1/*-
2 * Copyright (c) 2001-2003
3 *	Fraunhofer Institute for Open Communication Systems (FhG Fokus).
4 * 	All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * Author: Hartmut Brandt <harti@freebsd.org>
28 *
29 * Fore PCA200E driver for NATM
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/dev/fatm/if_fatm.c 332288 2018-04-08 16:54:07Z brooks $");
34
35#include "opt_inet.h"
36#include "opt_natm.h"
37
38#include <sys/types.h>
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/bus.h>
44#include <sys/errno.h>
45#include <sys/conf.h>
46#include <sys/module.h>
47#include <sys/queue.h>
48#include <sys/syslog.h>
49#include <sys/endian.h>
50#include <sys/sysctl.h>
51#include <sys/condvar.h>
52#include <vm/uma.h>
53
54#include <sys/sockio.h>
55#include <sys/mbuf.h>
56#include <sys/socket.h>
57
58#include <net/if.h>
59#include <net/if_var.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_atm.h>
63#include <net/route.h>
64#ifdef ENABLE_BPF
65#include <net/bpf.h>
66#endif
67#ifdef INET
68#include <netinet/in.h>
69#include <netinet/if_atm.h>
70#endif
71
72#include <machine/bus.h>
73#include <machine/resource.h>
74#include <sys/bus.h>
75#include <sys/rman.h>
76#include <dev/pci/pcireg.h>
77#include <dev/pci/pcivar.h>
78
79#include <dev/utopia/utopia.h>
80
81#include <dev/fatm/if_fatmreg.h>
82#include <dev/fatm/if_fatmvar.h>
83
84#include <dev/fatm/firmware.h>
85
86devclass_t fatm_devclass;
87
88static const struct {
89	uint16_t	vid;
90	uint16_t	did;
91	const char	*name;
92} fatm_devs[] = {
93	{ 0x1127, 0x300,
94	  "FORE PCA200E" },
95	{ 0, 0, NULL }
96};
97
98static const struct rate {
99	uint32_t	ratio;
100	uint32_t	cell_rate;
101} rate_table[] = {
102#include <dev/fatm/if_fatm_rate.h>
103};
104#define RATE_TABLE_SIZE (sizeof(rate_table) / sizeof(rate_table[0]))
105
106SYSCTL_DECL(_hw_atm);
107
108MODULE_DEPEND(fatm, utopia, 1, 1, 1);
109
110static int	fatm_utopia_readregs(struct ifatm *, u_int, uint8_t *, u_int *);
111static int	fatm_utopia_writereg(struct ifatm *, u_int, u_int, u_int);
112
113static const struct utopia_methods fatm_utopia_methods = {
114	fatm_utopia_readregs,
115	fatm_utopia_writereg
116};
117
118#define VC_OK(SC, VPI, VCI)						\
119	(rounddown2(VPI, 1 << IFP2IFATM((SC)->ifp)->mib.vpi_bits) == 0 &&	\
120	 (VCI) != 0 && rounddown2(VCI, 1 << IFP2IFATM((SC)->ifp)->mib.vci_bits) == 0)
121
122static int fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc);
123
124/*
125 * Probing is easy: step trough the list of known vendor and device
126 * ids and compare. If one is found - it's our.
127 */
128static int
129fatm_probe(device_t dev)
130{
131	int i;
132
133	for (i = 0; fatm_devs[i].name; i++)
134		if (pci_get_vendor(dev) == fatm_devs[i].vid &&
135		    pci_get_device(dev) == fatm_devs[i].did) {
136			device_set_desc(dev, fatm_devs[i].name);
137			return (BUS_PROBE_DEFAULT);
138		}
139	return (ENXIO);
140}
141
142/*
143 * Function called at completion of a SUNI writeregs/readregs command.
144 * This is called from the interrupt handler while holding the softc lock.
145 * We use the queue entry as the randevouze point.
146 */
147static void
148fatm_utopia_writeregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
149{
150
151	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
152	if(H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
153		sc->istats.suni_reg_errors++;
154		q->error = EIO;
155	}
156	wakeup(q);
157}
158
159/*
160 * Write a SUNI register. The bits that are 1 in mask are written from val
161 * into register reg. We wait for the command to complete by sleeping on
162 * the register memory.
163 *
164 * We assume, that we already hold the softc mutex.
165 */
166static int
167fatm_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
168{
169	int error;
170	struct cmdqueue *q;
171	struct fatm_softc *sc;
172
173	sc = ifatm->ifp->if_softc;
174	FATM_CHECKLOCK(sc);
175	if (!(ifatm->ifp->if_drv_flags & IFF_DRV_RUNNING))
176		return (EIO);
177
178	/* get queue element and fill it */
179	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
180
181	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
182	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
183		sc->istats.cmd_queue_full++;
184		return (EIO);
185	}
186	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
187
188	q->error = 0;
189	q->cb = fatm_utopia_writeregs_complete;
190	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
191	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
192
193	WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, 0);
194	BARRIER_W(sc);
195	WRITE4(sc, q->q.card + FATMOC_OP,
196	    FATM_MAKE_SETOC3(reg, val, mask) | FATM_OP_INTERRUPT_SEL);
197	BARRIER_W(sc);
198
199	/*
200	 * Wait for the command to complete
201	 */
202	error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_setreg", hz);
203
204	switch(error) {
205
206	  case EWOULDBLOCK:
207		error = EIO;
208		break;
209
210	  case ERESTART:
211		error = EINTR;
212		break;
213
214	  case 0:
215		error = q->error;
216		break;
217	}
218
219	return (error);
220}
221
222/*
223 * Function called at completion of a SUNI readregs command.
224 * This is called from the interrupt handler while holding the softc lock.
225 * We use reg_mem as the randevouze point.
226 */
227static void
228fatm_utopia_readregs_complete(struct fatm_softc *sc, struct cmdqueue *q)
229{
230
231	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
232	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
233		sc->istats.suni_reg_errors++;
234		q->error = EIO;
235	}
236	wakeup(&sc->reg_mem);
237}
238
239/*
240 * Read SUNI registers
241 *
242 * We use a preallocated buffer to read the registers. Therefor we need
243 * to protect against multiple threads trying to read registers. We do this
244 * with a condition variable and a flag. We wait for the command to complete by sleeping on
245 * the register memory.
246 *
247 * We assume, that we already hold the softc mutex.
248 */
249static int
250fatm_utopia_readregs_internal(struct fatm_softc *sc)
251{
252	int error, i;
253	uint32_t *ptr;
254	struct cmdqueue *q;
255
256	/* get the buffer */
257	for (;;) {
258		if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
259			return (EIO);
260		if (!(sc->flags & FATM_REGS_INUSE))
261			break;
262		cv_wait(&sc->cv_regs, &sc->mtx);
263	}
264	sc->flags |= FATM_REGS_INUSE;
265
266	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
267
268	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
269	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
270		sc->istats.cmd_queue_full++;
271		return (EIO);
272	}
273	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
274
275	q->error = 0;
276	q->cb = fatm_utopia_readregs_complete;
277	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
278	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
279
280	bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map, BUS_DMASYNC_PREREAD);
281
282	WRITE4(sc, q->q.card + FATMOC_GETOC3_BUF, sc->reg_mem.paddr);
283	BARRIER_W(sc);
284	WRITE4(sc, q->q.card + FATMOC_OP,
285	    FATM_OP_OC3_GET_REG | FATM_OP_INTERRUPT_SEL);
286	BARRIER_W(sc);
287
288	/*
289	 * Wait for the command to complete
290	 */
291	error = msleep(&sc->reg_mem, &sc->mtx, PZERO | PCATCH,
292	    "fatm_getreg", hz);
293
294	switch(error) {
295
296	  case EWOULDBLOCK:
297		error = EIO;
298		break;
299
300	  case ERESTART:
301		error = EINTR;
302		break;
303
304	  case 0:
305		bus_dmamap_sync(sc->reg_mem.dmat, sc->reg_mem.map,
306		    BUS_DMASYNC_POSTREAD);
307		error = q->error;
308		break;
309	}
310
311	if (error != 0) {
312		/* declare buffer to be free */
313		sc->flags &= ~FATM_REGS_INUSE;
314		cv_signal(&sc->cv_regs);
315		return (error);
316	}
317
318	/* swap if needed */
319	ptr = (uint32_t *)sc->reg_mem.mem;
320	for (i = 0; i < FATM_NREGS; i++)
321		ptr[i] = le32toh(ptr[i]) & 0xff;
322
323	return (0);
324}
325
326/*
327 * Read SUNI registers for the SUNI module.
328 *
329 * We assume, that we already hold the mutex.
330 */
331static int
332fatm_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *valp, u_int *np)
333{
334	int err;
335	int i;
336	struct fatm_softc *sc;
337
338	if (reg >= FATM_NREGS)
339		return (EINVAL);
340	if (reg + *np > FATM_NREGS)
341		*np = FATM_NREGS - reg;
342	sc = ifatm->ifp->if_softc;
343	FATM_CHECKLOCK(sc);
344
345	err = fatm_utopia_readregs_internal(sc);
346	if (err != 0)
347		return (err);
348
349	for (i = 0; i < *np; i++)
350		valp[i] = ((uint32_t *)sc->reg_mem.mem)[reg + i];
351
352	/* declare buffer to be free */
353	sc->flags &= ~FATM_REGS_INUSE;
354	cv_signal(&sc->cv_regs);
355
356	return (0);
357}
358
359/*
360 * Check whether the hard is beating. We remember the last heart beat and
361 * compare it to the current one. If it appears stuck for 10 times, we have
362 * a problem.
363 *
364 * Assume we hold the lock.
365 */
366static void
367fatm_check_heartbeat(struct fatm_softc *sc)
368{
369	uint32_t h;
370
371	FATM_CHECKLOCK(sc);
372
373	h = READ4(sc, FATMO_HEARTBEAT);
374	DBG(sc, BEAT, ("heartbeat %08x", h));
375
376	if (sc->stop_cnt == 10)
377		return;
378
379	if (h == sc->heartbeat) {
380		if (++sc->stop_cnt == 10) {
381			log(LOG_ERR, "i960 stopped???\n");
382			WRITE4(sc, FATMO_HIMR, 1);
383		}
384		return;
385	}
386
387	sc->stop_cnt = 0;
388	sc->heartbeat = h;
389}
390
391/*
392 * Ensure that the heart is still beating.
393 */
394static void
395fatm_watchdog(void *arg)
396{
397	struct fatm_softc *sc;
398
399	sc = arg;
400	FATM_CHECKLOCK(sc);
401	fatm_check_heartbeat(sc);
402	callout_reset(&sc->watchdog_timer, hz * 5, fatm_watchdog, sc);
403}
404
405/*
406 * Hard reset the i960 on the board. This is done by initializing registers,
407 * clearing interrupts and waiting for the selftest to finish. Not sure,
408 * whether all these barriers are actually needed.
409 *
410 * Assumes that we hold the lock.
411 */
412static int
413fatm_reset(struct fatm_softc *sc)
414{
415	int w;
416	uint32_t val;
417
418	FATM_CHECKLOCK(sc);
419
420	WRITE4(sc, FATMO_APP_BASE, FATMO_COMMON_ORIGIN);
421	BARRIER_W(sc);
422
423	WRITE4(sc, FATMO_UART_TO_960, XMIT_READY);
424	BARRIER_W(sc);
425
426	WRITE4(sc, FATMO_UART_TO_HOST, XMIT_READY);
427	BARRIER_W(sc);
428
429	WRITE4(sc, FATMO_BOOT_STATUS, COLD_START);
430	BARRIER_W(sc);
431
432	WRITE1(sc, FATMO_HCR, FATM_HCR_RESET);
433	BARRIER_W(sc);
434
435	DELAY(1000);
436
437	WRITE1(sc, FATMO_HCR, 0);
438	BARRIER_RW(sc);
439
440	DELAY(1000);
441
442	for (w = 100; w; w--) {
443		BARRIER_R(sc);
444		val = READ4(sc, FATMO_BOOT_STATUS);
445		switch (val) {
446		  case SELF_TEST_OK:
447			return (0);
448		  case SELF_TEST_FAIL:
449			return (EIO);
450		}
451		DELAY(1000);
452	}
453	return (EIO);
454}
455
456/*
457 * Stop the card. Must be called WITH the lock held
458 * Reset, free transmit and receive buffers. Wakeup everybody who may sleep.
