if_fatm.c revision 217556
1/*-
2 * Copyright (c) 2001-2003
3 *	Fraunhofer Institute for Open Communication Systems (FhG Fokus).
4 * 	All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * Author: Hartmut Brandt <harti@freebsd.org>
28 *
29 * Fore PCA200E driver for NATM
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/dev/fatm/if_fatm.c 217556 2011-01-18 21:14:23Z mdf $");
34
35#include "opt_inet.h"
36#include "opt_natm.h"
37
38#include <sys/types.h>
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/bus.h>
44#include <sys/errno.h>
45#include <sys/conf.h>
46#include <sys/module.h>
47#include <sys/queue.h>
48#include <sys/syslog.h>
49#include <sys/endian.h>
50#include <sys/sysctl.h>
51#include <sys/condvar.h>
52#include <vm/uma.h>
53
54#include <sys/sockio.h>
55#include <sys/mbuf.h>
56#include <sys/socket.h>
57
58#include <net/if.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_atm.h>
62#include <net/route.h>
63#ifdef ENABLE_BPF
64#include <net/bpf.h>
65#endif
66#ifdef INET
67#include <netinet/in.h>
68#include <netinet/if_atm.h>
69#endif
70
71#include <machine/bus.h>
72#include <machine/resource.h>
73#include <sys/bus.h>
74#include <sys/rman.h>
75#include <dev/pci/pcireg.h>
76#include <dev/pci/pcivar.h>
77
78#include <dev/utopia/utopia.h>
79
80#include <dev/fatm/if_fatmreg.h>
81#include <dev/fatm/if_fatmvar.h>
82
83#include <dev/fatm/firmware.h>
84
85devclass_t fatm_devclass;
86
87static const struct {
88	uint16_t	vid;
89	uint16_t	did;
90	const char	*name;
91} fatm_devs[] = {
92	{ 0x1127, 0x300,
93	  "FORE PCA200E" },
94	{ 0, 0, NULL }
95};
96
97static const struct rate {
98	uint32_t	ratio;
99	uint32_t	cell_rate;
100} rate_table[] = {
101#include <dev/fatm/if_fatm_rate.h>
102};
103#define RATE_TABLE_SIZE (sizeof(rate_table) / sizeof(rate_table[0]))
104
105SYSCTL_DECL(_hw_atm);
106
107MODULE_DEPEND(fatm, utopia, 1, 1, 1);
108
109static int	fatm_utopia_readregs(struct ifatm *, u_int, uint8_t *, u_int *);
110static int	fatm_utopia_writereg(struct ifatm *, u_int, u_int, u_int);
111
112static const struct utopia_methods fatm_utopia_methods = {
113	fatm_utopia_readregs,
114	fatm_utopia_writereg
115};
116
117#define VC_OK(SC, VPI, VCI)						\
118	(((VPI) & ~((1 << IFP2IFATM((SC)->ifp)->mib.vpi_bits) - 1)) == 0 &&	\
119	 (VCI) != 0 && ((VCI) & ~((1 << IFP2IFATM((SC)->ifp)->mib.vci_bits) - 1)) == 0)
120
121static int fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc);
122
123/*
124 * Probing is easy: step trough the list of known vendor and device
125 * ids and compare. If one is found - it's our.
126 */
127static int
128fatm_probe(device_t dev)
129{
130	int i;
131
132	for (i = 0; fatm_devs[i].name; i++)
133		if (pci_get_vendor(dev) == fatm_devs[i].vid &&
134		    pci_get_device(dev) == fatm_devs[i].did) {
135			device_set_desc(dev, fatm_devs[i].name);
136			return (BUS_PROBE_DEFAULT);
137		}
138	return (ENXIO);
139}
140
141/*
142 * Function called at completion of a SUNI writeregs/readregs command.
143 * This is called from the interrupt handler while holding the softc lock.
144 * We use the queue entry as the randevouze point.
145 */
146static void
147fatm_utopia_writeregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
148{
149
150	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
151	if(H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
152		sc->istats.suni_reg_errors++;
153		q->error = EIO;
154	}
155	wakeup(q);
156}
157
158/*
159 * Write a SUNI register. The bits that are 1 in mask are written from val
160 * into register reg. We wait for the command to complete by sleeping on
161 * the register memory.
162 *
163 * We assume, that we already hold the softc mutex.
164 */
165static int
166fatm_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
167{
168	int error;
169	struct cmdqueue *q;
170	struct fatm_softc *sc;
171
172	sc = ifatm->ifp->if_softc;
173	FATM_CHECKLOCK(sc);
174	if (!(ifatm->ifp->if_drv_flags & IFF_DRV_RUNNING))
175		return (EIO);
176
177	/* get queue element and fill it */
178	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
179
180	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
181	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
182		sc->istats.cmd_queue_full++;
183		return (EIO);
184	}
185	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
186
187	q->error = 0;
188	q->cb = fatm_utopia_writeregs_complete;
189	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
190	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
191
192	WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, 0);
193	BARRIER_W(sc);
194	WRITE4(sc, q->q.card + FATMOC_OP,
195	    FATM_MAKE_SETOC3(reg, val, mask) | FATM_OP_INTERRUPT_SEL);
196	BARRIER_W(sc);
197
198	/*
199	 * Wait for the command to complete
200	 */
201	error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_setreg", hz);
202
203	switch(error) {
204
205	  case EWOULDBLOCK:
206		error = EIO;
207		break;
208
209	  case ERESTART:
210		error = EINTR;
211		break;
212
213	  case 0:
214		error = q->error;
215		break;
216	}
217
218	return (error);
219}
220
221/*
222 * Function called at completion of a SUNI readregs command.
223 * This is called from the interrupt handler while holding the softc lock.
224 * We use reg_mem as the randevouze point.
225 */
226static void
227fatm_utopia_readregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
228{
229
230	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
231	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
232		sc->istats.suni_reg_errors++;
233		q->error = EIO;
234	}
235	wakeup(&sc->reg_mem);
236}
237
238/*
239 * Read SUNI registers
240 *
241 * We use a preallocated buffer to read the registers. Therefor we need
242 * to protect against multiple threads trying to read registers. We do this
243 * with a condition variable and a flag. We wait for the command to complete by sleeping on
244 * the register memory.
245 *
246 * We assume, that we already hold the softc mutex.
247 */
248static int
249fatm_utopia_readregs_internal(struct fatm_softc *sc)
250{
251	int error, i;
252	uint32_t *ptr;
253	struct cmdqueue *q;
254
255	/* get the buffer */
256	for (;;) {
257		if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
258			return (EIO);
259		if (!(sc->flags & FATM_REGS_INUSE))
260			break;
261		cv_wait(&sc->cv_regs, &sc->mtx);
262	}
263	sc->flags |= FATM_REGS_INUSE;
264
265	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
266
267	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
268	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
269		sc->istats.cmd_queue_full++;
270		return (EIO);
271	}
272	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
273
274	q->error = 0;
275	q->cb = fatm_utopia_readregs_complete;
276	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
277	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
278
279	bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map, BUS_DMASYNC_PREREAD);
280
281	WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, sc->reg_mem.paddr);
282	BARRIER_W(sc);
283	WRITE4(sc, q->q.card + FATMOC_OP,
284	    FATM_OP_OC3_GET_REG | FATM_OP_INTERRUPT_SEL);
285	BARRIER_W(sc);
286
287	/*
288	 * Wait for the command to complete
289	 */
290	error = msleep(&sc->reg_mem, &sc->mtx, PZERO | PCATCH,
291	    "fatm_getreg", hz);
292
293	switch(error) {
294
295	  case EWOULDBLOCK:
296		error = EIO;
297		break;
298
299	  case ERESTART:
300		error = EINTR;
301		break;
302
303	  case 0:
304		bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map,
305		    BUS_DMASYNC_POSTREAD);
306		error = q->error;
307		break;
308	}
309
310	if (error != 0) {
311		/* declare buffer to be free */
312		sc->flags &= ~FATM_REGS_INUSE;
313		cv_signal(&sc->cv_regs);
314		return (error);
315	}
316
317	/* swap if needed */
318	ptr = (uint32_t *)sc->reg_mem.mem;
319	for (i = 0; i < FATM_NREGS; i++)
320		ptr[i] = le32toh(ptr[i]) & 0xff;
321
322	return (0);
323}
324
325/*
326 * Read SUNI registers for the SUNI module.
327 *
328 * We assume, that we already hold the mutex.
329 */
330static int
331fatm_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *valp, u_int *np)
332{
333	int err;
334	int i;
335	struct fatm_softc *sc;
336
337	if (reg >= FATM_NREGS)
338		return (EINVAL);
339	if (reg + *np > FATM_NREGS)
340		*np = FATM_NREGS - reg;
341	sc = ifatm->ifp->if_softc;
342	FATM_CHECKLOCK(sc);
343
344	err = fatm_utopia_readregs_internal(sc);
345	if (err != 0)
346		return (err);
347
348	for (i = 0; i < *np; i++)
349		valp[i] = ((uint32_t *)sc->reg_mem.mem)[reg + i];
350
351	/* declare buffer to be free */
352	sc->flags &= ~FATM_REGS_INUSE;
353	cv_signal(&sc->cv_regs);
354
355	return (0);
356}
357
358/*
359 * Check whether the hard is beating. We remember the last heart beat and
360 * compare it to the current one. If it appears stuck for 10 times, we have
361 * a problem.
362 *
363 * Assume we hold the lock.
364 */
365static void
366fatm_check_heartbeat(struct fatm_softc *sc)
367{
368	uint32_t h;
369
370	FATM_CHECKLOCK(sc);
371
372	h = READ4(sc, FATMO_HEARTBEAT);
373	DBG(sc, BEAT, ("heartbeat %08x", h));
374
375	if (sc->stop_cnt == 10)
376		return;
377
378	if (h == sc->heartbeat) {
379		if (++sc->stop_cnt == 10) {
380			log(LOG_ERR, "i960 stopped???\n");
381			WRITE4(sc, FATMO_HIMR, 1);
382		}
383		return;
384	}
385
386	sc->stop_cnt = 0;
387	sc->heartbeat = h;
388}
389
390/*
391 * Ensure that the heart is still beating.
392 */
393static void
394fatm_watchdog(void *arg)
395{
396	struct fatm_softc *sc;
397
398	sc = arg;
399	FATM_CHECKLOCK(sc);
400	fatm_check_heartbeat(sc);
401	callout_reset(&sc->watchdog_timer, hz * 5, fatm_watchdog, sc);
402}
403
404/*
405 * Hard reset the i960 on the board. This is done by initializing registers,
406 * clearing interrupts and waiting for the selftest to finish. Not sure,
407 * whether all these barriers are actually needed.
408 *
409 * Assumes that we hold the lock.
410 */
411static int
412fatm_reset(struct fatm_softc *sc)
413{
414	int w;
415	uint32_t val;
416
417	FATM_CHECKLOCK(sc);
418
419	WRITE4(sc, FATMO_APP_BASE, FATMO_COMMON_ORIGIN);
420	BARRIER_W(sc);
421
422	WRITE4(sc, FATMO_UART_TO_960, XMIT_READY);
423	BARRIER_W(sc);
424
425	WRITE4(sc, FATMO_UART_TO_HOST, XMIT_READY);
426	BARRIER_W(sc);
427
428	WRITE4(sc, FATMO_BOOT_STATUS, COLD_START);
429	BARRIER_W(sc);
430
431	WRITE1(sc, FATMO_HCR, FATM_HCR_RESET);
432	BARRIER_W(sc);
433
434	DELAY(1000);
435
436	WRITE1(sc, FATMO_HCR, 0);
437	BARRIER_RW(sc);
438
439	DELAY(1000);
440
441	for (w = 100; w; w--) {
442		BARRIER_R(sc);
443		val = READ4(sc, FATMO_BOOT_STATUS);
444		switch (val) {
445		  case SELF_TEST_OK:
446			return (0);
447		  case SELF_TEST_FAIL:
448			return (EIO);
449		}
450		DELAY(1000);
451	}
452	return (EIO);
453}
454
455/*
456 * Stop the card. Must be called WITH the lock held
457 * Reset, free transmit and receive buffers. Wakeup everybody who may sleep.
