e1000_api.c revision 295323
1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 295323 2016-02-05 17:14:37Z erj $*/
34
35#include "e1000_api.h"
36
37/**
38 *  e1000_init_mac_params - Initialize MAC function pointers
39 *  @hw: pointer to the HW structure
40 *
41 *  This function initializes the function pointers for the MAC
42 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46	s32 ret_val = E1000_SUCCESS;
47
48	if (hw->mac.ops.init_params) {
49		ret_val = hw->mac.ops.init_params(hw);
50		if (ret_val) {
51			DEBUGOUT("MAC Initialization Error\n");
52			goto out;
53		}
54	} else {
55		DEBUGOUT("mac.init_mac_params was NULL\n");
56		ret_val = -E1000_ERR_CONFIG;
57	}
58
59out:
60	return ret_val;
61}
62
63/**
64 *  e1000_init_nvm_params - Initialize NVM function pointers
65 *  @hw: pointer to the HW structure
66 *
67 *  This function initializes the function pointers for the NVM
68 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72	s32 ret_val = E1000_SUCCESS;
73
74	if (hw->nvm.ops.init_params) {
75		ret_val = hw->nvm.ops.init_params(hw);
76		if (ret_val) {
77			DEBUGOUT("NVM Initialization Error\n");
78			goto out;
79		}
80	} else {
81		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82		ret_val = -E1000_ERR_CONFIG;
83	}
84
85out:
86	return ret_val;
87}
88
89/**
90 *  e1000_init_phy_params - Initialize PHY function pointers
91 *  @hw: pointer to the HW structure
92 *
93 *  This function initializes the function pointers for the PHY
94 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98	s32 ret_val = E1000_SUCCESS;
99
100	if (hw->phy.ops.init_params) {
101		ret_val = hw->phy.ops.init_params(hw);
102		if (ret_val) {
103			DEBUGOUT("PHY Initialization Error\n");
104			goto out;
105		}
106	} else {
107		DEBUGOUT("phy.init_phy_params was NULL\n");
108		ret_val =  -E1000_ERR_CONFIG;
109	}
110
111out:
112	return ret_val;
113}
114
115/**
116 *  e1000_init_mbx_params - Initialize mailbox function pointers
117 *  @hw: pointer to the HW structure
118 *
119 *  This function initializes the function pointers for the PHY
120 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124	s32 ret_val = E1000_SUCCESS;
125
126	if (hw->mbx.ops.init_params) {
127		ret_val = hw->mbx.ops.init_params(hw);
128		if (ret_val) {
129			DEBUGOUT("Mailbox Initialization Error\n");
130			goto out;
131		}
132	} else {
133		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134		ret_val =  -E1000_ERR_CONFIG;
135	}
136
137out:
138	return ret_val;
139}
140
141/**
142 *  e1000_set_mac_type - Sets MAC type
143 *  @hw: pointer to the HW structure
144 *
145 *  This function sets the mac type of the adapter based on the
146 *  device ID stored in the hw structure.
147 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148 *  e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152	struct e1000_mac_info *mac = &hw->mac;
153	s32 ret_val = E1000_SUCCESS;
154
155	DEBUGFUNC("e1000_set_mac_type");
156
157	switch (hw->device_id) {
158	case E1000_DEV_ID_82542:
159		mac->type = e1000_82542;
160		break;
161	case E1000_DEV_ID_82543GC_FIBER:
162	case E1000_DEV_ID_82543GC_COPPER:
163		mac->type = e1000_82543;
164		break;
165	case E1000_DEV_ID_82544EI_COPPER:
166	case E1000_DEV_ID_82544EI_FIBER:
167	case E1000_DEV_ID_82544GC_COPPER:
168	case E1000_DEV_ID_82544GC_LOM:
169		mac->type = e1000_82544;
170		break;
171	case E1000_DEV_ID_82540EM:
172	case E1000_DEV_ID_82540EM_LOM:
173	case E1000_DEV_ID_82540EP:
174	case E1000_DEV_ID_82540EP_LOM:
175	case E1000_DEV_ID_82540EP_LP:
176		mac->type = e1000_82540;
177		break;
178	case E1000_DEV_ID_82545EM_COPPER:
179	case E1000_DEV_ID_82545EM_FIBER:
180		mac->type = e1000_82545;
181		break;
182	case E1000_DEV_ID_82545GM_COPPER:
183	case E1000_DEV_ID_82545GM_FIBER:
184	case E1000_DEV_ID_82545GM_SERDES:
185		mac->type = e1000_82545_rev_3;
186		break;
187	case E1000_DEV_ID_82546EB_COPPER:
188	case E1000_DEV_ID_82546EB_FIBER:
189	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190		mac->type = e1000_82546;
191		break;
192	case E1000_DEV_ID_82546GB_COPPER:
193	case E1000_DEV_ID_82546GB_FIBER:
194	case E1000_DEV_ID_82546GB_SERDES:
195	case E1000_DEV_ID_82546GB_PCIE:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198		mac->type = e1000_82546_rev_3;
199		break;
200	case E1000_DEV_ID_82541EI:
