1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/11/sys/dev/e1000/e1000_api.c 333213 2018-05-03 15:40:56Z marius $*/
34
35#include "e1000_api.h"
36
37/**
38 *  e1000_init_mac_params - Initialize MAC function pointers
39 *  @hw: pointer to the HW structure
40 *
41 *  This function initializes the function pointers for the MAC
42 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46	s32 ret_val = E1000_SUCCESS;
47
48	if (hw->mac.ops.init_params) {
49		ret_val = hw->mac.ops.init_params(hw);
50		if (ret_val) {
51			DEBUGOUT("MAC Initialization Error\n");
52			goto out;
53		}
54	} else {
55		DEBUGOUT("mac.init_mac_params was NULL\n");
56		ret_val = -E1000_ERR_CONFIG;
57	}
58
59out:
60	return ret_val;
61}
62
63/**
64 *  e1000_init_nvm_params - Initialize NVM function pointers
65 *  @hw: pointer to the HW structure
66 *
67 *  This function initializes the function pointers for the NVM
68 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72	s32 ret_val = E1000_SUCCESS;
73
74	if (hw->nvm.ops.init_params) {
75		ret_val = hw->nvm.ops.init_params(hw);
76		if (ret_val) {
77			DEBUGOUT("NVM Initialization Error\n");
78			goto out;
79		}
80	} else {
81		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82		ret_val = -E1000_ERR_CONFIG;
83	}
84
85out:
86	return ret_val;
87}
88
89/**
90 *  e1000_init_phy_params - Initialize PHY function pointers
91 *  @hw: pointer to the HW structure
92 *
93 *  This function initializes the function pointers for the PHY
94 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98	s32 ret_val = E1000_SUCCESS;
99
100	if (hw->phy.ops.init_params) {
101		ret_val = hw->phy.ops.init_params(hw);
102		if (ret_val) {
103			DEBUGOUT("PHY Initialization Error\n");
104			goto out;
105		}
106	} else {
107		DEBUGOUT("phy.init_phy_params was NULL\n");
108		ret_val =  -E1000_ERR_CONFIG;
109	}
110
111out:
112	return ret_val;
113}
114
115/**
116 *  e1000_init_mbx_params - Initialize mailbox function pointers
117 *  @hw: pointer to the HW structure
118 *
119 *  This function initializes the function pointers for the PHY
120 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124	s32 ret_val = E1000_SUCCESS;
125
126	if (hw->mbx.ops.init_params) {
127		ret_val = hw->mbx.ops.init_params(hw);
128		if (ret_val) {
129			DEBUGOUT("Mailbox Initialization Error\n");
130			goto out;
131		}
132	} else {
133		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134		ret_val =  -E1000_ERR_CONFIG;
135	}
136
137out:
138	return ret_val;
139}
140
141/**
142 *  e1000_set_mac_type - Sets MAC type
143 *  @hw: pointer to the HW structure
144 *
145 *  This function sets the mac type of the adapter based on the
146 *  device ID stored in the hw structure.
147 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148 *  e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152	struct e1000_mac_info *mac = &hw->mac;
153	s32 ret_val = E1000_SUCCESS;
154
155	DEBUGFUNC("e1000_set_mac_type");
156
157	switch (hw->device_id) {
158	case E1000_DEV_ID_82542:
159		mac->type = e1000_82542;
160		break;
161	case E1000_DEV_ID_82543GC_FIBER:
162	case E1000_DEV_ID_82543GC_COPPER:
163		mac->type = e1000_82543;
164		break;
165	case E1000_DEV_ID_82544EI_COPPER:
166	case E1000_DEV_ID_82544EI_FIBER:
167	case E1000_DEV_ID_82544GC_COPPER:
168	case E1000_DEV_ID_82544GC_LOM:
169		mac->type = e1000_82544;
170		break;
171	case E1000_DEV_ID_82540EM:
172	case E1000_DEV_ID_82540EM_LOM:
173	case E1000_DEV_ID_82540EP:
174	case E1000_DEV_ID_82540EP_LOM:
175	case E1000_DEV_ID_82540EP_LP:
176		mac->type = e1000_82540;
177		break;
178	case E1000_DEV_ID_82545EM_COPPER:
179	case E1000_DEV_ID_82545EM_FIBER:
180		mac->type = e1000_82545;
181		break;
182	case E1000_DEV_ID_82545GM_COPPER:
183	case E1000_DEV_ID_82545GM_FIBER:
184	case E1000_DEV_ID_82545GM_SERDES:
185		mac->type = e1000_82545_rev_3;
186		break;
187	case E1000_DEV_ID_82546EB_COPPER:
188	case E1000_DEV_ID_82546EB_FIBER:
189	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190		mac->type = e1000_82546;
191		break;
192	case E1000_DEV_ID_82546GB_COPPER:
193	case E1000_DEV_ID_82546GB_FIBER:
194	case E1000_DEV_ID_82546GB_SERDES:
195	case E1000_DEV_ID_82546GB_PCIE:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198		mac->type = e1000_82546_rev_3;
199		break;
200	case E1000_DEV_ID_82541EI:
201	case E1000_DEV_ID_82541EI_MOBILE:
202	case E1000_DEV_ID_82541ER_LOM:
203		mac->type = e1000_82541;
204		break;
205	case E1000_DEV_ID_82541ER:
206	case E1000_DEV_ID_82541GI:
207	case E1000_DEV_ID_82541GI_LF:
208	case E1000_DEV_ID_82541GI_MOBILE:
209		mac->type = e1000_82541_rev_2;
210		break;
211	case E1000_DEV_ID_82547EI:
212	case E1000_DEV_ID_82547EI_MOBILE:
213		mac->type = e1000_82547;
214		break;
215	case E1000_DEV_ID_82547GI:
216		mac->type = e1000_82547_rev_2;
217		break;
218	case E1000_DEV_ID_82571EB_COPPER:
219	case E1000_DEV_ID_82571EB_FIBER:
220	case E1000_DEV_ID_82571EB_SERDES:
221	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227		mac->type = e1000_82571;
228		break;
229	case E1000_DEV_ID_82572EI:
230	case E1000_DEV_ID_82572EI_COPPER:
231	case E1000_DEV_ID_82572EI_FIBER:
232	case E1000_DEV_ID_82572EI_SERDES:
233		mac->type = e1000_82572;
234		break;
235	case E1000_DEV_ID_82573E:
236	case E1000_DEV_ID_82573E_IAMT:
237	case E1000_DEV_ID_82573L:
238		mac->type = e1000_82573;
239		break;
240	case E1000_DEV_ID_82574L:
241	case E1000_DEV_ID_82574LA:
242		mac->type = e1000_82574;
243		break;
244	case E1000_DEV_ID_82583V:
245		mac->type = e1000_82583;
246		break;
247	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251		mac->type = e1000_80003es2lan;
252		break;
253	case E1000_DEV_ID_ICH8_IFE:
254	case E1000_DEV_ID_ICH8_IFE_GT:
255	case E1000_DEV_ID_ICH8_IFE_G:
256	case E1000_DEV_ID_ICH8_IGP_M:
257	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258	case E1000_DEV_ID_ICH8_IGP_AMT:
259	case E1000_DEV_ID_ICH8_IGP_C:
260	case E1000_DEV_ID_ICH8_82567V_3:
261		mac->type = e1000_ich8lan;
262		break;
263	case E1000_DEV_ID_ICH9_IFE:
264	case E1000_DEV_ID_ICH9_IFE_GT:
265	case E1000_DEV_ID_ICH9_IFE_G:
266	case E1000_DEV_ID_ICH9_IGP_M:
267	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268	case E1000_DEV_ID_ICH9_IGP_M_V:
269	case E1000_DEV_ID_ICH9_IGP_AMT:
270	case E1000_DEV_ID_ICH9_BM:
271	case E1000_DEV_ID_ICH9_IGP_C:
272	case E1000_DEV_ID_ICH10_R_BM_LM:
273	case E1000_DEV_ID_ICH10_R_BM_LF:
274	case E1000_DEV_ID_ICH10_R_BM_V:
275		mac->type = e1000_ich9lan;
276		break;
277	case E1000_DEV_ID_ICH10_D_BM_LM:
278	case E1000_DEV_ID_ICH10_D_BM_LF:
279	case E1000_DEV_ID_ICH10_D_BM_V:
280		mac->type = e1000_ich10lan;
281		break;
282	case E1000_DEV_ID_PCH_D_HV_DM:
283	case E1000_DEV_ID_PCH_D_HV_DC:
284	case E1000_DEV_ID_PCH_M_HV_LM:
285	case E1000_DEV_ID_PCH_M_HV_LC:
286		mac->type = e1000_pchlan;
287		break;
288	case E1000_DEV_ID_PCH2_LV_LM:
289	case E1000_DEV_ID_PCH2_LV_V:
290		mac->type = e1000_pch2lan;
291		break;
292	case E1000_DEV_ID_PCH_LPT_I217_LM:
293	case E1000_DEV_ID_PCH_LPT_I217_V:
294	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296	case E1000_DEV_ID_PCH_I218_LM2:
297	case E1000_DEV_ID_PCH_I218_V2:
298	case E1000_DEV_ID_PCH_I218_LM3:
299	case E1000_DEV_ID_PCH_I218_V3:
300		mac->type = e1000_pch_lpt;
301		break;
302	case E1000_DEV_ID_PCH_SPT_I219_LM:
303	case E1000_DEV_ID_PCH_SPT_I219_V:
304	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305	case E1000_DEV_ID_PCH_SPT_I219_V2:
306	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307	case E1000_DEV_ID_PCH_SPT_I219_LM4:
308	case E1000_DEV_ID_PCH_SPT_I219_V4:
309	case E1000_DEV_ID_PCH_SPT_I219_LM5:
310	case E1000_DEV_ID_PCH_SPT_I219_V5:
311		mac->type = e1000_pch_spt;
312		break;
313	case E1000_DEV_ID_PCH_CNP_I219_LM6:
314	case E1000_DEV_ID_PCH_CNP_I219_V6:
315	case E1000_DEV_ID_PCH_CNP_I219_LM7:
316	case E1000_DEV_ID_PCH_CNP_I219_V7:
317	case E1000_DEV_ID_PCH_ICP_I219_LM8:
318	case E1000_DEV_ID_PCH_ICP_I219_V8:
319	case E1000_DEV_ID_PCH_ICP_I219_LM9:
320	case E1000_DEV_ID_PCH_ICP_I219_V9:
321		mac->type = e1000_pch_cnp;
322		break;
323	case E1000_DEV_ID_82575EB_COPPER:
324	case E1000_DEV_ID_82575EB_FIBER_SERDES:
325	case E1000_DEV_ID_82575GB_QUAD_COPPER:
326		mac->type = e1000_82575;
327		break;
328	case E1000_DEV_ID_82576:
329	case E1000_DEV_ID_82576_FIBER:
330	case E1000_DEV_ID_82576_SERDES:
331	case E1000_DEV_ID_82576_QUAD_COPPER:
332	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
333	case E1000_DEV_ID_82576_NS:
334	case E1000_DEV_ID_82576_NS_SERDES:
335	case E1000_DEV_ID_82576_SERDES_QUAD:
336		mac->type = e1000_82576;
337		break;
338	case E1000_DEV_ID_82580_COPPER:
339	case E1000_DEV_ID_82580_FIBER:
340	case E1000_DEV_ID_82580_SERDES:
341	case E1000_DEV_ID_82580_SGMII:
342	case E1000_DEV_ID_82580_COPPER_DUAL:
343	case E1000_DEV_ID_82580_QUAD_FIBER:
344	case E1000_DEV_ID_DH89XXCC_SGMII:
345	case E1000_DEV_ID_DH89XXCC_SERDES:
346	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
347	case E1000_DEV_ID_DH89XXCC_SFP:
348		mac->type = e1000_82580;
349		break;
350	case E1000_DEV_ID_I350_COPPER:
351	case E1000_DEV_ID_I350_FIBER:
352	case E1000_DEV_ID_I350_SERDES:
353	case E1000_DEV_ID_I350_SGMII:
354	case E1000_DEV_ID_I350_DA4:
355		mac->type = e1000_i350;
356		break;
357	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
358	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
359	case E1000_DEV_ID_I210_COPPER:
360	case E1000_DEV_ID_I210_COPPER_OEM1:
361	case E1000_DEV_ID_I210_COPPER_IT:
362	case E1000_DEV_ID_I210_FIBER:
363	case E1000_DEV_ID_I210_SERDES:
364	case E1000_DEV_ID_I210_SGMII:
365		mac->type = e1000_i210;
366		break;
367	case E1000_DEV_ID_I211_COPPER:
368		mac->type = e1000_i211;
369		break;
370	case E1000_DEV_ID_82576_VF:
371	case E1000_DEV_ID_82576_VF_HV:
372		mac->type = e1000_vfadapt;
373		break;
374	case E1000_DEV_ID_I350_VF:
375	case E1000_DEV_ID_I350_VF_HV:
376		mac->type = e1000_vfadapt_i350;
377		break;
378
379	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
380	case E1000_DEV_ID_I354_SGMII:
381	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
382		mac->type = e1000_i354;
383		break;
384	default:
385		/* Should never have loaded on this device */
386		ret_val = -E1000_ERR_MAC_INIT;
387		break;
388	}
389
390	return ret_val;
391}
392
393/**
394 *  e1000_setup_init_funcs - Initializes function pointers
395 *  @hw: pointer to the HW structure
396 *  @init_device: TRUE will initialize the rest of the function pointers
397 *		  getting the device ready for use.  FALSE will only set
398 *		  MAC type and the function pointers for the other init
399 *		  functions.  Passing FALSE will not generate any hardware
400 *		  reads or writes.
401 *
402 *  This function must be called by a driver in order to use the rest
403 *  of the 'shared' code files. Called by drivers only.
404 **/
405s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
406{
407	s32 ret_val;
408
409	/* Can't do much good without knowing the MAC type. */
410	ret_val = e1000_set_mac_type(hw);
411	if (ret_val) {
412		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
413		goto out;
414	}
415
416	if (!hw->hw_addr) {
417		DEBUGOUT("ERROR: Registers not mapped\n");
418		ret_val = -E1000_ERR_CONFIG;
419		goto out;
420	}
421
422	/*
423	 * Init function pointers to generic implementations. We do this first
424	 * allowing a driver module to override it afterward.
425	 */
426	e1000_init_mac_ops_generic(hw);
427	e1000_init_phy_ops_generic(hw);
428	e1000_init_nvm_ops_generic(hw);
429	e1000_init_mbx_ops_generic(hw);
430
431	/*
432	 * Set up the init function pointers. These are functions within the
433	 * adapter family file that sets up function pointers for the rest of
434	 * the functions in that family.
435	 */
436	switch (hw->mac.type) {
437	case e1000_82542:
438		e1000_init_function_pointers_82542(hw);
439		break;
440	case e1000_82543:
441	case e1000_82544:
442		e1000_init_function_pointers_82543(hw);
443		break;
444	case e1000_82540:
445	case e1000_82545:
446	case e1000_82545_rev_3:
447	case e1000_82546:
448	case e1000_82546_rev_3:
449		e1000_init_function_pointers_82540(hw);
450		break;
451	case e1000_82541:
452	case e1000_82541_rev_2:
453	case e1000_82547:
454	case e1000_82547_rev_2:
455		e1000_init_function_pointers_82541(hw);
456		break;
457	case e1000_82571:
458	case e1000_82572:
459	case e1000_82573:
460	case e1000_82574:
461	case e1000_82583:
462		e1000_init_function_pointers_82571(hw);
463		break;
464	case e1000_80003es2lan:
465		e1000_init_function_pointers_80003es2lan(hw);
466		break;
467	case e1000_ich8lan:
468	case e1000_ich9lan:
469	case e1000_ich10lan:
470	case e1000_pchlan:
471	case e1000_pch2lan:
472	case e1000_pch_lpt:
473	case e1000_pch_spt:
474	case e1000_pch_cnp:
475		e1000_init_function_pointers_ich8lan(hw);
476		break;
477	case e1000_82575:
478	case e1000_82576:
479	case e1000_82580:
480	case e1000_i350:
481	case e1000_i354:
482		e1000_init_function_pointers_82575(hw);
483		break;
484	case e1000_i210:
485	case e1000_i211:
486		e1000_init_function_pointers_i210(hw);
487		break;
488	case e1000_vfadapt:
489		e1000_init_function_pointers_vf(hw);
490		break;
491	case e1000_vfadapt_i350:
492		e1000_init_function_pointers_vf(hw);
493		break;
494	default:
495		DEBUGOUT("Hardware not supported\n");
496		ret_val = -E1000_ERR_CONFIG;
497		break;
498	}
499
500	/*
501	 * Initialize the rest of the function pointers. These require some
502	 * register reads/writes in some cases.