458 */
459static void
460fatm_stop(struct fatm_softc *sc)
461{
462	int i;
463	struct cmdqueue *q;
464	struct rbuf *rb;
465	struct txqueue *tx;
466	uint32_t stat;
467
468	FATM_CHECKLOCK(sc);
469
470	/* Stop the board */
471	utopia_stop(&sc->utopia);
472	(void)fatm_reset(sc);
473
474	/* stop watchdog */
475	callout_stop(&sc->watchdog_timer);
476
477	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
478		sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
479		ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
480		    sc->utopia.carrier == UTP_CARR_OK);
481
482		/*
483		 * Collect transmit mbufs, partial receive mbufs and
484		 * supplied mbufs
485		 */
486		for (i = 0; i < FATM_TX_QLEN; i++) {
487			tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
488			if (tx->m) {
489				bus_dmamap_unload(sc->tx_tag, tx->map);
490				m_freem(tx->m);
491				tx->m = NULL;
492			}
493		}
494
495		/* Collect supplied mbufs */
496		while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
497			LIST_REMOVE(rb, link);
498			bus_dmamap_unload(sc->rbuf_tag, rb->map);
499			m_free(rb->m);
500			rb->m = NULL;
501			LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
502		}
503
504		/* Unwait any waiters */
505		wakeup(&sc->sadi_mem);
506
507		/* wakeup all threads waiting for STAT or REG buffers */
508		cv_broadcast(&sc->cv_stat);
509		cv_broadcast(&sc->cv_regs);
510
511		sc->flags &= ~(FATM_STAT_INUSE | FATM_REGS_INUSE);
512
513		/* wakeup all threads waiting on commands */
514		for (i = 0; i < FATM_CMD_QLEN; i++) {
515			q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, i);
516
517			H_SYNCSTAT_POSTREAD(sc, q->q.statp);
518			if ((stat = H_GETSTAT(q->q.statp)) != FATM_STAT_FREE) {
519				H_SETSTAT(q->q.statp, stat | FATM_STAT_ERROR);
520				H_SYNCSTAT_PREWRITE(sc, q->q.statp);
521				wakeup(q);
522			}
523		}
524		utopia_reset_media(&sc->utopia);
525	}
526	sc->small_cnt = sc->large_cnt = 0;
527
528	/* Reset vcc info */
529	if (sc->vccs != NULL) {
530		sc->open_vccs = 0;
531		for (i = 0; i < FORE_MAX_VCC + 1; i++) {
532			if (sc->vccs[i] != NULL) {
533				if ((sc->vccs[i]->vflags & (FATM_VCC_OPEN |
534				    FATM_VCC_TRY_OPEN)) == 0) {
535					uma_zfree(sc->vcc_zone, sc->vccs[i]);
536					sc->vccs[i] = NULL;
537				} else {
538					sc->vccs[i]->vflags = 0;
539					sc->open_vccs++;
540				}
541			}
542		}
543	}
544
545}
546
547/*
548 * Load the firmware into the board and save the entry point.
549 */
550static uint32_t
551firmware_load(struct fatm_softc *sc)
552{
553	struct firmware *fw = (struct firmware *)firmware;
554
555	DBG(sc, INIT, ("loading - entry=%x", fw->entry));
556	bus_space_write_region_4(sc->memt, sc->memh, fw->offset, firmware,
557	    sizeof(firmware) / sizeof(firmware[0]));
558	BARRIER_RW(sc);
559
560	return (fw->entry);
561}
562
563/*
564 * Read a character from the virtual UART. The availability of a character
565 * is signaled by a non-null value of the 32 bit register. The eating of
566 * the character by us is signalled to the card by setting that register
567 * to zero.
568 */
569static int
570rx_getc(struct fatm_softc *sc)
571{
572	int w = 50;
573	int c;
574
575	while (w--) {
576		c = READ4(sc, FATMO_UART_TO_HOST);
577		BARRIER_RW(sc);
578		if (c != 0) {
579			WRITE4(sc, FATMO_UART_TO_HOST, 0);
580			DBGC(sc, UART, ("%c", c & 0xff));
581			return (c & 0xff);
582		}
583		DELAY(1000);
584	}
585	return (-1);
586}
587
588/*
589 * Eat up characters from the board and stuff them in the bit-bucket.
590 */
591static void
592rx_flush(struct fatm_softc *sc)
593{
594	int w = 10000;
595
596	while (w-- && rx_getc(sc) >= 0)
597		;
598}
599
600/*
601 * Write a character to the card. The UART is available if the register
602 * is zero.
603 */
604static int
605tx_putc(struct fatm_softc *sc, u_char c)
606{
607	int w = 10;
608	int c1;
609
610	while (w--) {
611		c1 = READ4(sc, FATMO_UART_TO_960);
612		BARRIER_RW(sc);
613		if (c1 == 0) {
614			WRITE4(sc, FATMO_UART_TO_960, c | CHAR_AVAIL);
615			DBGC(sc, UART, ("%c", c & 0xff));
616			return (0);
617		}
618		DELAY(1000);
619	}
620	return (-1);
621}
622
623/*
624 * Start the firmware. This is doing by issuing a 'go' command with
625 * the hex entry address of the firmware. Then we wait for the self-test to
626 * succeed.
627 */
628static int
629fatm_start_firmware(struct fatm_softc *sc, uint32_t start)
630{
631	static char hex[] = "0123456789abcdef";
632	u_int w, val;
633
634	DBG(sc, INIT, ("starting"));
635	rx_flush(sc);
636	tx_putc(sc, '\r');
637	DELAY(1000);
638
639	rx_flush(sc);
640
641	tx_putc(sc, 'g');
642	(void)rx_getc(sc);
643	tx_putc(sc, 'o');
644	(void)rx_getc(sc);
645	tx_putc(sc, ' ');
646	(void)rx_getc(sc);
647
648	tx_putc(sc, hex[(start >> 12) & 0xf]);
649	(void)rx_getc(sc);
650	tx_putc(sc, hex[(start >>  8) & 0xf]);
651	(void)rx_getc(sc);
652	tx_putc(sc, hex[(start >>  4) & 0xf]);
653	(void)rx_getc(sc);
654	tx_putc(sc, hex[(start >>  0) & 0xf]);
655	(void)rx_getc(sc);
656
657	tx_putc(sc, '\r');
658	rx_flush(sc);
659
660	for (w = 100; w; w--) {
661		BARRIER_R(sc);
662		val = READ4(sc, FATMO_BOOT_STATUS);
663		switch (val) {
664		  case CP_RUNNING:
665			return (0);
666		  case SELF_TEST_FAIL:
667			return (EIO);
668		}
669		DELAY(1000);
670	}
671	return (EIO);
672}
673
674/*
675 * Initialize one card and host queue.
676 */
677static void
678init_card_queue(struct fatm_softc *sc, struct fqueue *queue, int qlen,
679    size_t qel_size, size_t desc_size, cardoff_t off,
680    u_char **statpp, uint32_t *cardstat, u_char *descp, uint32_t carddesc)
681{
682	struct fqelem *el = queue->chunk;
683
684	while (qlen--) {
685		el->card = off;
686		off += 8;	/* size of card entry */
687
688		el->statp = (uint32_t *)(*statpp);
689		(*statpp) += sizeof(uint32_t);
690		H_SETSTAT(el->statp, FATM_STAT_FREE);
691		H_SYNCSTAT_PREWRITE(sc, el->statp);
692
693		WRITE4(sc, el->card + FATMOS_STATP, (*cardstat));
694		(*cardstat) += sizeof(uint32_t);
695
696		el->ioblk = descp;
697		descp += desc_size;
698		el->card_ioblk = carddesc;
699		carddesc += desc_size;
700
701		el = (struct fqelem *)((u_char *)el + qel_size);
702	}
703	queue->tail = queue->head = 0;
704}
705
706/*
707 * Issue the initialize operation to the card, wait for completion and
708 * initialize the on-board and host queue structures with offsets and
709 * addresses.
710 */
711static int
712fatm_init_cmd(struct fatm_softc *sc)
713{
714	int w, c;
715	u_char *statp;
716	uint32_t card_stat;
717	u_int cnt;
718	struct fqelem *el;
719	cardoff_t off;
720
721	DBG(sc, INIT, ("command"));
722	WRITE4(sc, FATMO_ISTAT, 0);
723	WRITE4(sc, FATMO_IMASK, 1);
724	WRITE4(sc, FATMO_HLOGGER, 0);
725
726	WRITE4(sc, FATMO_INIT + FATMOI_RECEIVE_TRESHOLD, 0);
727	WRITE4(sc, FATMO_INIT + FATMOI_NUM_CONNECT, FORE_MAX_VCC);
728	WRITE4(sc, FATMO_INIT + FATMOI_CQUEUE_LEN, FATM_CMD_QLEN);
729	WRITE4(sc, FATMO_INIT + FATMOI_TQUEUE_LEN, FATM_TX_QLEN);
730	WRITE4(sc, FATMO_INIT + FATMOI_RQUEUE_LEN, FATM_RX_QLEN);
731	WRITE4(sc, FATMO_INIT + FATMOI_RPD_EXTENSION, RPD_EXTENSIONS);
732	WRITE4(sc, FATMO_INIT + FATMOI_TPD_EXTENSION, TPD_EXTENSIONS);
733
734	/*
735	 * initialize buffer descriptors
736	 */
737	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_QUEUE_LENGTH,
738	    SMALL_SUPPLY_QLEN);
739	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_BUFFER_SIZE,
740	    SMALL_BUFFER_LEN);
741	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_POOL_SIZE,
742	    SMALL_POOL_SIZE);
743	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_SUPPLY_BLKSIZE,
744	    SMALL_SUPPLY_BLKSIZE);
745
746	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_QUEUE_LENGTH,
747	    LARGE_SUPPLY_QLEN);
748	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_BUFFER_SIZE,
749	    LARGE_BUFFER_LEN);
750	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_POOL_SIZE,
751	    LARGE_POOL_SIZE);
752	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_SUPPLY_BLKSIZE,
753	    LARGE_SUPPLY_BLKSIZE);
754
755	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_QUEUE_LENGTH, 0);
756	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_BUFFER_SIZE, 0);
757	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_POOL_SIZE, 0);
758	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
759
760	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_QUEUE_LENGTH, 0);
761	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_BUFFER_SIZE, 0);
762	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_POOL_SIZE, 0);
763	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
764
765	/*
766	 * Start the command
767	 */
768	BARRIER_W(sc);
769	WRITE4(sc, FATMO_INIT + FATMOI_STATUS, FATM_STAT_PENDING);
770	BARRIER_W(sc);
771	WRITE4(sc, FATMO_INIT + FATMOI_OP, FATM_OP_INITIALIZE);
772	BARRIER_W(sc);
773
774	/*
775	 * Busy wait for completion
776	 */
777	w = 100;
778	while (w--) {
779		c = READ4(sc, FATMO_INIT + FATMOI_STATUS);
780		BARRIER_R(sc);
781		if (c & FATM_STAT_COMPLETE)
782			break;
783		DELAY(1000);
784	}
785
786	if (c & FATM_STAT_ERROR)
787		return (EIO);
788
789	/*
790	 * Initialize the queues
791	 */
792	statp = sc->stat_mem.mem;
793	card_stat = sc->stat_mem.paddr;
794
795	/*
796	 * Command queue. This is special in that it's on the card.
797	 */
798	el = sc->cmdqueue.chunk;
799	off = READ4(sc, FATMO_COMMAND_QUEUE);
800	DBG(sc, INIT, ("cmd queue=%x", off));
801	for (cnt = 0; cnt < FATM_CMD_QLEN; cnt++) {
802		el = &((struct cmdqueue *)sc->cmdqueue.chunk + cnt)->q;
803
804		el->card = off;
805		off += 32;		/* size of card structure */
806
807		el->statp = (uint32_t *)statp;
808		statp += sizeof(uint32_t);
809		H_SETSTAT(el->statp, FATM_STAT_FREE);
810		H_SYNCSTAT_PREWRITE(sc, el->statp);
811
812		WRITE4(sc, el->card + FATMOC_STATP, card_stat);
813		card_stat += sizeof(uint32_t);
814	}
815	sc->cmdqueue.tail = sc->cmdqueue.head = 0;
816
817	/*
818	 * Now the other queues. These are in memory
819	 */
820	init_card_queue(sc, &sc->txqueue, FATM_TX_QLEN,
821	    sizeof(struct txqueue), TPD_SIZE,
822	    READ4(sc, FATMO_TRANSMIT_QUEUE),
823	    &statp, &card_stat, sc->txq_mem.mem, sc->txq_mem.paddr);
824
825	init_card_queue(sc, &sc->rxqueue, FATM_RX_QLEN,
826	    sizeof(struct rxqueue), RPD_SIZE,
827	    READ4(sc, FATMO_RECEIVE_QUEUE),
828	    &statp, &card_stat, sc->rxq_mem.mem, sc->rxq_mem.paddr);
829
830	init_card_queue(sc, &sc->s1queue, SMALL_SUPPLY_QLEN,
831	    sizeof(struct supqueue), BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE),
832	    READ4(sc, FATMO_SMALL_B1_QUEUE),
833	    &statp, &card_stat, sc->s1q_mem.mem, sc->s1q_mem.paddr);
834
835	init_card_queue(sc, &sc->l1queue, LARGE_SUPPLY_QLEN,
836	    sizeof(struct supqueue), BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE),
837	    READ4(sc, FATMO_LARGE_B1_QUEUE),
838	    &statp, &card_stat, sc->l1q_mem.mem, sc->l1q_mem.paddr);
839
840	sc->txcnt = 0;
841
842	return (0);
843}
844
845/*
846 * Read PROM. Called only from attach code. Here we spin because the interrupt
847 * handler is not yet set up.