201	case E1000_DEV_ID_82541EI_MOBILE:
202	case E1000_DEV_ID_82541ER_LOM:
203		mac->type = e1000_82541;
204		break;
205	case E1000_DEV_ID_82541ER:
206	case E1000_DEV_ID_82541GI:
207	case E1000_DEV_ID_82541GI_LF:
208	case E1000_DEV_ID_82541GI_MOBILE:
209		mac->type = e1000_82541_rev_2;
210		break;
211	case E1000_DEV_ID_82547EI:
212	case E1000_DEV_ID_82547EI_MOBILE:
213		mac->type = e1000_82547;
214		break;
215	case E1000_DEV_ID_82547GI:
216		mac->type = e1000_82547_rev_2;
217		break;
218	case E1000_DEV_ID_82571EB_COPPER:
219	case E1000_DEV_ID_82571EB_FIBER:
220	case E1000_DEV_ID_82571EB_SERDES:
221	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227		mac->type = e1000_82571;
228		break;
229	case E1000_DEV_ID_82572EI:
230	case E1000_DEV_ID_82572EI_COPPER:
231	case E1000_DEV_ID_82572EI_FIBER:
232	case E1000_DEV_ID_82572EI_SERDES:
233		mac->type = e1000_82572;
234		break;
235	case E1000_DEV_ID_82573E:
236	case E1000_DEV_ID_82573E_IAMT:
237	case E1000_DEV_ID_82573L:
238		mac->type = e1000_82573;
239		break;
240	case E1000_DEV_ID_82574L:
241	case E1000_DEV_ID_82574LA:
242		mac->type = e1000_82574;
243		break;
244	case E1000_DEV_ID_82583V:
245		mac->type = e1000_82583;
246		break;
247	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251		mac->type = e1000_80003es2lan;
252		break;
253	case E1000_DEV_ID_ICH8_IFE:
254	case E1000_DEV_ID_ICH8_IFE_GT:
255	case E1000_DEV_ID_ICH8_IFE_G:
256	case E1000_DEV_ID_ICH8_IGP_M:
257	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258	case E1000_DEV_ID_ICH8_IGP_AMT:
259	case E1000_DEV_ID_ICH8_IGP_C:
260	case E1000_DEV_ID_ICH8_82567V_3:
261		mac->type = e1000_ich8lan;
262		break;
263	case E1000_DEV_ID_ICH9_IFE:
264	case E1000_DEV_ID_ICH9_IFE_GT:
265	case E1000_DEV_ID_ICH9_IFE_G:
266	case E1000_DEV_ID_ICH9_IGP_M:
267	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268	case E1000_DEV_ID_ICH9_IGP_M_V:
269	case E1000_DEV_ID_ICH9_IGP_AMT:
270	case E1000_DEV_ID_ICH9_BM:
271	case E1000_DEV_ID_ICH9_IGP_C:
272	case E1000_DEV_ID_ICH10_R_BM_LM:
273	case E1000_DEV_ID_ICH10_R_BM_LF:
274	case E1000_DEV_ID_ICH10_R_BM_V:
275		mac->type = e1000_ich9lan;
276		break;
277	case E1000_DEV_ID_ICH10_D_BM_LM:
278	case E1000_DEV_ID_ICH10_D_BM_LF:
279	case E1000_DEV_ID_ICH10_D_BM_V:
280		mac->type = e1000_ich10lan;
281		break;
282	case E1000_DEV_ID_PCH_D_HV_DM:
283	case E1000_DEV_ID_PCH_D_HV_DC:
284	case E1000_DEV_ID_PCH_M_HV_LM:
285	case E1000_DEV_ID_PCH_M_HV_LC:
286		mac->type = e1000_pchlan;
287		break;
288	case E1000_DEV_ID_PCH2_LV_LM:
289	case E1000_DEV_ID_PCH2_LV_V:
290		mac->type = e1000_pch2lan;
291		break;
292	case E1000_DEV_ID_PCH_LPT_I217_LM:
293	case E1000_DEV_ID_PCH_LPT_I217_V:
294	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296	case E1000_DEV_ID_PCH_I218_LM2:
297	case E1000_DEV_ID_PCH_I218_V2:
298	case E1000_DEV_ID_PCH_I218_LM3:
299	case E1000_DEV_ID_PCH_I218_V3:
300		mac->type = e1000_pch_lpt;
301		break;
302	case E1000_DEV_ID_PCH_SPT_I219_LM:
303	case E1000_DEV_ID_PCH_SPT_I219_V:
304	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305	case E1000_DEV_ID_PCH_SPT_I219_V2:
306	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307		mac->type = e1000_pch_spt;
308		break;
309	case E1000_DEV_ID_82575EB_COPPER:
310	case E1000_DEV_ID_82575EB_FIBER_SERDES:
311	case E1000_DEV_ID_82575GB_QUAD_COPPER:
312		mac->type = e1000_82575;
313		break;
314	case E1000_DEV_ID_82576:
315	case E1000_DEV_ID_82576_FIBER:
316	case E1000_DEV_ID_82576_SERDES:
317	case E1000_DEV_ID_82576_QUAD_COPPER:
318	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
319	case E1000_DEV_ID_82576_NS:
320	case E1000_DEV_ID_82576_NS_SERDES:
321	case E1000_DEV_ID_82576_SERDES_QUAD:
322		mac->type = e1000_82576;
323		break;
324	case E1000_DEV_ID_82580_COPPER:
325	case E1000_DEV_ID_82580_FIBER:
326	case E1000_DEV_ID_82580_SERDES:
327	case E1000_DEV_ID_82580_SGMII:
328	case E1000_DEV_ID_82580_COPPER_DUAL:
329	case E1000_DEV_ID_82580_QUAD_FIBER:
330	case E1000_DEV_ID_DH89XXCC_SGMII:
331	case E1000_DEV_ID_DH89XXCC_SERDES:
332	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
333	case E1000_DEV_ID_DH89XXCC_SFP:
334		mac->type = e1000_82580;
335		break;
336	case E1000_DEV_ID_I350_COPPER:
337	case E1000_DEV_ID_I350_FIBER:
338	case E1000_DEV_ID_I350_SERDES:
339	case E1000_DEV_ID_I350_SGMII:
340	case E1000_DEV_ID_I350_DA4:
341		mac->type = e1000_i350;
342		break;
343	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
344	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
345	case E1000_DEV_ID_I210_COPPER:
346	case E1000_DEV_ID_I210_COPPER_OEM1:
347	case E1000_DEV_ID_I210_COPPER_IT:
348	case E1000_DEV_ID_I210_FIBER:
349	case E1000_DEV_ID_I210_SERDES:
350	case E1000_DEV_ID_I210_SGMII:
351		mac->type = e1000_i210;
352		break;
353	case E1000_DEV_ID_I211_COPPER:
354		mac->type = e1000_i211;
355		break;
356	case E1000_DEV_ID_82576_VF:
357	case E1000_DEV_ID_82576_VF_HV:
358		mac->type = e1000_vfadapt;
359		break;
360	case E1000_DEV_ID_I350_VF:
361	case E1000_DEV_ID_I350_VF_HV:
362		mac->type = e1000_vfadapt_i350;
363		break;
364
365	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
366	case E1000_DEV_ID_I354_SGMII:
367	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
368		mac->type = e1000_i354;
369		break;
370	default:
371		/* Should never have loaded on this device */
372		ret_val = -E1000_ERR_MAC_INIT;
373		break;
374	}
375
376	return ret_val;
377}
378
379/**
380 *  e1000_setup_init_funcs - Initializes function pointers
381 *  @hw: pointer to the HW structure
382 *  @init_device: TRUE will initialize the rest of the function pointers
383 *		  getting the device ready for use.  FALSE will only set
384 *		  MAC type and the function pointers for the other init
385 *		  functions.  Passing FALSE will not generate any hardware
386 *		  reads or writes.
387 *
388 *  This function must be called by a driver in order to use the rest
389 *  of the 'shared' code files. Called by drivers only.
390 **/
391s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
392{
393	s32 ret_val;
394
395	/* Can't do much good without knowing the MAC type. */
396	ret_val = e1000_set_mac_type(hw);
397	if (ret_val) {
398		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
399		goto out;
400	}
401
402	if (!hw->hw_addr) {
403		DEBUGOUT("ERROR: Registers not mapped\n");
404		ret_val = -E1000_ERR_CONFIG;
405		goto out;
406	}
407
408	/*
409	 * Init function pointers to generic implementations. We do this first
410	 * allowing a driver module to override it afterward.
411	 */
412	e1000_init_mac_ops_generic(hw);
413	e1000_init_phy_ops_generic(hw);
414	e1000_init_nvm_ops_generic(hw);
415	e1000_init_mbx_ops_generic(hw);
416
417	/*
418	 * Set up the init function pointers. These are functions within the
419	 * adapter family file that sets up function pointers for the rest of
420	 * the functions in that family.
421	 */
422	switch (hw->mac.type) {
423	case e1000_82542:
424		e1000_init_function_pointers_82542(hw);
425		break;
426	case e1000_82543:
427	case e1000_82544:
428		e1000_init_function_pointers_82543(hw);
429		break;
430	case e1000_82540:
431	case e1000_82545:
432	case e1000_82545_rev_3:
433	case e1000_82546:
434	case e1000_82546_rev_3:
435		e1000_init_function_pointers_82540(hw);
436		break;
437	case e1000_82541:
438	case e1000_82541_rev_2:
439	case e1000_82547:
440	case e1000_82547_rev_2:
441		e1000_init_function_pointers_82541(hw);
442		break;
443	case e1000_82571:
444	case e1000_82572:
445	case e1000_82573:
446	case e1000_82574:
447	case e1000_82583:
448		e1000_init_function_pointers_82571(hw);
449		break;
450	case e1000_80003es2lan:
451		e1000_init_function_pointers_80003es2lan(hw);
452		break;
453	case e1000_ich8lan:
454	case e1000_ich9lan:
455	case e1000_ich10lan:
456	case e1000_pchlan:
457	case e1000_pch2lan:
458	case e1000_pch_lpt:
459	case e1000_pch_spt:
460		e1000_init_function_pointers_ich8lan(hw);
461		break;
462	case e1000_82575:
463	case e1000_82576:
464	case e1000_82580:
465	case e1000_i350:
466	case e1000_i354:
467		e1000_init_function_pointers_82575(hw);
468		break;
469	case e1000_i210:
470	case e1000_i211:
471		e1000_init_function_pointers_i210(hw);
472		break;
473	case e1000_vfadapt:
474		e1000_init_function_pointers_vf(hw);
475		break;
476	case e1000_vfadapt_i350:
477		e1000_init_function_pointers_vf(hw);
478		break;
479	default:
480		DEBUGOUT("Hardware not supported\n");
481		ret_val = -E1000_ERR_CONFIG;
482		break;
483	}
484
485	/*
486	 * Initialize the rest of the function pointers. These require some
487	 * register reads/writes in some cases.
