if_ffec.c revision 257167
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/ffec/if_ffec.c 257167 2013-10-26 15:15:31Z ian $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/ffec/if_ffecreg.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86#include "miibus_if.h"
87
88/*
89 * There are small differences in the hardware on various SoCs.  Not every SoC
90 * we support has its own FECTYPE; most work as GENERIC and only the ones that
91 * need different handling get their own entry.  In addition to the types in
92 * this list, there are some flags below that can be ORed into the upper bits.
93 */
94enum {
95	FECTYPE_NONE,
96	FECTYPE_GENERIC,
97	FECTYPE_IMX53,
98	FECTYPE_IMX6,
99};
100
101/*
102 * Flags that describe general differences between the FEC hardware in various
103 * SoCs.  These are ORed into the FECTYPE enum values.
104 */
105#define	FECTYPE_MASK		0x0000ffff
106#define	FECFLAG_GBE		(0x0001 << 16)
107
108/*
109 * Table of supported FDT compat strings and their associated FECTYPE values.
110 */
111static struct ofw_compat_data compat_data[] = {
112	{"fsl,imx51-fec",	FECTYPE_GENERIC},
113	{"fsl,imx53-fec",	FECTYPE_IMX53},
114	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
115	{"fsl,mvf600-fec",	FECTYPE_GENERIC},
116	{"fsl,vf-fec",		FECTYPE_GENERIC},
117	{NULL,		 	FECTYPE_NONE},
118};
119
120/*
121 * Driver data and defines.
122 */
123#define	RX_DESC_COUNT	64
124#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
125#define	TX_DESC_COUNT	64
126#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
127
128#define	WATCHDOG_TIMEOUT_SECS	5
129#define	STATS_HARVEST_INTERVAL	3
130
131struct ffec_bufmap {
132	struct mbuf	*mbuf;
133	bus_dmamap_t	map;
134};
135
136enum {
137	PHY_CONN_UNKNOWN,
138	PHY_CONN_MII,
139	PHY_CONN_RMII,
140	PHY_CONN_RGMII
141};
142
143struct ffec_softc {
144	device_t		dev;
145	device_t		miibus;
146	struct mii_data *	mii_softc;
147	struct ifnet		*ifp;
148	int			if_flags;
149	struct mtx		mtx;
150	struct resource		*irq_res;
151	struct resource		*mem_res;
152	void *			intr_cookie;
153	struct callout		ffec_callout;
154	uint8_t			phy_conn_type;
155	uint8_t			fectype;
156	boolean_t		link_is_up;
157	boolean_t		is_attached;
158	boolean_t		is_detaching;
159	int			tx_watchdog_count;
160	int			stats_harvest_count;
161
162	bus_dma_tag_t		rxdesc_tag;
163	bus_dmamap_t		rxdesc_map;
164	struct ffec_hwdesc	*rxdesc_ring;
165	bus_addr_t		rxdesc_ring_paddr;
166	bus_dma_tag_t		rxbuf_tag;
167	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
168	uint32_t		rx_idx;
169
170	bus_dma_tag_t		txdesc_tag;
171	bus_dmamap_t		txdesc_map;
172	struct ffec_hwdesc	*txdesc_ring;
173	bus_addr_t		txdesc_ring_paddr;
174	bus_dma_tag_t		txbuf_tag;
175	struct ffec_bufmap	txbuf_map[RX_DESC_COUNT];
176	uint32_t		tx_idx_head;
177	uint32_t		tx_idx_tail;
178	int			txcount;
179};
180
181#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
182#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
183#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
184	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
185#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
186#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
187#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
188
189static void ffec_init_locked(struct ffec_softc *sc);
190static void ffec_stop_locked(struct ffec_softc *sc);
191static void ffec_txstart_locked(struct ffec_softc *sc);
192static void ffec_txfinish_locked(struct ffec_softc *sc);
193
194static inline uint16_t
195RD2(struct ffec_softc *sc, bus_size_t off)
196{
197
198	return (bus_read_2(sc->mem_res, off));
199}
200
201static inline void
202WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
203{
204
205	bus_write_2(sc->mem_res, off, val);
206}
207
208static inline uint32_t
209RD4(struct ffec_softc *sc, bus_size_t off)
210{
211
212	return (bus_read_4(sc->mem_res, off));
213}
214
215static inline void
216WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
217{
218
219	bus_write_4(sc->mem_res, off, val);
220}
221
222static inline uint32_t
223next_rxidx(struct ffec_softc *sc, uint32_t curidx)
224{
225
226	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
227}
228
229static inline uint32_t
230next_txidx(struct ffec_softc *sc, uint32_t curidx)
231{
232
233	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
234}
235
236static void
237ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
238{
239
240	if (error != 0)
241		return;
242	*(bus_addr_t *)arg = segs[0].ds_addr;
243}
244
245static void
246ffec_miigasket_setup(struct ffec_softc *sc)
247{
248	uint32_t ifmode;
249
250	/*
251	 * We only need the gasket for MII and RMII connections on certain SoCs.
252	 */
253
254	switch (sc->fectype & FECTYPE_MASK)
255	{
256	case FECTYPE_IMX53:
257		break;
258	default:
259		return;
260	}
261
262	switch (sc->phy_conn_type)
263	{
264	case PHY_CONN_MII:
265		ifmode = 0;
266		break;
267	case PHY_CONN_RMII:
268		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
269		break;
270	default:
271		return;
272	}
273
274	/*
275	 * Disable the gasket, configure for either MII or RMII, then enable.
