1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD$*/
34
35#include "e1000_api.h"
36
37static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
38static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
39static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
40static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
41
42/**
43 *  e1000_init_mac_ops_generic - Initialize MAC function pointers
44 *  @hw: pointer to the HW structure
45 *
46 *  Setups up the function pointers to no-op functions
47 **/
48void e1000_init_mac_ops_generic(struct e1000_hw *hw)
49{
50	struct e1000_mac_info *mac = &hw->mac;
51	DEBUGFUNC("e1000_init_mac_ops_generic");
52
53	/* General Setup */
54	mac->ops.init_params = e1000_null_ops_generic;
55	mac->ops.init_hw = e1000_null_ops_generic;
56	mac->ops.reset_hw = e1000_null_ops_generic;
57	mac->ops.setup_physical_interface = e1000_null_ops_generic;
58	mac->ops.get_bus_info = e1000_null_ops_generic;
59	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
60	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
61	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
62	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
63	/* LED */
64	mac->ops.cleanup_led = e1000_null_ops_generic;
65	mac->ops.setup_led = e1000_null_ops_generic;
66	mac->ops.blink_led = e1000_null_ops_generic;
67	mac->ops.led_on = e1000_null_ops_generic;
68	mac->ops.led_off = e1000_null_ops_generic;
69	/* LINK */
70	mac->ops.setup_link = e1000_null_ops_generic;
71	mac->ops.get_link_up_info = e1000_null_link_info;
72	mac->ops.check_for_link = e1000_null_ops_generic;
73	mac->ops.set_obff_timer = e1000_null_set_obff_timer;
74	/* Management */
75	mac->ops.check_mng_mode = e1000_null_mng_mode;
76	/* VLAN, MC, etc. */
77	mac->ops.update_mc_addr_list = e1000_null_update_mc;
78	mac->ops.clear_vfta = e1000_null_mac_generic;
79	mac->ops.write_vfta = e1000_null_write_vfta;
80	mac->ops.rar_set = e1000_rar_set_generic;
81	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
82}
83
84/**
85 *  e1000_null_ops_generic - No-op function, returns 0
86 *  @hw: pointer to the HW structure
87 **/
88s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
89{
90	DEBUGFUNC("e1000_null_ops_generic");
91	return E1000_SUCCESS;
92}
93
94/**
95 *  e1000_null_mac_generic - No-op function, return void
96 *  @hw: pointer to the HW structure
97 **/
98void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
99{
100	DEBUGFUNC("e1000_null_mac_generic");
101	return;
102}
103
104/**
105 *  e1000_null_link_info - No-op function, return 0
106 *  @hw: pointer to the HW structure
107 **/
108s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
109			 u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
110{
111	DEBUGFUNC("e1000_null_link_info");
112	return E1000_SUCCESS;
113}
114
115/**
116 *  e1000_null_mng_mode - No-op function, return FALSE
117 *  @hw: pointer to the HW structure
118 **/
119bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
120{
121	DEBUGFUNC("e1000_null_mng_mode");
122	return FALSE;
123}
124
125/**
126 *  e1000_null_update_mc - No-op function, return void
127 *  @hw: pointer to the HW structure
128 **/
129void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
130			  u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
131{
132	DEBUGFUNC("e1000_null_update_mc");
133	return;
134}
135
136/**
137 *  e1000_null_write_vfta - No-op function, return void
138 *  @hw: pointer to the HW structure
139 **/
140void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
141			   u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
142{
143	DEBUGFUNC("e1000_null_write_vfta");
144	return;
145}
146
147/**
148 *  e1000_null_rar_set - No-op function, return 0
149 *  @hw: pointer to the HW structure
150 **/
151int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
152			u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
153{
154	DEBUGFUNC("e1000_null_rar_set");
155	return E1000_SUCCESS;
156}
157
158/**
159 *  e1000_null_set_obff_timer - No-op function, return 0
160 *  @hw: pointer to the HW structure
161 **/
162s32 e1000_null_set_obff_timer(struct e1000_hw E1000_UNUSEDARG *hw,
163			      u32 E1000_UNUSEDARG a)
164{
165	DEBUGFUNC("e1000_null_set_obff_timer");
166	return E1000_SUCCESS;
167}
168
169/**
170 *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
171 *  @hw: pointer to the HW structure
172 *
173 *  Determines and stores the system bus information for a particular
174 *  network interface.  The following bus information is determined and stored:
175 *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
176 **/
177s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
178{
179	struct e1000_mac_info *mac = &hw->mac;
180	struct e1000_bus_info *bus = &hw->bus;
181	u32 status = E1000_READ_REG(hw, E1000_STATUS);
182	s32 ret_val = E1000_SUCCESS;
183
184	DEBUGFUNC("e1000_get_bus_info_pci_generic");
185
186	/* PCI or PCI-X? */
187	bus->type = (status & E1000_STATUS_PCIX_MODE)
188			? e1000_bus_type_pcix
189			: e1000_bus_type_pci;
190
191	/* Bus speed */
192	if (bus->type == e1000_bus_type_pci) {
193		bus->speed = (status & E1000_STATUS_PCI66)
194			     ? e1000_bus_speed_66
195			     : e1000_bus_speed_33;
196	} else {
197		switch (status & E1000_STATUS_PCIX_SPEED) {
198		case E1000_STATUS_PCIX_SPEED_66:
199			bus->speed = e1000_bus_speed_66;
200			break;
201		case E1000_STATUS_PCIX_SPEED_100:
202			bus->speed = e1000_bus_speed_100;
203			break;
204		case E1000_STATUS_PCIX_SPEED_133:
205			bus->speed = e1000_bus_speed_133;
206			break;
207		default:
208			bus->speed = e1000_bus_speed_reserved;
209			break;
210		}
211	}
212
213	/* Bus width */
214	bus->width = (status & E1000_STATUS_BUS64)
215		     ? e1000_bus_width_64
216		     : e1000_bus_width_32;
217
218	/* Which PCI(-X) function? */
219	mac->ops.set_lan_id(hw);
220
221	return ret_val;
222}
223
224/**
225 *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
226 *  @hw: pointer to the HW structure
227 *
228 *  Determines and stores the system bus information for a particular
229 *  network interface.  The following bus information is determined and stored:
230 *  bus speed, bus width, type (PCIe), and PCIe function.
231 **/
232s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
233{
234	struct e1000_mac_info *mac = &hw->mac;
235	struct e1000_bus_info *bus = &hw->bus;
236	s32 ret_val;
237	u16 pcie_link_status;
238
239	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
240
241	bus->type = e1000_bus_type_pci_express;
242
243	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
244					  &pcie_link_status);
245	if (ret_val) {
246		bus->width = e1000_bus_width_unknown;
247		bus->speed = e1000_bus_speed_unknown;
248	} else {
249		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
250		case PCIE_LINK_SPEED_2500:
251			bus->speed = e1000_bus_speed_2500;
252			break;
253		case PCIE_LINK_SPEED_5000:
254			bus->speed = e1000_bus_speed_5000;
255			break;
256		default:
257			bus->speed = e1000_bus_speed_unknown;
258			break;
259		}
260
261		bus->width = (enum e1000_bus_width)((pcie_link_status &
262			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
263	}
264
265	mac->ops.set_lan_id(hw);
266
267	return E1000_SUCCESS;
268}
269
270/**
271 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
272 *
273 *  @hw: pointer to the HW structure
274 *
275 *  Determines the LAN function id by reading memory-mapped registers
276 *  and swaps the port value if requested.
277 **/
278static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
279{
280	struct e1000_bus_info *bus = &hw->bus;
281	u32 reg;
282
283	/* The status register reports the correct function number
284	 * for the device regardless of function swap state.
285	 */
286	reg = E1000_READ_REG(hw, E1000_STATUS);
287	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
288}
289
290/**
291 *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
292 *  @hw: pointer to the HW structure
293 *
294 *  Determines the LAN function id by reading PCI config space.
295 **/
296void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
297{
298	struct e1000_bus_info *bus = &hw->bus;
299	u16 pci_header_type;
300	u32 status;
301
302	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
303	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
304		status = E1000_READ_REG(hw, E1000_STATUS);
305		bus->func = (status & E1000_STATUS_FUNC_MASK)
306			    >> E1000_STATUS_FUNC_SHIFT;
307	} else {
308		bus->func = 0;
309	}
310}
311
312/**
313 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
314 *  @hw: pointer to the HW structure
315 *
316 *  Sets the LAN function id to zero for a single port device.