459 */
460static void
461fatm_stop(struct fatm_softc *sc)
462{
463	int i;
464	struct cmdqueue *q;
465	struct rbuf *rb;
466	struct txqueue *tx;
467	uint32_t stat;
468
469	FATM_CHECKLOCK(sc);
470
471	/* Stop the board */
472	utopia_stop(&sc->utopia);
473	(void)fatm_reset(sc);
474
475	/* stop watchdog */
476	callout_stop(&sc->watchdog_timer);
477
478	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
479		sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
480		ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
481		    sc->utopia.carrier == UTP_CARR_OK);
482
483		/*
484		 * Collect transmit mbufs, partial receive mbufs and
485		 * supplied mbufs
486		 */
487		for (i = 0; i < FATM_TX_QLEN; i++) {
488			tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
489			if (tx->m) {
490				bus_dmamap_unload(sc->tx_tag, tx->map);
491				m_freem(tx->m);
492				tx->m = NULL;
493			}
494		}
495
496		/* Collect supplied mbufs */
497		while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
498			LIST_REMOVE(rb, link);
499			bus_dmamap_unload(sc->rbuf_tag, rb->map);
500			m_free(rb->m);
501			rb->m = NULL;
502			LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
503		}
504
505		/* Unwait any waiters */
506		wakeup(&sc->sadi_mem);
507
508		/* wakeup all threads waiting for STAT or REG buffers */
509		cv_broadcast(&sc->cv_stat);
510		cv_broadcast(&sc->cv_regs);
511
512		sc->flags &= ~(FATM_STAT_INUSE | FATM_REGS_INUSE);
513
514		/* wakeup all threads waiting on commands */
515		for (i = 0; i < FATM_CMD_QLEN; i++) {
516			q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, i);
517
518			H_SYNCSTAT_POSTREAD(sc, q->q.statp);
519			if ((stat = H_GETSTAT(q->q.statp)) != FATM_STAT_FREE) {
520				H_SETSTAT(q->q.statp, stat | FATM_STAT_ERROR);
521				H_SYNCSTAT_PREWRITE(sc, q->q.statp);
522				wakeup(q);
523			}
524		}
525		utopia_reset_media(&sc->utopia);
526	}
527	sc->small_cnt = sc->large_cnt = 0;
528
529	/* Reset vcc info */
530	if (sc->vccs != NULL) {
531		sc->open_vccs = 0;
532		for (i = 0; i < FORE_MAX_VCC + 1; i++) {
533			if (sc->vccs[i] != NULL) {
534				if ((sc->vccs[i]->vflags & (FATM_VCC_OPEN |
535				    FATM_VCC_TRY_OPEN)) == 0) {
536					uma_zfree(sc->vcc_zone, sc->vccs[i]);
537					sc->vccs[i] = NULL;
538				} else {
539					sc->vccs[i]->vflags = 0;
540					sc->open_vccs++;
541				}
542			}
543		}
544	}
545
546}
547
548/*
549 * Load the firmware into the board and save the entry point.
550 */
551static uint32_t
552firmware_load(struct fatm_softc *sc)
553{
554	struct firmware *fw = (struct firmware *)firmware;
555
556	DBG(sc, INIT, ("loading - entry=%x", fw->entry));
557	bus_space_write_region_4(sc->memt, sc->memh, fw->offset, firmware,
558	    sizeof(firmware) / sizeof(firmware[0]));
559	BARRIER_RW(sc);
560
561	return (fw->entry);
562}
563
564/*
565 * Read a character from the virtual UART. The availability of a character
566 * is signaled by a non-null value of the 32 bit register. The eating of
567 * the character by us is signalled to the card by setting that register
568 * to zero.
569 */
570static int
571rx_getc(struct fatm_softc *sc)
572{
573	int w = 50;
574	int c;
575
576	while (w--) {
577		c = READ4(sc, FATMO_UART_TO_HOST);
578		BARRIER_RW(sc);
579		if (c != 0) {
580			WRITE4(sc, FATMO_UART_TO_HOST, 0);
581			DBGC(sc, UART, ("%c", c & 0xff));
582			return (c & 0xff);
583		}
584		DELAY(1000);
585	}
586	return (-1);
587}
588
589/*
590 * Eat up characters from the board and stuff them in the bit-bucket.
591 */
592static void
593rx_flush(struct fatm_softc *sc)
594{
595	int w = 10000;
596
597	while (w-- && rx_getc(sc) >= 0)
598		;
599}
600
601/*
602 * Write a character to the card. The UART is available if the register
603 * is zero.
604 */
605static int
606tx_putc(struct fatm_softc *sc, u_char c)
607{
608	int w = 10;
609	int c1;
610
611	while (w--) {
612		c1 = READ4(sc, FATMO_UART_TO_960);
613		BARRIER_RW(sc);
614		if (c1 == 0) {
615			WRITE4(sc, FATMO_UART_TO_960, c | CHAR_AVAIL);
616			DBGC(sc, UART, ("%c", c & 0xff));
617			return (0);
618		}
619		DELAY(1000);
620	}
621	return (-1);
622}
623
624/*
625 * Start the firmware. This is doing by issuing a 'go' command with
626 * the hex entry address of the firmware. Then we wait for the self-test to
627 * succeed.
628 */
629static int
630fatm_start_firmware(struct fatm_softc *sc, uint32_t start)
631{
632	static char hex[] = "0123456789abcdef";
633	u_int w, val;
634
635	DBG(sc, INIT, ("starting"));
636	rx_flush(sc);
637	tx_putc(sc, '\r');
638	DELAY(1000);
639
640	rx_flush(sc);
641
642	tx_putc(sc, 'g');
643	(void)rx_getc(sc);
644	tx_putc(sc, 'o');
645	(void)rx_getc(sc);
646	tx_putc(sc, ' ');
647	(void)rx_getc(sc);
648
649	tx_putc(sc, hex[(start >> 12) & 0xf]);
650	(void)rx_getc(sc);
651	tx_putc(sc, hex[(start >>  8) & 0xf]);
652	(void)rx_getc(sc);
653	tx_putc(sc, hex[(start >>  4) & 0xf]);
654	(void)rx_getc(sc);
655	tx_putc(sc, hex[(start >>  0) & 0xf]);
656	(void)rx_getc(sc);
657
658	tx_putc(sc, '\r');
659	rx_flush(sc);
660
661	for (w = 100; w; w--) {
662		BARRIER_R(sc);
663		val = READ4(sc, FATMO_BOOT_STATUS);
664		switch (val) {
665		  case CP_RUNNING:
666			return (0);
667		  case SELF_TEST_FAIL:
668			return (EIO);
669		}
670		DELAY(1000);
671	}
672	return (EIO);
673}
674
675/*
676 * Initialize one card and host queue.
677 */
678static void
679init_card_queue(struct fatm_softc *sc, struct fqueue *queue, int qlen,
680    size_t qel_size, size_t desc_size, cardoff_t off,
681    u_char **statpp, uint32_t *cardstat, u_char *descp, uint32_t carddesc)
682{
683	struct fqelem *el = queue->chunk;
684
685	while (qlen--) {
686		el->card = off;
687		off += 8;	/* size of card entry */
688
689		el->statp = (uint32_t *)(*statpp);
690		(*statpp) += sizeof(uint32_t);
691		H_SETSTAT(el->statp, FATM_STAT_FREE);
692		H_SYNCSTAT_PREWRITE(sc, el->statp);
693
694		WRITE4(sc, el->card + FATMOS_STATP, (*cardstat));
695		(*cardstat) += sizeof(uint32_t);
696
697		el->ioblk = descp;
698		descp += desc_size;
699		el->card_ioblk = carddesc;
700		carddesc += desc_size;
701
702		el = (struct fqelem *)((u_char *)el + qel_size);
703	}
704	queue->tail = queue->head = 0;
705}
706
707/*
708 * Issue the initialize operation to the card, wait for completion and
709 * initialize the on-board and host queue structures with offsets and
710 * addresses.
711 */
712static int
713fatm_init_cmd(struct fatm_softc *sc)
714{
715	int w, c;
716	u_char *statp;
717	uint32_t card_stat;
718	u_int cnt;
719	struct fqelem *el;
720	cardoff_t off;
721
722	DBG(sc, INIT, ("command"));
723	WRITE4(sc, FATMO_ISTAT, 0);
724	WRITE4(sc, FATMO_IMASK, 1);
725	WRITE4(sc, FATMO_HLOGGER, 0);
726
727	WRITE4(sc, FATMO_INIT + FATMOI_RECEIVE_TRESHOLD, 0);
728	WRITE4(sc, FATMO_INIT + FATMOI_NUM_CONNECT, FORE_MAX_VCC);
729	WRITE4(sc, FATMO_INIT + FATMOI_CQUEUE_LEN, FATM_CMD_QLEN);
730	WRITE4(sc, FATMO_INIT + FATMOI_TQUEUE_LEN, FATM_TX_QLEN);
731	WRITE4(sc, FATMO_INIT + FATMOI_RQUEUE_LEN, FATM_RX_QLEN);
732	WRITE4(sc, FATMO_INIT + FATMOI_RPD_EXTENSION, RPD_EXTENSIONS);
733	WRITE4(sc, FATMO_INIT + FATMOI_TPD_EXTENSION, TPD_EXTENSIONS);
734
735	/*
736	 * initialize buffer descriptors
737	 */
738	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_QUEUE_LENGTH,
739	    SMALL_SUPPLY_QLEN);
740	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_BUFFER_SIZE,
741	    SMALL_BUFFER_LEN);
742	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_POOL_SIZE,
743	    SMALL_POOL_SIZE);
744	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B1 + FATMOB_SUPPLY_BLKSIZE,
745	    SMALL_SUPPLY_BLKSIZE);
746
747	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_QUEUE_LENGTH,
748	    LARGE_SUPPLY_QLEN);
749	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_BUFFER_SIZE,
750	    LARGE_BUFFER_LEN);
751	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_POOL_SIZE,
752	    LARGE_POOL_SIZE);
753	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B1 + FATMOB_SUPPLY_BLKSIZE,
754	    LARGE_SUPPLY_BLKSIZE);
755
756	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_QUEUE_LENGTH, 0);
757	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_BUFFER_SIZE, 0);
758	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_POOL_SIZE, 0);
759	WRITE4(sc, FATMO_INIT + FATMOI_SMALL_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
760
761	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_QUEUE_LENGTH, 0);
762	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_BUFFER_SIZE, 0);
763	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_POOL_SIZE, 0);
764	WRITE4(sc, FATMO_INIT + FATMOI_LARGE_B2 + FATMOB_SUPPLY_BLKSIZE, 0);
765
766	/*
767	 * Start the command
768	 */
769	BARRIER_W(sc);
770	WRITE4(sc, FATMO_INIT + FATMOI_STATUS, FATM_STAT_PENDING);
771	BARRIER_W(sc);
772	WRITE4(sc, FATMO_INIT + FATMOI_OP, FATM_OP_INITIALIZE);
773	BARRIER_W(sc);
774
775	/*
776	 * Busy wait for completion
777	 */
778	w = 100;
779	while (w--) {
780		c = READ4(sc, FATMO_INIT + FATMOI_STATUS);
781		BARRIER_R(sc);
782		if (c & FATM_STAT_COMPLETE)
783			break;
784		DELAY(1000);
785	}
786
787	if (c & FATM_STAT_ERROR)
788		return (EIO);
789
790	/*
791	 * Initialize the queues
792	 */
793	statp = sc->stat_mem.mem;
794	card_stat = sc->stat_mem.paddr;
795
796	/*
797	 * Command queue. This is special in that it's on the card.
798	 */
799	el = sc->cmdqueue.chunk;
800	off = READ4(sc, FATMO_COMMAND_QUEUE);
801	DBG(sc, INIT, ("cmd queue=%x", off));
802	for (cnt = 0; cnt < FATM_CMD_QLEN; cnt++) {
803		el = &((struct cmdqueue *)sc->cmdqueue.chunk + cnt)->q;
804
805		el->card = off;
806		off += 32;		/* size of card structure */
807
808		el->statp = (uint32_t *)statp;
809		statp += sizeof(uint32_t);
810		H_SETSTAT(el->statp, FATM_STAT_FREE);
811		H_SYNCSTAT_PREWRITE(sc, el->statp);
812
813		WRITE4(sc, el->card + FATMOC_STATP, card_stat);
814		card_stat += sizeof(uint32_t);
815	}
816	sc->cmdqueue.tail = sc->cmdqueue.head = 0;
817
818	/*
819	 * Now the other queues. These are in memory
820	 */
821	init_card_queue(sc, &sc->txqueue, FATM_TX_QLEN,
822	    sizeof(struct txqueue), TPD_SIZE,
823	    READ4(sc, FATMO_TRANSMIT_QUEUE),
824	    &statp, &card_stat, sc->txq_mem.mem, sc->txq_mem.paddr);
825
826	init_card_queue(sc, &sc->rxqueue, FATM_RX_QLEN,
827	    sizeof(struct rxqueue), RPD_SIZE,
828	    READ4(sc, FATMO_RECEIVE_QUEUE),
829	    &statp, &card_stat, sc->rxq_mem.mem, sc->rxq_mem.paddr);
830
831	init_card_queue(sc, &sc->s1queue, SMALL_SUPPLY_QLEN,
832	    sizeof(struct supqueue), BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE),
833	    READ4(sc, FATMO_SMALL_B1_QUEUE),
834	    &statp, &card_stat, sc->s1q_mem.mem, sc->s1q_mem.paddr);
835
836	init_card_queue(sc, &sc->l1queue, LARGE_SUPPLY_QLEN,
837	    sizeof(struct supqueue), BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE),
838	    READ4(sc, FATMO_LARGE_B1_QUEUE),
839	    &statp, &card_stat, sc->l1q_mem.mem, sc->l1q_mem.paddr);
840
841	sc->txcnt = 0;
842
843	return (0);
844}
845
846/*
847 * Read PROM. Called only from attach code. Here we spin because the interrupt
848 * handler is not yet set up.