488	 */
489	if (!(ret_val) && init_device) {
490		ret_val = e1000_init_mac_params(hw);
491		if (ret_val)
492			goto out;
493
494		ret_val = e1000_init_nvm_params(hw);
495		if (ret_val)
496			goto out;
497
498		ret_val = e1000_init_phy_params(hw);
499		if (ret_val)
500			goto out;
501
502		ret_val = e1000_init_mbx_params(hw);
503		if (ret_val)
504			goto out;
505	}
506
507out:
508	return ret_val;
509}
510
511/**
512 *  e1000_get_bus_info - Obtain bus information for adapter
513 *  @hw: pointer to the HW structure
514 *
515 *  This will obtain information about the HW bus for which the
516 *  adapter is attached and stores it in the hw structure. This is a
517 *  function pointer entry point called by drivers.
518 **/
519s32 e1000_get_bus_info(struct e1000_hw *hw)
520{
521	if (hw->mac.ops.get_bus_info)
522		return hw->mac.ops.get_bus_info(hw);
523
524	return E1000_SUCCESS;
525}
526
527/**
528 *  e1000_clear_vfta - Clear VLAN filter table
529 *  @hw: pointer to the HW structure
530 *
531 *  This clears the VLAN filter table on the adapter. This is a function
532 *  pointer entry point called by drivers.
533 **/
534void e1000_clear_vfta(struct e1000_hw *hw)
535{
536	if (hw->mac.ops.clear_vfta)
537		hw->mac.ops.clear_vfta(hw);
538}
539
540/**
541 *  e1000_write_vfta - Write value to VLAN filter table
542 *  @hw: pointer to the HW structure
543 *  @offset: the 32-bit offset in which to write the value to.
544 *  @value: the 32-bit value to write at location offset.
545 *
546 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
547 *  table. This is a function pointer entry point called by drivers.
548 **/
549void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
550{
551	if (hw->mac.ops.write_vfta)
552		hw->mac.ops.write_vfta(hw, offset, value);
553}
554
555/**
556 *  e1000_update_mc_addr_list - Update Multicast addresses
557 *  @hw: pointer to the HW structure
558 *  @mc_addr_list: array of multicast addresses to program
559 *  @mc_addr_count: number of multicast addresses to program
560 *
561 *  Updates the Multicast Table Array.
562 *  The caller must have a packed mc_addr_list of multicast addresses.
563 **/
564void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
565			       u32 mc_addr_count)
566{
567	if (hw->mac.ops.update_mc_addr_list)
568		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
569						mc_addr_count);
570}
571
572/**
573 *  e1000_force_mac_fc - Force MAC flow control
574 *  @hw: pointer to the HW structure
575 *
576 *  Force the MAC's flow control settings. Currently no func pointer exists
577 *  and all implementations are handled in the generic version of this
578 *  function.
579 **/
580s32 e1000_force_mac_fc(struct e1000_hw *hw)
581{
582	return e1000_force_mac_fc_generic(hw);
583}
584
585/**
586 *  e1000_check_for_link - Check/Store link connection
587 *  @hw: pointer to the HW structure
588 *
589 *  This checks the link condition of the adapter and stores the
590 *  results in the hw->mac structure. This is a function pointer entry
591 *  point called by drivers.
592 **/
593s32 e1000_check_for_link(struct e1000_hw *hw)
594{
595	if (hw->mac.ops.check_for_link)
596		return hw->mac.ops.check_for_link(hw);
597
598	return -E1000_ERR_CONFIG;
599}
600
601/**
602 *  e1000_check_mng_mode - Check management mode
603 *  @hw: pointer to the HW structure
604 *
605 *  This checks if the adapter has manageability enabled.
606 *  This is a function pointer entry point called by drivers.
607 **/
608bool e1000_check_mng_mode(struct e1000_hw *hw)
609{
610	if (hw->mac.ops.check_mng_mode)
611		return hw->mac.ops.check_mng_mode(hw);
612
613	return FALSE;
614}
615
616/**
617 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
618 *  @hw: pointer to the HW structure
619 *  @buffer: pointer to the host interface
620 *  @length: size of the buffer
621 *
622 *  Writes the DHCP information to the host interface.
623 **/
624s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
625{
626	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
627}
628
629/**
630 *  e1000_reset_hw - Reset hardware
631 *  @hw: pointer to the HW structure
632 *
633 *  This resets the hardware into a known state. This is a function pointer
634 *  entry point called by drivers.
635 **/
636s32 e1000_reset_hw(struct e1000_hw *hw)
637{
638	if (hw->mac.ops.reset_hw)
639		return hw->mac.ops.reset_hw(hw);
640
641	return -E1000_ERR_CONFIG;
642}
643
644/**
645 *  e1000_init_hw - Initialize hardware
646 *  @hw: pointer to the HW structure
647 *
648 *  This inits the hardware readying it for operation. This is a function
649 *  pointer entry point called by drivers.
650 **/
651s32 e1000_init_hw(struct e1000_hw *hw)
652{
653	if (hw->mac.ops.init_hw)
654		return hw->mac.ops.init_hw(hw);
655
656	return -E1000_ERR_CONFIG;
657}
658
659/**
660 *  e1000_setup_link - Configures link and flow control
661 *  @hw: pointer to the HW structure
662 *
663 *  This configures link and flow control settings for the adapter. This
664 *  is a function pointer entry point called by drivers. While modules can
665 *  also call this, they probably call their own version of this function.