848 */
849static int
850fatm_getprom(struct fatm_softc *sc)
851{
852	int i;
853	struct prom *prom;
854	struct cmdqueue *q;
855
856	DBG(sc, INIT, ("reading prom"));
857	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
858	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
859
860	q->error = 0;
861	q->cb = NULL;
862	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
863	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
864
865	bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
866	    BUS_DMASYNC_PREREAD);
867
868	WRITE4(sc, q->q.card + FATMOC_GPROM_BUF, sc->prom_mem.paddr);
869	BARRIER_W(sc);
870	WRITE4(sc, q->q.card + FATMOC_OP, FATM_OP_GET_PROM_DATA);
871	BARRIER_W(sc);
872
873	for (i = 0; i < 1000; i++) {
874		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
875		if (H_GETSTAT(q->q.statp) &
876		    (FATM_STAT_COMPLETE | FATM_STAT_ERROR))
877			break;
878		DELAY(1000);
879	}
880	if (i == 1000) {
881		if_printf(sc->ifp, "getprom timeout\n");
882		return (EIO);
883	}
884	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
885	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
886		if_printf(sc->ifp, "getprom error\n");
887		return (EIO);
888	}
889	H_SETSTAT(q->q.statp, FATM_STAT_FREE);
890	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
891	NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
892
893	bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
894	    BUS_DMASYNC_POSTREAD);
895
896
897#ifdef notdef
898	{
899		u_int i;
900
901		printf("PROM: ");
902		u_char *ptr = (u_char *)sc->prom_mem.mem;
903		for (i = 0; i < sizeof(struct prom); i++)
904			printf("%02x ", *ptr++);
905		printf("\n");
906	}
907#endif
908
909	prom = (struct prom *)sc->prom_mem.mem;
910
911	bcopy(prom->mac + 2, IFP2IFATM(sc->ifp)->mib.esi, 6);
912	IFP2IFATM(sc->ifp)->mib.serial = le32toh(prom->serial);
913	IFP2IFATM(sc->ifp)->mib.hw_version = le32toh(prom->version);
914	IFP2IFATM(sc->ifp)->mib.sw_version = READ4(sc, FATMO_FIRMWARE_RELEASE);
915
916	if_printf(sc->ifp, "ESI=%02x:%02x:%02x:%02x:%02x:%02x "
917	    "serial=%u hw=0x%x sw=0x%x\n", IFP2IFATM(sc->ifp)->mib.esi[0],
918	    IFP2IFATM(sc->ifp)->mib.esi[1], IFP2IFATM(sc->ifp)->mib.esi[2], IFP2IFATM(sc->ifp)->mib.esi[3],
919	    IFP2IFATM(sc->ifp)->mib.esi[4], IFP2IFATM(sc->ifp)->mib.esi[5], IFP2IFATM(sc->ifp)->mib.serial,
920	    IFP2IFATM(sc->ifp)->mib.hw_version, IFP2IFATM(sc->ifp)->mib.sw_version);
921
922	return (0);
923}
924
925/*
926 * This is the callback function for bus_dmamap_load. We assume, that we
927 * have a 32-bit bus and so have always one segment.
928 */
929static void
930dmaload_helper(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
931{
932	bus_addr_t *ptr = (bus_addr_t *)arg;
933
934	if (error != 0) {
935		printf("%s: error=%d\n", __func__, error);
936		return;
937	}
938	KASSERT(nsegs == 1, ("too many DMA segments"));
939	KASSERT(segs[0].ds_addr <= 0xffffffff, ("DMA address too large %lx",
940	    (u_long)segs[0].ds_addr));
941
942	*ptr = segs[0].ds_addr;
943}
944
945/*
946 * Allocate a chunk of DMA-able memory and map it.
947 */
948static int
949alloc_dma_memory(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
950{
951	int error;
952
953	mem->mem = NULL;
954
955	if (bus_dma_tag_create(sc->parent_dmat, mem->align, 0,
956	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
957	    NULL, NULL, mem->size, 1, BUS_SPACE_MAXSIZE_32BIT,
958	    BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
959		if_printf(sc->ifp, "could not allocate %s DMA tag\n",
960		    nm);
961		return (ENOMEM);
962	}
963
964	error = bus_dmamem_alloc(mem->dmat, &mem->mem, 0, &mem->map);
965	if (error) {
966		if_printf(sc->ifp, "could not allocate %s DMA memory: "
967		    "%d\n", nm, error);
968		bus_dma_tag_destroy(mem->dmat);
969		mem->mem = NULL;
970		return (error);
971	}
972
973	error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
974	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
975	if (error) {
976		if_printf(sc->ifp, "could not load %s DMA memory: "
977		    "%d\n", nm, error);
978		bus_dmamem_free(mem->dmat, mem->mem, mem->map);
979		bus_dma_tag_destroy(mem->dmat);
980		mem->mem = NULL;
981		return (error);
982	}
983
984	DBG(sc, DMA, ("DMA %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
985	    (u_long)mem->paddr, mem->size, mem->align));
986
987	return (0);
988}
989
990#ifdef TEST_DMA_SYNC
991static int
992alloc_dma_memoryX(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
993{
994	int error;
995
996	mem->mem = NULL;
997
998	if (bus_dma_tag_create(NULL, mem->align, 0,
999	    BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR,
1000	    NULL, NULL, mem->size, 1, mem->size,
1001	    BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
1002		if_printf(sc->ifp, "could not allocate %s DMA tag\n",
1003		    nm);
1004		return (ENOMEM);
1005	}
1006
1007	mem->mem = contigmalloc(mem->size, M_DEVBUF, M_WAITOK,
1008	    BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR_32BIT, mem->align, 0);
1009
1010	error = bus_dmamap_create(mem->dmat, 0, &mem->map);
1011	if (error) {
1012		if_printf(sc->ifp, "could not allocate %s DMA map: "
1013		    "%d\n", nm, error);
1014		contigfree(mem->mem, mem->size, M_DEVBUF);
1015		bus_dma_tag_destroy(mem->dmat);
1016		mem->mem = NULL;
1017		return (error);
1018	}
1019
1020	error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
1021	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
1022	if (error) {
1023		if_printf(sc->ifp, "could not load %s DMA memory: "
1024		    "%d\n", nm, error);
1025		bus_dmamap_destroy(mem->dmat, mem->map);
1026		contigfree(mem->mem, mem->size, M_DEVBUF);
1027		bus_dma_tag_destroy(mem->dmat);
1028		mem->mem = NULL;
1029		return (error);
1030	}
1031
1032	DBG(sc, DMA, ("DMAX %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
1033	    (u_long)mem->paddr, mem->size, mem->align));
1034
1035	printf("DMAX: %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
1036	    (u_long)mem->paddr, mem->size, mem->align);
1037
1038	return (0);
1039}
1040#endif /* TEST_DMA_SYNC */
1041
1042/*
1043 * Destroy all resources of an dma-able memory chunk
1044 */
1045static void
1046destroy_dma_memory(struct fatm_mem *mem)
1047{
1048	if (mem->mem != NULL) {
1049		bus_dmamap_unload(mem->dmat, mem->map);
1050		bus_dmamem_free(mem->dmat, mem->mem, mem->map);
1051		bus_dma_tag_destroy(mem->dmat);
1052		mem->mem = NULL;
1053	}
1054}
1055#ifdef TEST_DMA_SYNC
1056static void
1057destroy_dma_memoryX(struct fatm_mem *mem)
1058{
1059	if (mem->mem != NULL) {
1060		bus_dmamap_unload(mem->dmat, mem->map);
1061		bus_dmamap_destroy(mem->dmat, mem->map);
1062		contigfree(mem->mem, mem->size, M_DEVBUF);
1063		bus_dma_tag_destroy(mem->dmat);
1064		mem->mem = NULL;
1065	}
1066}
1067#endif /* TEST_DMA_SYNC */
1068
1069/*
1070 * Try to supply buffers to the card if there are free entries in the queues
1071 */
1072static void
1073fatm_supply_small_buffers(struct fatm_softc *sc)
1074{
1075	int nblocks, nbufs;
1076	struct supqueue *q;
1077	struct rbd *bd;
1078	int i, j, error, cnt;
1079	struct mbuf *m;
1080	struct rbuf *rb;
1081	bus_addr_t phys;
1082
1083	nbufs = max(4 * sc->open_vccs, 32);
1084	nbufs = min(nbufs, SMALL_POOL_SIZE);
1085	nbufs -= sc->small_cnt;
1086
1087	nblocks = (nbufs + SMALL_SUPPLY_BLKSIZE - 1) / SMALL_SUPPLY_BLKSIZE;
1088	for (cnt = 0; cnt < nblocks; cnt++) {
1089		q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.head);
1090
1091		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1092		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
1093			break;
1094
1095		bd = (struct rbd *)q->q.ioblk;
1096
1097		for (i = 0; i < SMALL_SUPPLY_BLKSIZE; i++) {
1098			if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
1099				if_printf(sc->ifp, "out of rbufs\n");
1100				break;
1101			}
1102			MGETHDR(m, M_DONTWAIT, MT_DATA);
1103			if (m == NULL) {
1104				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1105				break;
1106			}
1107			MH_ALIGN(m, SMALL_BUFFER_LEN);
1108			error = bus_dmamap_load(sc->rbuf_tag, rb->map,
1109			    m->m_data, SMALL_BUFFER_LEN, dmaload_helper,
1110			    &phys, BUS_DMA_NOWAIT);
1111			if (error) {
1112				if_printf(sc->ifp,
1113				    "dmamap_load mbuf failed %d", error);
1114				m_freem(m);
1115				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1116				break;
1117			}
1118			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1119			    BUS_DMASYNC_PREREAD);
1120
1121			LIST_REMOVE(rb, link);
1122			LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
1123
1124			rb->m = m;
1125			bd[i].handle = rb - sc->rbufs;
1126			H_SETDESC(bd[i].buffer, phys);
1127		}
1128
1129		if (i < SMALL_SUPPLY_BLKSIZE) {
1130			for (j = 0; j < i; j++) {
1131				rb = sc->rbufs + bd[j].handle;
1132				bus_dmamap_unload(sc->rbuf_tag, rb->map);
1133				m_free(rb->m);
1134				rb->m = NULL;
1135
1136				LIST_REMOVE(rb, link);
1137				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1138			}
1139			break;
1140		}
1141		H_SYNCQ_PREWRITE(&sc->s1q_mem, bd,
1142		    sizeof(struct rbd) * SMALL_SUPPLY_BLKSIZE);
1143
1144		H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1145		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1146
1147		WRITE4(sc, q->q.card, q->q.card_ioblk);
1148		BARRIER_W(sc);
1149
1150		sc->small_cnt += SMALL_SUPPLY_BLKSIZE;
1151
1152		NEXT_QUEUE_ENTRY(sc->s1queue.head, SMALL_SUPPLY_QLEN);
1153	}
1154}
1155
1156/*
1157 * Try to supply buffers to the card if there are free entries in the queues
1158 * We assume that all buffers are within the address space accessible by the
1159 * card (32-bit), so we don't need bounce buffers.
1160 */
1161static void
1162fatm_supply_large_buffers(struct fatm_softc *sc)
1163{
1164	int nbufs, nblocks, cnt;
1165	struct supqueue *q;
1166	struct rbd *bd;
1167	int i, j, error;
1168	struct mbuf *m;
1169	struct rbuf *rb;
1170	bus_addr_t phys;
1171
1172	nbufs = max(4 * sc->open_vccs, 32);
1173	nbufs = min(nbufs, LARGE_POOL_SIZE);
1174	nbufs -= sc->large_cnt;
1175
1176	nblocks = (nbufs + LARGE_SUPPLY_BLKSIZE - 1) / LARGE_SUPPLY_BLKSIZE;
1177
1178	for (cnt = 0; cnt < nblocks; cnt++) {
1179		q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.head);
1180
1181		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1182		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
1183			break;
1184
1185		bd = (struct rbd *)q->q.ioblk;
1186
1187		for (i = 0; i < LARGE_SUPPLY_BLKSIZE; i++) {
1188			if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
1189				if_printf(sc->ifp, "out of rbufs\n");
1190				break;
1191			}
1192			if ((m = m_getcl(M_DONTWAIT, MT_DATA,
1193			    M_PKTHDR)) == NULL) {
1194				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1195				break;
1196			}
1197			/* No MEXT_ALIGN */
1198			m->m_data += MCLBYTES - LARGE_BUFFER_LEN;
1199			error = bus_dmamap_load(sc->rbuf_tag, rb->map,
1200			    m->m_data, LARGE_BUFFER_LEN, dmaload_helper,
1201			    &phys, BUS_DMA_NOWAIT);
1202			if (error) {
1203				if_printf(sc->ifp,
1204				    "dmamap_load mbuf failed %d", error);
1205				m_freem(m);
1206				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1207				break;
1208			}
1209
1210			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1211			    BUS_DMASYNC_PREREAD);
1212
1213			LIST_REMOVE(rb, link);
1214			LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
1215
1216			rb->m = m;
1217			bd[i].handle = rb - sc->rbufs;
1218			H_SETDESC(bd[i].buffer, phys);
1219		}
1220
1221		if (i < LARGE_SUPPLY_BLKSIZE) {
1222			for (j = 0; j < i; j++) {
1223				rb = sc->rbufs + bd[j].handle;
1224				bus_dmamap_unload(sc->rbuf_tag, rb->map);
1225				m_free(rb->m);
1226				rb->m = NULL;
1227
1228				LIST_REMOVE(rb, link);
1229				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1230			}
1231			break;
1232		}
1233		H_SYNCQ_PREWRITE(&sc->l1q_mem, bd,
1234		    sizeof(struct rbd) * LARGE_SUPPLY_BLKSIZE);
1235
1236		H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1237		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1238		WRITE4(sc, q->q.card, q->q.card_ioblk);
1239		BARRIER_W(sc);
1240
1241		sc->large_cnt += LARGE_SUPPLY_BLKSIZE;
1242
1243		NEXT_QUEUE_ENTRY(sc->l1queue.head, LARGE_SUPPLY_QLEN);
1244	}
1245}
1246
1247
1248/*
1249 * Actually start the card. The lock must be held here.
