
1707	return (error);
1708}
1709
1710static int
1711ffec_probe(device_t dev)
1712{
1713	uintptr_t fectype;
1714
1715	if (!ofw_bus_status_okay(dev))
1716		return (ENXIO);
1717
1718	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1719	if (fectype == FECTYPE_NONE)
1720		return (ENXIO);
1721
1722	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1723	    "Freescale Gigabit Ethernet Controller" :
1724	    "Freescale Fast Ethernet Controller");
1725
1726	return (BUS_PROBE_DEFAULT);
1727}
1728
1729
1730static device_method_t ffec_methods[] = {
1731	/* Device interface. */
1732	DEVMETHOD(device_probe,		ffec_probe),
1733	DEVMETHOD(device_attach,	ffec_attach),
1734	DEVMETHOD(device_detach,	ffec_detach),
1735
1736/*
1737	DEVMETHOD(device_shutdown,	ffec_shutdown),
1738	DEVMETHOD(device_suspend,	ffec_suspend),
1739	DEVMETHOD(device_resume,	ffec_resume),
1740*/
1741
1742	/* MII interface. */
1743	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1744	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1745	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1746
1747	DEVMETHOD_END
1748};
1749
1750static driver_t ffec_driver = {
1751	"ffec",
1752	ffec_methods,
1753	sizeof(struct ffec_softc)
1754};
1755
1756static devclass_t ffec_devclass;
1757
1758DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1759DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1760
1761MODULE_DEPEND(ffec, ether, 1, 1, 1);
1762MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1763