849 */
850static int
851fatm_getprom(struct fatm_softc *sc)
852{
853	int i;
854	struct prom *prom;
855	struct cmdqueue *q;
856
857	DBG(sc, INIT, ("reading prom"));
858	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
859	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
860
861	q->error = 0;
862	q->cb = NULL;
863	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
864	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
865
866	bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
867	    BUS_DMASYNC_PREREAD);
868
869	WRITE4(sc, q->q.card + FATMOC_GPROM_BUF, sc->prom_mem.paddr);
870	BARRIER_W(sc);
871	WRITE4(sc, q->q.card + FATMOC_OP, FATM_OP_GET_PROM_DATA);
872	BARRIER_W(sc);
873
874	for (i = 0; i < 1000; i++) {
875		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
876		if (H_GETSTAT(q->q.statp) &
877		    (FATM_STAT_COMPLETE | FATM_STAT_ERROR))
878			break;
879		DELAY(1000);
880	}
881	if (i == 1000) {
882		if_printf(sc->ifp, "getprom timeout\n");
883		return (EIO);
884	}
885	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
886	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
887		if_printf(sc->ifp, "getprom error\n");
888		return (EIO);
889	}
890	H_SETSTAT(q->q.statp, FATM_STAT_FREE);
891	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
892	NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
893
894	bus_dmamap_sync(sc->prom_mem.dmat, sc->prom_mem.map,
895	    BUS_DMASYNC_POSTREAD);
896
897
898#ifdef notdef
899	{
900		u_int i;
901
902		printf("PROM: ");
903		u_char *ptr = (u_char *)sc->prom_mem.mem;
904		for (i = 0; i < sizeof(struct prom); i++)
905			printf("%02x ", *ptr++);
906		printf("\n");
907	}
908#endif
909
910	prom = (struct prom *)sc->prom_mem.mem;
911
912	bcopy(prom->mac + 2, IFP2IFATM(sc->ifp)->mib.esi, 6);
913	IFP2IFATM(sc->ifp)->mib.serial = le32toh(prom->serial);
914	IFP2IFATM(sc->ifp)->mib.hw_version = le32toh(prom->version);
915	IFP2IFATM(sc->ifp)->mib.sw_version = READ4(sc, FATMO_FIRMWARE_RELEASE);
916
917	if_printf(sc->ifp, "ESI=%02x:%02x:%02x:%02x:%02x:%02x "
918	    "serial=%u hw=0x%x sw=0x%x\n", IFP2IFATM(sc->ifp)->mib.esi[0],
919	    IFP2IFATM(sc->ifp)->mib.esi[1], IFP2IFATM(sc->ifp)->mib.esi[2], IFP2IFATM(sc->ifp)->mib.esi[3],
920	    IFP2IFATM(sc->ifp)->mib.esi[4], IFP2IFATM(sc->ifp)->mib.esi[5], IFP2IFATM(sc->ifp)->mib.serial,
921	    IFP2IFATM(sc->ifp)->mib.hw_version, IFP2IFATM(sc->ifp)->mib.sw_version);
922
923	return (0);
924}
925
926/*
927 * This is the callback function for bus_dmamap_load. We assume, that we
928 * have a 32-bit bus and so have always one segment.
929 */
930static void
931dmaload_helper(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
932{
933	bus_addr_t *ptr = (bus_addr_t *)arg;
934
935	if (error != 0) {
936		printf("%s: error=%d\n", __func__, error);
937		return;
938	}
939	KASSERT(nsegs == 1, ("too many DMA segments"));
940	KASSERT(segs[0].ds_addr <= 0xffffffff, ("DMA address too large %lx",
941	    (u_long)segs[0].ds_addr));
942
943	*ptr = segs[0].ds_addr;
944}
945
946/*
947 * Allocate a chunk of DMA-able memory and map it.
948 */
949static int
950alloc_dma_memory(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
951{
952	int error;
953
954	mem->mem = NULL;
955
956	if (bus_dma_tag_create(sc->parent_dmat, mem->align, 0,
957	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
958	    NULL, NULL, mem->size, 1, BUS_SPACE_MAXSIZE_32BIT,
959	    BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
960		if_printf(sc->ifp, "could not allocate %s DMA tag\n",
961		    nm);
962		return (ENOMEM);
963	}
964
965	error = bus_dmamem_alloc(mem->dmat, &mem->mem, 0, &mem->map);
966	if (error) {
967		if_printf(sc->ifp, "could not allocate %s DMA memory: "
968		    "%d\n", nm, error);
969		bus_dma_tag_destroy(mem->dmat);
970		mem->mem = NULL;
971		return (error);
972	}
973
974	error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
975	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
976	if (error) {
977		if_printf(sc->ifp, "could not load %s DMA memory: "
978		    "%d\n", nm, error);
979		bus_dmamem_free(mem->dmat, mem->mem, mem->map);
980		bus_dma_tag_destroy(mem->dmat);
981		mem->mem = NULL;
982		return (error);
983	}
984
985	DBG(sc, DMA, ("DMA %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
986	    (u_long)mem->paddr, mem->size, mem->align));
987
988	return (0);
989}
990
991#ifdef TEST_DMA_SYNC
992static int
993alloc_dma_memoryX(struct fatm_softc *sc, const char *nm, struct fatm_mem *mem)
994{
995	int error;
996
997	mem->mem = NULL;
998
999	if (bus_dma_tag_create(NULL, mem->align, 0,
1000	    BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR,
1001	    NULL, NULL, mem->size, 1, mem->size,
1002	    BUS_DMA_ALLOCNOW, NULL, NULL, &mem->dmat)) {
1003		if_printf(sc->ifp, "could not allocate %s DMA tag\n",
1004		    nm);
1005		return (ENOMEM);
1006	}
1007
1008	mem->mem = contigmalloc(mem->size, M_DEVBUF, M_WAITOK,
1009	    BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR_32BIT, mem->align, 0);
1010
1011	error = bus_dmamap_create(mem->dmat, 0, &mem->map);
1012	if (error) {
1013		if_printf(sc->ifp, "could not allocate %s DMA map: "
1014		    "%d\n", nm, error);
1015		contigfree(mem->mem, mem->size, M_DEVBUF);
1016		bus_dma_tag_destroy(mem->dmat);
1017		mem->mem = NULL;
1018		return (error);
1019	}
1020
1021	error = bus_dmamap_load(mem->dmat, mem->map, mem->mem, mem->size,
1022	    dmaload_helper, &mem->paddr, BUS_DMA_NOWAIT);
1023	if (error) {
1024		if_printf(sc->ifp, "could not load %s DMA memory: "
1025		    "%d\n", nm, error);
1026		bus_dmamap_destroy(mem->dmat, mem->map);
1027		contigfree(mem->mem, mem->size, M_DEVBUF);
1028		bus_dma_tag_destroy(mem->dmat);
1029		mem->mem = NULL;
1030		return (error);
1031	}
1032
1033	DBG(sc, DMA, ("DMAX %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
1034	    (u_long)mem->paddr, mem->size, mem->align));
1035
1036	printf("DMAX: %s V/P/S/Z %p/%lx/%x/%x", nm, mem->mem,
1037	    (u_long)mem->paddr, mem->size, mem->align);
1038
1039	return (0);
1040}
1041#endif /* TEST_DMA_SYNC */
1042
1043/*
1044 * Destroy all resources of an dma-able memory chunk
1045 */
1046static void
1047destroy_dma_memory(struct fatm_mem *mem)
1048{
1049	if (mem->mem != NULL) {
1050		bus_dmamap_unload(mem->dmat, mem->map);
1051		bus_dmamem_free(mem->dmat, mem->mem, mem->map);
1052		bus_dma_tag_destroy(mem->dmat);
1053		mem->mem = NULL;
1054	}
1055}
1056#ifdef TEST_DMA_SYNC
1057static void
1058destroy_dma_memoryX(struct fatm_mem *mem)
1059{
1060	if (mem->mem != NULL) {
1061		bus_dmamap_unload(mem->dmat, mem->map);
1062		bus_dmamap_destroy(mem->dmat, mem->map);
1063		contigfree(mem->mem, mem->size, M_DEVBUF);
1064		bus_dma_tag_destroy(mem->dmat);
1065		mem->mem = NULL;
1066	}
1067}
1068#endif /* TEST_DMA_SYNC */
1069
1070/*
1071 * Try to supply buffers to the card if there are free entries in the queues
1072 */
1073static void
1074fatm_supply_small_buffers(struct fatm_softc *sc)
1075{
1076	int nblocks, nbufs;
1077	struct supqueue *q;
1078	struct rbd *bd;
1079	int i, j, error, cnt;
1080	struct mbuf *m;
1081	struct rbuf *rb;
1082	bus_addr_t phys;
1083
1084	nbufs = max(4 * sc->open_vccs, 32);
1085	nbufs = min(nbufs, SMALL_POOL_SIZE);
1086	nbufs -= sc->small_cnt;
1087
1088	nblocks = howmany(nbufs, SMALL_SUPPLY_BLKSIZE);
1089	for (cnt = 0; cnt < nblocks; cnt++) {
1090		q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.head);
1091
1092		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1093		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
1094			break;
1095
1096		bd = (struct rbd *)q->q.ioblk;
1097
1098		for (i = 0; i < SMALL_SUPPLY_BLKSIZE; i++) {
1099			if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
1100				if_printf(sc->ifp, "out of rbufs\n");
1101				break;
1102			}
1103			MGETHDR(m, M_NOWAIT, MT_DATA);
1104			if (m == NULL) {
1105				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1106				break;
1107			}
1108			M_ALIGN(m, SMALL_BUFFER_LEN);
1109			error = bus_dmamap_load(sc->rbuf_tag, rb->map,
1110			    m->m_data, SMALL_BUFFER_LEN, dmaload_helper,
1111			    &phys, BUS_DMA_NOWAIT);
1112			if (error) {
1113				if_printf(sc->ifp,
1114				    "dmamap_load mbuf failed %d", error);
1115				m_freem(m);
1116				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1117				break;
1118			}
1119			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1120			    BUS_DMASYNC_PREREAD);
1121
1122			LIST_REMOVE(rb, link);
1123			LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
1124
1125			rb->m = m;
1126			bd[i].handle = rb - sc->rbufs;
1127			H_SETDESC(bd[i].buffer, phys);
1128		}
1129
1130		if (i < SMALL_SUPPLY_BLKSIZE) {
1131			for (j = 0; j < i; j++) {
1132				rb = sc->rbufs + bd[j].handle;
1133				bus_dmamap_unload(sc->rbuf_tag, rb->map);
1134				m_free(rb->m);
1135				rb->m = NULL;
1136
1137				LIST_REMOVE(rb, link);
1138				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1139			}
1140			break;
1141		}
1142		H_SYNCQ_PREWRITE(&sc->s1q_mem, bd,
1143		    sizeof(struct rbd) * SMALL_SUPPLY_BLKSIZE);
1144
1145		H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1146		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1147
1148		WRITE4(sc, q->q.card, q->q.card_ioblk);
1149		BARRIER_W(sc);
1150
1151		sc->small_cnt += SMALL_SUPPLY_BLKSIZE;
1152
1153		NEXT_QUEUE_ENTRY(sc->s1queue.head, SMALL_SUPPLY_QLEN);
1154	}
1155}
1156
1157/*
1158 * Try to supply buffers to the card if there are free entries in the queues
1159 * We assume that all buffers are within the address space accessible by the
1160 * card (32-bit), so we don't need bounce buffers.
1161 */
1162static void
1163fatm_supply_large_buffers(struct fatm_softc *sc)
1164{
1165	int nbufs, nblocks, cnt;
1166	struct supqueue *q;
1167	struct rbd *bd;
1168	int i, j, error;
1169	struct mbuf *m;
1170	struct rbuf *rb;
1171	bus_addr_t phys;
1172
1173	nbufs = max(4 * sc->open_vccs, 32);
1174	nbufs = min(nbufs, LARGE_POOL_SIZE);
1175	nbufs -= sc->large_cnt;
1176
1177	nblocks = howmany(nbufs, LARGE_SUPPLY_BLKSIZE);
1178
1179	for (cnt = 0; cnt < nblocks; cnt++) {
1180		q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.head);
1181
1182		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1183		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE)
1184			break;
1185
1186		bd = (struct rbd *)q->q.ioblk;
1187
1188		for (i = 0; i < LARGE_SUPPLY_BLKSIZE; i++) {
1189			if ((rb = LIST_FIRST(&sc->rbuf_free)) == NULL) {
1190				if_printf(sc->ifp, "out of rbufs\n");
1191				break;
1192			}
1193			if ((m = m_getcl(M_NOWAIT, MT_DATA,
1194			    M_PKTHDR)) == NULL) {
1195				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1196				break;
1197			}
1198			/* No MEXT_ALIGN */
1199			m->m_data += MCLBYTES - LARGE_BUFFER_LEN;
1200			error = bus_dmamap_load(sc->rbuf_tag, rb->map,
1201			    m->m_data, LARGE_BUFFER_LEN, dmaload_helper,
1202			    &phys, BUS_DMA_NOWAIT);
1203			if (error) {
1204				if_printf(sc->ifp,
1205				    "dmamap_load mbuf failed %d", error);
1206				m_freem(m);
1207				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1208				break;
1209			}
1210
1211			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1212			    BUS_DMASYNC_PREREAD);
1213
1214			LIST_REMOVE(rb, link);
1215			LIST_INSERT_HEAD(&sc->rbuf_used, rb, link);
1216
1217			rb->m = m;
1218			bd[i].handle = rb - sc->rbufs;
1219			H_SETDESC(bd[i].buffer, phys);
1220		}
1221
1222		if (i < LARGE_SUPPLY_BLKSIZE) {
1223			for (j = 0; j < i; j++) {
1224				rb = sc->rbufs + bd[j].handle;
1225				bus_dmamap_unload(sc->rbuf_tag, rb->map);
1226				m_free(rb->m);
1227				rb->m = NULL;
1228
1229				LIST_REMOVE(rb, link);
1230				LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1231			}
1232			break;
1233		}
1234		H_SYNCQ_PREWRITE(&sc->l1q_mem, bd,
1235		    sizeof(struct rbd) * LARGE_SUPPLY_BLKSIZE);
1236
1237		H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1238		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1239		WRITE4(sc, q->q.card, q->q.card_ioblk);
1240		BARRIER_W(sc);
1241
1242		sc->large_cnt += LARGE_SUPPLY_BLKSIZE;
1243
1244		NEXT_QUEUE_ENTRY(sc->l1queue.head, LARGE_SUPPLY_QLEN);
1245	}
1246}
1247
1248
1249/*
1250 * Actually start the card. The lock must be held here.