1250 * Reset, load the firmware, start it, initializes queues, read the PROM
1251 * and supply receive buffers to the card.
1252 */
1253static void
1254fatm_init_locked(struct fatm_softc *sc)
1255{
1256	struct rxqueue *q;
1257	int i, c, error;
1258	uint32_t start;
1259
1260	DBG(sc, INIT, ("initialize"));
1261	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING)
1262		fatm_stop(sc);
1263
1264	/*
1265	 * Hard reset the board
1266	 */
1267	if (fatm_reset(sc))
1268		return;
1269
1270	start = firmware_load(sc);
1271	if (fatm_start_firmware(sc, start) || fatm_init_cmd(sc) ||
1272	    fatm_getprom(sc)) {
1273		fatm_reset(sc);
1274		return;
1275	}
1276
1277	/*
1278	 * Handle media
1279	 */
1280	c = READ4(sc, FATMO_MEDIA_TYPE);
1281	switch (c) {
1282
1283	  case FORE_MT_TAXI_100:
1284		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_TAXI_100;
1285		IFP2IFATM(sc->ifp)->mib.pcr = 227273;
1286		break;
1287
1288	  case FORE_MT_TAXI_140:
1289		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_TAXI_140;
1290		IFP2IFATM(sc->ifp)->mib.pcr = 318181;
1291		break;
1292
1293	  case FORE_MT_UTP_SONET:
1294		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UTP_155;
1295		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1296		break;
1297
1298	  case FORE_MT_MM_OC3_ST:
1299	  case FORE_MT_MM_OC3_SC:
1300		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_155;
1301		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1302		break;
1303
1304	  case FORE_MT_SM_OC3_ST:
1305	  case FORE_MT_SM_OC3_SC:
1306		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_SM_155;
1307		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1308		break;
1309
1310	  default:
1311		log(LOG_ERR, "fatm: unknown media type %d\n", c);
1312		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UNKNOWN;
1313		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1314		break;
1315	}
1316	sc->ifp->if_baudrate = 53 * 8 * IFP2IFATM(sc->ifp)->mib.pcr;
1317	utopia_init_media(&sc->utopia);
1318
1319	/*
1320	 * Initialize the RBDs
1321	 */
1322	for (i = 0; i < FATM_RX_QLEN; i++) {
1323		q = GET_QUEUE(sc->rxqueue, struct rxqueue, i);
1324		WRITE4(sc, q->q.card + 0, q->q.card_ioblk);
1325	}
1326	BARRIER_W(sc);
1327
1328	/*
1329	 * Supply buffers to the card
1330	 */
1331	fatm_supply_small_buffers(sc);
1332	fatm_supply_large_buffers(sc);
1333
1334	/*
1335	 * Now set flags, that we are ready
1336	 */
1337	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
1338
1339	/*
1340	 * Start the watchdog timer
1341	 */
1342	callout_reset(&sc->watchdog_timer, hz * 5, fatm_watchdog, sc);
1343
1344	/* start SUNI */
1345	utopia_start(&sc->utopia);
1346
1347	ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
1348	    sc->utopia.carrier == UTP_CARR_OK);
1349
1350	/* start all channels */
1351	for (i = 0; i < FORE_MAX_VCC + 1; i++)
1352		if (sc->vccs[i] != NULL) {
1353			sc->vccs[i]->vflags |= FATM_VCC_REOPEN;
1354			error = fatm_load_vc(sc, sc->vccs[i]);
1355			if (error != 0) {
1356				if_printf(sc->ifp, "reopening %u "
1357				    "failed: %d\n", i, error);
1358				sc->vccs[i]->vflags &= ~FATM_VCC_REOPEN;
1359			}
1360		}
1361
1362	DBG(sc, INIT, ("done"));
1363}
1364
1365/*
1366 * This is the exported as initialisation function.
1367 */
1368static void
1369fatm_init(void *p)
1370{
1371	struct fatm_softc *sc = p;
1372
1373	FATM_LOCK(sc);
1374	fatm_init_locked(sc);
1375	FATM_UNLOCK(sc);
1376}
1377
1378/************************************************************/
1379/*
1380 * The INTERRUPT handling
1381 */
1382/*
1383 * Check the command queue. If a command was completed, call the completion
1384 * function for that command.
1385 */
1386static void
1387fatm_intr_drain_cmd(struct fatm_softc *sc)
1388{
1389	struct cmdqueue *q;
1390	int stat;
1391
1392	/*
1393	 * Drain command queue
1394	 */
1395	for (;;) {
1396		q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.tail);
1397
1398		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1399		stat = H_GETSTAT(q->q.statp);
1400
1401		if (stat != FATM_STAT_COMPLETE &&
1402		   stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
1403		   stat != FATM_STAT_ERROR)
1404			break;
1405
1406		(*q->cb)(sc, q);
1407
1408		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1409		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1410
1411		NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
1412	}
1413}
1414
1415/*
1416 * Drain the small buffer supply queue.
1417 */
1418static void
1419fatm_intr_drain_small_buffers(struct fatm_softc *sc)
1420{
1421	struct supqueue *q;
1422	int stat;
1423
1424	for (;;) {
1425		q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.tail);
1426
1427		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1428		stat = H_GETSTAT(q->q.statp);
1429
1430		if ((stat & FATM_STAT_COMPLETE) == 0)
1431			break;
1432		if (stat & FATM_STAT_ERROR)
1433			log(LOG_ERR, "%s: status %x\n", __func__, stat);
1434
1435		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1436		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1437
1438		NEXT_QUEUE_ENTRY(sc->s1queue.tail, SMALL_SUPPLY_QLEN);
1439	}
1440}
1441
1442/*
1443 * Drain the large buffer supply queue.
1444 */
1445static void
1446fatm_intr_drain_large_buffers(struct fatm_softc *sc)
1447{
1448	struct supqueue *q;
1449	int stat;
1450
1451	for (;;) {
1452		q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.tail);
1453
1454		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1455		stat = H_GETSTAT(q->q.statp);
1456
1457		if ((stat & FATM_STAT_COMPLETE) == 0)
1458			break;
1459		if (stat & FATM_STAT_ERROR)
1460			log(LOG_ERR, "%s status %x\n", __func__, stat);
1461
1462		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1463		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1464
1465		NEXT_QUEUE_ENTRY(sc->l1queue.tail, LARGE_SUPPLY_QLEN);
1466	}
1467}
1468
1469/*
1470 * Check the receive queue. Send any received PDU up the protocol stack
1471 * (except when there was an error or the VCI appears to be closed. In this
1472 * case discard the PDU).
1473 */
1474static void
1475fatm_intr_drain_rx(struct fatm_softc *sc)
1476{
1477	struct rxqueue *q;
1478	int stat, mlen;
1479	u_int i;
1480	uint32_t h;
1481	struct mbuf *last, *m0;
1482	struct rpd *rpd;
1483	struct rbuf *rb;
1484	u_int vci, vpi, pt;
1485	struct atm_pseudohdr aph;
1486	struct ifnet *ifp;
1487	struct card_vcc *vc;
1488
1489	for (;;) {
1490		q = GET_QUEUE(sc->rxqueue, struct rxqueue, sc->rxqueue.tail);
1491
1492		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1493		stat = H_GETSTAT(q->q.statp);
1494
1495		if ((stat & FATM_STAT_COMPLETE) == 0)
1496			break;
1497
1498		rpd = (struct rpd *)q->q.ioblk;
1499		H_SYNCQ_POSTREAD(&sc->rxq_mem, rpd, RPD_SIZE);
1500
1501		rpd->nseg = le32toh(rpd->nseg);
1502		mlen = 0;
1503		m0 = last = 0;
1504		for (i = 0; i < rpd->nseg; i++) {
1505			rb = sc->rbufs + rpd->segment[i].handle;
1506			if (m0 == NULL) {
1507				m0 = last = rb->m;
1508			} else {
1509				last->m_next = rb->m;
1510				last = rb->m;
1511			}
1512			last->m_next = NULL;
1513			if (last->m_flags & M_EXT)
1514				sc->large_cnt--;
1515			else
1516				sc->small_cnt--;
1517			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1518			    BUS_DMASYNC_POSTREAD);
1519			bus_dmamap_unload(sc->rbuf_tag, rb->map);
1520			rb->m = NULL;
1521
1522			LIST_REMOVE(rb, link);
1523			LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1524
1525			last->m_len = le32toh(rpd->segment[i].length);
1526			mlen += last->m_len;
1527		}
1528
1529		m0->m_pkthdr.len = mlen;
1530		m0->m_pkthdr.rcvif = sc->ifp;
1531
1532		h = le32toh(rpd->atm_header);
1533		vpi = (h >> 20) & 0xff;
1534		vci = (h >> 4 ) & 0xffff;
1535		pt  = (h >> 1 ) & 0x7;
1536
1537		/*
1538		 * Locate the VCC this packet belongs to
1539		 */
1540		if (!VC_OK(sc, vpi, vci))
1541			vc = NULL;
1542		else if ((vc = sc->vccs[vci]) == NULL ||
1543		    !(sc->vccs[vci]->vflags & FATM_VCC_OPEN)) {
1544			sc->istats.rx_closed++;
1545			vc = NULL;
1546		}
1547
1548		DBG(sc, RCV, ("RCV: vc=%u.%u pt=%u mlen=%d %s", vpi, vci,
1549		    pt, mlen, vc == NULL ? "dropped" : ""));
1550
1551		if (vc == NULL) {
1552			m_freem(m0);
1553		} else {
1554#ifdef ENABLE_BPF
1555			if (!(vc->param.flags & ATMIO_FLAG_NG) &&
1556			    vc->param.aal == ATMIO_AAL_5 &&
1557			    (vc->param.flags & ATM_PH_LLCSNAP))
1558				BPF_MTAP(sc->ifp, m0);
1559#endif
1560
1561			ATM_PH_FLAGS(&aph) = vc->param.flags;
1562			ATM_PH_VPI(&aph) = vpi;
1563			ATM_PH_SETVCI(&aph, vci);
1564
1565			ifp = sc->ifp;
1566			ifp->if_ipackets++;
1567
1568			vc->ipackets++;
1569			vc->ibytes += m0->m_pkthdr.len;
1570
1571			atm_input(ifp, &aph, m0, vc->rxhand);
1572		}
1573
1574		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1575		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1576
1577		WRITE4(sc, q->q.card, q->q.card_ioblk);
1578		BARRIER_W(sc);
1579
1580		NEXT_QUEUE_ENTRY(sc->rxqueue.tail, FATM_RX_QLEN);
1581	}
1582}
1583
1584/*
1585 * Check the transmit queue. Free the mbuf chains that we were transmitting.
1586 */
1587static void
1588fatm_intr_drain_tx(struct fatm_softc *sc)
1589{
1590	struct txqueue *q;
1591	int stat;
1592
1593	/*
1594	 * Drain tx queue
1595	 */
1596	for (;;) {
1597		q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.tail);
1598
1599		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1600		stat = H_GETSTAT(q->q.statp);
1601
1602		if (stat != FATM_STAT_COMPLETE &&
1603		    stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
1604		    stat != FATM_STAT_ERROR)
1605			break;
1606
1607		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1608		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1609
1610		bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_POSTWRITE);
1611		bus_dmamap_unload(sc->tx_tag, q->map);
1612
1613		m_freem(q->m);
1614		q->m = NULL;
1615		sc->txcnt--;
1616
1617		NEXT_QUEUE_ENTRY(sc->txqueue.tail, FATM_TX_QLEN);
1618	}
1619}
1620
1621/*
1622 * Interrupt handler
1623 */
1624static void
1625fatm_intr(void *p)
1626{
1627	struct fatm_softc *sc = (struct fatm_softc *)p;
1628
1629	FATM_LOCK(sc);
1630	if (!READ4(sc, FATMO_PSR)) {
1631		FATM_UNLOCK(sc);
1632		return;
1633	}
1634	WRITE4(sc, FATMO_HCR, FATM_HCR_CLRIRQ);
1635
1636	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1637		FATM_UNLOCK(sc);
1638		return;
1639	}
1640	fatm_intr_drain_cmd(sc);
1641	fatm_intr_drain_rx(sc);
1642	fatm_intr_drain_tx(sc);
1643	fatm_intr_drain_small_buffers(sc);
1644	fatm_intr_drain_large_buffers(sc);
1645	fatm_supply_small_buffers(sc);
1646	fatm_supply_large_buffers(sc);
1647
1648	FATM_UNLOCK(sc);
1649
1650	if (sc->retry_tx && _IF_QLEN(&sc->ifp->if_snd))
1651		(*sc->ifp->if_start)(sc->ifp);
1652}
1653
1654/*
1655 * Get device statistics. This must be called with the softc locked.