666 **/
667s32 e1000_setup_link(struct e1000_hw *hw)
668{
669	if (hw->mac.ops.setup_link)
670		return hw->mac.ops.setup_link(hw);
671
672	return -E1000_ERR_CONFIG;
673}
674
675/**
676 *  e1000_get_speed_and_duplex - Returns current speed and duplex
677 *  @hw: pointer to the HW structure
678 *  @speed: pointer to a 16-bit value to store the speed
679 *  @duplex: pointer to a 16-bit value to store the duplex.
680 *
681 *  This returns the speed and duplex of the adapter in the two 'out'
682 *  variables passed in. This is a function pointer entry point called
683 *  by drivers.
684 **/
685s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
686{
687	if (hw->mac.ops.get_link_up_info)
688		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
689
690	return -E1000_ERR_CONFIG;
691}
692
693/**
694 *  e1000_setup_led - Configures SW controllable LED
695 *  @hw: pointer to the HW structure
696 *
697 *  This prepares the SW controllable LED for use and saves the current state
698 *  of the LED so it can be later restored. This is a function pointer entry
699 *  point called by drivers.
700 **/
701s32 e1000_setup_led(struct e1000_hw *hw)
702{
703	if (hw->mac.ops.setup_led)
704		return hw->mac.ops.setup_led(hw);
705
706	return E1000_SUCCESS;
707}
708
709/**
710 *  e1000_cleanup_led - Restores SW controllable LED
711 *  @hw: pointer to the HW structure
712 *
713 *  This restores the SW controllable LED to the value saved off by
714 *  e1000_setup_led. This is a function pointer entry point called by drivers.
715 **/
716s32 e1000_cleanup_led(struct e1000_hw *hw)
717{
718	if (hw->mac.ops.cleanup_led)
719		return hw->mac.ops.cleanup_led(hw);
720
721	return E1000_SUCCESS;
722}
723
724/**
725 *  e1000_blink_led - Blink SW controllable LED
726 *  @hw: pointer to the HW structure
727 *
728 *  This starts the adapter LED blinking. Request the LED to be setup first
729 *  and cleaned up after. This is a function pointer entry point called by
730 *  drivers.
731 **/
732s32 e1000_blink_led(struct e1000_hw *hw)
733{
734	if (hw->mac.ops.blink_led)
735		return hw->mac.ops.blink_led(hw);
736
737	return E1000_SUCCESS;
738}
739
740/**
741 *  e1000_id_led_init - store LED configurations in SW
742 *  @hw: pointer to the HW structure
743 *
744 *  Initializes the LED config in SW. This is a function pointer entry point
745 *  called by drivers.
746 **/
747s32 e1000_id_led_init(struct e1000_hw *hw)
748{
749	if (hw->mac.ops.id_led_init)
750		return hw->mac.ops.id_led_init(hw);
751
752	return E1000_SUCCESS;
753}
754
755/**
756 *  e1000_led_on - Turn on SW controllable LED
757 *  @hw: pointer to the HW structure
758 *
759 *  Turns the SW defined LED on. This is a function pointer entry point
760 *  called by drivers.
761 **/
762s32 e1000_led_on(struct e1000_hw *hw)
763{
764	if (hw->mac.ops.led_on)
765		return hw->mac.ops.led_on(hw);
766
767	return E1000_SUCCESS;
768}
769
770/**
771 *  e1000_led_off - Turn off SW controllable LED
772 *  @hw: pointer to the HW structure
773 *
774 *  Turns the SW defined LED off. This is a function pointer entry point
775 *  called by drivers.
776 **/
777s32 e1000_led_off(struct e1000_hw *hw)
778{
779	if (hw->mac.ops.led_off)
780		return hw->mac.ops.led_off(hw);
781
782	return E1000_SUCCESS;
783}
784
785/**
786 *  e1000_reset_adaptive - Reset adaptive IFS
787 *  @hw: pointer to the HW structure
788 *
789 *  Resets the adaptive IFS. Currently no func pointer exists and all
790 *  implementations are handled in the generic version of this function.
791 **/
792void e1000_reset_adaptive(struct e1000_hw *hw)
793{
794	e1000_reset_adaptive_generic(hw);
795}
796
797/**
798 *  e1000_update_adaptive - Update adaptive IFS
799 *  @hw: pointer to the HW structure
800 *
801 *  Updates adapter IFS. Currently no func pointer exists and all
802 *  implementations are handled in the generic version of this function.
803 **/
804void e1000_update_adaptive(struct e1000_hw *hw)
805{
806	e1000_update_adaptive_generic(hw);
807}
808
809/**
810 *  e1000_disable_pcie_master - Disable PCI-Express master access
811 *  @hw: pointer to the HW structure
812 *
813 *  Disables PCI-Express master access and verifies there are no pending
814 *  requests. Currently no func pointer exists and all implementations are
815 *  handled in the generic version of this function.
816 **/
817s32 e1000_disable_pcie_master(struct e1000_hw *hw)
818{
819	return e1000_disable_pcie_master_generic(hw);
820}
821
822/**
823 *  e1000_config_collision_dist - Configure collision distance
824 *  @hw: pointer to the HW structure
825 *
826 *  Configures the collision distance to the default value and is used
827 *  during link setup.
828 **/
829void e1000_config_collision_dist(struct e1000_hw *hw)
830{
831	if (hw->mac.ops.config_collision_dist)
832		hw->mac.ops.config_collision_dist(hw);
833}
834
835/**
836 *  e1000_rar_set - Sets a receive address register
837 *  @hw: pointer to the HW structure
838 *  @addr: address to set the RAR to
839 *  @index: the RAR to set
840 *
841 *  Sets a Receive Address Register (RAR) to the specified address.