276	 */
277
278	WR2(sc, FEC_MIIGSK_ENR, 0);
279	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
280		continue;
281
282	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
283
284	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
285	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
286		continue;
287}
288
289static boolean_t
290ffec_miibus_iowait(struct ffec_softc *sc)
291{
292	uint32_t timeout;
293
294	for (timeout = 10000; timeout != 0; --timeout)
295		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
296			return (true);
297
298	return (false);
299}
300
301static int
302ffec_miibus_readreg(device_t dev, int phy, int reg)
303{
304	struct ffec_softc *sc;
305	int val;
306
307	sc = device_get_softc(dev);
308
309	WR4(sc, FEC_IER_REG, FEC_IER_MII);
310
311	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
312	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
313	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
314	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
315
316	if (!ffec_miibus_iowait(sc)) {
317		device_printf(dev, "timeout waiting for mii read\n");
318		return (-1); /* All-ones is a symptom of bad mdio. */
319	}
320
321	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
322
323	return (val);
324}
325
326static int
327ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
328{
329	struct ffec_softc *sc;
330
331	sc = device_get_softc(dev);
332
333	WR4(sc, FEC_IER_REG, FEC_IER_MII);
334
335	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
336	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
337	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
338	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
339	    (val & FEC_MMFR_DATA_MASK));
340
341	if (!ffec_miibus_iowait(sc)) {
342		device_printf(dev, "timeout waiting for mii write\n");
343		return (-1);
344	}
345
346	return (0);
347}
348
349static void
350ffec_miibus_statchg(device_t dev)
351{
352	struct ffec_softc *sc;
353	struct mii_data *mii;
354	uint32_t ecr, rcr, tcr;
355
356	/*
357	 * Called by the MII bus driver when the PHY establishes link to set the
358	 * MAC interface registers.
359	 */
360
361	sc = device_get_softc(dev);
362
363	FFEC_ASSERT_LOCKED(sc);
364
365	mii = sc->mii_softc;
366
367	if (mii->mii_media_status & IFM_ACTIVE)
368		sc->link_is_up = true;
369	else
370		sc->link_is_up = false;
371
372	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
373	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
374	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
375	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
376
377	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
378	switch (sc->phy_conn_type) {
379	case PHY_CONN_MII:
380		break;
381	case PHY_CONN_RMII:
382		rcr |= FEC_RCR_RMII_MODE;
383		break;
384	case PHY_CONN_RGMII:
385		rcr |= FEC_RCR_RGMII_EN;
386		break;
387	}
388
389	switch (IFM_SUBTYPE(mii->mii_media_active)) {
390	case IFM_1000_T:
391	case IFM_1000_SX:
392		ecr |= FEC_ECR_SPEED;
393		break;
394	case IFM_100_TX:
395		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
396		break;
397	case IFM_10_T:
398		rcr |= FEC_RCR_RMII_10T;
399		break;
400	case IFM_NONE:
401		sc->link_is_up = false;
402		return;
403	default:
404		sc->link_is_up = false;
405		device_printf(dev, "Unsupported media %u\n",
406		    IFM_SUBTYPE(mii->mii_media_active));
407		return;
408	}
409
410	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
411		tcr |= FEC_TCR_FDEN;
412	else
413		rcr |= FEC_RCR_DRT;
414
415	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
416		rcr |= FEC_RCR_FCE;
417
418	WR4(sc, FEC_RCR_REG, rcr);
419	WR4(sc, FEC_TCR_REG, tcr);
420	WR4(sc, FEC_ECR_REG, ecr);
421}
422
423static void
424ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
425{
426	struct ffec_softc *sc;
427	struct mii_data *mii;
428
429
430	sc = ifp->if_softc;
431	mii = sc->mii_softc;
432	FFEC_LOCK(sc);
433	mii_pollstat(mii);
434	ifmr->ifm_active = mii->mii_media_active;
435	ifmr->ifm_status = mii->mii_media_status;
436	FFEC_UNLOCK(sc);
437}
438
439static int
440ffec_media_change_locked(struct ffec_softc *sc)
441{
442
443	return (mii_mediachg(sc->mii_softc));
444}
445
446static int
447ffec_media_change(struct ifnet * ifp)
448{
449	struct ffec_softc *sc;
450	int error;
451
452	sc = ifp->if_softc;
453
454	FFEC_LOCK(sc);
455	error = ffec_media_change_locked(sc);
456	FFEC_UNLOCK(sc);
457	return (error);
458}
459
460static void ffec_clear_stats(struct ffec_softc *sc)
461{
462
463	WR4(sc, FEC_RMON_R_PACKETS, 0);
464	WR4(sc, FEC_RMON_R_MC_PKT, 0);
465	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
466	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
467	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
468	WR4(sc, FEC_RMON_R_FRAG, 0);
469	WR4(sc, FEC_RMON_R_JAB, 0);
470	WR4(sc, FEC_RMON_T_PACKETS, 0);
471	WR4(sc, FEC_RMON_T_MC_PKT, 0);
472	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
473	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
474	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
475	WR4(sc, FEC_RMON_T_FRAG, 0);
476	WR4(sc, FEC_RMON_T_JAB, 0);
477	WR4(sc, FEC_RMON_T_COL, 0);
478}
479
480static void
481ffec_harvest_stats(struct ffec_softc *sc)
482{
483	struct ifnet *ifp;
484
485	/* We don't need to harvest too often. */
486	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
487		return;
488
489	/*
490	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
491	 * been too long just go ahead and do it anyway, the worst that'll
492	 * happen is we'll lose a packet count or two as we clear at the end.
493	 */
494	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
495	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
496		return;
497
498	sc->stats_harvest_count = 0;
499	ifp = sc->ifp;
500
501	ifp->if_ipackets   += RD4(sc, FEC_RMON_R_PACKETS);
502	ifp->if_imcasts    += RD4(sc, FEC_RMON_R_MC_PKT);
503	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_CRC_ALIGN);
504	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_UNDERSIZE);
505	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_OVERSIZE);
506	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_FRAG);
507	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_JAB);
508
509	ifp->if_opackets   += RD4(sc, FEC_RMON_T_PACKETS);
510	ifp->if_omcasts    += RD4(sc, FEC_RMON_T_MC_PKT);
511	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_CRC_ALIGN);
512	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_UNDERSIZE);
513	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_OVERSIZE );
514	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_FRAG);
515	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_JAB);
516
517	ifp->if_collisions += RD4(sc, FEC_RMON_T_COL);
518
519	ffec_clear_stats(sc);
520}
521
522static void
523ffec_tick(void *arg)
524{
525	struct ffec_softc *sc;
526	struct ifnet *ifp;
527	int link_was_up;
528
529	sc = arg;
530
531	FFEC_ASSERT_LOCKED(sc);
532
533	ifp = sc->ifp;
534
535	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
536	    return;
537
538	/*
539	 * Typical tx watchdog.  If this fires it indicates that we enqueued
540	 * packets for output and never got a txdone interrupt for them.  Maybe
541	 * it's a missed interrupt somehow, just pretend we got one.