1656 * We use a preallocated buffer, so we need to protect this buffer.
1657 * We do this by using a condition variable and a flag. If the flag is set
1658 * the buffer is in use by one thread (one thread is executing a GETSTAT
1659 * card command). In this case all other threads that are trying to get
1660 * statistics block on that condition variable. When the thread finishes
1661 * using the buffer it resets the flag and signals the condition variable. This
1662 * will wakeup the next thread that is waiting for the buffer. If the interface
1663 * is stopped the stopping function will broadcast the cv. All threads will
1664 * find that the interface has been stopped and return.
1665 *
1666 * Aquiring of the buffer is done by the fatm_getstat() function. The freeing
1667 * must be done by the caller when he has finished using the buffer.
1668 */
1669static void
1670fatm_getstat_complete(struct fatm_softc *sc, struct cmdqueue *q)
1671{
1672
1673	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1674	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
1675		sc->istats.get_stat_errors++;
1676		q->error = EIO;
1677	}
1678	wakeup(&sc->sadi_mem);
1679}
1680static int
1681fatm_getstat(struct fatm_softc *sc)
1682{
1683	int error;
1684	struct cmdqueue *q;
1685
1686	/*
1687	 * Wait until either the interface is stopped or we can get the
1688	 * statistics buffer
1689	 */
1690	for (;;) {
1691		if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
1692			return (EIO);
1693		if (!(sc->flags & FATM_STAT_INUSE))
1694			break;
1695		cv_wait(&sc->cv_stat, &sc->mtx);
1696	}
1697	sc->flags |= FATM_STAT_INUSE;
1698
1699	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
1700
1701	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1702	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
1703		sc->istats.cmd_queue_full++;
1704		return (EIO);
1705	}
1706	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
1707
1708	q->error = 0;
1709	q->cb = fatm_getstat_complete;
1710	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1711	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1712
1713	bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
1714	    BUS_DMASYNC_PREREAD);
1715
1716	WRITE4(sc, q->q.card + FATMOC_GSTAT_BUF,
1717	    sc->sadi_mem.paddr);
1718	BARRIER_W(sc);
1719	WRITE4(sc, q->q.card + FATMOC_OP,
1720	    FATM_OP_REQUEST_STATS | FATM_OP_INTERRUPT_SEL);
1721	BARRIER_W(sc);
1722
1723	/*
1724	 * Wait for the command to complete
1725	 */
1726	error = msleep(&sc->sadi_mem, &sc->mtx, PZERO | PCATCH,
1727	    "fatm_stat", hz);
1728
1729	switch (error) {
1730
1731	  case EWOULDBLOCK:
1732		error = EIO;
1733		break;
1734
1735	  case ERESTART:
1736		error = EINTR;
1737		break;
1738
1739	  case 0:
1740		bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
1741		    BUS_DMASYNC_POSTREAD);
1742		error = q->error;
1743		break;
1744	}
1745
1746	/*
1747	 * Swap statistics
1748	 */
1749	if (q->error == 0) {
1750		u_int i;
1751		uint32_t *p = (uint32_t *)sc->sadi_mem.mem;
1752
1753		for (i = 0; i < sizeof(struct fatm_stats) / sizeof(uint32_t);
1754		    i++, p++)
1755			*p = be32toh(*p);
1756	}
1757
1758	return (error);
1759}
1760
1761/*
1762 * Create a copy of a single mbuf. It can have either internal or
1763 * external data, it may have a packet header. External data is really
1764 * copied, so the new buffer is writeable.
1765 */
1766static struct mbuf *
1767copy_mbuf(struct mbuf *m)
1768{
1769	struct mbuf *new;
1770
1771	MGET(new, M_DONTWAIT, MT_DATA);
1772	if (new == NULL)
1773		return (NULL);
1774
1775	if (m->m_flags & M_PKTHDR) {
1776		M_MOVE_PKTHDR(new, m);
1777		if (m->m_len > MHLEN)
1778			MCLGET(new, M_WAIT);
1779	} else {
1780		if (m->m_len > MLEN)
1781			MCLGET(new, M_WAIT);
1782	}
1783
1784	bcopy(m->m_data, new->m_data, m->m_len);
1785	new->m_len = m->m_len;
1786	new->m_flags &= ~M_RDONLY;
1787
1788	return (new);
1789}
1790
1791/*
1792 * All segments must have a four byte aligned buffer address and a four
1793 * byte aligned length. Step through an mbuf chain and check these conditions.
1794 * If the buffer address is not aligned and this is a normal mbuf, move
1795 * the data down. Else make a copy of the mbuf with aligned data.
1796 * If the buffer length is not aligned steel data from the next mbuf.
1797 * We don't need to check whether this has more than one external reference,
1798 * because steeling data doesn't change the external cluster.
1799 * If the last mbuf is not aligned, fill with zeroes.
1800 *
1801 * Return packet length (well we should have this in the packet header),
1802 * but be careful not to count the zero fill at the end.
1803 *
1804 * If fixing fails free the chain and zero the pointer.
1805 *
1806 * We assume, that aligning the virtual address also aligns the mapped bus
1807 * address.
1808 */
1809static u_int
1810fatm_fix_chain(struct fatm_softc *sc, struct mbuf **mp)
1811{
1812	struct mbuf *m = *mp, *prev = NULL, *next, *new;
1813	u_int mlen = 0, fill = 0;
1814	int first, off;
1815	u_char *d, *cp;
1816
1817	do {
1818		next = m->m_next;
1819
1820		if ((uintptr_t)mtod(m, void *) % 4 != 0 ||
1821		   (m->m_len % 4 != 0 && next)) {
1822			/*
1823			 * Needs fixing
1824			 */
1825			first = (m == *mp);
1826
1827			d = mtod(m, u_char *);
1828			if ((off = (uintptr_t)(void *)d % 4) != 0) {
1829				if (M_WRITABLE(m)) {
1830					sc->istats.fix_addr_copy++;
1831					bcopy(d, d - off, m->m_len);
1832					m->m_data = (caddr_t)(d - off);
1833				} else {
1834					if ((new = copy_mbuf(m)) == NULL) {
1835						sc->istats.fix_addr_noext++;
1836						goto fail;
1837					}
1838					sc->istats.fix_addr_ext++;
1839					if (prev)
1840						prev->m_next = new;
1841					new->m_next = next;
1842					m_free(m);
1843					m = new;
1844				}
1845			}
1846
1847			if ((off = m->m_len % 4) != 0) {
1848				if (!M_WRITABLE(m)) {
1849					if ((new = copy_mbuf(m)) == NULL) {
1850						sc->istats.fix_len_noext++;
1851						goto fail;
1852					}
1853					sc->istats.fix_len_copy++;
1854					if (prev)
1855						prev->m_next = new;
1856					new->m_next = next;
1857					m_free(m);
1858					m = new;
1859				} else
1860					sc->istats.fix_len++;
1861				d = mtod(m, u_char *) + m->m_len;
1862				off = 4 - off;
1863				while (off) {
1864					if (next == NULL) {
1865						*d++ = 0;
1866						fill++;
1867					} else if (next->m_len == 0) {
1868						sc->istats.fix_empty++;
1869						next = m_free(next);
1870						continue;
1871					} else {
1872						cp = mtod(next, u_char *);
1873						*d++ = *cp++;
1874						next->m_len--;
1875						next->m_data = (caddr_t)cp;
1876					}
1877					off--;
1878					m->m_len++;
1879				}
1880			}
1881
1882			if (first)
1883				*mp = m;
1884		}
1885
1886		mlen += m->m_len;
1887		prev = m;
1888	} while ((m = next) != NULL);
1889
1890	return (mlen - fill);
1891
1892  fail:
1893	m_freem(*mp);
1894	*mp = NULL;
1895	return (0);
1896}
1897
1898/*
1899 * The helper function is used to load the computed physical addresses
1900 * into the transmit descriptor.
1901 */
1902static void
1903fatm_tpd_load(void *varg, bus_dma_segment_t *segs, int nsegs,
1904    bus_size_t mapsize, int error)
1905{
1906	struct tpd *tpd = varg;
1907
1908	if (error)
1909		return;
1910
1911	KASSERT(nsegs <= TPD_EXTENSIONS + TXD_FIXED, ("too many segments"));
1912
1913	tpd->spec = 0;
1914	while (nsegs--) {
1915		H_SETDESC(tpd->segment[tpd->spec].buffer, segs->ds_addr);
1916		H_SETDESC(tpd->segment[tpd->spec].length, segs->ds_len);
1917		tpd->spec++;
1918		segs++;
1919	}
1920}
1921
1922/*
1923 * Start output.
1924 *
1925 * Note, that we update the internal statistics without the lock here.
1926 */
1927static int
1928fatm_tx(struct fatm_softc *sc, struct mbuf *m, struct card_vcc *vc, u_int mlen)
1929{
1930	struct txqueue *q;
1931	u_int nblks;
1932	int error, aal, nsegs;
1933	struct tpd *tpd;
1934
1935	/*
1936	 * Get a queue element.
1937	 * If there isn't one - try to drain the transmit queue
1938	 * We used to sleep here if that doesn't help, but we
1939	 * should not sleep here, because we are called with locks.
1940	 */
1941	q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.head);
1942
1943	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1944	if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
1945		fatm_intr_drain_tx(sc);
1946		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1947		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
1948			if (sc->retry_tx) {
1949				sc->istats.tx_retry++;
1950				IF_PREPEND(&sc->ifp->if_snd, m);
1951				return (1);
1952			}
1953			sc->istats.tx_queue_full++;
1954			m_freem(m);
1955			return (0);
1956		}
1957		sc->istats.tx_queue_almost_full++;
1958	}
1959
1960	tpd = q->q.ioblk;
1961
1962	m->m_data += sizeof(struct atm_pseudohdr);
1963	m->m_len -= sizeof(struct atm_pseudohdr);
1964
1965#ifdef ENABLE_BPF
1966	if (!(vc->param.flags & ATMIO_FLAG_NG) &&
1967	    vc->param.aal == ATMIO_AAL_5 &&
1968	    (vc->param.flags & ATM_PH_LLCSNAP))
1969		BPF_MTAP(sc->ifp, m);
1970#endif
1971
1972	/* map the mbuf */
1973	error = bus_dmamap_load_mbuf(sc->tx_tag, q->map, m,
1974	    fatm_tpd_load, tpd, BUS_DMA_NOWAIT);
1975	if(error) {
1976		sc->ifp->if_oerrors++;
1977		if_printf(sc->ifp, "mbuf loaded error=%d\n", error);
1978		m_freem(m);
1979		return (0);
1980	}
1981	nsegs = tpd->spec;
1982
1983	bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_PREWRITE);
1984
1985	/*
1986	 * OK. Now go and do it.
1987	 */
1988	aal = (vc->param.aal == ATMIO_AAL_5) ? 5 : 0;
1989
1990	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1991	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1992	q->m = m;
1993
1994	/*
1995	 * If the transmit queue is almost full, schedule a
1996	 * transmit interrupt so that transmit descriptors can
1997	 * be recycled.
1998	 */
1999	H_SETDESC(tpd->spec, TDX_MKSPEC((sc->txcnt >=
2000	    (4 * FATM_TX_QLEN) / 5), aal, nsegs, mlen));
2001	H_SETDESC(tpd->atm_header, TDX_MKHDR(vc->param.vpi,
2002	    vc->param.vci, 0, 0));
2003
2004	if (vc->param.traffic == ATMIO_TRAFFIC_UBR)
2005		H_SETDESC(tpd->stream, 0);
2006	else {
2007		u_int i;
2008
2009		for (i = 0; i < RATE_TABLE_SIZE; i++)
2010			if (rate_table[i].cell_rate < vc->param.tparam.pcr)
2011				break;
2012		if (i > 0)
2013			i--;
2014		H_SETDESC(tpd->stream, rate_table[i].ratio);
2015	}
2016	H_SYNCQ_PREWRITE(&sc->txq_mem, tpd, TPD_SIZE);
2017
2018	nblks = TDX_SEGS2BLKS(nsegs);
2019
2020	DBG(sc, XMIT, ("XMIT: mlen=%d spec=0x%x nsegs=%d blocks=%d",
2021	    mlen, le32toh(tpd->spec), nsegs, nblks));
2022
2023	WRITE4(sc, q->q.card + 0, q->q.card_ioblk | nblks);
2024	BARRIER_W(sc);
2025
2026	sc->txcnt++;
2027	sc->ifp->if_opackets++;
2028	vc->obytes += m->m_pkthdr.len;
2029	vc->opackets++;
2030
2031	NEXT_QUEUE_ENTRY(sc->txqueue.head, FATM_TX_QLEN);
2032
2033	return (0);
2034}
2035
2036static void
2037fatm_start(struct ifnet *ifp)
2038{
2039	struct atm_pseudohdr aph;
2040	struct fatm_softc *sc;
2041	struct mbuf *m;
2042	u_int mlen, vpi, vci;
2043	struct card_vcc *vc;
2044
2045	sc = ifp->if_softc;
2046
2047	while (1) {
2048		IF_DEQUEUE(&ifp->if_snd, m);
2049		if (m == NULL)
2050			break;
2051
2052		/*
2053		 * Loop through the mbuf chain and compute the total length
2054		 * of the packet. Check that all data pointer are
2055		 * 4 byte aligned. If they are not, call fatm_mfix to
2056		 * fix that problem. This comes more or less from the
2057		 * en driver.