1251 * Reset, load the firmware, start it, initializes queues, read the PROM
1252 * and supply receive buffers to the card.
1253 */
1254static void
1255fatm_init_locked(struct fatm_softc *sc)
1256{
1257	struct rxqueue *q;
1258	int i, c, error;
1259	uint32_t start;
1260
1261	DBG(sc, INIT, ("initialize"));
1262	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING)
1263		fatm_stop(sc);
1264
1265	/*
1266	 * Hard reset the board
1267	 */
1268	if (fatm_reset(sc))
1269		return;
1270
1271	start = firmware_load(sc);
1272	if (fatm_start_firmware(sc, start) || fatm_init_cmd(sc) ||
1273	    fatm_getprom(sc)) {
1274		fatm_reset(sc);
1275		return;
1276	}
1277
1278	/*
1279	 * Handle media
1280	 */
1281	c = READ4(sc, FATMO_MEDIA_TYPE);
1282	switch (c) {
1283
1284	  case FORE_MT_TAXI_100:
1285		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_TAXI_100;
1286		IFP2IFATM(sc->ifp)->mib.pcr = 227273;
1287		break;
1288
1289	  case FORE_MT_TAXI_140:
1290		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_TAXI_140;
1291		IFP2IFATM(sc->ifp)->mib.pcr = 318181;
1292		break;
1293
1294	  case FORE_MT_UTP_SONET:
1295		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UTP_155;
1296		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1297		break;
1298
1299	  case FORE_MT_MM_OC3_ST:
1300	  case FORE_MT_MM_OC3_SC:
1301		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_155;
1302		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1303		break;
1304
1305	  case FORE_MT_SM_OC3_ST:
1306	  case FORE_MT_SM_OC3_SC:
1307		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_SM_155;
1308		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1309		break;
1310
1311	  default:
1312		log(LOG_ERR, "fatm: unknown media type %d\n", c);
1313		IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UNKNOWN;
1314		IFP2IFATM(sc->ifp)->mib.pcr = 353207;
1315		break;
1316	}
1317	sc->ifp->if_baudrate = 53 * 8 * IFP2IFATM(sc->ifp)->mib.pcr;
1318	utopia_init_media(&sc->utopia);
1319
1320	/*
1321	 * Initialize the RBDs
1322	 */
1323	for (i = 0; i < FATM_RX_QLEN; i++) {
1324		q = GET_QUEUE(sc->rxqueue, struct rxqueue, i);
1325		WRITE4(sc, q->q.card + 0, q->q.card_ioblk);
1326	}
1327	BARRIER_W(sc);
1328
1329	/*
1330	 * Supply buffers to the card
1331	 */
1332	fatm_supply_small_buffers(sc);
1333	fatm_supply_large_buffers(sc);
1334
1335	/*
1336	 * Now set flags, that we are ready
1337	 */
1338	sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
1339
1340	/*
1341	 * Start the watchdog timer
1342	 */
1343	callout_reset(&sc->watchdog_timer, hz * 5, fatm_watchdog, sc);
1344
1345	/* start SUNI */
1346	utopia_start(&sc->utopia);
1347
1348	ATMEV_SEND_IFSTATE_CHANGED(IFP2IFATM(sc->ifp),
1349	    sc->utopia.carrier == UTP_CARR_OK);
1350
1351	/* start all channels */
1352	for (i = 0; i < FORE_MAX_VCC + 1; i++)
1353		if (sc->vccs[i] != NULL) {
1354			sc->vccs[i]->vflags |= FATM_VCC_REOPEN;
1355			error = fatm_load_vc(sc, sc->vccs[i]);
1356			if (error != 0) {
1357				if_printf(sc->ifp, "reopening %u "
1358				    "failed: %d\n", i, error);
1359				sc->vccs[i]->vflags &= ~FATM_VCC_REOPEN;
1360			}
1361		}
1362
1363	DBG(sc, INIT, ("done"));
1364}
1365
1366/*
1367 * This is the exported as initialisation function.
1368 */
1369static void
1370fatm_init(void *p)
1371{
1372	struct fatm_softc *sc = p;
1373
1374	FATM_LOCK(sc);
1375	fatm_init_locked(sc);
1376	FATM_UNLOCK(sc);
1377}
1378
1379/************************************************************/
1380/*
1381 * The INTERRUPT handling
1382 */
1383/*
1384 * Check the command queue. If a command was completed, call the completion
1385 * function for that command.
1386 */
1387static void
1388fatm_intr_drain_cmd(struct fatm_softc *sc)
1389{
1390	struct cmdqueue *q;
1391	int stat;
1392
1393	/*
1394	 * Drain command queue
1395	 */
1396	for (;;) {
1397		q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.tail);
1398
1399		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1400		stat = H_GETSTAT(q->q.statp);
1401
1402		if (stat != FATM_STAT_COMPLETE &&
1403		   stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
1404		   stat != FATM_STAT_ERROR)
1405			break;
1406
1407		(*q->cb)(sc, q);
1408
1409		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1410		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1411
1412		NEXT_QUEUE_ENTRY(sc->cmdqueue.tail, FATM_CMD_QLEN);
1413	}
1414}
1415
1416/*
1417 * Drain the small buffer supply queue.
1418 */
1419static void
1420fatm_intr_drain_small_buffers(struct fatm_softc *sc)
1421{
1422	struct supqueue *q;
1423	int stat;
1424
1425	for (;;) {
1426		q = GET_QUEUE(sc->s1queue, struct supqueue, sc->s1queue.tail);
1427
1428		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1429		stat = H_GETSTAT(q->q.statp);
1430
1431		if ((stat & FATM_STAT_COMPLETE) == 0)
1432			break;
1433		if (stat & FATM_STAT_ERROR)
1434			log(LOG_ERR, "%s: status %x\n", __func__, stat);
1435
1436		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1437		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1438
1439		NEXT_QUEUE_ENTRY(sc->s1queue.tail, SMALL_SUPPLY_QLEN);
1440	}
1441}
1442
1443/*
1444 * Drain the large buffer supply queue.
1445 */
1446static void
1447fatm_intr_drain_large_buffers(struct fatm_softc *sc)
1448{
1449	struct supqueue *q;
1450	int stat;
1451
1452	for (;;) {
1453		q = GET_QUEUE(sc->l1queue, struct supqueue, sc->l1queue.tail);
1454
1455		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1456		stat = H_GETSTAT(q->q.statp);
1457
1458		if ((stat & FATM_STAT_COMPLETE) == 0)
1459			break;
1460		if (stat & FATM_STAT_ERROR)
1461			log(LOG_ERR, "%s status %x\n", __func__, stat);
1462
1463		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1464		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1465
1466		NEXT_QUEUE_ENTRY(sc->l1queue.tail, LARGE_SUPPLY_QLEN);
1467	}
1468}
1469
1470/*
1471 * Check the receive queue. Send any received PDU up the protocol stack
1472 * (except when there was an error or the VCI appears to be closed. In this
1473 * case discard the PDU).
1474 */
1475static void
1476fatm_intr_drain_rx(struct fatm_softc *sc)
1477{
1478	struct rxqueue *q;
1479	int stat, mlen;
1480	u_int i;
1481	uint32_t h;
1482	struct mbuf *last, *m0;
1483	struct rpd *rpd;
1484	struct rbuf *rb;
1485	u_int vci, vpi, pt;
1486	struct atm_pseudohdr aph;
1487	struct ifnet *ifp;
1488	struct card_vcc *vc;
1489
1490	for (;;) {
1491		q = GET_QUEUE(sc->rxqueue, struct rxqueue, sc->rxqueue.tail);
1492
1493		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1494		stat = H_GETSTAT(q->q.statp);
1495
1496		if ((stat & FATM_STAT_COMPLETE) == 0)
1497			break;
1498
1499		rpd = (struct rpd *)q->q.ioblk;
1500		H_SYNCQ_POSTREAD(&sc->rxq_mem, rpd, RPD_SIZE);
1501
1502		rpd->nseg = le32toh(rpd->nseg);
1503		mlen = 0;
1504		m0 = last = NULL;
1505		for (i = 0; i < rpd->nseg; i++) {
1506			rb = sc->rbufs + rpd->segment[i].handle;
1507			if (m0 == NULL) {
1508				m0 = last = rb->m;
1509			} else {
1510				last->m_next = rb->m;
1511				last = rb->m;
1512			}
1513			last->m_next = NULL;
1514			if (last->m_flags & M_EXT)
1515				sc->large_cnt--;
1516			else
1517				sc->small_cnt--;
1518			bus_dmamap_sync(sc->rbuf_tag, rb->map,
1519			    BUS_DMASYNC_POSTREAD);
1520			bus_dmamap_unload(sc->rbuf_tag, rb->map);
1521			rb->m = NULL;
1522
1523			LIST_REMOVE(rb, link);
1524			LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
1525
1526			last->m_len = le32toh(rpd->segment[i].length);
1527			mlen += last->m_len;
1528		}
1529
1530		m0->m_pkthdr.len = mlen;
1531		m0->m_pkthdr.rcvif = sc->ifp;
1532
1533		h = le32toh(rpd->atm_header);
1534		vpi = (h >> 20) & 0xff;
1535		vci = (h >> 4 ) & 0xffff;
1536		pt  = (h >> 1 ) & 0x7;
1537
1538		/*
1539		 * Locate the VCC this packet belongs to
1540		 */
1541		if (!VC_OK(sc, vpi, vci))
1542			vc = NULL;
1543		else if ((vc = sc->vccs[vci]) == NULL ||
1544		    !(sc->vccs[vci]->vflags & FATM_VCC_OPEN)) {
1545			sc->istats.rx_closed++;
1546			vc = NULL;
1547		}
1548
1549		DBG(sc, RCV, ("RCV: vc=%u.%u pt=%u mlen=%d %s", vpi, vci,
1550		    pt, mlen, vc == NULL ? "dropped" : ""));
1551
1552		if (vc == NULL) {
1553			m_freem(m0);
1554		} else {
1555#ifdef ENABLE_BPF
1556			if (!(vc->param.flags & ATMIO_FLAG_NG) &&
1557			    vc->param.aal == ATMIO_AAL_5 &&
1558			    (vc->param.flags & ATM_PH_LLCSNAP))
1559				BPF_MTAP(sc->ifp, m0);
1560#endif
1561
1562			ATM_PH_FLAGS(&aph) = vc->param.flags;
1563			ATM_PH_VPI(&aph) = vpi;
1564			ATM_PH_SETVCI(&aph, vci);
1565
1566			ifp = sc->ifp;
1567			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1568
1569			vc->ipackets++;
1570			vc->ibytes += m0->m_pkthdr.len;
1571
1572			atm_input(ifp, &aph, m0, vc->rxhand);
1573		}
1574
1575		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1576		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1577
1578		WRITE4(sc, q->q.card, q->q.card_ioblk);
1579		BARRIER_W(sc);
1580
1581		NEXT_QUEUE_ENTRY(sc->rxqueue.tail, FATM_RX_QLEN);
1582	}
1583}
1584
1585/*
1586 * Check the transmit queue. Free the mbuf chains that we were transmitting.
1587 */
1588static void
1589fatm_intr_drain_tx(struct fatm_softc *sc)
1590{
1591	struct txqueue *q;
1592	int stat;
1593
1594	/*
1595	 * Drain tx queue
1596	 */
1597	for (;;) {
1598		q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.tail);
1599
1600		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1601		stat = H_GETSTAT(q->q.statp);
1602
1603		if (stat != FATM_STAT_COMPLETE &&
1604		    stat != (FATM_STAT_COMPLETE | FATM_STAT_ERROR) &&
1605		    stat != FATM_STAT_ERROR)
1606			break;
1607
1608		H_SETSTAT(q->q.statp, FATM_STAT_FREE);
1609		H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1610
1611		bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_POSTWRITE);
1612		bus_dmamap_unload(sc->tx_tag, q->map);
1613
1614		m_freem(q->m);
1615		q->m = NULL;
1616		sc->txcnt--;
1617
1618		NEXT_QUEUE_ENTRY(sc->txqueue.tail, FATM_TX_QLEN);
1619	}
1620}
1621
1622/*
1623 * Interrupt handler
1624 */
1625static void
1626fatm_intr(void *p)
1627{
1628	struct fatm_softc *sc = (struct fatm_softc *)p;
1629
1630	FATM_LOCK(sc);
1631	if (!READ4(sc, FATMO_PSR)) {
1632		FATM_UNLOCK(sc);
1633		return;
1634	}
1635	WRITE4(sc, FATMO_HCR, FATM_HCR_CLRIRQ);
1636
1637	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1638		FATM_UNLOCK(sc);
1639		return;
1640	}
1641	fatm_intr_drain_cmd(sc);
1642	fatm_intr_drain_rx(sc);
1643	fatm_intr_drain_tx(sc);
1644	fatm_intr_drain_small_buffers(sc);
1645	fatm_intr_drain_large_buffers(sc);
1646	fatm_supply_small_buffers(sc);
1647	fatm_supply_large_buffers(sc);
1648
1649	FATM_UNLOCK(sc);
1650
1651	if (sc->retry_tx && _IF_QLEN(&sc->ifp->if_snd))
1652		(*sc->ifp->if_start)(sc->ifp);
1653}
1654
1655/*
1656 * Get device statistics. This must be called with the softc locked.