542	 */
543	if (sc->tx_watchdog_count > 0) {
544		if (--sc->tx_watchdog_count == 0) {
545			ffec_txfinish_locked(sc);
546		}
547	}
548
549	/* Gather stats from hardware counters. */
550	ffec_harvest_stats(sc);
551
552	/* Check the media status. */
553	link_was_up = sc->link_is_up;
554	mii_tick(sc->mii_softc);
555	if (sc->link_is_up && !link_was_up)
556		ffec_txstart_locked(sc);
557
558	/* Schedule another check one second from now. */
559	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
560}
561
562inline static uint32_t
563ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
564    uint32_t len)
565{
566	uint32_t nidx;
567	uint32_t flags;
568
569	nidx = next_txidx(sc, idx);
570
571	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
572	if (paddr == 0 || len == 0) {
573		flags = 0;
574		--sc->txcount;
575	} else {
576		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
577		++sc->txcount;
578	}
579	if (nidx == 0)
580		flags |= FEC_TXDESC_WRAP;
581
582	/*
583	 * The hardware requires 32-bit physical addresses.  We set up the dma
584	 * tag to indicate that, so the cast to uint32_t should never lose
585	 * significant bits.
586	 */
587	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
588	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
589
590	return (nidx);
591}
592
593static int
594ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
595{
596	struct mbuf * m;
597	int error, nsegs;
598	struct bus_dma_segment seg;
599
600	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
601		return (ENOMEM);
602	*mp = m;
603
604	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
605	    m, &seg, &nsegs, 0);
606	if (error != 0) {
607		return (ENOMEM);
608	}
609	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
610	    BUS_DMASYNC_PREWRITE);
611
612	sc->txbuf_map[idx].mbuf = m;
613	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
614
615	return (0);
616
617}
618
619static void
620ffec_txstart_locked(struct ffec_softc *sc)
621{
622	struct ifnet *ifp;
623	struct mbuf *m;
624	int enqueued;
625
626	FFEC_ASSERT_LOCKED(sc);
627
628	if (!sc->link_is_up)
629		return;
630
631	ifp = sc->ifp;
632
633	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
634		return;
635
636	enqueued = 0;
637
638	for (;;) {
639		if (sc->txcount == (TX_DESC_COUNT-1)) {
640			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
641			break;
642		}
643		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
644		if (m == NULL)
645			break;
646		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
647			IFQ_DRV_PREPEND(&ifp->if_snd, m);
648			break;
649		}
650		BPF_MTAP(ifp, m);
651		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
652		++enqueued;
653	}
654
655	if (enqueued != 0) {
656		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
657		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
658	}
659}
660
661static void
662ffec_txstart(struct ifnet *ifp)
663{
664	struct ffec_softc *sc = ifp->if_softc;
665
666	FFEC_LOCK(sc);
667	ffec_txstart_locked(sc);
668	FFEC_UNLOCK(sc);
669}
670
671static void
672ffec_txfinish_locked(struct ffec_softc *sc)
673{
674	struct ifnet *ifp;
675	struct ffec_hwdesc *desc;
676	struct ffec_bufmap *bmap;
677	boolean_t retired_buffer;
678
679	FFEC_ASSERT_LOCKED(sc);
680
681	ifp = sc->ifp;
682	retired_buffer = false;
683	while (sc->tx_idx_tail != sc->tx_idx_head) {
684		desc = &sc->txdesc_ring[sc->tx_idx_tail];
685		if (desc->flags_len & FEC_TXDESC_READY)
686			break;
687		retired_buffer = true;
688		bmap = &sc->txbuf_map[sc->tx_idx_tail];
689		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
690		    BUS_DMASYNC_POSTWRITE);
691		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
692		m_freem(bmap->mbuf);
693		bmap->mbuf = NULL;
694		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
695		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
696	}
697
698	/*
699	 * If we retired any buffers, there will be open tx slots available in
700	 * the descriptor ring, go try to start some new output.
701	 */
702	if (retired_buffer) {
703		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
704		ffec_txstart_locked(sc);
705	}
706
707	/* If there are no buffers outstanding, muzzle the watchdog. */
708	if (sc->tx_idx_tail == sc->tx_idx_head) {
709		sc->tx_watchdog_count = 0;
710	}
711}
712
713inline static uint32_t
714ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
715{
716	uint32_t nidx;
717
718	/*
719	 * The hardware requires 32-bit physical addresses.  We set up the dma
720	 * tag to indicate that, so the cast to uint32_t should never lose
721	 * significant bits.
722	 */
723	nidx = next_rxidx(sc, idx);
724	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
725	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
726		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
727
728	return (nidx);
729}
730
731static int
732ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
733{
734	int error, nsegs;
735	struct bus_dma_segment seg;
736
737	/*
738	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
739	 * the buffer to allow the data to be re-aligned after receiving it (by
740	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
741	 * have to ensure that the beginning of the buffer is aligned to the
742	 * hardware's requirements.
743	 */
744	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
745
746	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
747	    m, &seg, &nsegs, 0);
748	if (error != 0) {
749		return (error);
750	}
751
752	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
753	    BUS_DMASYNC_PREREAD);
754
755	sc->rxbuf_map[idx].mbuf = m;
756	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
757
758	return (0);
759}
760
761static struct mbuf *
762ffec_alloc_mbufcl(struct ffec_softc *sc)
763{
764	struct mbuf *m;
765
766	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
767	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
768
769	return (m);
770}
771
772static void
773ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
774{
775	struct mbuf *m, *newmbuf;
776	struct ffec_bufmap *bmap;
777	uint8_t *dst, *src;
778	int error;
779
780	/*
781	 *  First try to get a new mbuf to plug into this slot in the rx ring.
782	 *  If that fails, drop the current packet and recycle the current
783	 *  mbuf, which is still mapped and loaded.