317 **/
318void e1000_set_lan_id_single_port(struct e1000_hw *hw)
319{
320	struct e1000_bus_info *bus = &hw->bus;
321
322	bus->func = 0;
323}
324
325/**
326 *  e1000_clear_vfta_generic - Clear VLAN filter table
327 *  @hw: pointer to the HW structure
328 *
329 *  Clears the register array which contains the VLAN filter table by
330 *  setting all the values to 0.
331 **/
332void e1000_clear_vfta_generic(struct e1000_hw *hw)
333{
334	u32 offset;
335
336	DEBUGFUNC("e1000_clear_vfta_generic");
337
338	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
339		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
340		E1000_WRITE_FLUSH(hw);
341	}
342}
343
344/**
345 *  e1000_write_vfta_generic - Write value to VLAN filter table
346 *  @hw: pointer to the HW structure
347 *  @offset: register offset in VLAN filter table
348 *  @value: register value written to VLAN filter table
349 *
350 *  Writes value at the given offset in the register array which stores
351 *  the VLAN filter table.
352 **/
353void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
354{
355	DEBUGFUNC("e1000_write_vfta_generic");
356
357	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
358	E1000_WRITE_FLUSH(hw);
359}
360
361/**
362 *  e1000_init_rx_addrs_generic - Initialize receive address's
363 *  @hw: pointer to the HW structure
364 *  @rar_count: receive address registers
365 *
366 *  Setup the receive address registers by setting the base receive address
367 *  register to the devices MAC address and clearing all the other receive
368 *  address registers to 0.
369 **/
370void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
371{
372	u32 i;
373	u8 mac_addr[ETH_ADDR_LEN] = {0};
374
375	DEBUGFUNC("e1000_init_rx_addrs_generic");
376
377	/* Setup the receive address */
378	DEBUGOUT("Programming MAC Address into RAR[0]\n");
379
380	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
381
382	/* Zero out the other (rar_entry_count - 1) receive addresses */
383	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
384	for (i = 1; i < rar_count; i++)
385		hw->mac.ops.rar_set(hw, mac_addr, i);
386}
387
388/**
389 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
390 *  @hw: pointer to the HW structure
391 *
392 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
393 *  can be setup by pre-boot software and must be treated like a permanent
394 *  address and must override the actual permanent MAC address. If an
395 *  alternate MAC address is found it is programmed into RAR0, replacing
396 *  the permanent address that was installed into RAR0 by the Si on reset.
397 *  This function will return SUCCESS unless it encounters an error while
398 *  reading the EEPROM.
399 **/
400s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
401{
402	u32 i;
403	s32 ret_val;
404	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
405	u8 alt_mac_addr[ETH_ADDR_LEN];
406
407	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
408
409	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
410	if (ret_val)
411		return ret_val;
412
413	/* not supported on older hardware or 82573 */
414	if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
415		return E1000_SUCCESS;
416
417	/* Alternate MAC address is handled by the option ROM for 82580
418	 * and newer. SW support not required.
419	 */
420	if (hw->mac.type >= e1000_82580)
421		return E1000_SUCCESS;
422
423	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
424				   &nvm_alt_mac_addr_offset);
425	if (ret_val) {
426		DEBUGOUT("NVM Read Error\n");
427		return ret_val;
428	}
429
430	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
431	    (nvm_alt_mac_addr_offset == 0x0000))
432		/* There is no Alternate MAC Address */
433		return E1000_SUCCESS;
434
435	if (hw->bus.func == E1000_FUNC_1)
436		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
437	if (hw->bus.func == E1000_FUNC_2)
438		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
439
440	if (hw->bus.func == E1000_FUNC_3)
441		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
442	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
443		offset = nvm_alt_mac_addr_offset + (i >> 1);
444		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
445		if (ret_val) {
446			DEBUGOUT("NVM Read Error\n");
447			return ret_val;
448		}
449
450		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
451		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
452	}
453
454	/* if multicast bit is set, the alternate address will not be used */
455	if (alt_mac_addr[0] & 0x01) {
456		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
457		return E1000_SUCCESS;
458	}
459
460	/* We have a valid alternate MAC address, and we want to treat it the
461	 * same as the normal permanent MAC address stored by the HW into the
462	 * RAR. Do this by mapping this address into RAR0.
463	 */
464	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
465
466	return E1000_SUCCESS;
467}
468
469/**
470 *  e1000_rar_set_generic - Set receive address register
471 *  @hw: pointer to the HW structure
472 *  @addr: pointer to the receive address
473 *  @index: receive address array register
474 *
475 *  Sets the receive address array register at index to the address passed
476 *  in by addr.
477 **/
478static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
479{
480	u32 rar_low, rar_high;
481
482	DEBUGFUNC("e1000_rar_set_generic");
483
484	/* HW expects these in little endian so we reverse the byte order
485	 * from network order (big endian) to little endian
486	 */
487	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
488		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
489
490	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
491
492	/* If MAC address zero, no need to set the AV bit */
493	if (rar_low || rar_high)
494		rar_high |= E1000_RAH_AV;
495
496	/* Some bridges will combine consecutive 32-bit writes into
497	 * a single burst write, which will malfunction on some parts.
498	 * The flushes avoid this.
499	 */
500	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
501	E1000_WRITE_FLUSH(hw);
502	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
503	E1000_WRITE_FLUSH(hw);
504
505	return E1000_SUCCESS;
506}
507
508/**
509 *  e1000_hash_mc_addr_generic - Generate a multicast hash value
510 *  @hw: pointer to the HW structure
511 *  @mc_addr: pointer to a multicast address
512 *
513 *  Generates a multicast address hash value which is used to determine
514 *  the multicast filter table array address and new table value.
515 **/
516u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
517{
518	u32 hash_value, hash_mask;
519	u8 bit_shift = 0;
520
521	DEBUGFUNC("e1000_hash_mc_addr_generic");
522
523	/* Register count multiplied by bits per register */
524	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
525
526	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
527	 * where 0xFF would still fall within the hash mask.
528	 */
529	while (hash_mask >> bit_shift != 0xFF)
530		bit_shift++;
531
532	/* The portion of the address that is used for the hash table
533	 * is determined by the mc_filter_type setting.
534	 * The algorithm is such that there is a total of 8 bits of shifting.
535	 * The bit_shift for a mc_filter_type of 0 represents the number of
536	 * left-shifts where the MSB of mc_addr[5] would still fall within
537	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
538	 * of 8 bits of shifting, then mc_addr[4] will shift right the
539	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
540	 * cases are a variation of this algorithm...essentially raising the
541	 * number of bits to shift mc_addr[5] left, while still keeping the
542	 * 8-bit shifting total.
543	 *
544	 * For example, given the following Destination MAC Address and an
545	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
546	 * we can see that the bit_shift for case 0 is 4.  These are the hash
547	 * values resulting from each mc_filter_type...
548	 * [0] [1] [2] [3] [4] [5]
549	 * 01  AA  00  12  34  56
550	 * LSB		 MSB
551	 *
552	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
553	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
554	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
555	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
556	 */
557	switch (hw->mac.mc_filter_type) {
558	default:
559	case 0:
560		break;
561	case 1:
562		bit_shift += 1;
563		break;
564	case 2:
565		bit_shift += 2;
566		break;
567	case 3:
568		bit_shift += 4;
569		break;
570	}
571
572	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
573				  (((u16) mc_addr[5]) << bit_shift)));
574
575	return hash_value;
576}
577
578/**
579 *  e1000_update_mc_addr_list_generic - Update Multicast addresses
580 *  @hw: pointer to the HW structure
581 *  @mc_addr_list: array of multicast addresses to program
582 *  @mc_addr_count: number of multicast addresses to program
583 *
584 *  Updates entire Multicast Table Array.
585 *  The caller must have a packed mc_addr_list of multicast addresses.
586 **/
587void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
588				       u8 *mc_addr_list, u32 mc_addr_count)
589{
590	u32 hash_value, hash_bit, hash_reg;
591	int i;
592
593	DEBUGFUNC("e1000_update_mc_addr_list_generic");
594
595	/* clear mta_shadow */
596	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
597
598	/* update mta_shadow from mc_addr_list */
599	for (i = 0; (u32) i < mc_addr_count; i++) {
600		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
601
602		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
603		hash_bit = hash_value & 0x1F;
604
605		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
606		mc_addr_list += (ETH_ADDR_LEN);
607	}
608
609	/* replace the entire MTA table */
610	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
611		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
612	E1000_WRITE_FLUSH(hw);
613}
614
615/**
616 *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
617 *  @hw: pointer to the HW structure
618 *
619 *  In certain situations, a system BIOS may report that the PCIx maximum
620 *  memory read byte count (MMRBC) value is higher than than the actual
621 *  value. We check the PCIx command register with the current PCIx status
622 *  register.