1657 * We use a preallocated buffer, so we need to protect this buffer.
1658 * We do this by using a condition variable and a flag. If the flag is set
1659 * the buffer is in use by one thread (one thread is executing a GETSTAT
1660 * card command). In this case all other threads that are trying to get
1661 * statistics block on that condition variable. When the thread finishes
1662 * using the buffer it resets the flag and signals the condition variable. This
1663 * will wakeup the next thread that is waiting for the buffer. If the interface
1664 * is stopped the stopping function will broadcast the cv. All threads will
1665 * find that the interface has been stopped and return.
1666 *
1667 * Acquiring of the buffer is done by the fatm_getstat() function. The freeing
1668 * must be done by the caller when he has finished using the buffer.
1669 */
1670static void
1671fatm_getstat_complete(struct fatm_softc *sc, struct cmdqueue *q)
1672{
1673
1674	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1675	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
1676		sc->istats.get_stat_errors++;
1677		q->error = EIO;
1678	}
1679	wakeup(&sc->sadi_mem);
1680}
1681static int
1682fatm_getstat(struct fatm_softc *sc)
1683{
1684	int error;
1685	struct cmdqueue *q;
1686
1687	/*
1688	 * Wait until either the interface is stopped or we can get the
1689	 * statistics buffer
1690	 */
1691	for (;;) {
1692		if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING))
1693			return (EIO);
1694		if (!(sc->flags & FATM_STAT_INUSE))
1695			break;
1696		cv_wait(&sc->cv_stat, &sc->mtx);
1697	}
1698	sc->flags |= FATM_STAT_INUSE;
1699
1700	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
1701
1702	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1703	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
1704		sc->istats.cmd_queue_full++;
1705		return (EIO);
1706	}
1707	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
1708
1709	q->error = 0;
1710	q->cb = fatm_getstat_complete;
1711	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1712	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1713
1714	bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
1715	    BUS_DMASYNC_PREREAD);
1716
1717	WRITE4(sc, q->q.card + FATMOC_GSTAT_BUF,
1718	    sc->sadi_mem.paddr);
1719	BARRIER_W(sc);
1720	WRITE4(sc, q->q.card + FATMOC_OP,
1721	    FATM_OP_REQUEST_STATS | FATM_OP_INTERRUPT_SEL);
1722	BARRIER_W(sc);
1723
1724	/*
1725	 * Wait for the command to complete
1726	 */
1727	error = msleep(&sc->sadi_mem, &sc->mtx, PZERO | PCATCH,
1728	    "fatm_stat", hz);
1729
1730	switch (error) {
1731
1732	  case EWOULDBLOCK:
1733		error = EIO;
1734		break;
1735
1736	  case ERESTART:
1737		error = EINTR;
1738		break;
1739
1740	  case 0:
1741		bus_dmamap_sync(sc->sadi_mem.dmat, sc->sadi_mem.map,
1742		    BUS_DMASYNC_POSTREAD);
1743		error = q->error;
1744		break;
1745	}
1746
1747	/*
1748	 * Swap statistics
1749	 */
1750	if (q->error == 0) {
1751		u_int i;
1752		uint32_t *p = (uint32_t *)sc->sadi_mem.mem;
1753
1754		for (i = 0; i < sizeof(struct fatm_stats) / sizeof(uint32_t);
1755		    i++, p++)
1756			*p = be32toh(*p);
1757	}
1758
1759	return (error);
1760}
1761
1762/*
1763 * Create a copy of a single mbuf. It can have either internal or
1764 * external data, it may have a packet header. External data is really
1765 * copied, so the new buffer is writeable.
1766 */
1767static struct mbuf *
1768copy_mbuf(struct mbuf *m)
1769{
1770	struct mbuf *new;
1771
1772	MGET(new, M_NOWAIT, MT_DATA);
1773	if (new == NULL)
1774		return (NULL);
1775
1776	if (m->m_flags & M_PKTHDR) {
1777		M_MOVE_PKTHDR(new, m);
1778		if (m->m_len > MHLEN)
1779			MCLGET(new, M_WAITOK);
1780	} else {
1781		if (m->m_len > MLEN)
1782			MCLGET(new, M_WAITOK);
1783	}
1784
1785	bcopy(m->m_data, new->m_data, m->m_len);
1786	new->m_len = m->m_len;
1787	new->m_flags &= ~M_RDONLY;
1788
1789	return (new);
1790}
1791
1792/*
1793 * All segments must have a four byte aligned buffer address and a four
1794 * byte aligned length. Step through an mbuf chain and check these conditions.
1795 * If the buffer address is not aligned and this is a normal mbuf, move
1796 * the data down. Else make a copy of the mbuf with aligned data.
1797 * If the buffer length is not aligned steel data from the next mbuf.
1798 * We don't need to check whether this has more than one external reference,
1799 * because steeling data doesn't change the external cluster.
1800 * If the last mbuf is not aligned, fill with zeroes.
1801 *
1802 * Return packet length (well we should have this in the packet header),
1803 * but be careful not to count the zero fill at the end.
1804 *
1805 * If fixing fails free the chain and zero the pointer.
1806 *
1807 * We assume, that aligning the virtual address also aligns the mapped bus
1808 * address.
1809 */
1810static u_int
1811fatm_fix_chain(struct fatm_softc *sc, struct mbuf **mp)
1812{
1813	struct mbuf *m = *mp, *prev = NULL, *next, *new;
1814	u_int mlen = 0, fill = 0;
1815	int first, off;
1816	u_char *d, *cp;
1817
1818	do {
1819		next = m->m_next;
1820
1821		if ((uintptr_t)mtod(m, void *) % 4 != 0 ||
1822		   (m->m_len % 4 != 0 && next)) {
1823			/*
1824			 * Needs fixing
1825			 */
1826			first = (m == *mp);
1827
1828			d = mtod(m, u_char *);
1829			if ((off = (uintptr_t)(void *)d % 4) != 0) {
1830				if (M_WRITABLE(m)) {
1831					sc->istats.fix_addr_copy++;
1832					bcopy(d, d - off, m->m_len);
1833					m->m_data = (caddr_t)(d - off);
1834				} else {
1835					if ((new = copy_mbuf(m)) == NULL) {
1836						sc->istats.fix_addr_noext++;
1837						goto fail;
1838					}
1839					sc->istats.fix_addr_ext++;
1840					if (prev)
1841						prev->m_next = new;
1842					new->m_next = next;
1843					m_free(m);
1844					m = new;
1845				}
1846			}
1847
1848			if ((off = m->m_len % 4) != 0) {
1849				if (!M_WRITABLE(m)) {
1850					if ((new = copy_mbuf(m)) == NULL) {
1851						sc->istats.fix_len_noext++;
1852						goto fail;
1853					}
1854					sc->istats.fix_len_copy++;
1855					if (prev)
1856						prev->m_next = new;
1857					new->m_next = next;
1858					m_free(m);
1859					m = new;
1860				} else
1861					sc->istats.fix_len++;
1862				d = mtod(m, u_char *) + m->m_len;
1863				off = 4 - off;
1864				while (off) {
1865					if (next == NULL) {
1866						*d++ = 0;
1867						fill++;
1868					} else if (next->m_len == 0) {
1869						sc->istats.fix_empty++;
1870						next = m_free(next);
1871						continue;
1872					} else {
1873						cp = mtod(next, u_char *);
1874						*d++ = *cp++;
1875						next->m_len--;
1876						next->m_data = (caddr_t)cp;
1877					}
1878					off--;
1879					m->m_len++;
1880				}
1881			}
1882
1883			if (first)
1884				*mp = m;
1885		}
1886
1887		mlen += m->m_len;
1888		prev = m;
1889	} while ((m = next) != NULL);
1890
1891	return (mlen - fill);
1892
1893  fail:
1894	m_freem(*mp);
1895	*mp = NULL;
1896	return (0);
1897}
1898
1899/*
1900 * The helper function is used to load the computed physical addresses
1901 * into the transmit descriptor.
1902 */
1903static void
1904fatm_tpd_load(void *varg, bus_dma_segment_t *segs, int nsegs,
1905    bus_size_t mapsize, int error)
1906{
1907	struct tpd *tpd = varg;
1908
1909	if (error)
1910		return;
1911
1912	KASSERT(nsegs <= TPD_EXTENSIONS + TXD_FIXED, ("too many segments"));
1913
1914	tpd->spec = 0;
1915	while (nsegs--) {
1916		H_SETDESC(tpd->segment[tpd->spec].buffer, segs->ds_addr);
1917		H_SETDESC(tpd->segment[tpd->spec].length, segs->ds_len);
1918		tpd->spec++;
1919		segs++;
1920	}
1921}
1922
1923/*
1924 * Start output.
1925 *
1926 * Note, that we update the internal statistics without the lock here.
1927 */
1928static int
1929fatm_tx(struct fatm_softc *sc, struct mbuf *m, struct card_vcc *vc, u_int mlen)
1930{
1931	struct txqueue *q;
1932	u_int nblks;
1933	int error, aal, nsegs;
1934	struct tpd *tpd;
1935
1936	/*
1937	 * Get a queue element.
1938	 * If there isn't one - try to drain the transmit queue
1939	 * We used to sleep here if that doesn't help, but we
1940	 * should not sleep here, because we are called with locks.
1941	 */
1942	q = GET_QUEUE(sc->txqueue, struct txqueue, sc->txqueue.head);
1943
1944	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1945	if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
1946		fatm_intr_drain_tx(sc);
1947		H_SYNCSTAT_POSTREAD(sc, q->q.statp);
1948		if (H_GETSTAT(q->q.statp) != FATM_STAT_FREE) {
1949			if (sc->retry_tx) {
1950				sc->istats.tx_retry++;
1951				IF_PREPEND(&sc->ifp->if_snd, m);
1952				return (1);
1953			}
1954			sc->istats.tx_queue_full++;
1955			m_freem(m);
1956			return (0);
1957		}
1958		sc->istats.tx_queue_almost_full++;
1959	}
1960
1961	tpd = q->q.ioblk;
1962
1963	m->m_data += sizeof(struct atm_pseudohdr);
1964	m->m_len -= sizeof(struct atm_pseudohdr);
1965
1966#ifdef ENABLE_BPF
1967	if (!(vc->param.flags & ATMIO_FLAG_NG) &&
1968	    vc->param.aal == ATMIO_AAL_5 &&
1969	    (vc->param.flags & ATM_PH_LLCSNAP))
1970		BPF_MTAP(sc->ifp, m);
1971#endif
1972
1973	/* map the mbuf */
1974	error = bus_dmamap_load_mbuf(sc->tx_tag, q->map, m,
1975	    fatm_tpd_load, tpd, BUS_DMA_NOWAIT);
1976	if(error) {
1977		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
1978		if_printf(sc->ifp, "mbuf loaded error=%d\n", error);
1979		m_freem(m);
1980		return (0);
1981	}
1982	nsegs = tpd->spec;
1983
1984	bus_dmamap_sync(sc->tx_tag, q->map, BUS_DMASYNC_PREWRITE);
1985
1986	/*
1987	 * OK. Now go and do it.
1988	 */
1989	aal = (vc->param.aal == ATMIO_AAL_5) ? 5 : 0;
1990
1991	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
1992	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
1993	q->m = m;
1994
1995	/*
1996	 * If the transmit queue is almost full, schedule a
1997	 * transmit interrupt so that transmit descriptors can
1998	 * be recycled.
1999	 */
2000	H_SETDESC(tpd->spec, TDX_MKSPEC((sc->txcnt >=
2001	    (4 * FATM_TX_QLEN) / 5), aal, nsegs, mlen));
2002	H_SETDESC(tpd->atm_header, TDX_MKHDR(vc->param.vpi,
2003	    vc->param.vci, 0, 0));
2004
2005	if (vc->param.traffic == ATMIO_TRAFFIC_UBR)
2006		H_SETDESC(tpd->stream, 0);
2007	else {
2008		u_int i;
2009
2010		for (i = 0; i < RATE_TABLE_SIZE; i++)
2011			if (rate_table[i].cell_rate < vc->param.tparam.pcr)
2012				break;
2013		if (i > 0)
2014			i--;
2015		H_SETDESC(tpd->stream, rate_table[i].ratio);
2016	}
2017	H_SYNCQ_PREWRITE(&sc->txq_mem, tpd, TPD_SIZE);
2018
2019	nblks = TDX_SEGS2BLKS(nsegs);
2020
2021	DBG(sc, XMIT, ("XMIT: mlen=%d spec=0x%x nsegs=%d blocks=%d",
2022	    mlen, le32toh(tpd->spec), nsegs, nblks));
2023
2024	WRITE4(sc, q->q.card + 0, q->q.card_ioblk | nblks);
2025	BARRIER_W(sc);
2026
2027	sc->txcnt++;
2028	if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
2029	vc->obytes += m->m_pkthdr.len;
2030	vc->opackets++;
2031
2032	NEXT_QUEUE_ENTRY(sc->txqueue.head, FATM_TX_QLEN);
2033
2034	return (0);
2035}
2036
2037static void
2038fatm_start(struct ifnet *ifp)
2039{
2040	struct atm_pseudohdr aph;
2041	struct fatm_softc *sc;
2042	struct mbuf *m;
2043	u_int mlen, vpi, vci;
2044	struct card_vcc *vc;
2045
2046	sc = ifp->if_softc;
2047
2048	while (1) {
2049		IF_DEQUEUE(&ifp->if_snd, m);
2050		if (m == NULL)
2051			break;
2052
2053		/*
2054		 * Loop through the mbuf chain and compute the total length
2055		 * of the packet. Check that all data pointer are
2056		 * 4 byte aligned. If they are not, call fatm_mfix to
2057		 * fix that problem. This comes more or less from the
2058		 * en driver.