784	 */
785	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
786		++sc->ifp->if_iqdrops;
787		ffec_setup_rxdesc(sc, sc->rx_idx,
788		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
789		return;
790	}
791
792	/*
793	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
794	 *  boundary for the upper layers.  The hardware requires receive
795	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
796	 *  leaving the protocol header unaligned.  We used m_adj() after
797	 *  allocating the buffer to leave empty space at the start of the
798	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
799	 *  shuffle all the data backwards 2 bytes and adjust m_data.
800	 *
801	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
802	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
803	 *  feature, but for them could we speed this up by copying just the
804	 *  protocol headers into their own small mbuf then chaining the cluster
805	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
806	 *  the biggest header is, instead of the whole 1530ish-byte frame.
807	 */
808
809	FFEC_UNLOCK(sc);
810
811	bmap = &sc->rxbuf_map[sc->rx_idx];
812	len -= ETHER_CRC_LEN;
813	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
814	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
815	m = bmap->mbuf;
816	bmap->mbuf = NULL;
817	m->m_len = len;
818	m->m_pkthdr.len = len;
819	m->m_pkthdr.rcvif = sc->ifp;
820
821	src = mtod(m, uint8_t*);
822	dst = src - ETHER_ALIGN;
823	bcopy(src, dst, len);
824	m->m_data = dst;
825	sc->ifp->if_input(sc->ifp, m);
826
827	FFEC_LOCK(sc);
828
829	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
830		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
831		/* XXX Now what?  We've got a hole in the rx ring. */
832	}
833
834}
835
836static void
837ffec_rxfinish_locked(struct ffec_softc *sc)
838{
839	struct ffec_hwdesc *desc;
840	int len;
841	boolean_t produced_empty_buffer;
842
843	FFEC_ASSERT_LOCKED(sc);
844
845	produced_empty_buffer = false;
846	for (;;) {
847		desc = &sc->rxdesc_ring[sc->rx_idx];
848		if (desc->flags_len & FEC_RXDESC_EMPTY)
849			break;
850		produced_empty_buffer = true;
851		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
852		if (len < 64) {
853			/*
854			 * Just recycle the descriptor and continue.           .
855			 */
856			ffec_setup_rxdesc(sc, sc->rx_idx,
857			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
858		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
859			/*
860			 * The entire frame is not in this buffer.  Impossible.
861			 * Recycle the descriptor and continue.
862			 *
863			 * XXX what's the right way to handle this? Probably we
864			 * should stop/init the hardware because this should
865			 * just really never happen when we have buffers bigger
866			 * than the maximum frame size.
867			 */
868			device_printf(sc->dev,
869			    "fec_rxfinish: received frame without LAST bit set");
870			ffec_setup_rxdesc(sc, sc->rx_idx,
871			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
872		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
873			/*
874			 *  Something went wrong with receiving the frame, we
875			 *  don't care what (the hardware has counted the error
876			 *  in the stats registers already), we just reuse the
877			 *  same mbuf, which is still dma-mapped, by resetting
878			 *  the rx descriptor.
879			 */
880			ffec_setup_rxdesc(sc, sc->rx_idx,
881			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
882		} else {
883			/*
884			 *  Normal case: a good frame all in one buffer.
885			 */
886			ffec_rxfinish_onebuf(sc, len);
887		}
888		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
889	}
890
891	if (produced_empty_buffer) {
892		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
893	}
894}
895
896static void
897ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
898{
899	uint32_t palr, paur, rnd;
900
901	/*
902	 * Try to recover a MAC address from the running hardware. If there's
903	 * something non-zero there, assume the bootloader did the right thing
904	 * and just use it.
905	 *
906	 * Otherwise, set the address to a convenient locally assigned address,
907	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
908	 * assigned bit set, and the broadcast/multicast bit clear.
909	 */
910	palr = RD4(sc, FEC_PALR_REG);
911	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
912	if ((palr | paur) != 0) {
913		hwaddr[0] = palr >> 24;
914		hwaddr[1] = palr >> 16;
915		hwaddr[2] = palr >>  8;
916		hwaddr[3] = palr >>  0;
917		hwaddr[4] = paur >> 24;
918		hwaddr[5] = paur >> 16;
919	} else {
920		rnd = arc4random() & 0x00ffffff;
921		hwaddr[0] = 'b';
922		hwaddr[1] = 's';
923		hwaddr[2] = 'd';
924		hwaddr[3] = rnd >> 16;
925		hwaddr[4] = rnd >>  8;
926		hwaddr[5] = rnd >>  0;
927	}
928
929	if (bootverbose) {
930		device_printf(sc->dev,
931		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
932		    hwaddr[0], hwaddr[1], hwaddr[2],
933		    hwaddr[3], hwaddr[4], hwaddr[5]);
934	}
935}
936
937static void
938ffec_setup_rxfilter(struct ffec_softc *sc)
939{
940	struct ifnet *ifp;
941	struct ifmultiaddr *ifma;
942	uint8_t *eaddr;
943	uint32_t crc;
944	uint64_t ghash, ihash;
945
946	FFEC_ASSERT_LOCKED(sc);
947
948	ifp = sc->ifp;
949
950	/*
951	 * Set the multicast (group) filter hash.
952	 */
953	if ((ifp->if_flags & IFF_ALLMULTI))
954		ghash = 0xffffffffffffffffLLU;
955	else {
956		ghash = 0;
957		if_maddr_rlock(ifp);
958		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
959			if (ifma->ifma_addr->sa_family != AF_LINK)
960				continue;
961			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
962			    ifma->ifma_addr), ETHER_ADDR_LEN);
963			ghash |= 1 << (crc & 0x3f);
964		}
965		if_maddr_runlock(ifp);
966	}
967	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
968	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
969
970	/*
971	 * Set the individual address filter hash.
972	 *
973	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
974	 * seems to support the concept of MAC address aliases, does such a
975	 * thing even exist?
976	 */
977	if ((ifp->if_flags & IFF_PROMISC))
978		ihash = 0xffffffffffffffffLLU;
979	else {
980		ihash = 0;
981	}
982	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
983	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
984
985	/*
986	 * Set the primary address.