623 **/
624void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
625{
626	u16 cmd_mmrbc;
627	u16 pcix_cmd;
628	u16 pcix_stat_hi_word;
629	u16 stat_mmrbc;
630
631	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
632
633	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
634	if (hw->bus.type != e1000_bus_type_pcix)
635		return;
636
637	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
638	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
639	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
640		     PCIX_COMMAND_MMRBC_SHIFT;
641	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
642		      PCIX_STATUS_HI_MMRBC_SHIFT;
643	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
644		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
645	if (cmd_mmrbc > stat_mmrbc) {
646		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
647		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
648		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
649	}
650}
651
652/**
653 *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
654 *  @hw: pointer to the HW structure
655 *
656 *  Clears the base hardware counters by reading the counter registers.
657 **/
658void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
659{
660	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
661
662	E1000_READ_REG(hw, E1000_CRCERRS);
663	E1000_READ_REG(hw, E1000_SYMERRS);
664	E1000_READ_REG(hw, E1000_MPC);
665	E1000_READ_REG(hw, E1000_SCC);
666	E1000_READ_REG(hw, E1000_ECOL);
667	E1000_READ_REG(hw, E1000_MCC);
668	E1000_READ_REG(hw, E1000_LATECOL);
669	E1000_READ_REG(hw, E1000_COLC);
670	E1000_READ_REG(hw, E1000_DC);
671	E1000_READ_REG(hw, E1000_SEC);
672	E1000_READ_REG(hw, E1000_RLEC);
673	E1000_READ_REG(hw, E1000_XONRXC);
674	E1000_READ_REG(hw, E1000_XONTXC);
675	E1000_READ_REG(hw, E1000_XOFFRXC);
676	E1000_READ_REG(hw, E1000_XOFFTXC);
677	E1000_READ_REG(hw, E1000_FCRUC);
678	E1000_READ_REG(hw, E1000_GPRC);
679	E1000_READ_REG(hw, E1000_BPRC);
680	E1000_READ_REG(hw, E1000_MPRC);
681	E1000_READ_REG(hw, E1000_GPTC);
682	E1000_READ_REG(hw, E1000_GORCL);
683	E1000_READ_REG(hw, E1000_GORCH);
684	E1000_READ_REG(hw, E1000_GOTCL);
685	E1000_READ_REG(hw, E1000_GOTCH);
686	E1000_READ_REG(hw, E1000_RNBC);
687	E1000_READ_REG(hw, E1000_RUC);
688	E1000_READ_REG(hw, E1000_RFC);
689	E1000_READ_REG(hw, E1000_ROC);
690	E1000_READ_REG(hw, E1000_RJC);
691	E1000_READ_REG(hw, E1000_TORL);
692	E1000_READ_REG(hw, E1000_TORH);
693	E1000_READ_REG(hw, E1000_TOTL);
694	E1000_READ_REG(hw, E1000_TOTH);
695	E1000_READ_REG(hw, E1000_TPR);
696	E1000_READ_REG(hw, E1000_TPT);
697	E1000_READ_REG(hw, E1000_MPTC);
698	E1000_READ_REG(hw, E1000_BPTC);
699}
700
701/**
702 *  e1000_check_for_copper_link_generic - Check for link (Copper)
703 *  @hw: pointer to the HW structure
704 *
705 *  Checks to see of the link status of the hardware has changed.  If a
706 *  change in link status has been detected, then we read the PHY registers
707 *  to get the current speed/duplex if link exists.
708 **/
709s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
710{
711	struct e1000_mac_info *mac = &hw->mac;
712	s32 ret_val;
713	bool link;
714
715	DEBUGFUNC("e1000_check_for_copper_link");
716
717	/* We only want to go out to the PHY registers to see if Auto-Neg
718	 * has completed and/or if our link status has changed.  The
719	 * get_link_status flag is set upon receiving a Link Status
720	 * Change or Rx Sequence Error interrupt.
721	 */
722	if (!mac->get_link_status)
723		return E1000_SUCCESS;
724
725	/* First we want to see if the MII Status Register reports
726	 * link.  If so, then we want to get the current speed/duplex
727	 * of the PHY.
728	 */
729	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
730	if (ret_val)
731		return ret_val;
732
733	if (!link)
734		return E1000_SUCCESS; /* No link detected */
735
736	mac->get_link_status = FALSE;
737
738	/* Check if there was DownShift, must be checked
739	 * immediately after link-up
740	 */
741	e1000_check_downshift_generic(hw);
742
743	/* If we are forcing speed/duplex, then we simply return since
744	 * we have already determined whether we have link or not.
745	 */
746	if (!mac->autoneg)
747		return -E1000_ERR_CONFIG;
748
749	/* Auto-Neg is enabled.  Auto Speed Detection takes care
750	 * of MAC speed/duplex configuration.  So we only need to
751	 * configure Collision Distance in the MAC.
752	 */
753	mac->ops.config_collision_dist(hw);
754
755	/* Configure Flow Control now that Auto-Neg has completed.
756	 * First, we need to restore the desired flow control
757	 * settings because we may have had to re-autoneg with a
758	 * different link partner.
759	 */
760	ret_val = e1000_config_fc_after_link_up_generic(hw);
761	if (ret_val)
762		DEBUGOUT("Error configuring flow control\n");
763
764	return ret_val;
765}
766
767/**
768 *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
769 *  @hw: pointer to the HW structure
770 *
771 *  Checks for link up on the hardware.  If link is not up and we have
772 *  a signal, then we need to force link up.
773 **/
774s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
775{
776	struct e1000_mac_info *mac = &hw->mac;
777	u32 rxcw;
778	u32 ctrl;
779	u32 status;
780	s32 ret_val;
781
782	DEBUGFUNC("e1000_check_for_fiber_link_generic");
783
784	ctrl = E1000_READ_REG(hw, E1000_CTRL);
785	status = E1000_READ_REG(hw, E1000_STATUS);
786	rxcw = E1000_READ_REG(hw, E1000_RXCW);
787
788	/* If we don't have link (auto-negotiation failed or link partner
789	 * cannot auto-negotiate), the cable is plugged in (we have signal),
790	 * and our link partner is not trying to auto-negotiate with us (we
791	 * are receiving idles or data), we need to force link up. We also
792	 * need to give auto-negotiation time to complete, in case the cable
793	 * was just plugged in. The autoneg_failed flag does this.
794	 */
795	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
796	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
797	    !(rxcw & E1000_RXCW_C)) {
798		if (!mac->autoneg_failed) {
799			mac->autoneg_failed = TRUE;
800			return E1000_SUCCESS;
801		}
802		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
803
804		/* Disable auto-negotiation in the TXCW register */
805		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
806
807		/* Force link-up and also force full-duplex. */
808		ctrl = E1000_READ_REG(hw, E1000_CTRL);
809		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
810		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
811
812		/* Configure Flow Control after forcing link up. */
813		ret_val = e1000_config_fc_after_link_up_generic(hw);
814		if (ret_val) {
815			DEBUGOUT("Error configuring flow control\n");
816			return ret_val;
817		}
818	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
819		/* If we are forcing link and we are receiving /C/ ordered
820		 * sets, re-enable auto-negotiation in the TXCW register
821		 * and disable forced link in the Device Control register
822		 * in an attempt to auto-negotiate with our link partner.
823		 */
824		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
825		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
826		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
827
828		mac->serdes_has_link = TRUE;
829	}
830
831	return E1000_SUCCESS;
832}
833
834/**
835 *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
836 *  @hw: pointer to the HW structure
837 *
838 *  Checks for link up on the hardware.  If link is not up and we have
839 *  a signal, then we need to force link up.
840 **/
841s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
842{
843	struct e1000_mac_info *mac = &hw->mac;
844	u32 rxcw;
845	u32 ctrl;
846	u32 status;
847	s32 ret_val;
848
849	DEBUGFUNC("e1000_check_for_serdes_link_generic");
850
851	ctrl = E1000_READ_REG(hw, E1000_CTRL);
852	status = E1000_READ_REG(hw, E1000_STATUS);
853	rxcw = E1000_READ_REG(hw, E1000_RXCW);
854
855	/* If we don't have link (auto-negotiation failed or link partner
856	 * cannot auto-negotiate), and our link partner is not trying to
857	 * auto-negotiate with us (we are receiving idles or data),
858	 * we need to force link up. We also need to give auto-negotiation
859	 * time to complete.