2058		 */
2059		mlen = fatm_fix_chain(sc, &m);
2060		if (m == NULL)
2061			continue;
2062
2063		if (m->m_len < sizeof(struct atm_pseudohdr) &&
2064		    (m = m_pullup(m, sizeof(struct atm_pseudohdr))) == NULL)
2065			continue;
2066
2067		aph = *mtod(m, struct atm_pseudohdr *);
2068		mlen -= sizeof(struct atm_pseudohdr);
2069
2070		if (mlen == 0) {
2071			m_freem(m);
2072			continue;
2073		}
2074		if (mlen > FATM_MAXPDU) {
2075			sc->istats.tx_pdu2big++;
2076			m_freem(m);
2077			continue;
2078		}
2079
2080		vci = ATM_PH_VCI(&aph);
2081		vpi = ATM_PH_VPI(&aph);
2082
2083		/*
2084		 * From here on we need the softc
2085		 */
2086		FATM_LOCK(sc);
2087		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2088			FATM_UNLOCK(sc);
2089			m_freem(m);
2090			break;
2091		}
2092		if (!VC_OK(sc, vpi, vci) || (vc = sc->vccs[vci]) == NULL ||
2093		    !(vc->vflags & FATM_VCC_OPEN)) {
2094			FATM_UNLOCK(sc);
2095			m_freem(m);
2096			continue;
2097		}
2098		if (fatm_tx(sc, m, vc, mlen)) {
2099			FATM_UNLOCK(sc);
2100			break;
2101		}
2102		FATM_UNLOCK(sc);
2103	}
2104}
2105
2106/*
2107 * VCC managment
2108 *
2109 * This may seem complicated. The reason for this is, that we need an
2110 * asynchronuous open/close for the NATM VCCs because our ioctl handler
2111 * is called with the radix node head of the routing table locked. Therefor
2112 * we cannot sleep there and wait for the open/close to succeed. For this
2113 * reason we just initiate the operation from the ioctl.
2114 */
2115
2116/*
2117 * Command the card to open/close a VC.
2118 * Return the queue entry for waiting if we are succesful.
2119 */
2120static struct cmdqueue *
2121fatm_start_vcc(struct fatm_softc *sc, u_int vpi, u_int vci, uint32_t cmd,
2122    u_int mtu, void (*func)(struct fatm_softc *, struct cmdqueue *))
2123{
2124	struct cmdqueue *q;
2125
2126	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
2127
2128	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2129	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
2130		sc->istats.cmd_queue_full++;
2131		return (NULL);
2132	}
2133	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
2134
2135	q->error = 0;
2136	q->cb = func;
2137	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
2138	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
2139
2140	WRITE4(sc, q->q.card + FATMOC_ACTIN_VPVC, MKVPVC(vpi, vci));
2141	BARRIER_W(sc);
2142	WRITE4(sc, q->q.card + FATMOC_ACTIN_MTU, mtu);
2143	BARRIER_W(sc);
2144	WRITE4(sc, q->q.card + FATMOC_OP, cmd);
2145	BARRIER_W(sc);
2146
2147	return (q);
2148}
2149
2150/*
2151 * The VC has been opened/closed and somebody has been waiting for this.
2152 * Wake him up.
2153 */
2154static void
2155fatm_cmd_complete(struct fatm_softc *sc, struct cmdqueue *q)
2156{
2157
2158	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2159	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2160		sc->istats.get_stat_errors++;
2161		q->error = EIO;
2162	}
2163	wakeup(q);
2164}
2165
2166/*
2167 * Open complete
2168 */
2169static void
2170fatm_open_finish(struct fatm_softc *sc, struct card_vcc *vc)
2171{
2172	vc->vflags &= ~FATM_VCC_TRY_OPEN;
2173	vc->vflags |= FATM_VCC_OPEN;
2174
2175	if (vc->vflags & FATM_VCC_REOPEN) {
2176		vc->vflags &= ~FATM_VCC_REOPEN;
2177		return;
2178	}
2179
2180	/* inform management if this is not an NG
2181	 * VCC or it's an NG PVC. */
2182	if (!(vc->param.flags & ATMIO_FLAG_NG) ||
2183	    (vc->param.flags & ATMIO_FLAG_PVC))
2184		ATMEV_SEND_VCC_CHANGED(IFP2IFATM(sc->ifp), 0, vc->param.vci, 1);
2185}
2186
2187/*
2188 * The VC that we have tried to open asynchronuosly has been opened.
2189 */
2190static void
2191fatm_open_complete(struct fatm_softc *sc, struct cmdqueue *q)
2192{
2193	u_int vci;
2194	struct card_vcc *vc;
2195
2196	vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
2197	vc = sc->vccs[vci];
2198	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2199	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2200		sc->istats.get_stat_errors++;
2201		sc->vccs[vci] = NULL;
2202		uma_zfree(sc->vcc_zone, vc);
2203		if_printf(sc->ifp, "opening VCI %u failed\n", vci);
2204		return;
2205	}
2206	fatm_open_finish(sc, vc);
2207}
2208
2209/*
2210 * Wait on the queue entry until the VCC is opened/closed.
2211 */
2212static int
2213fatm_waitvcc(struct fatm_softc *sc, struct cmdqueue *q)
2214{
2215	int error;
2216
2217	/*
2218	 * Wait for the command to complete
2219	 */
2220	error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_vci", hz);
2221
2222	if (error != 0)
2223		return (error);
2224	return (q->error);
2225}
2226
2227/*
2228 * Start to open a VCC. This just initiates the operation.
2229 */
2230static int
2231fatm_open_vcc(struct fatm_softc *sc, struct atmio_openvcc *op)
2232{
2233	int error;
2234	struct card_vcc *vc;
2235
2236	/*
2237	 * Check parameters
2238	 */
2239	if ((op->param.flags & ATMIO_FLAG_NOTX) &&
2240	    (op->param.flags & ATMIO_FLAG_NORX))
2241		return (EINVAL);
2242
2243	if (!VC_OK(sc, op->param.vpi, op->param.vci))
2244		return (EINVAL);
2245	if (op->param.aal != ATMIO_AAL_0 && op->param.aal != ATMIO_AAL_5)
2246		return (EINVAL);
2247
2248	vc = uma_zalloc(sc->vcc_zone, M_NOWAIT | M_ZERO);
2249	if (vc == NULL)
2250		return (ENOMEM);
2251
2252	error = 0;
2253
2254	FATM_LOCK(sc);
2255	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2256		error = EIO;
2257		goto done;
2258	}
2259	if (sc->vccs[op->param.vci] != NULL) {
2260		error = EBUSY;
2261		goto done;
2262	}
2263	vc->param = op->param;
2264	vc->rxhand = op->rxhand;
2265
2266	switch (op->param.traffic) {
2267
2268	  case ATMIO_TRAFFIC_UBR:
2269		break;
2270
2271	  case ATMIO_TRAFFIC_CBR:
2272		if (op->param.tparam.pcr == 0 ||
2273		    op->param.tparam.pcr > IFP2IFATM(sc->ifp)->mib.pcr) {
2274			error = EINVAL;
2275			goto done;
2276		}
2277		break;
2278
2279	  default:
2280		error = EINVAL;
2281		goto done;
2282	}
2283	vc->ibytes = vc->obytes = 0;
2284	vc->ipackets = vc->opackets = 0;
2285
2286	vc->vflags = FATM_VCC_TRY_OPEN;
2287	sc->vccs[op->param.vci] = vc;
2288	sc->open_vccs++;
2289
2290	error = fatm_load_vc(sc, vc);
2291	if (error != 0) {
2292		sc->vccs[op->param.vci] = NULL;
2293		sc->open_vccs--;
2294		goto done;
2295	}
2296
2297	/* don't free below */
2298	vc = NULL;
2299
2300  done:
2301	FATM_UNLOCK(sc);
2302	if (vc != NULL)
2303		uma_zfree(sc->vcc_zone, vc);
2304	return (error);
2305}
2306
2307/*
2308 * Try to initialize the given VC
2309 */
2310static int
2311fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc)
2312{
2313	uint32_t cmd;
2314	struct cmdqueue *q;
2315	int error;
2316
2317	/* Command and buffer strategy */
2318	cmd = FATM_OP_ACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL | (0 << 16);
2319	if (vc->param.aal == ATMIO_AAL_0)
2320		cmd |= (0 << 8);
2321	else
2322		cmd |= (5 << 8);
2323
2324	q = fatm_start_vcc(sc, vc->param.vpi, vc->param.vci, cmd, 1,
2325	    (vc->param.flags & ATMIO_FLAG_ASYNC) ?
2326	    fatm_open_complete : fatm_cmd_complete);
2327	if (q == NULL)
2328		return (EIO);
2329
2330	if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
2331		error = fatm_waitvcc(sc, q);
2332		if (error != 0)
2333			return (error);
2334		fatm_open_finish(sc, vc);
2335	}
2336	return (0);
2337}
2338
2339/*
2340 * Finish close
2341 */
2342static void
2343fatm_close_finish(struct fatm_softc *sc, struct card_vcc *vc)
2344{
2345	/* inform management of this is not an NG
2346	 * VCC or it's an NG PVC. */
2347	if (!(vc->param.flags & ATMIO_FLAG_NG) ||
2348	    (vc->param.flags & ATMIO_FLAG_PVC))
2349		ATMEV_SEND_VCC_CHANGED(IFP2IFATM(sc->ifp), 0, vc->param.vci, 0);
2350
2351	sc->vccs[vc->param.vci] = NULL;
2352	sc->open_vccs--;
2353
2354	uma_zfree(sc->vcc_zone, vc);
2355}
2356
2357/*
2358 * The VC has been closed.
2359 */
2360static void
2361fatm_close_complete(struct fatm_softc *sc, struct cmdqueue *q)
2362{
2363	u_int vci;
2364	struct card_vcc *vc;
2365
2366	vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
2367	vc = sc->vccs[vci];
2368	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2369	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2370		sc->istats.get_stat_errors++;
2371		/* keep the VCC in that state */
2372		if_printf(sc->ifp, "closing VCI %u failed\n", vci);
2373		return;
2374	}
2375
2376	fatm_close_finish(sc, vc);
2377}
2378
2379/*
2380 * Initiate closing a VCC
2381 */
2382static int
2383fatm_close_vcc(struct fatm_softc *sc, struct atmio_closevcc *cl)
2384{
2385	int error;
2386	struct cmdqueue *q;
2387	struct card_vcc *vc;
2388
2389	if (!VC_OK(sc, cl->vpi, cl->vci))
2390		return (EINVAL);
2391
2392	error = 0;
2393
2394	FATM_LOCK(sc);
2395	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2396		error = EIO;
2397		goto done;
2398	}
2399	vc = sc->vccs[cl->vci];
2400	if (vc == NULL || !(vc->vflags & (FATM_VCC_OPEN | FATM_VCC_TRY_OPEN))) {
2401		error = ENOENT;
2402		goto done;
2403	}
2404
2405	q = fatm_start_vcc(sc, cl->vpi, cl->vci,
2406	    FATM_OP_DEACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL, 1,
2407	    (vc->param.flags & ATMIO_FLAG_ASYNC) ?