503	 */
504	if (!(ret_val) && init_device) {
505		ret_val = e1000_init_mac_params(hw);
506		if (ret_val)
507			goto out;
508
509		ret_val = e1000_init_nvm_params(hw);
510		if (ret_val)
511			goto out;
512
513		ret_val = e1000_init_phy_params(hw);
514		if (ret_val)
515			goto out;
516
517		ret_val = e1000_init_mbx_params(hw);
518		if (ret_val)
519			goto out;
520	}
521
522out:
523	return ret_val;
524}
525
526/**
527 *  e1000_get_bus_info - Obtain bus information for adapter
528 *  @hw: pointer to the HW structure
529 *
530 *  This will obtain information about the HW bus for which the
531 *  adapter is attached and stores it in the hw structure. This is a
532 *  function pointer entry point called by drivers.
533 **/
534s32 e1000_get_bus_info(struct e1000_hw *hw)
535{
536	if (hw->mac.ops.get_bus_info)
537		return hw->mac.ops.get_bus_info(hw);
538
539	return E1000_SUCCESS;
540}
541
542/**
543 *  e1000_clear_vfta - Clear VLAN filter table
544 *  @hw: pointer to the HW structure
545 *
546 *  This clears the VLAN filter table on the adapter. This is a function
547 *  pointer entry point called by drivers.
548 **/
549void e1000_clear_vfta(struct e1000_hw *hw)
550{
551	if (hw->mac.ops.clear_vfta)
552		hw->mac.ops.clear_vfta(hw);
553}
554
555/**
556 *  e1000_write_vfta - Write value to VLAN filter table
557 *  @hw: pointer to the HW structure
558 *  @offset: the 32-bit offset in which to write the value to.
559 *  @value: the 32-bit value to write at location offset.
560 *
561 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
562 *  table. This is a function pointer entry point called by drivers.
563 **/
564void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
565{
566	if (hw->mac.ops.write_vfta)
567		hw->mac.ops.write_vfta(hw, offset, value);
568}
569
570/**
571 *  e1000_update_mc_addr_list - Update Multicast addresses
572 *  @hw: pointer to the HW structure
573 *  @mc_addr_list: array of multicast addresses to program
574 *  @mc_addr_count: number of multicast addresses to program
575 *
576 *  Updates the Multicast Table Array.
577 *  The caller must have a packed mc_addr_list of multicast addresses.
578 **/
579void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
580			       u32 mc_addr_count)
581{
582	if (hw->mac.ops.update_mc_addr_list)
583		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
584						mc_addr_count);
585}
586
587/**
588 *  e1000_force_mac_fc - Force MAC flow control
589 *  @hw: pointer to the HW structure
590 *
591 *  Force the MAC's flow control settings. Currently no func pointer exists
592 *  and all implementations are handled in the generic version of this
593 *  function.
594 **/
595s32 e1000_force_mac_fc(struct e1000_hw *hw)
596{
597	return e1000_force_mac_fc_generic(hw);
598}
599
600/**
601 *  e1000_check_for_link - Check/Store link connection
602 *  @hw: pointer to the HW structure
603 *
604 *  This checks the link condition of the adapter and stores the
605 *  results in the hw->mac structure. This is a function pointer entry
606 *  point called by drivers.
607 **/
608s32 e1000_check_for_link(struct e1000_hw *hw)
609{
610	if (hw->mac.ops.check_for_link)
611		return hw->mac.ops.check_for_link(hw);
612
613	return -E1000_ERR_CONFIG;
614}
615
616/**
617 *  e1000_check_mng_mode - Check management mode
618 *  @hw: pointer to the HW structure
619 *
620 *  This checks if the adapter has manageability enabled.
621 *  This is a function pointer entry point called by drivers.
622 **/
623bool e1000_check_mng_mode(struct e1000_hw *hw)
624{
625	if (hw->mac.ops.check_mng_mode)
626		return hw->mac.ops.check_mng_mode(hw);
627
628	return FALSE;
629}
630
631/**
632 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
633 *  @hw: pointer to the HW structure
634 *  @buffer: pointer to the host interface
635 *  @length: size of the buffer
636 *
637 *  Writes the DHCP information to the host interface.
638 **/
639s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
640{
641	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
642}
643
644/**
645 *  e1000_reset_hw - Reset hardware
646 *  @hw: pointer to the HW structure
647 *
648 *  This resets the hardware into a known state. This is a function pointer
649 *  entry point called by drivers.
650 **/
651s32 e1000_reset_hw(struct e1000_hw *hw)
652{
653	if (hw->mac.ops.reset_hw)
654		return hw->mac.ops.reset_hw(hw);
655
656	return -E1000_ERR_CONFIG;
657}
658
659/**
660 *  e1000_init_hw - Initialize hardware
661 *  @hw: pointer to the HW structure
662 *
663 *  This inits the hardware readying it for operation. This is a function
664 *  pointer entry point called by drivers.