860	 */
861	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
862	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
863		if (!mac->autoneg_failed) {
864			mac->autoneg_failed = TRUE;
865			return E1000_SUCCESS;
866		}
867		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
868
869		/* Disable auto-negotiation in the TXCW register */
870		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
871
872		/* Force link-up and also force full-duplex. */
873		ctrl = E1000_READ_REG(hw, E1000_CTRL);
874		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
875		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
876
877		/* Configure Flow Control after forcing link up. */
878		ret_val = e1000_config_fc_after_link_up_generic(hw);
879		if (ret_val) {
880			DEBUGOUT("Error configuring flow control\n");
881			return ret_val;
882		}
883	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
884		/* If we are forcing link and we are receiving /C/ ordered
885		 * sets, re-enable auto-negotiation in the TXCW register
886		 * and disable forced link in the Device Control register
887		 * in an attempt to auto-negotiate with our link partner.
888		 */
889		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
890		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
891		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
892
893		mac->serdes_has_link = TRUE;
894	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
895		/* If we force link for non-auto-negotiation switch, check
896		 * link status based on MAC synchronization for internal
897		 * serdes media type.
898		 */
899		/* SYNCH bit and IV bit are sticky. */
900		usec_delay(10);
901		rxcw = E1000_READ_REG(hw, E1000_RXCW);
902		if (rxcw & E1000_RXCW_SYNCH) {
903			if (!(rxcw & E1000_RXCW_IV)) {
904				mac->serdes_has_link = TRUE;
905				DEBUGOUT("SERDES: Link up - forced.\n");
906			}
907		} else {
908			mac->serdes_has_link = FALSE;
909			DEBUGOUT("SERDES: Link down - force failed.\n");
910		}
911	}
912
913	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
914		status = E1000_READ_REG(hw, E1000_STATUS);
915		if (status & E1000_STATUS_LU) {
916			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
917			usec_delay(10);
918			rxcw = E1000_READ_REG(hw, E1000_RXCW);
919			if (rxcw & E1000_RXCW_SYNCH) {
920				if (!(rxcw & E1000_RXCW_IV)) {
921					mac->serdes_has_link = TRUE;
922					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
923				} else {
924					mac->serdes_has_link = FALSE;
925					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
926				}
927			} else {
928				mac->serdes_has_link = FALSE;
929				DEBUGOUT("SERDES: Link down - no sync.\n");
930			}
931		} else {
932			mac->serdes_has_link = FALSE;
933			DEBUGOUT("SERDES: Link down - autoneg failed\n");
934		}
935	}
936
937	return E1000_SUCCESS;
938}
939
940/**
941 *  e1000_set_default_fc_generic - Set flow control default values
942 *  @hw: pointer to the HW structure
943 *
944 *  Read the EEPROM for the default values for flow control and store the
945 *  values.
946 **/
947s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
948{
949	s32 ret_val;
950	u16 nvm_data;
951	u16 nvm_offset = 0;
952
953	DEBUGFUNC("e1000_set_default_fc_generic");
954
955	/* Read and store word 0x0F of the EEPROM. This word contains bits
956	 * that determine the hardware's default PAUSE (flow control) mode,
957	 * a bit that determines whether the HW defaults to enabling or
958	 * disabling auto-negotiation, and the direction of the
959	 * SW defined pins. If there is no SW over-ride of the flow
960	 * control setting, then the variable hw->fc will
961	 * be initialized based on a value in the EEPROM.
962	 */
963	if (hw->mac.type == e1000_i350) {
964		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
965		ret_val = hw->nvm.ops.read(hw,
966					   NVM_INIT_CONTROL2_REG +
967					   nvm_offset,
968					   1, &nvm_data);
969	} else {
970		ret_val = hw->nvm.ops.read(hw,
971					   NVM_INIT_CONTROL2_REG,
972					   1, &nvm_data);
973	}
974
975
976	if (ret_val) {
977		DEBUGOUT("NVM Read Error\n");
978		return ret_val;
979	}
980
981	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
982		hw->fc.requested_mode = e1000_fc_none;
983	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
984		 NVM_WORD0F_ASM_DIR)
985		hw->fc.requested_mode = e1000_fc_tx_pause;
986	else
987		hw->fc.requested_mode = e1000_fc_full;
988
989	return E1000_SUCCESS;
990}
991
992/**
993 *  e1000_setup_link_generic - Setup flow control and link settings
994 *  @hw: pointer to the HW structure
995 *
996 *  Determines which flow control settings to use, then configures flow
997 *  control.  Calls the appropriate media-specific link configuration
998 *  function.  Assuming the adapter has a valid link partner, a valid link
999 *  should be established.  Assumes the hardware has previously been reset
1000 *  and the transmitter and receiver are not enabled.
1001 **/
1002s32 e1000_setup_link_generic(struct e1000_hw *hw)
1003{
1004	s32 ret_val;
1005
1006	DEBUGFUNC("e1000_setup_link_generic");
1007
1008	/* In the case of the phy reset being blocked, we already have a link.
1009	 * We do not need to set it up again.
1010	 */
1011	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
1012		return E1000_SUCCESS;
1013
1014	/* If requested flow control is set to default, set flow control
1015	 * based on the EEPROM flow control settings.
1016	 */
1017	if (hw->fc.requested_mode == e1000_fc_default) {
1018		ret_val = e1000_set_default_fc_generic(hw);
1019		if (ret_val)
1020			return ret_val;
1021	}
1022
1023	/* Save off the requested flow control mode for use later.  Depending
1024	 * on the link partner's capabilities, we may or may not use this mode.
1025	 */
1026	hw->fc.current_mode = hw->fc.requested_mode;
1027
1028	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
1029		hw->fc.current_mode);
1030
1031	/* Call the necessary media_type subroutine to configure the link. */
1032	ret_val = hw->mac.ops.setup_physical_interface(hw);
1033	if (ret_val)
1034		return ret_val;
1035
1036	/* Initialize the flow control address, type, and PAUSE timer
1037	 * registers to their default values.  This is done even if flow
1038	 * control is disabled, because it does not hurt anything to
1039	 * initialize these registers.
1040	 */
1041	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1042	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
1043	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1044	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
1045
1046	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
1047
1048	return e1000_set_fc_watermarks_generic(hw);
1049}
1050
1051/**
1052 *  e1000_commit_fc_settings_generic - Configure flow control
1053 *  @hw: pointer to the HW structure
1054 *
1055 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
1056 *  base on the flow control settings in e1000_mac_info.
1057 **/
1058s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1059{
1060	struct e1000_mac_info *mac = &hw->mac;
1061	u32 txcw;
1062
1063	DEBUGFUNC("e1000_commit_fc_settings_generic");
1064
1065	/* Check for a software override of the flow control settings, and
1066	 * setup the device accordingly.  If auto-negotiation is enabled, then
1067	 * software will have to set the "PAUSE" bits to the correct value in
1068	 * the Transmit Config Word Register (TXCW) and re-start auto-
1069	 * negotiation.  However, if auto-negotiation is disabled, then
1070	 * software will have to manually configure the two flow control enable
1071	 * bits in the CTRL register.
1072	 *
1073	 * The possible values of the "fc" parameter are:
1074	 *      0:  Flow control is completely disabled
1075	 *      1:  Rx flow control is enabled (we can receive pause frames,
1076	 *          but not send pause frames).
1077	 *      2:  Tx flow control is enabled (we can send pause frames but we
1078	 *          do not support receiving pause frames).
1079	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1080	 */
1081	switch (hw->fc.current_mode) {
1082	case e1000_fc_none:
1083		/* Flow control completely disabled by a software over-ride. */
1084		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1085		break;
1086	case e1000_fc_rx_pause:
1087		/* Rx Flow control is enabled and Tx Flow control is disabled
1088		 * by a software over-ride. Since there really isn't a way to
1089		 * advertise that we are capable of Rx Pause ONLY, we will
1090		 * advertise that we support both symmetric and asymmetric Rx
1091		 * PAUSE.  Later, we will disable the adapter's ability to send
1092		 * PAUSE frames.
1093		 */
1094		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1095		break;
1096	case e1000_fc_tx_pause:
1097		/* Tx Flow control is enabled, and Rx Flow control is disabled,
1098		 * by a software over-ride.
1099		 */
1100		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1101		break;
1102	case e1000_fc_full:
1103		/* Flow control (both Rx and Tx) is enabled by a software
1104		 * over-ride.
1105		 */
1106		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1107		break;
1108	default:
1109		DEBUGOUT("Flow control param set incorrectly\n");
1110		return -E1000_ERR_CONFIG;
1111		break;
1112	}
1113
1114	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1115	mac->txcw = txcw;
1116
1117	return E1000_SUCCESS;
1118}
1119
1120/**
1121 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  Polls for link up by reading the status register, if link fails to come
1125 *  up with auto-negotiation, then the link is forced if a signal is detected.