2059		 */
2060		mlen = fatm_fix_chain(sc, &m);
2061		if (m == NULL)
2062			continue;
2063
2064		if (m->m_len < sizeof(struct atm_pseudohdr) &&
2065		    (m = m_pullup(m, sizeof(struct atm_pseudohdr))) == NULL)
2066			continue;
2067
2068		aph = *mtod(m, struct atm_pseudohdr *);
2069		mlen -= sizeof(struct atm_pseudohdr);
2070
2071		if (mlen == 0) {
2072			m_freem(m);
2073			continue;
2074		}
2075		if (mlen > FATM_MAXPDU) {
2076			sc->istats.tx_pdu2big++;
2077			m_freem(m);
2078			continue;
2079		}
2080
2081		vci = ATM_PH_VCI(&aph);
2082		vpi = ATM_PH_VPI(&aph);
2083
2084		/*
2085		 * From here on we need the softc
2086		 */
2087		FATM_LOCK(sc);
2088		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2089			FATM_UNLOCK(sc);
2090			m_freem(m);
2091			break;
2092		}
2093		if (!VC_OK(sc, vpi, vci) || (vc = sc->vccs[vci]) == NULL ||
2094		    !(vc->vflags & FATM_VCC_OPEN)) {
2095			FATM_UNLOCK(sc);
2096			m_freem(m);
2097			continue;
2098		}
2099		if (fatm_tx(sc, m, vc, mlen)) {
2100			FATM_UNLOCK(sc);
2101			break;
2102		}
2103		FATM_UNLOCK(sc);
2104	}
2105}
2106
2107/*
2108 * VCC management
2109 *
2110 * This may seem complicated. The reason for this is, that we need an
2111 * asynchronuous open/close for the NATM VCCs because our ioctl handler
2112 * is called with the radix node head of the routing table locked. Therefor
2113 * we cannot sleep there and wait for the open/close to succeed. For this
2114 * reason we just initiate the operation from the ioctl.
2115 */
2116
2117/*
2118 * Command the card to open/close a VC.
2119 * Return the queue entry for waiting if we are successful.
2120 */
2121static struct cmdqueue *
2122fatm_start_vcc(struct fatm_softc *sc, u_int vpi, u_int vci, uint32_t cmd,
2123    u_int mtu, void (*func)(struct fatm_softc *, struct cmdqueue *))
2124{
2125	struct cmdqueue *q;
2126
2127	q = GET_QUEUE(sc->cmdqueue, struct cmdqueue, sc->cmdqueue.head);
2128
2129	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2130	if (!(H_GETSTAT(q->q.statp) & FATM_STAT_FREE)) {
2131		sc->istats.cmd_queue_full++;
2132		return (NULL);
2133	}
2134	NEXT_QUEUE_ENTRY(sc->cmdqueue.head, FATM_CMD_QLEN);
2135
2136	q->error = 0;
2137	q->cb = func;
2138	H_SETSTAT(q->q.statp, FATM_STAT_PENDING);
2139	H_SYNCSTAT_PREWRITE(sc, q->q.statp);
2140
2141	WRITE4(sc, q->q.card + FATMOC_ACTIN_VPVC, MKVPVC(vpi, vci));
2142	BARRIER_W(sc);
2143	WRITE4(sc, q->q.card + FATMOC_ACTIN_MTU, mtu);
2144	BARRIER_W(sc);
2145	WRITE4(sc, q->q.card + FATMOC_OP, cmd);
2146	BARRIER_W(sc);
2147
2148	return (q);
2149}
2150
2151/*
2152 * The VC has been opened/closed and somebody has been waiting for this.
2153 * Wake him up.
2154 */
2155static void
2156fatm_cmd_complete(struct fatm_softc *sc, struct cmdqueue *q)
2157{
2158
2159	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2160	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2161		sc->istats.get_stat_errors++;
2162		q->error = EIO;
2163	}
2164	wakeup(q);
2165}
2166
2167/*
2168 * Open complete
2169 */
2170static void
2171fatm_open_finish(struct fatm_softc *sc, struct card_vcc *vc)
2172{
2173	vc->vflags &= ~FATM_VCC_TRY_OPEN;
2174	vc->vflags |= FATM_VCC_OPEN;
2175
2176	if (vc->vflags & FATM_VCC_REOPEN) {
2177		vc->vflags &= ~FATM_VCC_REOPEN;
2178		return;
2179	}
2180
2181	/* inform management if this is not an NG
2182	 * VCC or it's an NG PVC. */
2183	if (!(vc->param.flags & ATMIO_FLAG_NG) ||
2184	    (vc->param.flags & ATMIO_FLAG_PVC))
2185		ATMEV_SEND_VCC_CHANGED(IFP2IFATM(sc->ifp), 0, vc->param.vci, 1);
2186}
2187
2188/*
2189 * The VC that we have tried to open asynchronuosly has been opened.
2190 */
2191static void
2192fatm_open_complete(struct fatm_softc *sc, struct cmdqueue *q)
2193{
2194	u_int vci;
2195	struct card_vcc *vc;
2196
2197	vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
2198	vc = sc->vccs[vci];
2199	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2200	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2201		sc->istats.get_stat_errors++;
2202		sc->vccs[vci] = NULL;
2203		uma_zfree(sc->vcc_zone, vc);
2204		if_printf(sc->ifp, "opening VCI %u failed\n", vci);
2205		return;
2206	}
2207	fatm_open_finish(sc, vc);
2208}
2209
2210/*
2211 * Wait on the queue entry until the VCC is opened/closed.
2212 */
2213static int
2214fatm_waitvcc(struct fatm_softc *sc, struct cmdqueue *q)
2215{
2216	int error;
2217
2218	/*
2219	 * Wait for the command to complete
2220	 */
2221	error = msleep(q, &sc->mtx, PZERO | PCATCH, "fatm_vci", hz);
2222
2223	if (error != 0)
2224		return (error);
2225	return (q->error);
2226}
2227
2228/*
2229 * Start to open a VCC. This just initiates the operation.
2230 */
2231static int
2232fatm_open_vcc(struct fatm_softc *sc, struct atmio_openvcc *op)
2233{
2234	int error;
2235	struct card_vcc *vc;
2236
2237	/*
2238	 * Check parameters
2239	 */
2240	if ((op->param.flags & ATMIO_FLAG_NOTX) &&
2241	    (op->param.flags & ATMIO_FLAG_NORX))
2242		return (EINVAL);
2243
2244	if (!VC_OK(sc, op->param.vpi, op->param.vci))
2245		return (EINVAL);
2246	if (op->param.aal != ATMIO_AAL_0 && op->param.aal != ATMIO_AAL_5)
2247		return (EINVAL);
2248
2249	vc = uma_zalloc(sc->vcc_zone, M_NOWAIT | M_ZERO);
2250	if (vc == NULL)
2251		return (ENOMEM);
2252
2253	error = 0;
2254
2255	FATM_LOCK(sc);
2256	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2257		error = EIO;
2258		goto done;
2259	}
2260	if (sc->vccs[op->param.vci] != NULL) {
2261		error = EBUSY;
2262		goto done;
2263	}
2264	vc->param = op->param;
2265	vc->rxhand = op->rxhand;
2266
2267	switch (op->param.traffic) {
2268
2269	  case ATMIO_TRAFFIC_UBR:
2270		break;
2271
2272	  case ATMIO_TRAFFIC_CBR:
2273		if (op->param.tparam.pcr == 0 ||
2274		    op->param.tparam.pcr > IFP2IFATM(sc->ifp)->mib.pcr) {
2275			error = EINVAL;
2276			goto done;
2277		}
2278		break;
2279
2280	  default:
2281		error = EINVAL;
2282		goto done;
2283	}
2284	vc->ibytes = vc->obytes = 0;
2285	vc->ipackets = vc->opackets = 0;
2286
2287	vc->vflags = FATM_VCC_TRY_OPEN;
2288	sc->vccs[op->param.vci] = vc;
2289	sc->open_vccs++;
2290
2291	error = fatm_load_vc(sc, vc);
2292	if (error != 0) {
2293		sc->vccs[op->param.vci] = NULL;
2294		sc->open_vccs--;
2295		goto done;
2296	}
2297
2298	/* don't free below */
2299	vc = NULL;
2300
2301  done:
2302	FATM_UNLOCK(sc);
2303	if (vc != NULL)
2304		uma_zfree(sc->vcc_zone, vc);
2305	return (error);
2306}
2307
2308/*
2309 * Try to initialize the given VC
2310 */
2311static int
2312fatm_load_vc(struct fatm_softc *sc, struct card_vcc *vc)
2313{
2314	uint32_t cmd;
2315	struct cmdqueue *q;
2316	int error;
2317
2318	/* Command and buffer strategy */
2319	cmd = FATM_OP_ACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL | (0 << 16);
2320	if (vc->param.aal == ATMIO_AAL_0)
2321		cmd |= (0 << 8);
2322	else
2323		cmd |= (5 << 8);
2324
2325	q = fatm_start_vcc(sc, vc->param.vpi, vc->param.vci, cmd, 1,
2326	    (vc->param.flags & ATMIO_FLAG_ASYNC) ?
2327	    fatm_open_complete : fatm_cmd_complete);
2328	if (q == NULL)
2329		return (EIO);
2330
2331	if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
2332		error = fatm_waitvcc(sc, q);
2333		if (error != 0)
2334			return (error);
2335		fatm_open_finish(sc, vc);
2336	}
2337	return (0);
2338}
2339
2340/*
2341 * Finish close
2342 */
2343static void
2344fatm_close_finish(struct fatm_softc *sc, struct card_vcc *vc)
2345{
2346	/* inform management of this is not an NG
2347	 * VCC or it's an NG PVC. */
2348	if (!(vc->param.flags & ATMIO_FLAG_NG) ||
2349	    (vc->param.flags & ATMIO_FLAG_PVC))
2350		ATMEV_SEND_VCC_CHANGED(IFP2IFATM(sc->ifp), 0, vc->param.vci, 0);
2351
2352	sc->vccs[vc->param.vci] = NULL;
2353	sc->open_vccs--;
2354
2355	uma_zfree(sc->vcc_zone, vc);
2356}
2357
2358/*
2359 * The VC has been closed.
2360 */
2361static void
2362fatm_close_complete(struct fatm_softc *sc, struct cmdqueue *q)
2363{
2364	u_int vci;
2365	struct card_vcc *vc;
2366
2367	vci = GETVCI(READ4(sc, q->q.card + FATMOC_ACTIN_VPVC));
2368	vc = sc->vccs[vci];
2369	H_SYNCSTAT_POSTREAD(sc, q->q.statp);
2370	if (H_GETSTAT(q->q.statp) & FATM_STAT_ERROR) {
2371		sc->istats.get_stat_errors++;
2372		/* keep the VCC in that state */
2373		if_printf(sc->ifp, "closing VCI %u failed\n", vci);
2374		return;
2375	}
2376
2377	fatm_close_finish(sc, vc);
2378}
2379
2380/*
2381 * Initiate closing a VCC
2382 */
2383static int
2384fatm_close_vcc(struct fatm_softc *sc, struct atmio_closevcc *cl)
2385{
2386	int error;
2387	struct cmdqueue *q;
2388	struct card_vcc *vc;
2389
2390	if (!VC_OK(sc, cl->vpi, cl->vci))
2391		return (EINVAL);
2392
2393	error = 0;
2394
2395	FATM_LOCK(sc);
2396	if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2397		error = EIO;
2398		goto done;
2399	}
2400	vc = sc->vccs[cl->vci];
2401	if (vc == NULL || !(vc->vflags & (FATM_VCC_OPEN | FATM_VCC_TRY_OPEN))) {
2402		error = ENOENT;
2403		goto done;
2404	}
2405
2406	q = fatm_start_vcc(sc, cl->vpi, cl->vci,
2407	    FATM_OP_DEACTIVATE_VCIN | FATM_OP_INTERRUPT_SEL, 1,
2408	    (vc->param.flags & ATMIO_FLAG_ASYNC) ?