665 **/
666s32 e1000_init_hw(struct e1000_hw *hw)
667{
668	if (hw->mac.ops.init_hw)
669		return hw->mac.ops.init_hw(hw);
670
671	return -E1000_ERR_CONFIG;
672}
673
674/**
675 *  e1000_setup_link - Configures link and flow control
676 *  @hw: pointer to the HW structure
677 *
678 *  This configures link and flow control settings for the adapter. This
679 *  is a function pointer entry point called by drivers. While modules can
680 *  also call this, they probably call their own version of this function.
681 **/
682s32 e1000_setup_link(struct e1000_hw *hw)
683{
684	if (hw->mac.ops.setup_link)
685		return hw->mac.ops.setup_link(hw);
686
687	return -E1000_ERR_CONFIG;
688}
689
690/**
691 *  e1000_get_speed_and_duplex - Returns current speed and duplex
692 *  @hw: pointer to the HW structure
693 *  @speed: pointer to a 16-bit value to store the speed
694 *  @duplex: pointer to a 16-bit value to store the duplex.
695 *
696 *  This returns the speed and duplex of the adapter in the two 'out'
697 *  variables passed in. This is a function pointer entry point called
698 *  by drivers.
699 **/
700s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
701{
702	if (hw->mac.ops.get_link_up_info)
703		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
704
705	return -E1000_ERR_CONFIG;
706}
707
708/**
709 *  e1000_setup_led - Configures SW controllable LED
710 *  @hw: pointer to the HW structure
711 *
712 *  This prepares the SW controllable LED for use and saves the current state
713 *  of the LED so it can be later restored. This is a function pointer entry
714 *  point called by drivers.
715 **/
716s32 e1000_setup_led(struct e1000_hw *hw)
717{
718	if (hw->mac.ops.setup_led)
719		return hw->mac.ops.setup_led(hw);
720
721	return E1000_SUCCESS;
722}
723
724/**
725 *  e1000_cleanup_led - Restores SW controllable LED
726 *  @hw: pointer to the HW structure
727 *
728 *  This restores the SW controllable LED to the value saved off by
729 *  e1000_setup_led. This is a function pointer entry point called by drivers.
730 **/
731s32 e1000_cleanup_led(struct e1000_hw *hw)
732{
733	if (hw->mac.ops.cleanup_led)
734		return hw->mac.ops.cleanup_led(hw);
735
736	return E1000_SUCCESS;
737}
738
739/**
740 *  e1000_blink_led - Blink SW controllable LED
741 *  @hw: pointer to the HW structure
742 *
743 *  This starts the adapter LED blinking. Request the LED to be setup first
744 *  and cleaned up after. This is a function pointer entry point called by
745 *  drivers.
746 **/
747s32 e1000_blink_led(struct e1000_hw *hw)
748{
749	if (hw->mac.ops.blink_led)
750		return hw->mac.ops.blink_led(hw);
751
752	return E1000_SUCCESS;
753}
754
755/**
756 *  e1000_id_led_init - store LED configurations in SW
757 *  @hw: pointer to the HW structure
758 *
759 *  Initializes the LED config in SW. This is a function pointer entry point
760 *  called by drivers.
761 **/
762s32 e1000_id_led_init(struct e1000_hw *hw)
763{
764	if (hw->mac.ops.id_led_init)
765		return hw->mac.ops.id_led_init(hw);
766
767	return E1000_SUCCESS;
768}
769
770/**
771 *  e1000_led_on - Turn on SW controllable LED
772 *  @hw: pointer to the HW structure
773 *
774 *  Turns the SW defined LED on. This is a function pointer entry point
775 *  called by drivers.
776 **/
777s32 e1000_led_on(struct e1000_hw *hw)
778{
779	if (hw->mac.ops.led_on)
780		return hw->mac.ops.led_on(hw);
781
782	return E1000_SUCCESS;
783}
784
785/**
786 *  e1000_led_off - Turn off SW controllable LED
787 *  @hw: pointer to the HW structure
788 *
789 *  Turns the SW defined LED off. This is a function pointer entry point
790 *  called by drivers.
791 **/
792s32 e1000_led_off(struct e1000_hw *hw)
793{
794	if (hw->mac.ops.led_off)
795		return hw->mac.ops.led_off(hw);
796
797	return E1000_SUCCESS;
798}
799
800/**
801 *  e1000_reset_adaptive - Reset adaptive IFS
802 *  @hw: pointer to the HW structure
803 *
804 *  Resets the adaptive IFS. Currently no func pointer exists and all
805 *  implementations are handled in the generic version of this function.
806 **/
807void e1000_reset_adaptive(struct e1000_hw *hw)
808{
809	e1000_reset_adaptive_generic(hw);
810}
811
812/**
813 *  e1000_update_adaptive - Update adaptive IFS
814 *  @hw: pointer to the HW structure
815 *
816 *  Updates adapter IFS. Currently no func pointer exists and all
817 *  implementations are handled in the generic version of this function.
818 **/
819void e1000_update_adaptive(struct e1000_hw *hw)
820{
821	e1000_update_adaptive_generic(hw);
822}
823
824/**
825 *  e1000_disable_pcie_master - Disable PCI-Express master access
826 *  @hw: pointer to the HW structure
827 *
828 *  Disables PCI-Express master access and verifies there are no pending
829 *  requests. Currently no func pointer exists and all implementations are
830 *  handled in the generic version of this function.
831 **/
832s32 e1000_disable_pcie_master(struct e1000_hw *hw)
833{
834	return e1000_disable_pcie_master_generic(hw);
835}
836
837/**
838 *  e1000_config_collision_dist - Configure collision distance
839 *  @hw: pointer to the HW structure
840 *
841 *  Configures the collision distance to the default value and is used
842 *  during link setup.