987	 */
988	eaddr = IF_LLADDR(ifp);
989	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
990	    (eaddr[2] <<  8) | eaddr[3]);
991	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
992}
993
994static void
995ffec_stop_locked(struct ffec_softc *sc)
996{
997	struct ifnet *ifp;
998	struct ffec_hwdesc *desc;
999	struct ffec_bufmap *bmap;
1000	int idx;
1001
1002	FFEC_ASSERT_LOCKED(sc);
1003
1004	ifp = sc->ifp;
1005	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1006	sc->tx_watchdog_count = 0;
1007	sc->stats_harvest_count = 0;
1008
1009	/*
1010	 * Stop the hardware, mask all interrupts, and clear all current
1011	 * interrupt status bits.
1012	 */
1013	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1014	WR4(sc, FEC_IEM_REG, 0x00000000);
1015	WR4(sc, FEC_IER_REG, 0xffffffff);
1016
1017	/*
1018	 * Stop the media-check callout.  Do not use callout_drain() because
1019	 * we're holding a mutex the callout acquires, and if it's currently
1020	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1021	 * ffec_tick() routine will return without doing anything when it sees
1022	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1023	 */
1024	callout_stop(&sc->ffec_callout);
1025
1026	/*
1027	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1028	 * it's as if the bits were transmitted and then lost on the wire.
1029	 *
1030	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1031	 * back on the queue for when we get restarted later?
1032	 */
1033	idx = sc->tx_idx_tail;
1034	while (idx != sc->tx_idx_head) {
1035		desc = &sc->txdesc_ring[idx];
1036		bmap = &sc->txbuf_map[idx];
1037		if (desc->buf_paddr != 0) {
1038			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1039			m_freem(bmap->mbuf);
1040			bmap->mbuf = NULL;
1041			ffec_setup_txdesc(sc, idx, 0, 0);
1042		}
1043		idx = next_txidx(sc, idx);
1044	}
1045
1046	/*
1047	 * Discard all unprocessed receive buffers.  This amounts to just
1048	 * pretending that nothing ever got received into them.  We reuse the
1049	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1050	 * back on so they'll get reused when we start up again.
1051	 */
1052	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1053		desc = &sc->rxdesc_ring[idx];
1054		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1055	}
1056}
1057
1058static void
1059ffec_init_locked(struct ffec_softc *sc)
1060{
1061	struct ifnet *ifp = sc->ifp;
1062	uint32_t maxbuf, maxfl, regval;
1063
1064	FFEC_ASSERT_LOCKED(sc);
1065
1066	/*
1067	 * The hardware has a limit of 0x7ff as the max frame length (see
1068	 * comments for MRBR below), and we use mbuf clusters as receive
1069	 * buffers, and we currently are designed to receive an entire frame
1070	 * into a single buffer.
1071	 *
1072	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1073	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1074	 * and then that value has to be rounded up to the hardware's DMA
1075	 * alignment requirements, so all in all our buffer is that much smaller
1076	 * than MCLBYTES.
1077	 *
1078	 * The resulting value is used as the frame truncation length and the
1079	 * max buffer receive buffer size for now.  It'll become more complex
1080	 * when we support jumbo frames and receiving fragments of them into
1081	 * separate buffers.
1082	 */
1083	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1084	maxfl = min(maxbuf, 0x7ff);
1085
1086	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1087		return;
1088
1089	/* Mask all interrupts and clear all current interrupt status bits. */
1090	WR4(sc, FEC_IEM_REG, 0x00000000);
1091	WR4(sc, FEC_IER_REG, 0xffffffff);
1092
1093	/*
1094	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1095	 */
1096	ffec_setup_rxfilter(sc);
1097
1098	/*
1099	 * TFWR - Transmit FIFO watermark register.
1100	 *
1101	 * Set the transmit fifo watermark register to "store and forward" mode
1102	 * and also set a threshold of 128 bytes in the fifo before transmission
1103	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1104	 * supports STRFWD and when that bit is set, the watermark level in the
1105	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1106	 * to that bit is innocuous, and the TWFR bits get used instead.
1107	 */
1108	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1109
1110	/* RCR - Receive control register.
1111	 *
1112	 * Set max frame length + clean out anything left from u-boot.
1113	 */
1114	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1115
1116	/*
1117	 * TCR - Transmit control register.
1118	 *
1119	 * Clean out anything left from u-boot.  Any necessary values are set in
1120	 * ffec_miibus_statchg() based on the media type.
1121	 */
1122	WR4(sc, FEC_TCR_REG, 0);
1123
1124	/*
1125	 * OPD - Opcode/pause duration.
1126	 *
1127	 * XXX These magic numbers come from u-boot.
1128	 */
1129	WR4(sc, FEC_OPD_REG, 0x00010020);
1130
1131	/*
1132	 * FRSR - Fifo receive start register.
1133	 *
1134	 * This register does not exist on imx6, it is present on earlier
1135	 * hardware. The u-boot code sets this to a non-default value that's 32
1136	 * bytes larger than the default, with no clue as to why.  The default
1137	 * value should work fine, so there's no code to init it here.
1138	 */
1139
1140	/*
1141	 *  MRBR - Max RX buffer size.
1142	 *
1143	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1144	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1145	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1146	 *  receive loop in the hardware, where every rx descriptor in the ring
1147	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1148	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1149	 *  set, like maybe that's what enables jumbo frames, because in general
1150	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1151	 *  compatible" flag.
1152	 */
1153	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1154
1155	/*
1156	 * FTRL - Frame truncation length.
1157	 *
1158	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1159	 */
1160	WR4(sc, FEC_FTRL_REG, maxfl);
1161
1162	/*
1163	 * RDSR / TDSR descriptor ring pointers.
1164	 *
1165	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1166	 * internal current descriptor index values for both rings, so we zero
1167	 * our index values as well.
1168	 */
1169	sc->rx_idx = 0;
1170	sc->tx_idx_head = sc->tx_idx_tail = 0;
1171	sc->txcount = 0;
1172	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1173	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1174
1175	/*
1176	 * EIM - interrupt mask register.