2409	    fatm_close_complete : fatm_cmd_complete);
2410	if (q == NULL) {
2411		error = EIO;
2412		goto done;
2413	}
2414
2415	vc->vflags &= ~(FATM_VCC_OPEN | FATM_VCC_TRY_OPEN);
2416	vc->vflags |= FATM_VCC_TRY_CLOSE;
2417
2418	if (!(vc->param.flags & ATMIO_FLAG_ASYNC)) {
2419		error = fatm_waitvcc(sc, q);
2420		if (error != 0)
2421			goto done;
2422
2423		fatm_close_finish(sc, vc);
2424	}
2425
2426  done:
2427	FATM_UNLOCK(sc);
2428	return (error);
2429}
2430
2431/*
2432 * IOCTL handler
2433 */
2434static int
2435fatm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t arg)
2436{
2437	int error;
2438	struct fatm_softc *sc = ifp->if_softc;
2439	struct ifaddr *ifa = (struct ifaddr *)arg;
2440	struct ifreq *ifr = (struct ifreq *)arg;
2441	struct atmio_closevcc *cl = (struct atmio_closevcc *)arg;
2442	struct atmio_openvcc *op = (struct atmio_openvcc *)arg;
2443	struct atmio_vcctable *vtab;
2444
2445	error = 0;
2446	switch (cmd) {
2447
2448	  case SIOCATMOPENVCC:		/* kernel internal use */
2449		error = fatm_open_vcc(sc, op);
2450		break;
2451
2452	  case SIOCATMCLOSEVCC:		/* kernel internal use */
2453		error = fatm_close_vcc(sc, cl);
2454		break;
2455
2456	  case SIOCSIFADDR:
2457		FATM_LOCK(sc);
2458		ifp->if_flags |= IFF_UP;
2459		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2460			fatm_init_locked(sc);
2461		switch (ifa->ifa_addr->sa_family) {
2462#ifdef INET
2463		  case AF_INET:
2464		  case AF_INET6:
2465			ifa->ifa_rtrequest = atm_rtrequest;
2466			break;
2467#endif
2468		  default:
2469			break;
2470		}
2471		FATM_UNLOCK(sc);
2472		break;
2473
2474	  case SIOCSIFFLAGS:
2475		FATM_LOCK(sc);
2476		if (ifp->if_flags & IFF_UP) {
2477			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2478				fatm_init_locked(sc);
2479			}
2480		} else {
2481			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2482				fatm_stop(sc);
2483			}
2484		}
2485		FATM_UNLOCK(sc);
2486		break;
2487
2488	  case SIOCGIFMEDIA:
2489	  case SIOCSIFMEDIA:
2490		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2491			error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
2492		else
2493			error = EINVAL;
2494		break;
2495
2496	  case SIOCATMGVCCS:
2497		/* return vcc table */
2498		vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
2499		    FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 1);
2500		error = copyout(vtab, ifr_data_get_ptr(ifr), sizeof(*vtab) +
2501		    vtab->count * sizeof(vtab->vccs[0]));
2502		free(vtab, M_DEVBUF);
2503		break;
2504
2505	  case SIOCATMGETVCCS:	/* internal netgraph use */
2506		vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
2507		    FORE_MAX_VCC + 1, sc->open_vccs, &sc->mtx, 0);
2508		if (vtab == NULL) {
2509			error = ENOMEM;
2510			break;
2511		}
2512		*(void **)arg = vtab;
2513		break;
2514
2515	  default:
2516		DBG(sc, IOCTL, ("+++ cmd=%08lx arg=%p", cmd, arg));
2517		error = EINVAL;
2518		break;
2519	}
2520
2521	return (error);
2522}
2523
2524/*
2525 * Detach from the interface and free all resources allocated during
2526 * initialisation and later.
2527 */
2528static int
2529fatm_detach(device_t dev)
2530{
2531	u_int i;
2532	struct rbuf *rb;
2533	struct fatm_softc *sc;
2534	struct txqueue *tx;
2535
2536	sc = device_get_softc(dev);
2537
2538	if (device_is_alive(dev)) {
2539		FATM_LOCK(sc);
2540		fatm_stop(sc);
2541		utopia_detach(&sc->utopia);
2542		FATM_UNLOCK(sc);
2543		atm_ifdetach(sc->ifp);		/* XXX race */
2544	}
2545	callout_drain(&sc->watchdog_timer);
2546
2547	if (sc->ih != NULL)
2548		bus_teardown_intr(dev, sc->irqres, sc->ih);
2549
2550	while ((rb = LIST_FIRST(&sc->rbuf_used)) != NULL) {
2551		if_printf(sc->ifp, "rbuf %p still in use!\n", rb);
2552		bus_dmamap_unload(sc->rbuf_tag, rb->map);
2553		m_freem(rb->m);
2554		LIST_REMOVE(rb, link);
2555		LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
2556	}
2557
2558	if (sc->txqueue.chunk != NULL) {
2559		for (i = 0; i < FATM_TX_QLEN; i++) {
2560			tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
2561			bus_dmamap_destroy(sc->tx_tag, tx->map);
2562		}
2563	}
2564
2565	while ((rb = LIST_FIRST(&sc->rbuf_free)) != NULL) {
2566		bus_dmamap_destroy(sc->rbuf_tag, rb->map);
2567		LIST_REMOVE(rb, link);
2568	}
2569
2570	if (sc->rbufs != NULL)
2571		free(sc->rbufs, M_DEVBUF);
2572	if (sc->vccs != NULL) {
2573		for (i = 0; i < FORE_MAX_VCC + 1; i++)
2574			if (sc->vccs[i] != NULL) {
2575				uma_zfree(sc->vcc_zone, sc->vccs[i]);
2576				sc->vccs[i] = NULL;
2577			}
2578		free(sc->vccs, M_DEVBUF);
2579	}
2580	if (sc->vcc_zone != NULL)
2581		uma_zdestroy(sc->vcc_zone);
2582
2583	if (sc->l1queue.chunk != NULL)
2584		free(sc->l1queue.chunk, M_DEVBUF);
2585	if (sc->s1queue.chunk != NULL)
2586		free(sc->s1queue.chunk, M_DEVBUF);
2587	if (sc->rxqueue.chunk != NULL)
2588		free(sc->rxqueue.chunk, M_DEVBUF);
2589	if (sc->txqueue.chunk != NULL)
2590		free(sc->txqueue.chunk, M_DEVBUF);
2591	if (sc->cmdqueue.chunk != NULL)
2592		free(sc->cmdqueue.chunk, M_DEVBUF);
2593
2594	destroy_dma_memory(&sc->reg_mem);
2595	destroy_dma_memory(&sc->sadi_mem);
2596	destroy_dma_memory(&sc->prom_mem);
2597#ifdef TEST_DMA_SYNC
2598	destroy_dma_memoryX(&sc->s1q_mem);
2599	destroy_dma_memoryX(&sc->l1q_mem);
2600	destroy_dma_memoryX(&sc->rxq_mem);
2601	destroy_dma_memoryX(&sc->txq_mem);
2602	destroy_dma_memoryX(&sc->stat_mem);
2603#endif
2604
2605	if (sc->tx_tag != NULL)
2606		if (bus_dma_tag_destroy(sc->tx_tag))
2607			printf("tx DMA tag busy!\n");
2608
2609	if (sc->rbuf_tag != NULL)
2610		if (bus_dma_tag_destroy(sc->rbuf_tag))
2611			printf("rbuf DMA tag busy!\n");
2612
2613	if (sc->parent_dmat != NULL)
2614		if (bus_dma_tag_destroy(sc->parent_dmat))
2615			printf("parent DMA tag busy!\n");
2616
2617	if (sc->irqres != NULL)
2618		bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irqres);
2619
2620	if (sc->memres != NULL)
2621		bus_release_resource(dev, SYS_RES_MEMORY,
2622		    sc->memid, sc->memres);
2623
2624	(void)sysctl_ctx_free(&sc->sysctl_ctx);
2625
2626	cv_destroy(&sc->cv_stat);
2627	cv_destroy(&sc->cv_regs);
2628
2629	mtx_destroy(&sc->mtx);
2630
2631	if_free(sc->ifp);
2632
2633	return (0);
2634}
2635
2636/*
2637 * Sysctl handler
2638 */
2639static int
2640fatm_sysctl_istats(SYSCTL_HANDLER_ARGS)
2641{
2642	struct fatm_softc *sc = arg1;
2643	u_long *ret;
2644	int error;
2645
2646	ret = malloc(sizeof(sc->istats), M_TEMP, M_WAITOK);
2647
2648	FATM_LOCK(sc);
2649	bcopy(&sc->istats, ret, sizeof(sc->istats));
2650	FATM_UNLOCK(sc);
2651
2652	error = SYSCTL_OUT(req, ret, sizeof(sc->istats));
2653	free(ret, M_TEMP);
2654
2655	return (error);
2656}
2657
2658/*
2659 * Sysctl handler for card statistics
2660 * This is disable because it destroys the PHY statistics.
2661 */
2662static int
2663fatm_sysctl_stats(SYSCTL_HANDLER_ARGS)
2664{
2665	struct fatm_softc *sc = arg1;
2666	int error;
2667	const struct fatm_stats *s;
2668	u_long *ret;
2669	u_int i;
2670
2671	ret = malloc(sizeof(u_long) * FATM_NSTATS, M_TEMP, M_WAITOK);
2672
2673	FATM_LOCK(sc);
2674
2675	if ((error = fatm_getstat(sc)) == 0) {
2676		s = sc->sadi_mem.mem;
2677		i = 0;
2678		ret[i++] = s->phy_4b5b.crc_header_errors;
2679		ret[i++] = s->phy_4b5b.framing_errors;
2680		ret[i++] = s->phy_oc3.section_bip8_errors;
2681		ret[i++] = s->phy_oc3.path_bip8_errors;
2682		ret[i++] = s->phy_oc3.line_bip24_errors;
2683		ret[i++] = s->phy_oc3.line_febe_errors;
2684		ret[i++] = s->phy_oc3.path_febe_errors;
2685		ret[i++] = s->phy_oc3.corr_hcs_errors;
2686		ret[i++] = s->phy_oc3.ucorr_hcs_errors;
2687		ret[i++] = s->atm.cells_transmitted;
2688		ret[i++] = s->atm.cells_received;
2689		ret[i++] = s->atm.vpi_bad_range;
2690		ret[i++] = s->atm.vpi_no_conn;
2691		ret[i++] = s->atm.vci_bad_range;
2692		ret[i++] = s->atm.vci_no_conn;
2693		ret[i++] = s->aal0.cells_transmitted;
2694		ret[i++] = s->aal0.cells_received;
2695		ret[i++] = s->aal0.cells_dropped;
2696		ret[i++] = s->aal4.cells_transmitted;
2697		ret[i++] = s->aal4.cells_received;
2698		ret[i++] = s->aal4.cells_crc_errors;
2699		ret[i++] = s->aal4.cels_protocol_errors;
2700		ret[i++] = s->aal4.cells_dropped;
2701		ret[i++] = s->aal4.cspdus_transmitted;
2702		ret[i++] = s->aal4.cspdus_received;
2703		ret[i++] = s->aal4.cspdus_protocol_errors;
2704		ret[i++] = s->aal4.cspdus_dropped;
2705		ret[i++] = s->aal5.cells_transmitted;
2706		ret[i++] = s->aal5.cells_received;
2707		ret[i++] = s->aal5.congestion_experienced;
2708		ret[i++] = s->aal5.cells_dropped;
2709		ret[i++] = s->aal5.cspdus_transmitted;
2710		ret[i++] = s->aal5.cspdus_received;
2711		ret[i++] = s->aal5.cspdus_crc_errors;
2712		ret[i++] = s->aal5.cspdus_protocol_errors;
2713		ret[i++] = s->aal5.cspdus_dropped;
2714		ret[i++] = s->aux.small_b1_failed;
2715		ret[i++] = s->aux.large_b1_failed;
2716		ret[i++] = s->aux.small_b2_failed;
2717		ret[i++] = s->aux.large_b2_failed;
2718		ret[i++] = s->aux.rpd_alloc_failed;
2719		ret[i++] = s->aux.receive_carrier;
2720	}
2721	/* declare the buffer free */
2722	sc->flags &= ~FATM_STAT_INUSE;
2723	cv_signal(&sc->cv_stat);
2724
2725	FATM_UNLOCK(sc);
2726
2727	if (error == 0)
2728		error = SYSCTL_OUT(req, ret, sizeof(u_long) * FATM_NSTATS);
2729	free(ret, M_TEMP);
2730
2731	return (error);
2732}
2733
2734#define MAXDMASEGS 32		/* maximum number of receive descriptors */
2735
2736/*
2737 * Attach to the device.
2738 *
2739 * We assume, that there is a global lock (Giant in this case) that protects
2740 * multiple threads from entering this function. This makes sense, doesn't it?
2741 */
2742static int
2743fatm_attach(device_t dev)
2744{
2745	struct ifnet *ifp;
2746	struct fatm_softc *sc;
2747	int unit;
2748	uint16_t cfg;
2749	int error = 0;
2750	struct rbuf *rb;
2751	u_int i;
2752	struct txqueue *tx;
2753
2754	sc = device_get_softc(dev);
2755	unit = device_get_unit(dev);
2756
2757	ifp = sc->ifp = if_alloc(IFT_ATM);
2758	if (ifp == NULL) {
2759		error = ENOSPC;
2760		goto fail;
2761	}
2762
2763	IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_PCA200E;
2764	IFP2IFATM(sc->ifp)->mib.serial = 0;
2765	IFP2IFATM(sc->ifp)->mib.hw_version = 0;
2766	IFP2IFATM(sc->ifp)->mib.sw_version = 0;
2767	IFP2IFATM(sc->ifp)->mib.vpi_bits = 0;
2768	IFP2IFATM(sc->ifp)->mib.vci_bits = FORE_VCIBITS;
2769	IFP2IFATM(sc->ifp)->mib.max_vpcs = 0;
2770	IFP2IFATM(sc->ifp)->mib.max_vccs = FORE_MAX_VCC;
2771	IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UNKNOWN;
2772	IFP2IFATM(sc->ifp)->phy = &sc->utopia;
2773
2774	LIST_INIT(&sc->rbuf_free);
2775	LIST_INIT(&sc->rbuf_used);
2776
2777	/*
2778	 * Initialize mutex and condition variables.