842 **/
843int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
844{
845	if (hw->mac.ops.rar_set)
846		return hw->mac.ops.rar_set(hw, addr, index);
847
848	return E1000_SUCCESS;
849}
850
851/**
852 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
853 *  @hw: pointer to the HW structure
854 *
855 *  Ensures that the MDI/MDIX SW state is valid.
856 **/
857s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
858{
859	if (hw->mac.ops.validate_mdi_setting)
860		return hw->mac.ops.validate_mdi_setting(hw);
861
862	return E1000_SUCCESS;
863}
864
865/**
866 *  e1000_hash_mc_addr - Determines address location in multicast table
867 *  @hw: pointer to the HW structure
868 *  @mc_addr: Multicast address to hash.
869 *
870 *  This hashes an address to determine its location in the multicast
871 *  table. Currently no func pointer exists and all implementations
872 *  are handled in the generic version of this function.
873 **/
874u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
875{
876	return e1000_hash_mc_addr_generic(hw, mc_addr);
877}
878
879/**
880 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
881 *  @hw: pointer to the HW structure
882 *
883 *  Enables packet filtering on transmit packets if manageability is enabled
884 *  and host interface is enabled.
885 *  Currently no func pointer exists and all implementations are handled in the
886 *  generic version of this function.
887 **/
888bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
889{
890	return e1000_enable_tx_pkt_filtering_generic(hw);
891}
892
893/**
894 *  e1000_mng_host_if_write - Writes to the manageability host interface
895 *  @hw: pointer to the HW structure
896 *  @buffer: pointer to the host interface buffer
897 *  @length: size of the buffer
898 *  @offset: location in the buffer to write to
899 *  @sum: sum of the data (not checksum)
900 *
901 *  This function writes the buffer content at the offset given on the host if.
902 *  It also does alignment considerations to do the writes in most efficient
903 *  way.  Also fills up the sum of the buffer in *buffer parameter.
904 **/
905s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
906			    u16 offset, u8 *sum)
907{
908	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
909}
910
911/**
912 *  e1000_mng_write_cmd_header - Writes manageability command header
913 *  @hw: pointer to the HW structure
914 *  @hdr: pointer to the host interface command header
915 *
916 *  Writes the command header after does the checksum calculation.
917 **/
918s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
919			       struct e1000_host_mng_command_header *hdr)
920{
921	return e1000_mng_write_cmd_header_generic(hw, hdr);
922}
923
924/**
925 *  e1000_mng_enable_host_if - Checks host interface is enabled
926 *  @hw: pointer to the HW structure
927 *
928 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
929 *
930 *  This function checks whether the HOST IF is enabled for command operation
931 *  and also checks whether the previous command is completed.  It busy waits
932 *  in case of previous command is not completed.
933 **/
934s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
935{
936	return e1000_mng_enable_host_if_generic(hw);
937}
938
939/**
940 *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
941 *  @hw: pointer to the HW structure
942 *  @itr: u32 indicating itr value
943 *
944 *  Set the OBFF timer based on the given interrupt rate.
945 **/
946s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
947{
948	if (hw->mac.ops.set_obff_timer)
949		return hw->mac.ops.set_obff_timer(hw, itr);
950
951	return E1000_SUCCESS;
952}
953
954/**
955 *  e1000_check_reset_block - Verifies PHY can be reset
956 *  @hw: pointer to the HW structure
957 *
958 *  Checks if the PHY is in a state that can be reset or if manageability
959 *  has it tied up. This is a function pointer entry point called by drivers.
960 **/
961s32 e1000_check_reset_block(struct e1000_hw *hw)
962{
963	if (hw->phy.ops.check_reset_block)
964		return hw->phy.ops.check_reset_block(hw);
965
966	return E1000_SUCCESS;
967}
968
969/**
970 *  e1000_read_phy_reg - Reads PHY register
971 *  @hw: pointer to the HW structure
972 *  @offset: the register to read
973 *  @data: the buffer to store the 16-bit read.
974 *
975 *  Reads the PHY register and returns the value in data.
976 *  This is a function pointer entry point called by drivers.
977 **/
978s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
979{
980	if (hw->phy.ops.read_reg)
981		return hw->phy.ops.read_reg(hw, offset, data);
982
983	return E1000_SUCCESS;
984}
985
986/**
987 *  e1000_write_phy_reg - Writes PHY register
988 *  @hw: pointer to the HW structure
989 *  @offset: the register to write
990 *  @data: the value to write.
991 *
992 *  Writes the PHY register at offset with the value in data.
993 *  This is a function pointer entry point called by drivers.
994 **/
995s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
996{
997	if (hw->phy.ops.write_reg)
998		return hw->phy.ops.write_reg(hw, offset, data);
999
1000	return E1000_SUCCESS;
1001}
1002
1003/**
1004 *  e1000_release_phy - Generic release PHY
1005 *  @hw: pointer to the HW structure
1006 *
1007 *  Return if silicon family does not require a semaphore when accessing the
1008 *  PHY.
1009 **/
1010void e1000_release_phy(struct e1000_hw *hw)
1011{
1012	if (hw->phy.ops.release)
1013		hw->phy.ops.release(hw);
1014}
1015
1016/**
1017 *  e1000_acquire_phy - Generic acquire PHY
1018 *  @hw: pointer to the HW structure
1019 *
1020 *  Return success if silicon family does not require a semaphore when
1021 *  accessing the PHY.