2408	    fatm_close_complete : fatm_cmd_complete);
2409	if (q == NULL) {
2410		error = EIO;
2411		goto done;
2412	}
2413
2414	vc->vflags &= ~(FATM_VCC_OPEN | FATM_VCC_TRY_OPEN);
2415	vc->vflags |= FATM_VCC_TRY_CLOSE;
2416
2417	if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
2418		error = fatm_waitvcc(sc, q);
2419		if (error != 0)
2420			goto done;
2421
2422		fatm_close_finish(sc, vc);
2423	}
2424
2425  done:
2426	FATM_UNLOCK(sc);
2427	return (error);
2428}
2429
2430/*
2431 * IOCTL handler
2432 */
2433static int
2434fatm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t arg)
2435{
2436	int error;
2437	struct fatm_softc *sc = ifp->if_softc;
2438	struct ifaddr *ifa = (struct ifaddr *)arg;
2439	struct ifreq *ifr = (struct ifreq *)arg;
2440	struct atmio_closevcc *cl = (struct atmio_closevcc *)arg;
2441	struct atmio_openvcc *op = (struct atmio_openvcc *)arg;
2442	struct atmio_vcctable *vtab;
2443
2444	error = 0;
2445	switch (cmd) {
2446
2447	  case SIOCATMOPENVCC:		/* kernel internal use */
2448		error = fatm_open_vcc(sc, op);
2449		break;
2450
2451	  case SIOCATMCLOSEVCC:		/* kernel internal use */
2452		error = fatm_close_vcc(sc, cl);
2453		break;
2454
2455	  case SIOCSIFADDR:
2456		FATM_LOCK(sc);
2457		ifp->if_flags |= IFF_UP;
2458		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2459			fatm_init_locked(sc);
2460		switch (ifa->ifa_addr->sa_family) {
2461#ifdef INET
2462		  case AF_INET:
2463		  case AF_INET6:
2464			ifa->ifa_rtrequest = atm_rtrequest;
2465			break;
2466#endif
2467		  default:
2468			break;
2469		}
2470		FATM_UNLOCK(sc);
2471		break;
2472
2473	  case SIOCSIFFLAGS:
2474		FATM_LOCK(sc);
2475		if (ifp->if_flags & IFF_UP) {
2476			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2477				fatm_init_locked(sc);
2478			}
2479		} else {
2480			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2481				fatm_stop(sc);
2482			}
2483		}
2484		FATM_UNLOCK(sc);
2485		break;
2486
2487	  case SIOCGIFMEDIA:
2488	  case SIOCSIFMEDIA:
2489		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2490			error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
2491		else
2492			error = EINVAL;
2493		break;
2494
2495	  case SIOCATMGVCCS:
2496		/* return vcc table */
2497		vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
2498		    FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 1);
2499		error = copyout(vtab, ifr->ifr_data, sizeof(*vtab) +
2500		    vtab->count * sizeof(vtab->vccs[0]));
2501		free(vtab, M_DEVBUF);
2502		break;
2503
2504	  case SIOCATMGETVCCS:	/* internal netgraph use */
2505		vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
2506		    FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 0);
2507		if (vtab == NULL) {
2508			error = ENOMEM;
2509			break;
2510		}
2511		*(void **)arg = vtab;
2512		break;
2513
2514	  default:
2515		DBG(sc, IOCTL, ("+++ cmd=%08lx arg=%p", cmd, arg));
2516		error = EINVAL;
2517		break;
2518	}
2519
2520	return (error);
2521}
2522
2523/*
2524 * Detach from the interface and free all resources allocated during
2525 * initialisation and later.
2526 */
2527static int
2528fatm_detach(device_t dev)
2529{
2530	u_int i;
2531	struct rbuf *rb;
2532	struct fatm_softc *sc;
2533	struct txqueue *tx;
2534
2535	sc = device_get_softc(dev);
2536
2537	if (device_is_alive(dev)) {
2538		FATM_LOCK(sc);
2539		fatm_stop(sc);
2540		utopia_detach(&sc->utopia);
2541		FATM_UNLOCK(sc);
2542		atm_ifdetach(sc->ifp);		/* XXX race */
2543	}
2544	callout_drain(&sc->watchdog_timer);
2545
2546	if (sc->ih != NULL)
2547		bus_teardown_intr(dev, sc->irqres, sc->ih);
2548
2549	while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
2550		if_printf(sc->ifp, "rbuf %p still in use!\n", rb);
2551		bus_dmamap_unload(sc->rbuf_tag, rb->map);
2552		m_freem(rb->m);
2553		LIST_REMOVE(rb, link);
2554		LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
2555	}
2556
2557	if (sc->txqueue.chunk != NULL) {
2558		for (i = 0; i < FATM_TX_QLEN; i++) {
2559			tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
2560			bus_dmamap_destroy(sc->tx_tag, tx->map);
2561		}
2562	}
2563
2564	while ((rb = LIST_FIRST(&sc->rbuf_free)) != NULL) {
2565		bus_dmamap_destroy(sc->rbuf_tag, rb->map);
2566		LIST_REMOVE(rb, link);
2567	}
2568
2569	if (sc->rbufs != NULL)
2570		free(sc->rbufs, M_DEVBUF);
2571	if (sc->vccs != NULL) {
2572		for (i = 0; i < FORE_MAX_VCC + 1; i++)
2573			if (sc->vccs[i] != NULL) {
2574				uma_zfree(sc->vcc_zone, sc->vccs[i]);
2575				sc->vccs[i] = NULL;
2576			}
2577		free(sc->vccs, M_DEVBUF);
2578	}
2579	if (sc->vcc_zone != NULL)
2580		uma_zdestroy(sc->vcc_zone);
2581
2582	if (sc->l1queue.chunk != NULL)
2583		free(sc->l1queue.chunk, M_DEVBUF);
2584	if (sc->s1queue.chunk != NULL)
2585		free(sc->s1queue.chunk, M_DEVBUF);
2586	if (sc->rxqueue.chunk != NULL)
2587		free(sc->rxqueue.chunk, M_DEVBUF);
2588	if (sc->txqueue.chunk != NULL)
2589		free(sc->txqueue.chunk, M_DEVBUF);
2590	if (sc->cmdqueue.chunk != NULL)
2591		free(sc->cmdqueue.chunk, M_DEVBUF);
2592
2593	destroy_dma_memory(&sc->reg_mem);
2594	destroy_dma_memory(&sc->sadi_mem);
2595	destroy_dma_memory(&sc->prom_mem);
2596#ifdef TEST_DMA_SYNC
2597	destroy_dma_memoryX(&sc->s1q_mem);
2598	destroy_dma_memoryX(&sc->l1q_mem);
2599	destroy_dma_memoryX(&sc->rxq_mem);
2600	destroy_dma_memoryX(&sc->txq_mem);
2601	destroy_dma_memoryX(&sc->stat_mem);
2602#endif
2603
2604	if (sc->tx_tag != NULL)
2605		if (bus_dma_tag_destroy(sc->tx_tag))
2606			printf("tx DMA tag busy!\n");
2607
2608	if (sc->rbuf_tag != NULL)
2609		if (bus_dma_tag_destroy(sc->rbuf_tag))
2610			printf("rbuf DMA tag busy!\n");
2611
2612	if (sc->parent_dmat != NULL)
2613		if (bus_dma_tag_destroy(sc->parent_dmat))
2614			printf("parent DMA tag busy!\n");
2615
2616	if (sc->irqres != NULL)
2617		bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irqres);
2618
2619	if (sc->memres != NULL)
2620		bus_release_resource(dev, SYS_RES_MEMORY,
2621		    sc->memid, sc->memres);
2622
2623	(void)sysctl_ctx_free(&sc->sysctl_ctx);
2624
2625	cv_destroy(&sc->cv_stat);
2626	cv_destroy(&sc->cv_regs);
2627
2628	mtx_destroy(&sc->mtx);
2629
2630	if_free(sc->ifp);
2631
2632	return (0);
2633}
2634
2635/*
2636 * Sysctl handler
2637 */
2638static int
2639fatm_sysctl_istats(SYSCTL_HANDLER_ARGS)
2640{
2641	struct fatm_softc *sc = arg1;
2642	u_long *ret;
2643	int error;
2644
2645	ret = malloc(sizeof(sc->istats), M_TEMP, M_WAITOK);
2646
2647	FATM_LOCK(sc);
2648	bcopy(&sc->istats, ret, sizeof(sc->istats));
2649	FATM_UNLOCK(sc);
2650
2651	error = SYSCTL_OUT(req, ret, sizeof(sc->istats));
2652	free(ret, M_TEMP);
2653
2654	return (error);
2655}
2656
2657/*
2658 * Sysctl handler for card statistics
2659 * This is disable because it destroys the PHY statistics.
2660 */
2661static int
2662fatm_sysctl_stats(SYSCTL_HANDLER_ARGS)
2663{
2664	struct fatm_softc *sc = arg1;
2665	int error;
2666	const struct fatm_stats *s;
2667	u_long *ret;
2668	u_int i;
2669
2670	ret = malloc(sizeof(u_long) * FATM_NSTATS, M_TEMP, M_WAITOK);
2671
2672	FATM_LOCK(sc);
2673
2674	if ((error = fatm_getstat(sc)) == 0) {
2675		s = sc->sadi_mem.mem;
2676		i = 0;
2677		ret[i++] = s->phy_4b5b.crc_header_errors;
2678		ret[i++] = s->phy_4b5b.framing_errors;
2679		ret[i++] = s->phy_oc3.section_bip8_errors;
2680		ret[i++] = s->phy_oc3.path_bip8_errors;
2681		ret[i++] = s->phy_oc3.line_bip24_errors;
2682		ret[i++] = s->phy_oc3.line_febe_errors;
2683		ret[i++] = s->phy_oc3.path_febe_errors;
2684		ret[i++] = s->phy_oc3.corr_hcs_errors;
2685		ret[i++] = s->phy_oc3.ucorr_hcs_errors;
2686		ret[i++] = s->atm.cells_transmitted;
2687		ret[i++] = s->atm.cells_received;
2688		ret[i++] = s->atm.vpi_bad_range;
2689		ret[i++] = s->atm.vpi_no_conn;
2690		ret[i++] = s->atm.vci_bad_range;
2691		ret[i++] = s->atm.vci_no_conn;
2692		ret[i++] = s->aal0.cells_transmitted;
2693		ret[i++] = s->aal0.cells_received;
2694		ret[i++] = s->aal0.cells_dropped;
2695		ret[i++] = s->aal4.cells_transmitted;
2696		ret[i++] = s->aal4.cells_received;
2697		ret[i++] = s->aal4.cells_crc_errors;
2698		ret[i++] = s->aal4.cels_protocol_errors;
2699		ret[i++] = s->aal4.cells_dropped;
2700		ret[i++] = s->aal4.cspdus_transmitted;
2701		ret[i++] = s->aal4.cspdus_received;
2702		ret[i++] = s->aal4.cspdus_protocol_errors;
2703		ret[i++] = s->aal4.cspdus_dropped;
2704		ret[i++] = s->aal5.cells_transmitted;
2705		ret[i++] = s->aal5.cells_received;
2706		ret[i++] = s->aal5.congestion_experienced;
2707		ret[i++] = s->aal5.cells_dropped;
2708		ret[i++] = s->aal5.cspdus_transmitted;
2709		ret[i++] = s->aal5.cspdus_received;
2710		ret[i++] = s->aal5.cspdus_crc_errors;
2711		ret[i++] = s->aal5.cspdus_protocol_errors;
2712		ret[i++] = s->aal5.cspdus_dropped;
2713		ret[i++] = s->aux.small_b1_failed;
2714		ret[i++] = s->aux.large_b1_failed;
2715		ret[i++] = s->aux.small_b2_failed;
2716		ret[i++] = s->aux.large_b2_failed;
2717		ret[i++] = s->aux.rpd_alloc_failed;
2718		ret[i++] = s->aux.receive_carrier;
2719	}
2720	/* declare the buffer free */
2721	sc->flags &= ~FATM_STAT_INUSE;
2722	cv_signal(&sc->cv_stat);
2723
2724	FATM_UNLOCK(sc);
2725
2726	if (error == 0)
2727		error = SYSCTL_OUT(req, ret, sizeof(u_long) * FATM_NSTATS);
2728	free(ret, M_TEMP);
2729
2730	return (error);
2731}
2732
2733#define MAXDMASEGS 32		/* maximum number of receive descriptors */
2734
2735/*
2736 * Attach to the device.
2737 *
2738 * We assume, that there is a global lock (Giant in this case) that protects
2739 * multiple threads from entering this function. This makes sense, doesn't it?
2740 */
2741static int
2742fatm_attach(device_t dev)
2743{
2744	struct ifnet *ifp;
2745	struct fatm_softc *sc;
2746	int unit;
2747	uint16_t cfg;
2748	int error = 0;
2749	struct rbuf *rb;
2750	u_int i;
2751	struct txqueue *tx;
2752
2753	sc = device_get_softc(dev);
2754	unit = device_get_unit(dev);
2755
2756	ifp = sc->ifp = if_alloc(IFT_ATM);
2757	if (ifp == NULL) {
2758		error = ENOSPC;
2759		goto fail;
2760	}
2761
2762	IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_PCA200E;
2763	IFP2IFATM(sc->ifp)->mib.serial = 0;
2764	IFP2IFATM(sc->ifp)->mib.hw_version = 0;
2765	IFP2IFATM(sc->ifp)->mib.sw_version = 0;
2766	IFP2IFATM(sc->ifp)->mib.vpi_bits = 0;
2767	IFP2IFATM(sc->ifp)->mib.vci_bits = FORE_VCIBITS;
2768	IFP2IFATM(sc->ifp)->mib.max_vpcs = 0;
2769	IFP2IFATM(sc->ifp)->mib.max_vccs = FORE_MAX_VCC;
2770	IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UNKNOWN;
2771	IFP2IFATM(sc->ifp)->phy = &sc->utopia;
2772
2773	LIST_INIT(&sc->rbuf_free);
2774	LIST_INIT(&sc->rbuf_used);
2775
2776	/*
2777	 * Initialize mutex and condition variables.