1177	 *
1178	 * We always enable the same set of interrupts while running; unlike
1179	 * some drivers there's no need to change the mask on the fly depending
1180	 * on what operations are in progress.
1181	 */
1182	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1183
1184	/*
1185	 * MIBC - MIB control (hardware stats).
1186	 */
1187	regval = RD4(sc, FEC_MIBC_REG);
1188	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1189	ffec_clear_stats(sc);
1190	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1191
1192	/*
1193	 * ECR - Ethernet control register.
1194	 *
1195	 * This must happen after all the other config registers are set.  If
1196	 * we're running on little-endian hardware, also set the flag for byte-
1197	 * swapping descriptor ring entries.  This flag doesn't exist on older
1198	 * hardware, but it can be safely set -- the bit position it occupies
1199	 * was unused.
1200	 */
1201	regval = RD4(sc, FEC_ECR_REG);
1202#if _BYTE_ORDER == _LITTLE_ENDIAN
1203	regval |= FEC_ECR_DBSWP;
1204#endif
1205	regval |= FEC_ECR_ETHEREN;
1206	WR4(sc, FEC_ECR_REG, regval);
1207
1208	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1209
1210       /*
1211	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1212	* set up the remaining config registers based on the current media.
1213	*/
1214	mii_mediachg(sc->mii_softc);
1215	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1216
1217	/*
1218	 * Tell the hardware that receive buffers are available.  They were made
1219	 * available in ffec_attach() or ffec_stop().
1220	 */
1221	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1222}
1223
1224static void
1225ffec_init(void *if_softc)
1226{
1227	struct ffec_softc *sc = if_softc;
1228
1229	FFEC_LOCK(sc);
1230	ffec_init_locked(sc);
1231	FFEC_UNLOCK(sc);
1232}
1233
1234static void
1235ffec_intr(void *arg)
1236{
1237	struct ffec_softc *sc;
1238	uint32_t ier;
1239
1240	sc = arg;
1241
1242	FFEC_LOCK(sc);
1243
1244	ier = RD4(sc, FEC_IER_REG);
1245
1246	if (ier & FEC_IER_TXF) {
1247		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1248		ffec_txfinish_locked(sc);
1249	}
1250
1251	if (ier & FEC_IER_RXF) {
1252		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1253		ffec_rxfinish_locked(sc);
1254	}
1255
1256	/*
1257	 * We actually don't care about most errors, because the hardware copes
1258	 * with them just fine, discarding the incoming bad frame, or forcing a
1259	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1260	 * stats registers.  The one that really matters is EBERR (DMA bus
1261	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1262	 * have to restart it here.  It should never happen.
1263	 */
1264	if (ier & FEC_IER_EBERR) {
1265		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1266		device_printf(sc->dev,
1267		    "Ethernet DMA error, restarting controller.\n");
1268		ffec_stop_locked(sc);
1269		ffec_init_locked(sc);
1270	}
1271
1272	FFEC_UNLOCK(sc);
1273
1274}
1275
1276static int
1277ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1278{
1279	struct ffec_softc *sc;
1280	struct mii_data *mii;
1281	struct ifreq *ifr;
1282	int mask, error;
1283
1284	sc = ifp->if_softc;
1285	ifr = (struct ifreq *)data;
1286
1287	error = 0;
1288	switch (cmd) {
1289	case SIOCSIFFLAGS:
1290		FFEC_LOCK(sc);
1291		if (ifp->if_flags & IFF_UP) {
1292			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1293				if ((ifp->if_flags ^ sc->if_flags) &
1294				    (IFF_PROMISC | IFF_ALLMULTI))
1295					ffec_setup_rxfilter(sc);
1296			} else {
1297				if (!sc->is_detaching)
1298					ffec_init_locked(sc);
1299			}
1300		} else {
1301			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1302				ffec_stop_locked(sc);
1303		}
1304		sc->if_flags = ifp->if_flags;
1305		FFEC_UNLOCK(sc);
1306		break;
1307
1308	case SIOCADDMULTI:
1309	case SIOCDELMULTI:
1310		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1311			FFEC_LOCK(sc);
1312			ffec_setup_rxfilter(sc);
1313			FFEC_UNLOCK(sc);
1314		}
1315		break;
1316
1317	case SIOCSIFMEDIA:
1318	case SIOCGIFMEDIA:
1319		mii = sc->mii_softc;
1320		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1321		break;
1322
1323	case SIOCSIFCAP:
1324		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1325		if (mask & IFCAP_VLAN_MTU) {
1326			/* No work to do except acknowledge the change took. */
1327			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1328		}
1329		break;
1330
1331	default:
1332		error = ether_ioctl(ifp, cmd, data);
1333		break;
1334	}
1335
1336	return (error);
1337}
1338
1339static int
1340ffec_detach(device_t dev)
1341{
1342	struct ffec_softc *sc;
1343	bus_dmamap_t map;
1344	int idx;
1345
1346	/*
1347	 * NB: This function can be called internally to unwind a failure to
1348	 * attach. Make sure a resource got allocated/created before destroying.