1126 **/
1127s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1128{
1129	struct e1000_mac_info *mac = &hw->mac;
1130	u32 i, status;
1131	s32 ret_val;
1132
1133	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1134
1135	/* If we have a signal (the cable is plugged in, or assumed TRUE for
1136	 * serdes media) then poll for a "Link-Up" indication in the Device
1137	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1138	 * seconds (Auto-negotiation should complete in less than 500
1139	 * milliseconds even if the other end is doing it in SW).
1140	 */
1141	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1142		msec_delay(10);
1143		status = E1000_READ_REG(hw, E1000_STATUS);
1144		if (status & E1000_STATUS_LU)
1145			break;
1146	}
1147	if (i == FIBER_LINK_UP_LIMIT) {
1148		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1149		mac->autoneg_failed = TRUE;
1150		/* AutoNeg failed to achieve a link, so we'll call
1151		 * mac->check_for_link. This routine will force the
1152		 * link up if we detect a signal. This will allow us to
1153		 * communicate with non-autonegotiating link partners.
1154		 */
1155		ret_val = mac->ops.check_for_link(hw);
1156		if (ret_val) {
1157			DEBUGOUT("Error while checking for link\n");
1158			return ret_val;
1159		}
1160		mac->autoneg_failed = FALSE;
1161	} else {
1162		mac->autoneg_failed = FALSE;
1163		DEBUGOUT("Valid Link Found\n");
1164	}
1165
1166	return E1000_SUCCESS;
1167}
1168
1169/**
1170 *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Configures collision distance and flow control for fiber and serdes
1174 *  links.  Upon successful setup, poll for link.
1175 **/
1176s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
1177{
1178	u32 ctrl;
1179	s32 ret_val;
1180
1181	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1182
1183	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1184
1185	/* Take the link out of reset */
1186	ctrl &= ~E1000_CTRL_LRST;
1187
1188	hw->mac.ops.config_collision_dist(hw);
1189
1190	ret_val = e1000_commit_fc_settings_generic(hw);
1191	if (ret_val)
1192		return ret_val;
1193
1194	/* Since auto-negotiation is enabled, take the link out of reset (the
1195	 * link will be in reset, because we previously reset the chip). This
1196	 * will restart auto-negotiation.  If auto-negotiation is successful
1197	 * then the link-up status bit will be set and the flow control enable
1198	 * bits (RFCE and TFCE) will be set according to their negotiated value.
1199	 */
1200	DEBUGOUT("Auto-negotiation enabled\n");
1201
1202	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1203	E1000_WRITE_FLUSH(hw);
1204	msec_delay(1);
1205
1206	/* For these adapters, the SW definable pin 1 is set when the optics
1207	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
1208	 * indication.
1209	 */
1210	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1211	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1212		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1213	} else {
1214		DEBUGOUT("No signal detected\n");
1215	}
1216
1217	return ret_val;
1218}
1219
1220/**
1221 *  e1000_config_collision_dist_generic - Configure collision distance
1222 *  @hw: pointer to the HW structure
1223 *
1224 *  Configures the collision distance to the default value and is used
1225 *  during link setup.
1226 **/
1227static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
1228{
1229	u32 tctl;
1230
1231	DEBUGFUNC("e1000_config_collision_dist_generic");
1232
1233	tctl = E1000_READ_REG(hw, E1000_TCTL);
1234
1235	tctl &= ~E1000_TCTL_COLD;
1236	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1237
1238	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1239	E1000_WRITE_FLUSH(hw);
1240}
1241
1242/**
1243 *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1244 *  @hw: pointer to the HW structure
1245 *
1246 *  Sets the flow control high/low threshold (watermark) registers.  If
1247 *  flow control XON frame transmission is enabled, then set XON frame
1248 *  transmission as well.
1249 **/
1250s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1251{
1252	u32 fcrtl = 0, fcrth = 0;
1253
1254	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1255
1256	/* Set the flow control receive threshold registers.  Normally,
1257	 * these registers will be set to a default threshold that may be
1258	 * adjusted later by the driver's runtime code.  However, if the
1259	 * ability to transmit pause frames is not enabled, then these
1260	 * registers will be set to 0.
1261	 */
1262	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1263		/* We need to set up the Receive Threshold high and low water
1264		 * marks as well as (optionally) enabling the transmission of
1265		 * XON frames.
1266		 */
1267		fcrtl = hw->fc.low_water;
1268		if (hw->fc.send_xon)
1269			fcrtl |= E1000_FCRTL_XONE;
1270
1271		fcrth = hw->fc.high_water;
1272	}
1273	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1274	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1275
1276	return E1000_SUCCESS;
1277}
1278
1279/**
1280 *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
1281 *  @hw: pointer to the HW structure
1282 *
1283 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1284 *  device control register to reflect the adapter settings.  TFCE and RFCE
1285 *  need to be explicitly set by software when a copper PHY is used because
1286 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1287 *  also configure these bits when link is forced on a fiber connection.
1288 **/
1289s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1290{
1291	u32 ctrl;
1292
1293	DEBUGFUNC("e1000_force_mac_fc_generic");
1294
1295	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1296
1297	/* Because we didn't get link via the internal auto-negotiation
1298	 * mechanism (we either forced link or we got link via PHY
1299	 * auto-neg), we have to manually enable/disable transmit an
1300	 * receive flow control.
1301	 *
1302	 * The "Case" statement below enables/disable flow control
1303	 * according to the "hw->fc.current_mode" parameter.
1304	 *
1305	 * The possible values of the "fc" parameter are:
1306	 *      0:  Flow control is completely disabled
1307	 *      1:  Rx flow control is enabled (we can receive pause
1308	 *          frames but not send pause frames).
1309	 *      2:  Tx flow control is enabled (we can send pause frames
1310	 *          frames but we do not receive pause frames).
1311	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1312	 *  other:  No other values should be possible at this point.
1313	 */
1314	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1315
1316	switch (hw->fc.current_mode) {
1317	case e1000_fc_none:
1318		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1319		break;
1320	case e1000_fc_rx_pause:
1321		ctrl &= (~E1000_CTRL_TFCE);
1322		ctrl |= E1000_CTRL_RFCE;
1323		break;
1324	case e1000_fc_tx_pause:
1325		ctrl &= (~E1000_CTRL_RFCE);
1326		ctrl |= E1000_CTRL_TFCE;
1327		break;
1328	case e1000_fc_full:
1329		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1330		break;
1331	default:
1332		DEBUGOUT("Flow control param set incorrectly\n");
1333		return -E1000_ERR_CONFIG;
1334	}
1335
1336	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 *  e1000_config_fc_after_link_up_generic - Configures flow control after link
1343 *  @hw: pointer to the HW structure
1344 *
1345 *  Checks the status of auto-negotiation after link up to ensure that the
1346 *  speed and duplex were not forced.  If the link needed to be forced, then
1347 *  flow control needs to be forced also.  If auto-negotiation is enabled
1348 *  and did not fail, then we configure flow control based on our link
1349 *  partner.
1350 **/
1351s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1352{
1353	struct e1000_mac_info *mac = &hw->mac;
1354	s32 ret_val = E1000_SUCCESS;
1355	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1356	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1357	u16 speed, duplex;
1358
1359	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1360
1361	/* Check for the case where we have fiber media and auto-neg failed
1362	 * so we had to force link.  In this case, we need to force the
1363	 * configuration of the MAC to match the "fc" parameter.
1364	 */
1365	if (mac->autoneg_failed) {
1366		if (hw->phy.media_type == e1000_media_type_fiber ||
1367		    hw->phy.media_type == e1000_media_type_internal_serdes)
1368			ret_val = e1000_force_mac_fc_generic(hw);
1369	} else {
1370		if (hw->phy.media_type == e1000_media_type_copper)
1371			ret_val = e1000_force_mac_fc_generic(hw);
1372	}
1373
1374	if (ret_val) {
1375		DEBUGOUT("Error forcing flow control settings\n");
1376		return ret_val;
1377	}
1378
1379	/* Check for the case where we have copper media and auto-neg is
1380	 * enabled.  In this case, we need to check and see if Auto-Neg
1381	 * has completed, and if so, how the PHY and link partner has
1382	 * flow control configured.
1383	 */
1384	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1385		/* Read the MII Status Register and check to see if AutoNeg
1386		 * has completed.  We read this twice because this reg has
1387		 * some "sticky" (latched) bits.