1022 **/
1023s32 e1000_acquire_phy(struct e1000_hw *hw)
1024{
1025	if (hw->phy.ops.acquire)
1026		return hw->phy.ops.acquire(hw);
1027
1028	return E1000_SUCCESS;
1029}
1030
1031/**
1032 *  e1000_cfg_on_link_up - Configure PHY upon link up
1033 *  @hw: pointer to the HW structure
1034 **/
1035s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1036{
1037	if (hw->phy.ops.cfg_on_link_up)
1038		return hw->phy.ops.cfg_on_link_up(hw);
1039
1040	return E1000_SUCCESS;
1041}
1042
1043/**
1044 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1045 *  @hw: pointer to the HW structure
1046 *  @offset: the register to read
1047 *  @data: the location to store the 16-bit value read.
1048 *
1049 *  Reads a register out of the Kumeran interface. Currently no func pointer
1050 *  exists and all implementations are handled in the generic version of
1051 *  this function.
1052 **/
1053s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1054{
1055	return e1000_read_kmrn_reg_generic(hw, offset, data);
1056}
1057
1058/**
1059 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1060 *  @hw: pointer to the HW structure
1061 *  @offset: the register to write
1062 *  @data: the value to write.
1063 *
1064 *  Writes a register to the Kumeran interface. Currently no func pointer
1065 *  exists and all implementations are handled in the generic version of
1066 *  this function.
1067 **/
1068s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1069{
1070	return e1000_write_kmrn_reg_generic(hw, offset, data);
1071}
1072
1073/**
1074 *  e1000_get_cable_length - Retrieves cable length estimation
1075 *  @hw: pointer to the HW structure
1076 *
1077 *  This function estimates the cable length and stores them in
1078 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1079 *  entry point called by drivers.
1080 **/
1081s32 e1000_get_cable_length(struct e1000_hw *hw)
1082{
1083	if (hw->phy.ops.get_cable_length)
1084		return hw->phy.ops.get_cable_length(hw);
1085
1086	return E1000_SUCCESS;
1087}
1088
1089/**
1090 *  e1000_get_phy_info - Retrieves PHY information from registers
1091 *  @hw: pointer to the HW structure
1092 *
1093 *  This function gets some information from various PHY registers and
1094 *  populates hw->phy values with it. This is a function pointer entry
1095 *  point called by drivers.
1096 **/
1097s32 e1000_get_phy_info(struct e1000_hw *hw)
1098{
1099	if (hw->phy.ops.get_info)
1100		return hw->phy.ops.get_info(hw);
1101
1102	return E1000_SUCCESS;
1103}
1104
1105/**
1106 *  e1000_phy_hw_reset - Hard PHY reset
1107 *  @hw: pointer to the HW structure
1108 *
1109 *  Performs a hard PHY reset. This is a function pointer entry point called
1110 *  by drivers.
1111 **/
1112s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1113{
1114	if (hw->phy.ops.reset)
1115		return hw->phy.ops.reset(hw);
1116
1117	return E1000_SUCCESS;
1118}
1119
1120/**
1121 *  e1000_phy_commit - Soft PHY reset
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  Performs a soft PHY reset on those that apply. This is a function pointer
1125 *  entry point called by drivers.
1126 **/
1127s32 e1000_phy_commit(struct e1000_hw *hw)
1128{
1129	if (hw->phy.ops.commit)
1130		return hw->phy.ops.commit(hw);
1131
1132	return E1000_SUCCESS;
1133}
1134
1135/**
1136 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1137 *  @hw: pointer to the HW structure
1138 *  @active: boolean used to enable/disable lplu
1139 *
1140 *  Success returns 0, Failure returns 1
1141 *
1142 *  The low power link up (lplu) state is set to the power management level D0
1143 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1144 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1145 *  is used during Dx states where the power conservation is most important.
1146 *  During driver activity, SmartSpeed should be enabled so performance is
1147 *  maintained.  This is a function pointer entry point called by drivers.
1148 **/
1149s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1150{
1151	if (hw->phy.ops.set_d0_lplu_state)
1152		return hw->phy.ops.set_d0_lplu_state(hw, active);
1153
1154	return E1000_SUCCESS;
1155}
1156
1157/**
1158 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1159 *  @hw: pointer to the HW structure
1160 *  @active: boolean used to enable/disable lplu
1161 *
1162 *  Success returns 0, Failure returns 1
1163 *
1164 *  The low power link up (lplu) state is set to the power management level D3
1165 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1166 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1167 *  is used during Dx states where the power conservation is most important.
1168 *  During driver activity, SmartSpeed should be enabled so performance is
1169 *  maintained.  This is a function pointer entry point called by drivers.
1170 **/
1171s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1172{
1173	if (hw->phy.ops.set_d3_lplu_state)
1174		return hw->phy.ops.set_d3_lplu_state(hw, active);
1175
1176	return E1000_SUCCESS;
1177}
1178
1179/**
1180 *  e1000_read_mac_addr - Reads MAC address
1181 *  @hw: pointer to the HW structure
1182 *
1183 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1184 *  Currently no func pointer exists and all implementations are handled in the
1185 *  generic version of this function.
