e1000_api.c revision 228386
1/******************************************************************************
2
3  Copyright (c) 2001-2011, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 228386 2011-12-10 06:55:02Z jfv $*/
34
35#include "e1000_api.h"
36
37/**
38 *  e1000_init_mac_params - Initialize MAC function pointers
39 *  @hw: pointer to the HW structure
40 *
41 *  This function initializes the function pointers for the MAC
42 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46	s32 ret_val = E1000_SUCCESS;
47
48	if (hw->mac.ops.init_params) {
49		ret_val = hw->mac.ops.init_params(hw);
50		if (ret_val) {
51			DEBUGOUT("MAC Initialization Error\n");
52			goto out;
53		}
54	} else {
55		DEBUGOUT("mac.init_mac_params was NULL\n");
56		ret_val = -E1000_ERR_CONFIG;
57	}
58
59out:
60	return ret_val;
61}
62
63/**
64 *  e1000_init_nvm_params - Initialize NVM function pointers
65 *  @hw: pointer to the HW structure
66 *
67 *  This function initializes the function pointers for the NVM
68 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72	s32 ret_val = E1000_SUCCESS;
73
74	if (hw->nvm.ops.init_params) {
75		ret_val = hw->nvm.ops.init_params(hw);
76		if (ret_val) {
77			DEBUGOUT("NVM Initialization Error\n");
78			goto out;
79		}
80	} else {
81		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82		ret_val = -E1000_ERR_CONFIG;
83	}
84
85out:
86	return ret_val;
87}
88
89/**
90 *  e1000_init_phy_params - Initialize PHY function pointers
91 *  @hw: pointer to the HW structure
92 *
93 *  This function initializes the function pointers for the PHY
94 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98	s32 ret_val = E1000_SUCCESS;
99
100	if (hw->phy.ops.init_params) {
101		ret_val = hw->phy.ops.init_params(hw);
102		if (ret_val) {
103			DEBUGOUT("PHY Initialization Error\n");
104			goto out;
105		}
106	} else {
107		DEBUGOUT("phy.init_phy_params was NULL\n");
108		ret_val =  -E1000_ERR_CONFIG;
109	}
110
111out:
112	return ret_val;
113}
114
115/**
116 *  e1000_init_mbx_params - Initialize mailbox function pointers
117 *  @hw: pointer to the HW structure
118 *
119 *  This function initializes the function pointers for the PHY
120 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124	s32 ret_val = E1000_SUCCESS;
125
126	if (hw->mbx.ops.init_params) {
127		ret_val = hw->mbx.ops.init_params(hw);
128		if (ret_val) {
129			DEBUGOUT("Mailbox Initialization Error\n");
130			goto out;
131		}
132	} else {
133		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134		ret_val =  -E1000_ERR_CONFIG;
135	}
136
137out:
138	return ret_val;
139}
140
141/**
142 *  e1000_set_mac_type - Sets MAC type
143 *  @hw: pointer to the HW structure
144 *
145 *  This function sets the mac type of the adapter based on the
146 *  device ID stored in the hw structure.