1388		 */
1389		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1390		if (ret_val)
1391			return ret_val;
1392		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1393		if (ret_val)
1394			return ret_val;
1395
1396		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1397			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
1398			return ret_val;
1399		}
1400
1401		/* The AutoNeg process has completed, so we now need to
1402		 * read both the Auto Negotiation Advertisement
1403		 * Register (Address 4) and the Auto_Negotiation Base
1404		 * Page Ability Register (Address 5) to determine how
1405		 * flow control was negotiated.
1406		 */
1407		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1408					       &mii_nway_adv_reg);
1409		if (ret_val)
1410			return ret_val;
1411		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1412					       &mii_nway_lp_ability_reg);
1413		if (ret_val)
1414			return ret_val;
1415
1416		/* Two bits in the Auto Negotiation Advertisement Register
1417		 * (Address 4) and two bits in the Auto Negotiation Base
1418		 * Page Ability Register (Address 5) determine flow control
1419		 * for both the PHY and the link partner.  The following
1420		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1421		 * 1999, describes these PAUSE resolution bits and how flow
1422		 * control is determined based upon these settings.
1423		 * NOTE:  DC = Don't Care
1424		 *
1425		 *   LOCAL DEVICE  |   LINK PARTNER
1426		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1427		 *-------|---------|-------|---------|--------------------
1428		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1429		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1430		 *   0   |    1    |   1   |    0    | e1000_fc_none
1431		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1432		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1433		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1434		 *   1   |    1    |   0   |    0    | e1000_fc_none
1435		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1436		 *
1437		 * Are both PAUSE bits set to 1?  If so, this implies
1438		 * Symmetric Flow Control is enabled at both ends.  The
1439		 * ASM_DIR bits are irrelevant per the spec.
1440		 *
1441		 * For Symmetric Flow Control:
1442		 *
1443		 *   LOCAL DEVICE  |   LINK PARTNER
1444		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1445		 *-------|---------|-------|---------|--------------------
1446		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1447		 *
1448		 */
1449		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1450		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1451			/* Now we need to check if the user selected Rx ONLY
1452			 * of pause frames.  In this case, we had to advertise
1453			 * FULL flow control because we could not advertise Rx
1454			 * ONLY. Hence, we must now check to see if we need to
1455			 * turn OFF the TRANSMISSION of PAUSE frames.
1456			 */
1457			if (hw->fc.requested_mode == e1000_fc_full) {
1458				hw->fc.current_mode = e1000_fc_full;
1459				DEBUGOUT("Flow Control = FULL.\n");
1460			} else {
1461				hw->fc.current_mode = e1000_fc_rx_pause;
1462				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1463			}
1464		}
1465		/* For receiving PAUSE frames ONLY.
1466		 *
1467		 *   LOCAL DEVICE  |   LINK PARTNER
1468		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1469		 *-------|---------|-------|---------|--------------------
1470		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1471		 */
1472		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1473			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1474			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1475			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1476			hw->fc.current_mode = e1000_fc_tx_pause;
1477			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1478		}
1479		/* For transmitting PAUSE frames ONLY.
1480		 *
1481		 *   LOCAL DEVICE  |   LINK PARTNER
1482		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1483		 *-------|---------|-------|---------|--------------------
1484		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1485		 */
1486		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1487			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1488			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1489			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1490			hw->fc.current_mode = e1000_fc_rx_pause;
1491			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1492		} else {
1493			/* Per the IEEE spec, at this point flow control
1494			 * should be disabled.
1495			 */
1496			hw->fc.current_mode = e1000_fc_none;
1497			DEBUGOUT("Flow Control = NONE.\n");
1498		}
1499
1500		/* Now we need to do one last check...  If we auto-
1501		 * negotiated to HALF DUPLEX, flow control should not be
1502		 * enabled per IEEE 802.3 spec.
1503		 */
1504		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1505		if (ret_val) {
1506			DEBUGOUT("Error getting link speed and duplex\n");
1507			return ret_val;
1508		}
1509
1510		if (duplex == HALF_DUPLEX)
1511			hw->fc.current_mode = e1000_fc_none;
1512
1513		/* Now we call a subroutine to actually force the MAC
1514		 * controller to use the correct flow control settings.
1515		 */
1516		ret_val = e1000_force_mac_fc_generic(hw);
1517		if (ret_val) {
1518			DEBUGOUT("Error forcing flow control settings\n");
1519			return ret_val;
1520		}
1521	}
1522
1523	/* Check for the case where we have SerDes media and auto-neg is
1524	 * enabled.  In this case, we need to check and see if Auto-Neg
1525	 * has completed, and if so, how the PHY and link partner has
1526	 * flow control configured.
1527	 */
1528	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1529	    mac->autoneg) {
1530		/* Read the PCS_LSTS and check to see if AutoNeg
1531		 * has completed.
1532		 */
1533		pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1534
1535		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1536			DEBUGOUT("PCS Auto Neg has not completed.\n");
1537			return ret_val;
1538		}
1539
1540		/* The AutoNeg process has completed, so we now need to
1541		 * read both the Auto Negotiation Advertisement
1542		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1543		 * Page Ability Register (PCS_LPAB) to determine how
1544		 * flow control was negotiated.
1545		 */
1546		pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1547		pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
1548
1549		/* Two bits in the Auto Negotiation Advertisement Register
1550		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1551		 * Page Ability Register (PCS_LPAB) determine flow control
1552		 * for both the PHY and the link partner.  The following
1553		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1554		 * 1999, describes these PAUSE resolution bits and how flow
1555		 * control is determined based upon these settings.
1556		 * NOTE:  DC = Don't Care
1557		 *
1558		 *   LOCAL DEVICE  |   LINK PARTNER
1559		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1560		 *-------|---------|-------|---------|--------------------
1561		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1562		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1563		 *   0   |    1    |   1   |    0    | e1000_fc_none
1564		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1565		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1566		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1567		 *   1   |    1    |   0   |    0    | e1000_fc_none
1568		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1569		 *
1570		 * Are both PAUSE bits set to 1?  If so, this implies
1571		 * Symmetric Flow Control is enabled at both ends.  The
1572		 * ASM_DIR bits are irrelevant per the spec.
1573		 *
1574		 * For Symmetric Flow Control:
1575		 *
1576		 *   LOCAL DEVICE  |   LINK PARTNER
1577		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1578		 *-------|---------|-------|---------|--------------------
1579		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1580		 *
1581		 */
1582		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1583		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1584			/* Now we need to check if the user selected Rx ONLY
1585			 * of pause frames.  In this case, we had to advertise
1586			 * FULL flow control because we could not advertise Rx
1587			 * ONLY. Hence, we must now check to see if we need to
1588			 * turn OFF the TRANSMISSION of PAUSE frames.
1589			 */
1590			if (hw->fc.requested_mode == e1000_fc_full) {
1591				hw->fc.current_mode = e1000_fc_full;
1592				DEBUGOUT("Flow Control = FULL.\n");
1593			} else {
1594				hw->fc.current_mode = e1000_fc_rx_pause;
1595				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1596			}
1597		}
1598		/* For receiving PAUSE frames ONLY.
1599		 *
1600		 *   LOCAL DEVICE  |   LINK PARTNER
1601		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1602		 *-------|---------|-------|---------|--------------------
1603		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1604		 */
1605		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1606			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1607			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1608			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1609			hw->fc.current_mode = e1000_fc_tx_pause;
1610			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1611		}
1612		/* For transmitting PAUSE frames ONLY.
1613		 *
1614		 *   LOCAL DEVICE  |   LINK PARTNER
1615		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1616		 *-------|---------|-------|---------|--------------------
1617		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1618		 */
1619		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1620			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1621			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1622			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1623			hw->fc.current_mode = e1000_fc_rx_pause;
1624			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1625		} else {
1626			/* Per the IEEE spec, at this point flow control
1627			 * should be disabled.
1628			 */
1629			hw->fc.current_mode = e1000_fc_none;
1630			DEBUGOUT("Flow Control = NONE.\n");
1631		}
1632
1633		/* Now we call a subroutine to actually force the MAC
1634		 * controller to use the correct flow control settings.
1635		 */
1636		pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1637		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1638		E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
1639
1640		ret_val = e1000_force_mac_fc_generic(hw);
1641		if (ret_val) {
1642			DEBUGOUT("Error forcing flow control settings\n");
1643			return ret_val;
1644		}
1645	}
1646
1647	return E1000_SUCCESS;
1648}
1649
1650/**
1651 *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1652 *  @hw: pointer to the HW structure
1653 *  @speed: stores the current speed
1654 *  @duplex: stores the current duplex
1655 *
1656 *  Read the status register for the current speed/duplex and store the current
1657 *  speed and duplex for copper connections.