1349	 */
1350
1351	sc = device_get_softc(dev);
1352
1353	if (sc->is_attached) {
1354		FFEC_LOCK(sc);
1355		sc->is_detaching = true;
1356		ffec_stop_locked(sc);
1357		FFEC_UNLOCK(sc);
1358		callout_drain(&sc->ffec_callout);
1359		ether_ifdetach(sc->ifp);
1360	}
1361
1362	/* XXX no miibus detach? */
1363
1364	/* Clean up RX DMA resources and free mbufs. */
1365	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1366		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1367			bus_dmamap_unload(sc->rxbuf_tag, map);
1368			bus_dmamap_destroy(sc->rxbuf_tag, map);
1369			m_freem(sc->rxbuf_map[idx].mbuf);
1370		}
1371	}
1372	if (sc->rxbuf_tag != NULL)
1373		bus_dma_tag_destroy(sc->rxbuf_tag);
1374	if (sc->rxdesc_map != NULL) {
1375		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1376		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1377	}
1378	if (sc->rxdesc_tag != NULL)
1379	bus_dma_tag_destroy(sc->rxdesc_tag);
1380
1381	/* Clean up TX DMA resources. */
1382	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1383		if ((map = sc->txbuf_map[idx].map) != NULL) {
1384			/* TX maps are already unloaded. */
1385			bus_dmamap_destroy(sc->txbuf_tag, map);
1386		}
1387	}
1388	if (sc->txbuf_tag != NULL)
1389		bus_dma_tag_destroy(sc->txbuf_tag);
1390	if (sc->txdesc_map != NULL) {
1391		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1392		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1393	}
1394	if (sc->txdesc_tag != NULL)
1395	bus_dma_tag_destroy(sc->txdesc_tag);
1396
1397	/* Release bus resources. */
1398	if (sc->intr_cookie)
1399		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1400
1401	if (sc->irq_res != NULL)
1402		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1403
1404	if (sc->mem_res != NULL)
1405		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1406
1407	FFEC_LOCK_DESTROY(sc);
1408	return (0);
1409}
1410
1411static int
1412ffec_attach(device_t dev)
1413{
1414	struct ffec_softc *sc;
1415	struct ifnet *ifp = NULL;
1416	struct mbuf *m;
1417	phandle_t ofw_node;
1418	int error, rid;
1419	uint8_t eaddr[ETHER_ADDR_LEN];
1420	char phy_conn_name[32];
1421	uint32_t idx, mscr;
1422
1423	sc = device_get_softc(dev);
1424	sc->dev = dev;
1425
1426	FFEC_LOCK_INIT(sc);
1427
1428	/*
1429	 * There are differences in the implementation and features of the FEC
1430	 * hardware on different SoCs, so figure out what type we are.
1431	 */
1432	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1433
1434	/*
1435	 * We have to be told what kind of electrical connection exists between
1436	 * the MAC and PHY or we can't operate correctly.
1437	 */
1438	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1439		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1440		error = ENXIO;
1441		goto out;
1442	}
1443	if (OF_searchprop(ofw_node, "phy-mode",
1444	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1445		if (strcasecmp(phy_conn_name, "mii") == 0)
1446			sc->phy_conn_type = PHY_CONN_MII;
1447		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1448			sc->phy_conn_type = PHY_CONN_RMII;
1449		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1450			sc->phy_conn_type = PHY_CONN_RGMII;
1451	}
1452	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1453		device_printf(sc->dev, "No valid 'phy-mode' "
1454		    "property found in FDT data for device.\n");
1455		error = ENOATTR;
1456		goto out;
1457	}
1458
1459	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1460
1461	/* Allocate bus resources for accessing the hardware. */
1462	rid = 0;
1463	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1464	    RF_ACTIVE);
1465	if (sc->mem_res == NULL) {
1466		device_printf(dev, "could not allocate memory resources.\n");
1467		error = ENOMEM;
1468		goto out;
1469	}
1470	rid = 0;
1471	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1472	    RF_ACTIVE);
1473	if (sc->irq_res == NULL) {
1474		device_printf(dev, "could not allocate interrupt resources.\n");
1475		error = ENOMEM;
1476		goto out;
1477	}
1478
1479	/*
1480	 * Set up TX descriptor ring, descriptors, and dma maps.
1481	 */
1482	error = bus_dma_tag_create(
1483	    bus_get_dma_tag(dev),	/* Parent tag. */
1484	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1485	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1486	    BUS_SPACE_MAXADDR,		/* highaddr */
1487	    NULL, NULL,			/* filter, filterarg */
1488	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1489	    TX_DESC_SIZE,		/* maxsegsize */
1490	    0,				/* flags */
1491	    NULL, NULL,			/* lockfunc, lockarg */
1492	    &sc->txdesc_tag);
1493	if (error != 0) {
1494		device_printf(sc->dev,
1495		    "could not create TX ring DMA tag.\n");
1496		goto out;
1497	}
1498
1499	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1500	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1501	if (error != 0) {
1502		device_printf(sc->dev,
1503		    "could not allocate TX descriptor ring.\n");
1504		goto out;
1505	}
1506
1507	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1508	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1509	if (error != 0) {
1510		device_printf(sc->dev,
1511		    "could not load TX descriptor ring map.\n");
1512		goto out;
1513	}
1514
1515	error = bus_dma_tag_create(
1516	    bus_get_dma_tag(dev),	/* Parent tag. */
1517	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1518	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1519	    BUS_SPACE_MAXADDR,		/* highaddr */
1520	    NULL, NULL,			/* filter, filterarg */
1521	    MCLBYTES, 1, 		/* maxsize, nsegments */
1522	    MCLBYTES,			/* maxsegsize */
1523	    0,				/* flags */
1524	    NULL, NULL,			/* lockfunc, lockarg */
1525	    &sc->txbuf_tag);
1526	if (error != 0) {
1527		device_printf(sc->dev,
1528		    "could not create TX ring DMA tag.\n");
1529		goto out;
1530	}
1531
1532	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1533		error = bus_dmamap_create(sc->txbuf_tag, 0,
1534		    &sc->txbuf_map[idx].map);
1535		if (error != 0) {
1536			device_printf(sc->dev,
1537			    "could not create TX buffer DMA map.\n");
1538			goto out;
1539		}
1540		ffec_setup_txdesc(sc, idx, 0, 0);
1541	}
1542
1543	/*
1544	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1545	 */
1546	error = bus_dma_tag_create(
1547	    bus_get_dma_tag(dev),	/* Parent tag. */
1548	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1549	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1550	    BUS_SPACE_MAXADDR,		/* highaddr */
1551	    NULL, NULL,			/* filter, filterarg */
1552	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1553	    RX_DESC_SIZE,		/* maxsegsize */
1554	    0,				/* flags */
1555	    NULL, NULL,			/* lockfunc, lockarg */