1186 **/
1187s32 e1000_read_mac_addr(struct e1000_hw *hw)
1188{
1189	if (hw->mac.ops.read_mac_addr)
1190		return hw->mac.ops.read_mac_addr(hw);
1191
1192	return e1000_read_mac_addr_generic(hw);
1193}
1194
1195/**
1196 *  e1000_read_pba_string - Read device part number string
1197 *  @hw: pointer to the HW structure
1198 *  @pba_num: pointer to device part number
1199 *  @pba_num_size: size of part number buffer
1200 *
1201 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1202 *  the value in pba_num.
1203 *  Currently no func pointer exists and all implementations are handled in the
1204 *  generic version of this function.
1205 **/
1206s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1207{
1208	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1209}
1210
1211/**
1212 *  e1000_read_pba_length - Read device part number string length
1213 *  @hw: pointer to the HW structure
1214 *  @pba_num_size: size of part number buffer
1215 *
1216 *  Reads the product board assembly (PBA) number length from the EEPROM and
1217 *  stores the value in pba_num.
1218 *  Currently no func pointer exists and all implementations are handled in the
1219 *  generic version of this function.
1220 **/
1221s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1222{
1223	return e1000_read_pba_length_generic(hw, pba_num_size);
1224}
1225
1226/**
1227 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1228 *  @hw: pointer to the HW structure
1229 *
1230 *  Validates the NVM checksum is correct. This is a function pointer entry
1231 *  point called by drivers.
1232 **/
1233s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1234{
1235	if (hw->nvm.ops.validate)
1236		return hw->nvm.ops.validate(hw);
1237
1238	return -E1000_ERR_CONFIG;
1239}
1240
1241/**
1242 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1243 *  @hw: pointer to the HW structure
1244 *
1245 *  Updates the NVM checksum. Currently no func pointer exists and all
1246 *  implementations are handled in the generic version of this function.
1247 **/
1248s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1249{
1250	if (hw->nvm.ops.update)
1251		return hw->nvm.ops.update(hw);
1252
1253	return -E1000_ERR_CONFIG;
1254}
1255
1256/**
1257 *  e1000_reload_nvm - Reloads EEPROM
1258 *  @hw: pointer to the HW structure
1259 *
1260 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1261 *  extended control register.
1262 **/
1263void e1000_reload_nvm(struct e1000_hw *hw)
1264{
1265	if (hw->nvm.ops.reload)
1266		hw->nvm.ops.reload(hw);
1267}
1268
1269/**
1270 *  e1000_read_nvm - Reads NVM (EEPROM)
1271 *  @hw: pointer to the HW structure
1272 *  @offset: the word offset to read
1273 *  @words: number of 16-bit words to read
1274 *  @data: pointer to the properly sized buffer for the data.
1275 *
1276 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1277 *  pointer entry point called by drivers.
1278 **/
1279s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1280{
1281	if (hw->nvm.ops.read)
1282		return hw->nvm.ops.read(hw, offset, words, data);
1283
1284	return -E1000_ERR_CONFIG;
1285}
1286
1287/**
1288 *  e1000_write_nvm - Writes to NVM (EEPROM)
1289 *  @hw: pointer to the HW structure
1290 *  @offset: the word offset to read
1291 *  @words: number of 16-bit words to write
1292 *  @data: pointer to the properly sized buffer for the data.
1293 *
1294 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1295 *  pointer entry point called by drivers.
1296 **/
1297s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1298{
1299	if (hw->nvm.ops.write)
1300		return hw->nvm.ops.write(hw, offset, words, data);
1301
1302	return E1000_SUCCESS;
1303}
1304
1305/**
1306 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1307 *  @hw: pointer to the HW structure
1308 *  @reg: 32bit register offset
1309 *  @offset: the register to write
1310 *  @data: the value to write.
1311 *
1312 *  Writes the PHY register at offset with the value in data.
1313 *  This is a function pointer entry point called by drivers.
1314 **/
1315s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1316			      u8 data)
1317{
1318	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1319}
1320
1321/**
1322 * e1000_power_up_phy - Restores link in case of PHY power down
1323 * @hw: pointer to the HW structure
1324 *
1325 * The phy may be powered down to save power, to turn off link when the
1326 * driver is unloaded, or wake on lan is not enabled (among others).
1327 **/
1328void e1000_power_up_phy(struct e1000_hw *hw)
1329{
1330	if (hw->phy.ops.power_up)
1331		hw->phy.ops.power_up(hw);
1332
1333	e1000_setup_link(hw);
1334}
1335
1336/**
1337 * e1000_power_down_phy - Power down PHY
1338 * @hw: pointer to the HW structure
1339 *
1340 * The phy may be powered down to save power, to turn off link when the
1341 * driver is unloaded, or wake on lan is not enabled (among others).
1342 **/
1343void e1000_power_down_phy(struct e1000_hw *hw)
1344{
1345	if (hw->phy.ops.power_down)
1346		hw->phy.ops.power_down(hw);
1347}
1348
1349/**
1350 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1351 *  @hw: pointer to the HW structure
1352 *
1353 *  Power on the optics and PCS.
1354 **/
1355void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1356{
1357	if (hw->mac.ops.power_up_serdes)
1358		hw->mac.ops.power_up_serdes(hw);
1359}
1360
1361/**
1362 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1363 *  @hw: pointer to the HW structure
1364 *
1365 *  Shutdown the optics and PCS on driver unload.
1366 **/
1367void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1368{
1369	if (hw->mac.ops.shutdown_serdes)
1370		hw->mac.ops.shutdown_serdes(hw);
1371}
1372
1373