843 **/
844void e1000_config_collision_dist(struct e1000_hw *hw)
845{
846	if (hw->mac.ops.config_collision_dist)
847		hw->mac.ops.config_collision_dist(hw);
848}
849
850/**
851 *  e1000_rar_set - Sets a receive address register
852 *  @hw: pointer to the HW structure
853 *  @addr: address to set the RAR to
854 *  @index: the RAR to set
855 *
856 *  Sets a Receive Address Register (RAR) to the specified address.
857 **/
858int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
859{
860	if (hw->mac.ops.rar_set)
861		return hw->mac.ops.rar_set(hw, addr, index);
862
863	return E1000_SUCCESS;
864}
865
866/**
867 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
868 *  @hw: pointer to the HW structure
869 *
870 *  Ensures that the MDI/MDIX SW state is valid.
871 **/
872s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
873{
874	if (hw->mac.ops.validate_mdi_setting)
875		return hw->mac.ops.validate_mdi_setting(hw);
876
877	return E1000_SUCCESS;
878}
879
880/**
881 *  e1000_hash_mc_addr - Determines address location in multicast table
882 *  @hw: pointer to the HW structure
883 *  @mc_addr: Multicast address to hash.
884 *
885 *  This hashes an address to determine its location in the multicast
886 *  table. Currently no func pointer exists and all implementations
887 *  are handled in the generic version of this function.
888 **/
889u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
890{
891	return e1000_hash_mc_addr_generic(hw, mc_addr);
892}
893
894/**
895 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
896 *  @hw: pointer to the HW structure
897 *
898 *  Enables packet filtering on transmit packets if manageability is enabled
899 *  and host interface is enabled.
900 *  Currently no func pointer exists and all implementations are handled in the
901 *  generic version of this function.
902 **/
903bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
904{
905	return e1000_enable_tx_pkt_filtering_generic(hw);
906}
907
908/**
909 *  e1000_mng_host_if_write - Writes to the manageability host interface
910 *  @hw: pointer to the HW structure
911 *  @buffer: pointer to the host interface buffer
912 *  @length: size of the buffer
913 *  @offset: location in the buffer to write to
914 *  @sum: sum of the data (not checksum)
915 *
916 *  This function writes the buffer content at the offset given on the host if.
917 *  It also does alignment considerations to do the writes in most efficient
918 *  way.  Also fills up the sum of the buffer in *buffer parameter.
919 **/
920s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
921			    u16 offset, u8 *sum)
922{
923	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
924}
925
926/**
927 *  e1000_mng_write_cmd_header - Writes manageability command header
928 *  @hw: pointer to the HW structure
929 *  @hdr: pointer to the host interface command header
930 *
931 *  Writes the command header after does the checksum calculation.
932 **/
933s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
934			       struct e1000_host_mng_command_header *hdr)
935{
936	return e1000_mng_write_cmd_header_generic(hw, hdr);
937}
938
939/**
940 *  e1000_mng_enable_host_if - Checks host interface is enabled
941 *  @hw: pointer to the HW structure
942 *
943 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
944 *
945 *  This function checks whether the HOST IF is enabled for command operation
946 *  and also checks whether the previous command is completed.  It busy waits
947 *  in case of previous command is not completed.
948 **/
949s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
950{
951	return e1000_mng_enable_host_if_generic(hw);
952}
953
954/**
955 *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
956 *  @hw: pointer to the HW structure
957 *  @itr: u32 indicating itr value
958 *
959 *  Set the OBFF timer based on the given interrupt rate.
960 **/
961s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
962{
963	if (hw->mac.ops.set_obff_timer)
964		return hw->mac.ops.set_obff_timer(hw, itr);
965
966	return E1000_SUCCESS;
967}
968
969/**
970 *  e1000_check_reset_block - Verifies PHY can be reset
971 *  @hw: pointer to the HW structure
972 *
973 *  Checks if the PHY is in a state that can be reset or if manageability
974 *  has it tied up. This is a function pointer entry point called by drivers.
975 **/
976s32 e1000_check_reset_block(struct e1000_hw *hw)
977{
978	if (hw->phy.ops.check_reset_block)
979		return hw->phy.ops.check_reset_block(hw);
980
981	return E1000_SUCCESS;
982}
983
984/**
985 *  e1000_read_phy_reg - Reads PHY register
986 *  @hw: pointer to the HW structure
987 *  @offset: the register to read
988 *  @data: the buffer to store the 16-bit read.
989 *
990 *  Reads the PHY register and returns the value in data.
991 *  This is a function pointer entry point called by drivers.
992 **/
993s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
994{
995	if (hw->phy.ops.read_reg)
996		return hw->phy.ops.read_reg(hw, offset, data);
997
998	return E1000_SUCCESS;
999}
1000
1001/**
1002 *  e1000_write_phy_reg - Writes PHY register
1003 *  @hw: pointer to the HW structure
1004 *  @offset: the register to write
1005 *  @data: the value to write.
1006 *
1007 *  Writes the PHY register at offset with the value in data.
1008 *  This is a function pointer entry point called by drivers.
1009 **/
1010s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1011{
1012	if (hw->phy.ops.write_reg)
1013		return hw->phy.ops.write_reg(hw, offset, data);
1014
1015	return E1000_SUCCESS;
1016}
1017
1018/**
1019 *  e1000_release_phy - Generic release PHY
1020 *  @hw: pointer to the HW structure
1021 *
1022 *  Return if silicon family does not require a semaphore when accessing the
1023 *  PHY.