1556	    &sc->rxdesc_tag);
1557	if (error != 0) {
1558		device_printf(sc->dev,
1559		    "could not create RX ring DMA tag.\n");
1560		goto out;
1561	}
1562
1563	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1564	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1565	if (error != 0) {
1566		device_printf(sc->dev,
1567		    "could not allocate RX descriptor ring.\n");
1568		goto out;
1569	}
1570
1571	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1572	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1573	if (error != 0) {
1574		device_printf(sc->dev,
1575		    "could not load RX descriptor ring map.\n");
1576		goto out;
1577	}
1578
1579	error = bus_dma_tag_create(
1580	    bus_get_dma_tag(dev),	/* Parent tag. */
1581	    1, 0,			/* alignment, boundary */
1582	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1583	    BUS_SPACE_MAXADDR,		/* highaddr */
1584	    NULL, NULL,			/* filter, filterarg */
1585	    MCLBYTES, 1, 		/* maxsize, nsegments */
1586	    MCLBYTES,			/* maxsegsize */
1587	    0,				/* flags */
1588	    NULL, NULL,			/* lockfunc, lockarg */
1589	    &sc->rxbuf_tag);
1590	if (error != 0) {
1591		device_printf(sc->dev,
1592		    "could not create RX buf DMA tag.\n");
1593		goto out;
1594	}
1595
1596	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1597		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1598		    &sc->rxbuf_map[idx].map);
1599		if (error != 0) {
1600			device_printf(sc->dev,
1601			    "could not create RX buffer DMA map.\n");
1602			goto out;
1603		}
1604		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1605			device_printf(dev, "Could not alloc mbuf\n");
1606			error = ENOMEM;
1607			goto out;
1608		}
1609		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1610			device_printf(sc->dev,
1611			    "could not create new RX buffer.\n");
1612			goto out;
1613		}
1614	}
1615
1616	/* Try to get the MAC address from the hardware before resetting it. */
1617	ffec_get_hwaddr(sc, eaddr);
1618
1619	/* Reset the hardware.  Disables all interrupts. */
1620	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1621
1622	/* Setup interrupt handler. */
1623	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1624	    NULL, ffec_intr, sc, &sc->intr_cookie);
1625	if (error != 0) {
1626		device_printf(dev, "could not setup interrupt handler.\n");
1627		goto out;
1628	}
1629
1630	/*
1631	 * Set up the PHY control register.
1632	 *
1633	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1634	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1635	 *
1636	 * XXX - Revisit this...
1637	 *
1638	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1639	 * code uses 10.  Both values seem to work, but I suspect many modern
1640	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1641	 *
1642	 * Different imx manuals use confusingly different terminology (things
1643	 * like "system clock" and "internal module clock") with examples that
1644	 * use frequencies that have nothing to do with ethernet, giving the
1645	 * vague impression that maybe the clock in question is the periphclock
1646	 * or something.  In fact, on an imx53 development board (FEC),
1647	 * measuring the mdio clock at the pin on the PHY and playing with
1648	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1649	 * aka periphclock) and 13 was the right divisor.
1650	 *
1651	 * All in all, it seems likely that 13 is a safe divisor for now,
1652	 * because if we really do need to base it on the peripheral clock
1653	 * speed, then we need a platform-independant get-clock-freq API.
1654	 */
1655	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1656	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1657		mscr |= FEC_MSCR_DIS_PRE;
1658		if (bootverbose)
1659			device_printf(dev, "PHY preamble disabled\n");
1660	}
1661	WR4(sc, FEC_MSCR_REG, mscr);
1662
1663	/* Set up the ethernet interface. */
1664	sc->ifp = ifp = if_alloc(IFT_ETHER);
1665
1666	ifp->if_softc = sc;
1667	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1668	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1669	ifp->if_capabilities = IFCAP_VLAN_MTU;
1670	ifp->if_capenable = ifp->if_capabilities;
1671	ifp->if_start = ffec_txstart;
1672	ifp->if_ioctl = ffec_ioctl;
1673	ifp->if_init = ffec_init;
1674	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1675	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1676	IFQ_SET_READY(&ifp->if_snd);
1677	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1678
1679#if 0 /* XXX The hardware keeps stats we could use for these. */
1680	ifp->if_linkmib = &sc->mibdata;
1681	ifp->if_linkmiblen = sizeof(sc->mibdata);
1682#endif
1683
1684	/* Set up the miigasket hardware (if any). */
1685	ffec_miigasket_setup(sc);
1686
1687	/* Attach the mii driver. */
1688	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1689	    ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1690	if (error != 0) {
1691		device_printf(dev, "PHY attach failed\n");
1692		goto out;
1693	}
1694	sc->mii_softc = device_get_softc(sc->miibus);
1695
1696	/* All ready to run, attach the ethernet interface. */
1697	ether_ifattach(ifp, eaddr);
1698	sc->is_attached = true;
1699
1700	error = 0;
1701out:
1702
1703	if (error != 0)
1704		ffec_detach(dev);
1705
1706	return (error);
1707}
1708
1709static int
1710ffec_probe(device_t dev)
1711{
1712	uintptr_t fectype;
1713
1714	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1715	if (fectype == FECTYPE_NONE)
1716		return (ENXIO);
1717
1718	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1719	    "Freescale Gigabit Ethernet Controller" :
1720	    "Freescale Fast Ethernet Controller");
1721
1722	return (BUS_PROBE_DEFAULT);
1723}
1724
1725
1726static device_method_t ffec_methods[] = {
1727	/* Device interface. */
1728	DEVMETHOD(device_probe,		ffec_probe),
1729	DEVMETHOD(device_attach,	ffec_attach),
1730	DEVMETHOD(device_detach,	ffec_detach),
1731
1732/*
1733	DEVMETHOD(device_shutdown,	ffec_shutdown),
1734	DEVMETHOD(device_suspend,	ffec_suspend),
1735	DEVMETHOD(device_resume,	ffec_resume),
1736*/
1737
1738	/* MII interface. */
1739	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1740	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1741	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1742
1743	DEVMETHOD_END
1744};
1745
1746static driver_t ffec_driver = {
1747	"ffec",
1748	ffec_methods,
1749	sizeof(struct ffec_softc)
1750};
1751
1752static devclass_t ffec_devclass;
1753
1754DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1755DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1756
1757MODULE_DEPEND(ffec, ether, 1, 1, 1);
1758MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1759