1658 **/
1659s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1660					      u16 *duplex)
1661{
1662	u32 status;
1663
1664	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1665
1666	status = E1000_READ_REG(hw, E1000_STATUS);
1667	if (status & E1000_STATUS_SPEED_1000) {
1668		*speed = SPEED_1000;
1669		DEBUGOUT("1000 Mbs, ");
1670	} else if (status & E1000_STATUS_SPEED_100) {
1671		*speed = SPEED_100;
1672		DEBUGOUT("100 Mbs, ");
1673	} else {
1674		*speed = SPEED_10;
1675		DEBUGOUT("10 Mbs, ");
1676	}
1677
1678	if (status & E1000_STATUS_FD) {
1679		*duplex = FULL_DUPLEX;
1680		DEBUGOUT("Full Duplex\n");
1681	} else {
1682		*duplex = HALF_DUPLEX;
1683		DEBUGOUT("Half Duplex\n");
1684	}
1685
1686	return E1000_SUCCESS;
1687}
1688
1689/**
1690 *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1691 *  @hw: pointer to the HW structure
1692 *  @speed: stores the current speed
1693 *  @duplex: stores the current duplex
1694 *
1695 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1696 *  for fiber/serdes links.
1697 **/
1698s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
1699						    u16 *speed, u16 *duplex)
1700{
1701	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1702
1703	*speed = SPEED_1000;
1704	*duplex = FULL_DUPLEX;
1705
1706	return E1000_SUCCESS;
1707}
1708
1709/**
1710 *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Acquire the HW semaphore to access the PHY or NVM
1714 **/
1715s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1716{
1717	u32 swsm;
1718	s32 timeout = hw->nvm.word_size + 1;
1719	s32 i = 0;
1720
1721	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1722
1723	/* Get the SW semaphore */
1724	while (i < timeout) {
1725		swsm = E1000_READ_REG(hw, E1000_SWSM);
1726		if (!(swsm & E1000_SWSM_SMBI))
1727			break;
1728
1729		usec_delay(50);
1730		i++;
1731	}
1732
1733	if (i == timeout) {
1734		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1735		return -E1000_ERR_NVM;
1736	}
1737
1738	/* Get the FW semaphore. */
1739	for (i = 0; i < timeout; i++) {
1740		swsm = E1000_READ_REG(hw, E1000_SWSM);
1741		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1742
1743		/* Semaphore acquired if bit latched */
1744		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1745			break;
1746
1747		usec_delay(50);
1748	}
1749
1750	if (i == timeout) {
1751		/* Release semaphores */
1752		e1000_put_hw_semaphore_generic(hw);
1753		DEBUGOUT("Driver can't access the NVM\n");
1754		return -E1000_ERR_NVM;
1755	}
1756
1757	return E1000_SUCCESS;
1758}
1759
1760/**
1761 *  e1000_put_hw_semaphore_generic - Release hardware semaphore
1762 *  @hw: pointer to the HW structure
1763 *
1764 *  Release hardware semaphore used to access the PHY or NVM
1765 **/
1766void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1767{
1768	u32 swsm;
1769
1770	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1771
1772	swsm = E1000_READ_REG(hw, E1000_SWSM);
1773
1774	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1775
1776	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1777}
1778
1779/**
1780 *  e1000_get_auto_rd_done_generic - Check for auto read completion
1781 *  @hw: pointer to the HW structure
1782 *
1783 *  Check EEPROM for Auto Read done bit.
1784 **/
1785s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1786{
1787	s32 i = 0;
1788
1789	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1790
1791	while (i < AUTO_READ_DONE_TIMEOUT) {
1792		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1793			break;
1794		msec_delay(1);
1795		i++;
1796	}
1797
1798	if (i == AUTO_READ_DONE_TIMEOUT) {
1799		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1800		return -E1000_ERR_RESET;
1801	}
1802
1803	return E1000_SUCCESS;
1804}
1805
1806/**
1807 *  e1000_valid_led_default_generic - Verify a valid default LED config
1808 *  @hw: pointer to the HW structure
1809 *  @data: pointer to the NVM (EEPROM)
1810 *
1811 *  Read the EEPROM for the current default LED configuration.  If the
1812 *  LED configuration is not valid, set to a valid LED configuration.
1813 **/
1814s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1815{
1816	s32 ret_val;
1817
1818	DEBUGFUNC("e1000_valid_led_default_generic");
1819
1820	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1821	if (ret_val) {
1822		DEBUGOUT("NVM Read Error\n");
1823		return ret_val;
1824	}
1825
1826	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1827		*data = ID_LED_DEFAULT;
1828
1829	return E1000_SUCCESS;
1830}
1831
1832/**
1833 *  e1000_id_led_init_generic -
1834 *  @hw: pointer to the HW structure
1835 *
1836 **/
1837s32 e1000_id_led_init_generic(struct e1000_hw *hw)
1838{
1839	struct e1000_mac_info *mac = &hw->mac;
1840	s32 ret_val;
1841	const u32 ledctl_mask = 0x000000FF;
1842	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1843	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1844	u16 data, i, temp;
1845	const u16 led_mask = 0x0F;
1846
1847	DEBUGFUNC("e1000_id_led_init_generic");
1848
1849	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1850	if (ret_val)
1851		return ret_val;
1852
1853	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1854	mac->ledctl_mode1 = mac->ledctl_default;
1855	mac->ledctl_mode2 = mac->ledctl_default;
1856
1857	for (i = 0; i < 4; i++) {
1858		temp = (data >> (i << 2)) & led_mask;
1859		switch (temp) {
1860		case ID_LED_ON1_DEF2:
1861		case ID_LED_ON1_ON2:
1862		case ID_LED_ON1_OFF2:
1863			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1864			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1865			break;
1866		case ID_LED_OFF1_DEF2:
1867		case ID_LED_OFF1_ON2:
1868		case ID_LED_OFF1_OFF2:
1869			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1870			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1871			break;
1872		default:
1873			/* Do nothing */
1874			break;
1875		}
1876		switch (temp) {
1877		case ID_LED_DEF1_ON2:
1878		case ID_LED_ON1_ON2:
1879		case ID_LED_OFF1_ON2:
1880			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1881			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1882			break;
1883		case ID_LED_DEF1_OFF2:
1884		case ID_LED_ON1_OFF2:
1885		case ID_LED_OFF1_OFF2:
1886			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1887			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1888			break;
1889		default:
1890			/* Do nothing */
1891			break;
1892		}
1893	}
1894
1895	return E1000_SUCCESS;
1896}
1897
1898/**
1899 *  e1000_setup_led_generic - Configures SW controllable LED
1900 *  @hw: pointer to the HW structure
1901 *
1902 *  This prepares the SW controllable LED for use and saves the current state
1903 *  of the LED so it can be later restored.
1904 **/
1905s32 e1000_setup_led_generic(struct e1000_hw *hw)
1906{
1907	u32 ledctl;
1908
1909	DEBUGFUNC("e1000_setup_led_generic");
1910
1911	if (hw->mac.ops.setup_led != e1000_setup_led_generic)
1912		return -E1000_ERR_CONFIG;
1913
1914	if (hw->phy.media_type == e1000_media_type_fiber) {
1915		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1916		hw->mac.ledctl_default = ledctl;
1917		/* Turn off LED0 */
1918		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1919			    E1000_LEDCTL_LED0_MODE_MASK);
1920		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1921			   E1000_LEDCTL_LED0_MODE_SHIFT);
1922		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1923	} else if (hw->phy.media_type == e1000_media_type_copper) {
1924		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1925	}
1926
1927	return E1000_SUCCESS;
1928}
1929
1930/**
1931 *  e1000_cleanup_led_generic - Set LED config to default operation
1932 *  @hw: pointer to the HW structure
1933 *
1934 *  Remove the current LED configuration and set the LED configuration
1935 *  to the default value, saved from the EEPROM.
1936 **/
1937s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
1938{
1939	DEBUGFUNC("e1000_cleanup_led_generic");
1940
1941	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1942	return E1000_SUCCESS;
1943}
1944
1945/**
1946 *  e1000_blink_led_generic - Blink LED
1947 *  @hw: pointer to the HW structure
1948 *
1949 *  Blink the LEDs which are set to be on.
1950 **/
1951s32 e1000_blink_led_generic(struct e1000_hw *hw)
1952{
1953	u32 ledctl_blink = 0;
1954	u32 i;
1955
1956	DEBUGFUNC("e1000_blink_led_generic");
1957
1958	if (hw->phy.media_type == e1000_media_type_fiber) {
1959		/* always blink LED0 for PCI-E fiber */
1960		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1961		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1962	} else {
1963		/* Set the blink bit for each LED that's "on" (0x0E)
1964		 * (or "off" if inverted) in ledctl_mode2.  The blink
1965		 * logic in hardware only works when mode is set to "on"
1966		 * so it must be changed accordingly when the mode is
1967		 * "off" and inverted.