2778	 */
2779	mtx_init(&sc->mtx, device_get_nameunit(dev),
2780	    MTX_NETWORK_LOCK, MTX_DEF);
2781
2782	cv_init(&sc->cv_stat, "fatm_stat");
2783	cv_init(&sc->cv_regs, "fatm_regs");
2784
2785	sysctl_ctx_init(&sc->sysctl_ctx);
2786	callout_init_mtx(&sc->watchdog_timer, &sc->mtx, 0);
2787
2788	/*
2789	 * Make the sysctl tree
2790	 */
2791	if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
2792	    SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
2793	    device_get_nameunit(dev), CTLFLAG_RD, 0, "")) == NULL)
2794		goto fail;
2795
2796	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2797	    OID_AUTO, "istats", CTLTYPE_ULONG | CTLFLAG_RD, sc, 0,
2798	    fatm_sysctl_istats, "LU", "internal statistics") == NULL)
2799		goto fail;
2800
2801	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2802	    OID_AUTO, "stats", CTLTYPE_ULONG | CTLFLAG_RD, sc, 0,
2803	    fatm_sysctl_stats, "LU", "card statistics") == NULL)
2804		goto fail;
2805
2806	if (SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2807	    OID_AUTO, "retry_tx", CTLFLAG_RW, &sc->retry_tx, 0,
2808	    "retry flag") == NULL)
2809		goto fail;
2810
2811#ifdef FATM_DEBUG
2812	if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2813	    OID_AUTO, "debug", CTLFLAG_RW, &sc->debug, 0, "debug flags")
2814	    == NULL)
2815		goto fail;
2816	sc->debug = FATM_DEBUG;
2817#endif
2818
2819	/*
2820	 * Network subsystem stuff
2821	 */
2822	ifp->if_softc = sc;
2823	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2824	ifp->if_flags = IFF_SIMPLEX;
2825	ifp->if_ioctl = fatm_ioctl;
2826	ifp->if_start = fatm_start;
2827	ifp->if_init = fatm_init;
2828	ifp->if_linkmib = &IFP2IFATM(sc->ifp)->mib;
2829	ifp->if_linkmiblen = sizeof(IFP2IFATM(sc->ifp)->mib);
2830
2831	/*
2832	 * Enable memory and bustmaster
2833	 */
2834	cfg = pci_read_config(dev, PCIR_COMMAND, 2);
2835	cfg |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
2836	pci_write_config(dev, PCIR_COMMAND, cfg, 2);
2837
2838	/*
2839	 * Map memory
2840	 */
2841	cfg = pci_read_config(dev, PCIR_COMMAND, 2);
2842	if (!(cfg & PCIM_CMD_MEMEN)) {
2843		if_printf(ifp, "failed to enable memory mapping\n");
2844		error = ENXIO;
2845		goto fail;
2846	}
2847	sc->memid = 0x10;
2848	sc->memres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->memid,
2849	    RF_ACTIVE);
2850	if (sc->memres == NULL) {
2851		if_printf(ifp, "could not map memory\n");
2852		error = ENXIO;
2853		goto fail;
2854	}
2855	sc->memh = rman_get_bushandle(sc->memres);
2856	sc->memt = rman_get_bustag(sc->memres);
2857
2858	/*
2859	 * Convert endianess of slave access
2860	 */
2861	cfg = pci_read_config(dev, FATM_PCIR_MCTL, 1);
2862	cfg |= FATM_PCIM_SWAB;
2863	pci_write_config(dev, FATM_PCIR_MCTL, cfg, 1);
2864
2865	/*
2866	 * Allocate interrupt (activate at the end)
2867	 */
2868	sc->irqid = 0;
2869	sc->irqres = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid,
2870	    RF_SHAREABLE | RF_ACTIVE);
2871	if (sc->irqres == NULL) {
2872		if_printf(ifp, "could not allocate irq\n");
2873		error = ENXIO;
2874		goto fail;
2875	}
2876
2877	/*
2878	 * Allocate the parent DMA tag. This is used simply to hold overall
2879	 * restrictions for the controller (and PCI bus) and is never used
2880	 * to do anything.
2881	 */
2882	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2883	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2884	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, MAXDMASEGS,
2885	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2886	    &sc->parent_dmat)) {
2887		if_printf(ifp, "could not allocate parent DMA tag\n");
2888		error = ENOMEM;
2889		goto fail;
2890	}
2891
2892	/*
2893	 * Allocate the receive buffer DMA tag. This tag must map a maximum of
2894	 * a mbuf cluster.
2895	 */
2896	if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
2897	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2898	    NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
2899	    NULL, NULL, &sc->rbuf_tag)) {
2900		if_printf(ifp, "could not allocate rbuf DMA tag\n");
2901		error = ENOMEM;
2902		goto fail;
2903	}
2904
2905	/*
2906	 * Allocate the transmission DMA tag. Must add 1, because
2907	 * rounded up PDU will be 65536 bytes long.
2908	 */
2909	if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
2910	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2911	    NULL, NULL,
2912	    FATM_MAXPDU + 1, TPD_EXTENSIONS + TXD_FIXED, MCLBYTES, 0,
2913	    NULL, NULL, &sc->tx_tag)) {
2914		if_printf(ifp, "could not allocate tx DMA tag\n");
2915		error = ENOMEM;
2916		goto fail;
2917	}
2918
2919	/*
2920	 * Allocate DMAable memory.
2921	 */
2922	sc->stat_mem.size = sizeof(uint32_t) * (FATM_CMD_QLEN + FATM_TX_QLEN
2923	    + FATM_RX_QLEN + SMALL_SUPPLY_QLEN + LARGE_SUPPLY_QLEN);
2924	sc->stat_mem.align = 4;
2925
2926	sc->txq_mem.size = FATM_TX_QLEN * TPD_SIZE;
2927	sc->txq_mem.align = 32;
2928
2929	sc->rxq_mem.size = FATM_RX_QLEN * RPD_SIZE;
2930	sc->rxq_mem.align = 32;
2931
2932	sc->s1q_mem.size = SMALL_SUPPLY_QLEN *
2933	    BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE);
2934	sc->s1q_mem.align = 32;
2935
2936	sc->l1q_mem.size = LARGE_SUPPLY_QLEN *
2937	    BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE);
2938	sc->l1q_mem.align = 32;
2939
2940#ifdef TEST_DMA_SYNC
2941	if ((error = alloc_dma_memoryX(sc, "STATUS", &sc->stat_mem)) != 0 ||
2942	    (error = alloc_dma_memoryX(sc, "TXQ", &sc->txq_mem)) != 0 ||
2943	    (error = alloc_dma_memoryX(sc, "RXQ", &sc->rxq_mem)) != 0 ||
2944	    (error = alloc_dma_memoryX(sc, "S1Q", &sc->s1q_mem)) != 0 ||
2945	    (error = alloc_dma_memoryX(sc, "L1Q", &sc->l1q_mem)) != 0)
2946		goto fail;
2947#else
2948	if ((error = alloc_dma_memory(sc, "STATUS", &sc->stat_mem)) != 0 ||
2949	    (error = alloc_dma_memory(sc, "TXQ", &sc->txq_mem)) != 0 ||
2950	    (error = alloc_dma_memory(sc, "RXQ", &sc->rxq_mem)) != 0 ||
2951	    (error = alloc_dma_memory(sc, "S1Q", &sc->s1q_mem)) != 0 ||
2952	    (error = alloc_dma_memory(sc, "L1Q", &sc->l1q_mem)) != 0)
2953		goto fail;
2954#endif
2955
2956	sc->prom_mem.size = sizeof(struct prom);
2957	sc->prom_mem.align = 32;
2958	if ((error = alloc_dma_memory(sc, "PROM", &sc->prom_mem)) != 0)
2959		goto fail;
2960
2961	sc->sadi_mem.size = sizeof(struct fatm_stats);
2962	sc->sadi_mem.align = 32;
2963	if ((error = alloc_dma_memory(sc, "STATISTICS", &sc->sadi_mem)) != 0)
2964		goto fail;
2965
2966	sc->reg_mem.size = sizeof(uint32_t) * FATM_NREGS;
2967	sc->reg_mem.align = 32;
2968	if ((error = alloc_dma_memory(sc, "REGISTERS", &sc->reg_mem)) != 0)
2969		goto fail;
2970
2971	/*
2972	 * Allocate queues
2973	 */
2974	sc->cmdqueue.chunk = malloc(FATM_CMD_QLEN * sizeof(struct cmdqueue),
2975	    M_DEVBUF, M_ZERO | M_WAITOK);
2976	sc->txqueue.chunk = malloc(FATM_TX_QLEN * sizeof(struct txqueue),
2977	    M_DEVBUF, M_ZERO | M_WAITOK);
2978	sc->rxqueue.chunk = malloc(FATM_RX_QLEN * sizeof(struct rxqueue),
2979	    M_DEVBUF, M_ZERO | M_WAITOK);
2980	sc->s1queue.chunk = malloc(SMALL_SUPPLY_QLEN * sizeof(struct supqueue),
2981	    M_DEVBUF, M_ZERO | M_WAITOK);
2982	sc->l1queue.chunk = malloc(LARGE_SUPPLY_QLEN * sizeof(struct supqueue),
2983	    M_DEVBUF, M_ZERO | M_WAITOK);
2984
2985	sc->vccs = malloc((FORE_MAX_VCC + 1) * sizeof(sc->vccs[0]),
2986	    M_DEVBUF, M_ZERO | M_WAITOK);
2987	sc->vcc_zone = uma_zcreate("FATM vccs", sizeof(struct card_vcc),
2988	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
2989	if (sc->vcc_zone == NULL) {
2990		error = ENOMEM;
2991		goto fail;
2992	}
2993
2994	/*
2995	 * Allocate memory for the receive buffer headers. The total number
2996	 * of headers should probably also include the maximum number of
2997	 * buffers on the receive queue.
2998	 */
2999	sc->rbuf_total = SMALL_POOL_SIZE + LARGE_POOL_SIZE;
3000	sc->rbufs = malloc(sc->rbuf_total * sizeof(struct rbuf),
3001	    M_DEVBUF, M_ZERO | M_WAITOK);
3002
3003	/*
3004	 * Put all rbuf headers on the free list and create DMA maps.
3005	 */
3006	for (rb = sc->rbufs, i = 0; i < sc->rbuf_total; i++, rb++) {
3007		if ((error = bus_dmamap_create(sc->rbuf_tag, 0, &rb->map))) {
3008			if_printf(sc->ifp, "creating rx map: %d\n",
3009			    error);
3010			goto fail;
3011		}
3012		LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
3013	}
3014
3015	/*
3016	 * Create dma maps for transmission. In case of an error, free the
3017	 * allocated DMA maps, because on some architectures maps are NULL
3018	 * and we cannot distinguish between a failure and a NULL map in
3019	 * the detach routine.
3020	 */
3021	for (i = 0; i < FATM_TX_QLEN; i++) {
3022		tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
3023		if ((error = bus_dmamap_create(sc->tx_tag, 0, &tx->map))) {
3024			if_printf(sc->ifp, "creating tx map: %d\n",
3025			    error);
3026			while (i > 0) {
3027				tx = GET_QUEUE(sc->txqueue, struct txqueue,
3028				    i - 1);
3029				bus_dmamap_destroy(sc->tx_tag, tx->map);
3030				i--;
3031			}
3032			goto fail;
3033		}
3034	}
3035
3036	utopia_attach(&sc->utopia, IFP2IFATM(sc->ifp), &sc->media, &sc->mtx,
3037	    &sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3038	    &fatm_utopia_methods);
3039	sc->utopia.flags |= UTP_FL_NORESET | UTP_FL_POLL_CARRIER;
3040
3041	/*
3042	 * Attach the interface
3043	 */
3044	atm_ifattach(ifp);
3045	ifp->if_snd.ifq_maxlen = 512;
3046
3047#ifdef ENABLE_BPF
3048	bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
3049#endif
3050
3051	error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_NET | INTR_MPSAFE,
3052	    NULL, fatm_intr, sc, &sc->ih);
3053	if (error) {
3054		if_printf(ifp, "couldn't setup irq\n");
3055		goto fail;
3056	}
3057
3058  fail:
3059	if (error)
3060		fatm_detach(dev);
3061
3062	return (error);
3063}
3064
3065#if defined(FATM_DEBUG) && 0
3066static void
3067dump_s1_queue(struct fatm_softc *sc)
3068{
3069	int i;
3070	struct supqueue *q;
3071
3072	for(i = 0; i < SMALL_SUPPLY_QLEN; i++) {
3073		q = GET_QUEUE(sc->s1queue, struct supqueue, i);
3074		printf("%2d: card=%x(%x,%x) stat=%x\n", i,
3075		    q->q.card,
3076		    READ4(sc, q->q.card),
3077		    READ4(sc, q->q.card + 4),
3078		    *q->q.statp);
3079	}
3080}
3081#endif
3082
3083/*
3084 * Driver infrastructure.
3085 */
3086static device_method_t fatm_methods[] = {
3087	DEVMETHOD(device_probe,		fatm_probe),
3088	DEVMETHOD(device_attach,	fatm_attach),
3089	DEVMETHOD(device_detach,	fatm_detach),
3090	{ 0, 0 }
3091};
3092static driver_t fatm_driver = {
3093	"fatm",
3094	fatm_methods,
3095	sizeof(struct fatm_softc),
3096};
3097
3098DRIVER_MODULE(fatm, pci, fatm_driver, fatm_devclass, 0, 0);
3099