1024 **/
1025void e1000_release_phy(struct e1000_hw *hw)
1026{
1027	if (hw->phy.ops.release)
1028		hw->phy.ops.release(hw);
1029}
1030
1031/**
1032 *  e1000_acquire_phy - Generic acquire PHY
1033 *  @hw: pointer to the HW structure
1034 *
1035 *  Return success if silicon family does not require a semaphore when
1036 *  accessing the PHY.
1037 **/
1038s32 e1000_acquire_phy(struct e1000_hw *hw)
1039{
1040	if (hw->phy.ops.acquire)
1041		return hw->phy.ops.acquire(hw);
1042
1043	return E1000_SUCCESS;
1044}
1045
1046/**
1047 *  e1000_cfg_on_link_up - Configure PHY upon link up
1048 *  @hw: pointer to the HW structure
1049 **/
1050s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1051{
1052	if (hw->phy.ops.cfg_on_link_up)
1053		return hw->phy.ops.cfg_on_link_up(hw);
1054
1055	return E1000_SUCCESS;
1056}
1057
1058/**
1059 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1060 *  @hw: pointer to the HW structure
1061 *  @offset: the register to read
1062 *  @data: the location to store the 16-bit value read.
1063 *
1064 *  Reads a register out of the Kumeran interface. Currently no func pointer
1065 *  exists and all implementations are handled in the generic version of
1066 *  this function.
1067 **/
1068s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1069{
1070	return e1000_read_kmrn_reg_generic(hw, offset, data);
1071}
1072
1073/**
1074 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1075 *  @hw: pointer to the HW structure
1076 *  @offset: the register to write
1077 *  @data: the value to write.
1078 *
1079 *  Writes a register to the Kumeran interface. Currently no func pointer
1080 *  exists and all implementations are handled in the generic version of
1081 *  this function.
1082 **/
1083s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1084{
1085	return e1000_write_kmrn_reg_generic(hw, offset, data);
1086}
1087
1088/**
1089 *  e1000_get_cable_length - Retrieves cable length estimation
1090 *  @hw: pointer to the HW structure
1091 *
1092 *  This function estimates the cable length and stores them in
1093 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1094 *  entry point called by drivers.
1095 **/
1096s32 e1000_get_cable_length(struct e1000_hw *hw)
1097{
1098	if (hw->phy.ops.get_cable_length)
1099		return hw->phy.ops.get_cable_length(hw);
1100
1101	return E1000_SUCCESS;
1102}
1103
1104/**
1105 *  e1000_get_phy_info - Retrieves PHY information from registers
1106 *  @hw: pointer to the HW structure
1107 *
1108 *  This function gets some information from various PHY registers and
1109 *  populates hw->phy values with it. This is a function pointer entry
1110 *  point called by drivers.
1111 **/
1112s32 e1000_get_phy_info(struct e1000_hw *hw)
1113{
1114	if (hw->phy.ops.get_info)
1115		return hw->phy.ops.get_info(hw);
1116
1117	return E1000_SUCCESS;
1118}
1119
1120/**
1121 *  e1000_phy_hw_reset - Hard PHY reset
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  Performs a hard PHY reset. This is a function pointer entry point called
1125 *  by drivers.
1126 **/
1127s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1128{
1129	if (hw->phy.ops.reset)
1130		return hw->phy.ops.reset(hw);
1131
1132	return E1000_SUCCESS;
1133}
1134
1135/**
1136 *  e1000_phy_commit - Soft PHY reset
1137 *  @hw: pointer to the HW structure
1138 *
1139 *  Performs a soft PHY reset on those that apply. This is a function pointer
1140 *  entry point called by drivers.
1141 **/
1142s32 e1000_phy_commit(struct e1000_hw *hw)
1143{
1144	if (hw->phy.ops.commit)
1145		return hw->phy.ops.commit(hw);
1146
1147	return E1000_SUCCESS;
1148}
1149
1150/**
1151 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1152 *  @hw: pointer to the HW structure
1153 *  @active: boolean used to enable/disable lplu
1154 *
1155 *  Success returns 0, Failure returns 1
1156 *
1157 *  The low power link up (lplu) state is set to the power management level D0
1158 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1159 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1160 *  is used during Dx states where the power conservation is most important.
1161 *  During driver activity, SmartSpeed should be enabled so performance is
1162 *  maintained.  This is a function pointer entry point called by drivers.
1163 **/
1164s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1165{
1166	if (hw->phy.ops.set_d0_lplu_state)
1167		return hw->phy.ops.set_d0_lplu_state(hw, active);
1168
1169	return E1000_SUCCESS;
1170}
1171
1172/**
1173 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1174 *  @hw: pointer to the HW structure
1175 *  @active: boolean used to enable/disable lplu
1176 *
1177 *  Success returns 0, Failure returns 1
1178 *
1179 *  The low power link up (lplu) state is set to the power management level D3
1180 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1181 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1182 *  is used during Dx states where the power conservation is most important.
1183 *  During driver activity, SmartSpeed should be enabled so performance is
1184 *  maintained.  This is a function pointer entry point called by drivers.
1185 **/
1186s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1187{
1188	if (hw->phy.ops.set_d3_lplu_state)
1189		return hw->phy.ops.set_d3_lplu_state(hw, active);
1190
1191	return E1000_SUCCESS;
1192}
1193
1194/**
1195 *  e1000_read_mac_addr - Reads MAC address
1196 *  @hw: pointer to the HW structure
1197 *
1198 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1199 *  Currently no func pointer exists and all implementations are handled in the
1200 *  generic version of this function.