1968		 */
1969		ledctl_blink = hw->mac.ledctl_mode2;
1970		for (i = 0; i < 32; i += 8) {
1971			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1972			    E1000_LEDCTL_LED0_MODE_MASK;
1973			u32 led_default = hw->mac.ledctl_default >> i;
1974
1975			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1976			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1977			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1978			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1979				ledctl_blink &=
1980				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1981				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1982						 E1000_LEDCTL_MODE_LED_ON) << i;
1983			}
1984		}
1985	}
1986
1987	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1988
1989	return E1000_SUCCESS;
1990}
1991
1992/**
1993 *  e1000_led_on_generic - Turn LED on
1994 *  @hw: pointer to the HW structure
1995 *
1996 *  Turn LED on.
1997 **/
1998s32 e1000_led_on_generic(struct e1000_hw *hw)
1999{
2000	u32 ctrl;
2001
2002	DEBUGFUNC("e1000_led_on_generic");
2003
2004	switch (hw->phy.media_type) {
2005	case e1000_media_type_fiber:
2006		ctrl = E1000_READ_REG(hw, E1000_CTRL);
2007		ctrl &= ~E1000_CTRL_SWDPIN0;
2008		ctrl |= E1000_CTRL_SWDPIO0;
2009		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2010		break;
2011	case e1000_media_type_copper:
2012		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
2013		break;
2014	default:
2015		break;
2016	}
2017
2018	return E1000_SUCCESS;
2019}
2020
2021/**
2022 *  e1000_led_off_generic - Turn LED off
2023 *  @hw: pointer to the HW structure
2024 *
2025 *  Turn LED off.
2026 **/
2027s32 e1000_led_off_generic(struct e1000_hw *hw)
2028{
2029	u32 ctrl;
2030
2031	DEBUGFUNC("e1000_led_off_generic");
2032
2033	switch (hw->phy.media_type) {
2034	case e1000_media_type_fiber:
2035		ctrl = E1000_READ_REG(hw, E1000_CTRL);
2036		ctrl |= E1000_CTRL_SWDPIN0;
2037		ctrl |= E1000_CTRL_SWDPIO0;
2038		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2039		break;
2040	case e1000_media_type_copper:
2041		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
2042		break;
2043	default:
2044		break;
2045	}
2046
2047	return E1000_SUCCESS;
2048}
2049
2050/**
2051 *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
2052 *  @hw: pointer to the HW structure
2053 *  @no_snoop: bitmap of snoop events
2054 *
2055 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
2056 **/
2057void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
2058{
2059	u32 gcr;
2060
2061	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
2062
2063	if (hw->bus.type != e1000_bus_type_pci_express)
2064		return;
2065
2066	if (no_snoop) {
2067		gcr = E1000_READ_REG(hw, E1000_GCR);
2068		gcr &= ~(PCIE_NO_SNOOP_ALL);
2069		gcr |= no_snoop;
2070		E1000_WRITE_REG(hw, E1000_GCR, gcr);
2071	}
2072}
2073
2074/**
2075 *  e1000_disable_pcie_master_generic - Disables PCI-express master access
2076 *  @hw: pointer to the HW structure
2077 *
2078 *  Returns E1000_SUCCESS if successful, else returns -10
2079 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
2080 *  the master requests to be disabled.
2081 *
2082 *  Disables PCI-Express master access and verifies there are no pending
2083 *  requests.
2084 **/
2085s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
2086{
2087	u32 ctrl;
2088	s32 timeout = MASTER_DISABLE_TIMEOUT;
2089
2090	DEBUGFUNC("e1000_disable_pcie_master_generic");
2091
2092	if (hw->bus.type != e1000_bus_type_pci_express)
2093		return E1000_SUCCESS;
2094
2095	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2096	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
2097	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2098
2099	while (timeout) {
2100		if (!(E1000_READ_REG(hw, E1000_STATUS) &
2101		      E1000_STATUS_GIO_MASTER_ENABLE) ||
2102				E1000_REMOVED(hw->hw_addr))
2103			break;
2104		usec_delay(100);
2105		timeout--;
2106	}
2107
2108	if (!timeout) {
2109		DEBUGOUT("Master requests are pending.\n");
2110		return -E1000_ERR_MASTER_REQUESTS_PENDING;
2111	}
2112
2113	return E1000_SUCCESS;
2114}
2115
2116/**
2117 *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Reset the Adaptive Interframe Spacing throttle to default values.
2121 **/
2122void e1000_reset_adaptive_generic(struct e1000_hw *hw)
2123{
2124	struct e1000_mac_info *mac = &hw->mac;
2125
2126	DEBUGFUNC("e1000_reset_adaptive_generic");
2127
2128	if (!mac->adaptive_ifs) {
2129		DEBUGOUT("Not in Adaptive IFS mode!\n");
2130		return;
2131	}
2132
2133	mac->current_ifs_val = 0;
2134	mac->ifs_min_val = IFS_MIN;
2135	mac->ifs_max_val = IFS_MAX;
2136	mac->ifs_step_size = IFS_STEP;
2137	mac->ifs_ratio = IFS_RATIO;
2138
2139	mac->in_ifs_mode = FALSE;
2140	E1000_WRITE_REG(hw, E1000_AIT, 0);
2141}
2142
2143/**
2144 *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2145 *  @hw: pointer to the HW structure
2146 *
2147 *  Update the Adaptive Interframe Spacing Throttle value based on the
2148 *  time between transmitted packets and time between collisions.
2149 **/
2150void e1000_update_adaptive_generic(struct e1000_hw *hw)
2151{
2152	struct e1000_mac_info *mac = &hw->mac;
2153
2154	DEBUGFUNC("e1000_update_adaptive_generic");
2155
2156	if (!mac->adaptive_ifs) {
2157		DEBUGOUT("Not in Adaptive IFS mode!\n");
2158		return;
2159	}
2160
2161	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2162		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2163			mac->in_ifs_mode = TRUE;
2164			if (mac->current_ifs_val < mac->ifs_max_val) {
2165				if (!mac->current_ifs_val)
2166					mac->current_ifs_val = mac->ifs_min_val;
2167				else
2168					mac->current_ifs_val +=
2169						mac->ifs_step_size;
2170				E1000_WRITE_REG(hw, E1000_AIT,
2171						mac->current_ifs_val);
2172			}
2173		}
2174	} else {
2175		if (mac->in_ifs_mode &&
2176		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2177			mac->current_ifs_val = 0;
2178			mac->in_ifs_mode = FALSE;
2179			E1000_WRITE_REG(hw, E1000_AIT, 0);
2180		}
2181	}
2182}
2183
2184/**
2185 *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
2189 *  set, which is forced to MDI mode only.
2190 **/
2191static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2192{
2193	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2194
2195	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2196		DEBUGOUT("Invalid MDI setting detected\n");
2197		hw->phy.mdix = 1;
2198		return -E1000_ERR_CONFIG;
2199	}
2200
2201	return E1000_SUCCESS;
2202}
2203
2204/**
2205 *  e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
2206 *  @hw: pointer to the HW structure
2207 *
2208 *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
2209 *  operation.
2210 **/
2211s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
2212{
2213	DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
2214
2215	return E1000_SUCCESS;
2216}
2217
2218/**
2219 *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2220 *  @hw: pointer to the HW structure
2221 *  @reg: 32bit register offset such as E1000_SCTL
2222 *  @offset: register offset to write to
2223 *  @data: data to write at register offset
2224 *
2225 *  Writes an address/data control type register.  There are several of these
2226 *  and they all have the format address << 8 | data and bit 31 is polled for
2227 *  completion.
2228 **/
2229s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2230				      u32 offset, u8 data)
2231{
2232	u32 i, regvalue = 0;
2233
2234	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2235
2236	/* Set up the address and data */
2237	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2238	E1000_WRITE_REG(hw, reg, regvalue);
2239
2240	/* Poll the ready bit to see if the MDI read completed */
2241	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2242		usec_delay(5);
2243		regvalue = E1000_READ_REG(hw, reg);
2244		if (regvalue & E1000_GEN_CTL_READY)
2245			break;
2246	}
2247	if (!(regvalue & E1000_GEN_CTL_READY)) {
2248		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2249		return -E1000_ERR_PHY;
2250	}
2251
2252	return E1000_SUCCESS;
2253}
2254