2779	 */
2780	mtx_init(&sc->mtx, device_get_nameunit(dev),
2781	    MTX_NETWORK_LOCK, MTX_DEF);
2782
2783	cv_init(&sc->cv_stat, "fatm_stat");
2784	cv_init(&sc->cv_regs, "fatm_regs");
2785
2786	sysctl_ctx_init(&sc->sysctl_ctx);
2787	callout_init_mtx(&sc->watchdog_timer, &sc->mtx, 0);
2788
2789	/*
2790	 * Make the sysctl tree
2791	 */
2792	if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
2793	    SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
2794	    device_get_nameunit(dev), CTLFLAG_RD, 0, "")) == NULL)
2795		goto fail;
2796
2797	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2798	    OID_AUTO, "istats", CTLTYPE_ULONG | CTLFLAG_RD, sc, 0,
2799	    fatm_sysctl_istats, "LU", "internal statistics") == NULL)
2800		goto fail;
2801
2802	if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2803	    OID_AUTO, "stats", CTLTYPE_ULONG | CTLFLAG_RD, sc, 0,
2804	    fatm_sysctl_stats, "LU", "card statistics") == NULL)
2805		goto fail;
2806
2807	if (SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2808	    OID_AUTO, "retry_tx", CTLFLAG_RW, &sc->retry_tx, 0,
2809	    "retry flag") == NULL)
2810		goto fail;
2811
2812#ifdef FATM_DEBUG
2813	if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
2814	    OID_AUTO, "debug", CTLFLAG_RW, &sc->debug, 0, "debug flags")
2815	    == NULL)
2816		goto fail;
2817	sc->debug = FATM_DEBUG;
2818#endif
2819
2820	/*
2821	 * Network subsystem stuff
2822	 */
2823	ifp->if_softc = sc;
2824	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2825	ifp->if_flags = IFF_SIMPLEX;
2826	ifp->if_ioctl = fatm_ioctl;
2827	ifp->if_start = fatm_start;
2828	ifp->if_init = fatm_init;
2829	ifp->if_linkmib = &IFP2IFATM(sc->ifp)->mib;
2830	ifp->if_linkmiblen = sizeof(IFP2IFATM(sc->ifp)->mib);
2831
2832	/*
2833	 * Enable busmaster
2834	 */
2835	pci_enable_busmaster(dev);
2836
2837	/*
2838	 * Map memory
2839	 */
2840	sc->memid = 0x10;
2841	sc->memres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->memid,
2842	    RF_ACTIVE);
2843	if (sc->memres == NULL) {
2844		if_printf(ifp, "could not map memory\n");
2845		error = ENXIO;
2846		goto fail;
2847	}
2848	sc->memh = rman_get_bushandle(sc->memres);
2849	sc->memt = rman_get_bustag(sc->memres);
2850
2851	/*
2852	 * Convert endianness of slave access
2853	 */
2854	cfg = pci_read_config(dev, FATM_PCIR_MCTL, 1);
2855	cfg |= FATM_PCIM_SWAB;
2856	pci_write_config(dev, FATM_PCIR_MCTL, cfg, 1);
2857
2858	/*
2859	 * Allocate interrupt (activate at the end)
2860	 */
2861	sc->irqid = 0;
2862	sc->irqres = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid,
2863	    RF_SHAREABLE | RF_ACTIVE);
2864	if (sc->irqres == NULL) {
2865		if_printf(ifp, "could not allocate irq\n");
2866		error = ENXIO;
2867		goto fail;
2868	}
2869
2870	/*
2871	 * Allocate the parent DMA tag. This is used simply to hold overall
2872	 * restrictions for the controller (and PCI bus) and is never used
2873	 * to do anything.
2874	 */
2875	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2876	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2877	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, MAXDMASEGS,
2878	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2879	    &sc->parent_dmat)) {
2880		if_printf(ifp, "could not allocate parent DMA tag\n");
2881		error = ENOMEM;
2882		goto fail;
2883	}
2884
2885	/*
2886	 * Allocate the receive buffer DMA tag. This tag must map a maximum of
2887	 * a mbuf cluster.
2888	 */
2889	if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
2890	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2891	    NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
2892	    NULL, NULL, &sc->rbuf_tag)) {
2893		if_printf(ifp, "could not allocate rbuf DMA tag\n");
2894		error = ENOMEM;
2895		goto fail;
2896	}
2897
2898	/*
2899	 * Allocate the transmission DMA tag. Must add 1, because
2900	 * rounded up PDU will be 65536 bytes long.
2901	 */
2902	if (bus_dma_tag_create(sc->parent_dmat, 1, 0,
2903	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2904	    NULL, NULL,
2905	    FATM_MAXPDU + 1, TPD_EXTENSIONS + TXD_FIXED, MCLBYTES, 0,
2906	    NULL, NULL, &sc->tx_tag)) {
2907		if_printf(ifp, "could not allocate tx DMA tag\n");
2908		error = ENOMEM;
2909		goto fail;
2910	}
2911
2912	/*
2913	 * Allocate DMAable memory.
2914	 */
2915	sc->stat_mem.size = sizeof(uint32_t) * (FATM_CMD_QLEN + FATM_TX_QLEN
2916	    + FATM_RX_QLEN + SMALL_SUPPLY_QLEN + LARGE_SUPPLY_QLEN);
2917	sc->stat_mem.align = 4;
2918
2919	sc->txq_mem.size = FATM_TX_QLEN * TPD_SIZE;
2920	sc->txq_mem.align = 32;
2921
2922	sc->rxq_mem.size = FATM_RX_QLEN * RPD_SIZE;
2923	sc->rxq_mem.align = 32;
2924
2925	sc->s1q_mem.size = SMALL_SUPPLY_QLEN *
2926	    BSUP_BLK2SIZE(SMALL_SUPPLY_BLKSIZE);
2927	sc->s1q_mem.align = 32;
2928
2929	sc->l1q_mem.size = LARGE_SUPPLY_QLEN *
2930	    BSUP_BLK2SIZE(LARGE_SUPPLY_BLKSIZE);
2931	sc->l1q_mem.align = 32;
2932
2933#ifdef TEST_DMA_SYNC
2934	if ((error = alloc_dma_memoryX(sc, "STATUS", &sc->stat_mem)) != 0 ||
2935	    (error = alloc_dma_memoryX(sc, "TXQ", &sc->txq_mem)) != 0 ||
2936	    (error = alloc_dma_memoryX(sc, "RXQ", &sc->rxq_mem)) != 0 ||
2937	    (error = alloc_dma_memoryX(sc, "S1Q", &sc->s1q_mem)) != 0 ||
2938	    (error = alloc_dma_memoryX(sc, "L1Q", &sc->l1q_mem)) != 0)
2939		goto fail;
2940#else
2941	if ((error = alloc_dma_memory(sc, "STATUS", &sc->stat_mem)) != 0 ||
2942	    (error = alloc_dma_memory(sc, "TXQ", &sc->txq_mem)) != 0 ||
2943	    (error = alloc_dma_memory(sc, "RXQ", &sc->rxq_mem)) != 0 ||
2944	    (error = alloc_dma_memory(sc, "S1Q", &sc->s1q_mem)) != 0 ||
2945	    (error = alloc_dma_memory(sc, "L1Q", &sc->l1q_mem)) != 0)
2946		goto fail;
2947#endif
2948
2949	sc->prom_mem.size = sizeof(struct prom);
2950	sc->prom_mem.align = 32;
2951	if ((error = alloc_dma_memory(sc, "PROM", &sc->prom_mem)) != 0)
2952		goto fail;
2953
2954	sc->sadi_mem.size = sizeof(struct fatm_stats);
2955	sc->sadi_mem.align = 32;
2956	if ((error = alloc_dma_memory(sc, "STATISTICS", &sc->sadi_mem)) != 0)
2957		goto fail;
2958
2959	sc->reg_mem.size = sizeof(uint32_t) * FATM_NREGS;
2960	sc->reg_mem.align = 32;
2961	if ((error = alloc_dma_memory(sc, "REGISTERS", &sc->reg_mem)) != 0)
2962		goto fail;
2963
2964	/*
2965	 * Allocate queues
2966	 */
2967	sc->cmdqueue.chunk = malloc(FATM_CMD_QLEN * sizeof(struct cmdqueue),
2968	    M_DEVBUF, M_ZERO | M_WAITOK);
2969	sc->txqueue.chunk = malloc(FATM_TX_QLEN * sizeof(struct txqueue),
2970	    M_DEVBUF, M_ZERO | M_WAITOK);
2971	sc->rxqueue.chunk = malloc(FATM_RX_QLEN * sizeof(struct rxqueue),
2972	    M_DEVBUF, M_ZERO | M_WAITOK);
2973	sc->s1queue.chunk = malloc(SMALL_SUPPLY_QLEN * sizeof(struct supqueue),
2974	    M_DEVBUF, M_ZERO | M_WAITOK);
2975	sc->l1queue.chunk = malloc(LARGE_SUPPLY_QLEN * sizeof(struct supqueue),
2976	    M_DEVBUF, M_ZERO | M_WAITOK);
2977
2978	sc->vccs = malloc((FORE_MAX_VCC + 1) * sizeof(sc->vccs[0]),
2979	    M_DEVBUF, M_ZERO | M_WAITOK);
2980	sc->vcc_zone = uma_zcreate("FATM vccs", sizeof(struct card_vcc),
2981	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
2982	if (sc->vcc_zone == NULL) {
2983		error = ENOMEM;
2984		goto fail;
2985	}
2986
2987	/*
2988	 * Allocate memory for the receive buffer headers. The total number
2989	 * of headers should probably also include the maximum number of
2990	 * buffers on the receive queue.
2991	 */
2992	sc->rbuf_total = SMALL_POOL_SIZE + LARGE_POOL_SIZE;
2993	sc->rbufs = malloc(sc->rbuf_total * sizeof(struct rbuf),
2994	    M_DEVBUF, M_ZERO | M_WAITOK);
2995
2996	/*
2997	 * Put all rbuf headers on the free list and create DMA maps.
2998	 */
2999	for (rb = sc->rbufs, i = 0; i < sc->rbuf_total; i++, rb++) {
3000		if ((error = bus_dmamap_create(sc->rbuf_tag, 0, &rb->map))) {
3001			if_printf(sc->ifp, "creating rx map: %d\n",
3002			    error);
3003			goto fail;
3004		}
3005		LIST_INSERT_HEAD(&sc->rbuf_free, rb, link);
3006	}
3007
3008	/*
3009	 * Create dma maps for transmission. In case of an error, free the
3010	 * allocated DMA maps, because on some architectures maps are NULL
3011	 * and we cannot distinguish between a failure and a NULL map in
3012	 * the detach routine.
3013	 */
3014	for (i = 0; i < FATM_TX_QLEN; i++) {
3015		tx = GET_QUEUE(sc->txqueue, struct txqueue, i);
3016		if ((error = bus_dmamap_create(sc->tx_tag, 0, &tx->map))) {
3017			if_printf(sc->ifp, "creating tx map: %d\n",
3018			    error);
3019			while (i > 0) {
3020				tx = GET_QUEUE(sc->txqueue, struct txqueue,
3021				    i - 1);
3022				bus_dmamap_destroy(sc->tx_tag, tx->map);
3023				i--;
3024			}
3025			goto fail;
3026		}
3027	}
3028
3029	utopia_attach(&sc->utopia, IFP2IFATM(sc->ifp), &sc->media, &sc->mtx,
3030	    &sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3031	    &fatm_utopia_methods);
3032	sc->utopia.flags |= UTP_FL_NORESET | UTP_FL_POLL_CARRIER;
3033
3034	/*
3035	 * Attach the interface
3036	 */
3037	atm_ifattach(ifp);
3038	ifp->if_snd.ifq_maxlen = 512;
3039
3040#ifdef ENABLE_BPF
3041	bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
3042#endif
3043
3044	error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_NET | INTR_MPSAFE,
3045	    NULL, fatm_intr, sc, &sc->ih);
3046	if (error) {
3047		if_printf(ifp, "couldn't setup irq\n");
3048		goto fail;
3049	}
3050
3051  fail:
3052	if (error)
3053		fatm_detach(dev);
3054
3055	return (error);
3056}
3057
3058#if defined(FATM_DEBUG) && 0
3059static void
3060dump_s1_queue(struct fatm_softc *sc)
3061{
3062	int i;
3063	struct supqueue *q;
3064
3065	for(i = 0; i < SMALL_SUPPLY_QLEN; i++) {
3066		q = GET_QUEUE(sc->s1queue, struct supqueue, i);
3067		printf("%2d: card=%x(%x,%x) stat=%x\n", i,
3068		    q->q.card,
3069		    READ4(sc, q->q.card),
3070		    READ4(sc, q->q.card + 4),
3071		    *q->q.statp);
3072	}
3073}
3074#endif
3075
3076/*
3077 * Driver infrastructure.
3078 */
3079static device_method_t fatm_methods[] = {
3080	DEVMETHOD(device_probe,		fatm_probe),
3081	DEVMETHOD(device_attach,	fatm_attach),
3082	DEVMETHOD(device_detach,	fatm_detach),
3083	{ 0, 0 }
3084};
3085static driver_t fatm_driver = {
3086	"fatm",
3087	fatm_methods,
3088	sizeof(struct fatm_softc),
3089};
3090
3091DRIVER_MODULE(fatm, pci, fatm_driver, fatm_devclass, 0, 0);
3092