1201 **/
1202s32 e1000_read_mac_addr(struct e1000_hw *hw)
1203{
1204	if (hw->mac.ops.read_mac_addr)
1205		return hw->mac.ops.read_mac_addr(hw);
1206
1207	return e1000_read_mac_addr_generic(hw);
1208}
1209
1210/**
1211 *  e1000_read_pba_string - Read device part number string
1212 *  @hw: pointer to the HW structure
1213 *  @pba_num: pointer to device part number
1214 *  @pba_num_size: size of part number buffer
1215 *
1216 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1217 *  the value in pba_num.
1218 *  Currently no func pointer exists and all implementations are handled in the
1219 *  generic version of this function.
1220 **/
1221s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1222{
1223	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1224}
1225
1226/**
1227 *  e1000_read_pba_length - Read device part number string length
1228 *  @hw: pointer to the HW structure
1229 *  @pba_num_size: size of part number buffer
1230 *
1231 *  Reads the product board assembly (PBA) number length from the EEPROM and
1232 *  stores the value in pba_num.
1233 *  Currently no func pointer exists and all implementations are handled in the
1234 *  generic version of this function.
1235 **/
1236s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1237{
1238	return e1000_read_pba_length_generic(hw, pba_num_size);
1239}
1240
1241/**
1242 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1243 *  @hw: pointer to the HW structure
1244 *
1245 *  Validates the NVM checksum is correct. This is a function pointer entry
1246 *  point called by drivers.
1247 **/
1248s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1249{
1250	if (hw->nvm.ops.validate)
1251		return hw->nvm.ops.validate(hw);
1252
1253	return -E1000_ERR_CONFIG;
1254}
1255
1256/**
1257 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1258 *  @hw: pointer to the HW structure
1259 *
1260 *  Updates the NVM checksum. Currently no func pointer exists and all
1261 *  implementations are handled in the generic version of this function.
1262 **/
1263s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1264{
1265	if (hw->nvm.ops.update)
1266		return hw->nvm.ops.update(hw);
1267
1268	return -E1000_ERR_CONFIG;
1269}
1270
1271/**
1272 *  e1000_reload_nvm - Reloads EEPROM
1273 *  @hw: pointer to the HW structure
1274 *
1275 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1276 *  extended control register.
1277 **/
1278void e1000_reload_nvm(struct e1000_hw *hw)
1279{
1280	if (hw->nvm.ops.reload)
1281		hw->nvm.ops.reload(hw);
1282}
1283
1284/**
1285 *  e1000_read_nvm - Reads NVM (EEPROM)
1286 *  @hw: pointer to the HW structure
1287 *  @offset: the word offset to read
1288 *  @words: number of 16-bit words to read
1289 *  @data: pointer to the properly sized buffer for the data.
1290 *
1291 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1292 *  pointer entry point called by drivers.
1293 **/
1294s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1295{
1296	if (hw->nvm.ops.read)
1297		return hw->nvm.ops.read(hw, offset, words, data);
1298
1299	return -E1000_ERR_CONFIG;
1300}
1301
1302/**
1303 *  e1000_write_nvm - Writes to NVM (EEPROM)
1304 *  @hw: pointer to the HW structure
1305 *  @offset: the word offset to read
1306 *  @words: number of 16-bit words to write
1307 *  @data: pointer to the properly sized buffer for the data.
1308 *
1309 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1310 *  pointer entry point called by drivers.
1311 **/
1312s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1313{
1314	if (hw->nvm.ops.write)
1315		return hw->nvm.ops.write(hw, offset, words, data);
1316
1317	return E1000_SUCCESS;
1318}
1319
1320/**
1321 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1322 *  @hw: pointer to the HW structure
1323 *  @reg: 32bit register offset
1324 *  @offset: the register to write
1325 *  @data: the value to write.
1326 *
1327 *  Writes the PHY register at offset with the value in data.
1328 *  This is a function pointer entry point called by drivers.
1329 **/
1330s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1331			      u8 data)
1332{
1333	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1334}
1335
1336/**
1337 * e1000_power_up_phy - Restores link in case of PHY power down
1338 * @hw: pointer to the HW structure
1339 *
1340 * The phy may be powered down to save power, to turn off link when the
1341 * driver is unloaded, or wake on lan is not enabled (among others).
1342 **/
1343void e1000_power_up_phy(struct e1000_hw *hw)
1344{
1345	if (hw->phy.ops.power_up)
1346		hw->phy.ops.power_up(hw);
1347
1348	e1000_setup_link(hw);
1349}
1350
1351/**
1352 * e1000_power_down_phy - Power down PHY
1353 * @hw: pointer to the HW structure
1354 *
1355 * The phy may be powered down to save power, to turn off link when the
1356 * driver is unloaded, or wake on lan is not enabled (among others).
1357 **/
1358void e1000_power_down_phy(struct e1000_hw *hw)
1359{
1360	if (hw->phy.ops.power_down)
1361		hw->phy.ops.power_down(hw);
1362}
1363
1364/**
1365 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1366 *  @hw: pointer to the HW structure
1367 *
1368 *  Power on the optics and PCS.
1369 **/
1370void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1371{
1372	if (hw->mac.ops.power_up_serdes)
1373		hw->mac.ops.power_up_serdes(hw);
1374}
1375
1376/**
1377 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1378 *  @hw: pointer to the HW structure
1379 *
1380 *  Shutdown the optics and PCS on driver unload.
1381 **/
1382void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1383{
1384	if (hw->mac.ops.shutdown_serdes)
1385		hw->mac.ops.shutdown_serdes(hw);
1386}
1387
1388