147 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148 *  e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152	struct e1000_mac_info *mac = &hw->mac;
153	s32 ret_val = E1000_SUCCESS;
154
155	DEBUGFUNC("e1000_set_mac_type");
156
157	switch (hw->device_id) {
158	case E1000_DEV_ID_82542:
159		mac->type = e1000_82542;
160		break;
161	case E1000_DEV_ID_82543GC_FIBER:
162	case E1000_DEV_ID_82543GC_COPPER:
163		mac->type = e1000_82543;
164		break;
165	case E1000_DEV_ID_82544EI_COPPER:
166	case E1000_DEV_ID_82544EI_FIBER:
167	case E1000_DEV_ID_82544GC_COPPER:
168	case E1000_DEV_ID_82544GC_LOM:
169		mac->type = e1000_82544;
170		break;
171	case E1000_DEV_ID_82540EM:
172	case E1000_DEV_ID_82540EM_LOM:
173	case E1000_DEV_ID_82540EP:
174	case E1000_DEV_ID_82540EP_LOM:
175	case E1000_DEV_ID_82540EP_LP:
176		mac->type = e1000_82540;
177		break;
178	case E1000_DEV_ID_82545EM_COPPER:
179	case E1000_DEV_ID_82545EM_FIBER:
180		mac->type = e1000_82545;
181		break;
182	case E1000_DEV_ID_82545GM_COPPER:
183	case E1000_DEV_ID_82545GM_FIBER:
184	case E1000_DEV_ID_82545GM_SERDES:
185		mac->type = e1000_82545_rev_3;
186		break;
187	case E1000_DEV_ID_82546EB_COPPER:
188	case E1000_DEV_ID_82546EB_FIBER:
189	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190		mac->type = e1000_82546;
191		break;
192	case E1000_DEV_ID_82546GB_COPPER:
193	case E1000_DEV_ID_82546GB_FIBER:
194	case E1000_DEV_ID_82546GB_SERDES:
195	case E1000_DEV_ID_82546GB_PCIE:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198		mac->type = e1000_82546_rev_3;
199		break;
200	case E1000_DEV_ID_82541EI:
201	case E1000_DEV_ID_82541EI_MOBILE:
202	case E1000_DEV_ID_82541ER_LOM:
203		mac->type = e1000_82541;
204		break;
205	case E1000_DEV_ID_82541ER:
206	case E1000_DEV_ID_82541GI:
207	case E1000_DEV_ID_82541GI_LF:
208	case E1000_DEV_ID_82541GI_MOBILE:
209		mac->type = e1000_82541_rev_2;
210		break;
211	case E1000_DEV_ID_82547EI:
212	case E1000_DEV_ID_82547EI_MOBILE:
213		mac->type = e1000_82547;
214		break;
215	case E1000_DEV_ID_82547GI:
216		mac->type = e1000_82547_rev_2;
217		break;
218	case E1000_DEV_ID_82571EB_COPPER:
219	case E1000_DEV_ID_82571EB_FIBER:
220	case E1000_DEV_ID_82571EB_SERDES:
221	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227		mac->type = e1000_82571;
228		break;
229	case E1000_DEV_ID_82572EI:
230	case E1000_DEV_ID_82572EI_COPPER:
231	case E1000_DEV_ID_82572EI_FIBER:
232	case E1000_DEV_ID_82572EI_SERDES:
233		mac->type = e1000_82572;
234		break;
235	case E1000_DEV_ID_82573E:
236	case E1000_DEV_ID_82573E_IAMT:
237	case E1000_DEV_ID_82573L:
238		mac->type = e1000_82573;
239		break;
240	case E1000_DEV_ID_82574L:
241	case E1000_DEV_ID_82574LA:
242		mac->type = e1000_82574;
243		break;
244	case E1000_DEV_ID_82583V:
245		mac->type = e1000_82583;
246		break;
247	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251		mac->type = e1000_80003es2lan;
252		break;
253	case E1000_DEV_ID_ICH8_IFE:
254	case E1000_DEV_ID_ICH8_IFE_GT:
255	case E1000_DEV_ID_ICH8_IFE_G:
256	case E1000_DEV_ID_ICH8_IGP_M:
257	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258	case E1000_DEV_ID_ICH8_IGP_AMT:
259	case E1000_DEV_ID_ICH8_IGP_C:
260	case E1000_DEV_ID_ICH8_82567V_3:
261		mac->type = e1000_ich8lan;
262		break;
263	case E1000_DEV_ID_ICH9_IFE:
264	case E1000_DEV_ID_ICH9_IFE_GT:
265	case E1000_DEV_ID_ICH9_IFE_G:
266	case E1000_DEV_ID_ICH9_IGP_M:
267	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268	case E1000_DEV_ID_ICH9_IGP_M_V:
269	case E1000_DEV_ID_ICH9_IGP_AMT:
270	case E1000_DEV_ID_ICH9_BM:
271	case E1000_DEV_ID_ICH9_IGP_C:
272	case E1000_DEV_ID_ICH10_R_BM_LM:
273	case E1000_DEV_ID_ICH10_R_BM_LF:
274	case E1000_DEV_ID_ICH10_R_BM_V:
275		mac->type = e1000_ich9lan;
276		break;
277	case E1000_DEV_ID_ICH10_D_BM_LM:
278	case E1000_DEV_ID_ICH10_D_BM_LF:
279	case E1000_DEV_ID_ICH10_D_BM_V:
280		mac->type = e1000_ich10lan;
281		break;
282	case E1000_DEV_ID_PCH_D_HV_DM:
283	case E1000_DEV_ID_PCH_D_HV_DC:
284	case E1000_DEV_ID_PCH_M_HV_LM:
285	case E1000_DEV_ID_PCH_M_HV_LC:
286		mac->type = e1000_pchlan;
287		break;
288	case E1000_DEV_ID_PCH2_LV_LM:
289	case E1000_DEV_ID_PCH2_LV_V:
290		mac->type = e1000_pch2lan;
291		break;
292	case E1000_DEV_ID_82575EB_COPPER:
293	case E1000_DEV_ID_82575EB_FIBER_SERDES:
294	case E1000_DEV_ID_82575GB_QUAD_COPPER:
295		mac->type = e1000_82575;
296		break;
297	case E1000_DEV_ID_82576:
298	case E1000_DEV_ID_82576_FIBER:
299	case E1000_DEV_ID_82576_SERDES:
300	case E1000_DEV_ID_82576_QUAD_COPPER:
301	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
302	case E1000_DEV_ID_82576_NS:
303	case E1000_DEV_ID_82576_NS_SERDES:
304	case E1000_DEV_ID_82576_SERDES_QUAD:
305		mac->type = e1000_82576;
306		break;
307	case E1000_DEV_ID_82580_COPPER:
308	case E1000_DEV_ID_82580_FIBER:
309	case E1000_DEV_ID_82580_SERDES:
310	case E1000_DEV_ID_82580_SGMII:
311	case E1000_DEV_ID_82580_COPPER_DUAL:
312	case E1000_DEV_ID_82580_QUAD_FIBER:
313	case E1000_DEV_ID_DH89XXCC_SGMII:
314	case E1000_DEV_ID_DH89XXCC_SERDES:
315	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
316	case E1000_DEV_ID_DH89XXCC_SFP:
317		mac->type = e1000_82580;
318		break;
319	case E1000_DEV_ID_I350_COPPER:
320	case E1000_DEV_ID_I350_FIBER:
321	case E1000_DEV_ID_I350_SERDES:
322	case E1000_DEV_ID_I350_SGMII:
323	case E1000_DEV_ID_I350_DA4:
324		mac->type = e1000_i350;
325		break;
326	case E1000_DEV_ID_82576_VF:
327		mac->type = e1000_vfadapt;
328		break;
329	case E1000_DEV_ID_I350_VF:
330		mac->type = e1000_vfadapt_i350;
331		break;
332	default:
333		/* Should never have loaded on this device */
334		ret_val = -E1000_ERR_MAC_INIT;
335		break;
336	}
337
338	return ret_val;
339}
340
341/**
342 *  e1000_setup_init_funcs - Initializes function pointers
343 *  @hw: pointer to the HW structure
344 *  @init_device: TRUE will initialize the rest of the function pointers
345 *		  getting the device ready for use.  FALSE will only set
346 *		  MAC type and the function pointers for the other init
347 *		  functions.  Passing FALSE will not generate any hardware
348 *		  reads or writes.
349 *
350 *  This function must be called by a driver in order to use the rest
351 *  of the 'shared' code files. Called by drivers only.
352 **/
353s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
354{
355	s32 ret_val;
356
357	/* Can't do much good without knowing the MAC type. */
358	ret_val = e1000_set_mac_type(hw);
359	if (ret_val) {
360		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
361		goto out;
362	}
363
364	if (!hw->hw_addr) {
365		DEBUGOUT("ERROR: Registers not mapped\n");
366		ret_val = -E1000_ERR_CONFIG;
367		goto out;
368	}
369
370	/*
371	 * Init function pointers to generic implementations. We do this first
372	 * allowing a driver module to override it afterward.
373	 */
374	e1000_init_mac_ops_generic(hw);
375	e1000_init_phy_ops_generic(hw);
376	e1000_init_nvm_ops_generic(hw);
377	e1000_init_mbx_ops_generic(hw);
378
379	/*
380	 * Set up the init function pointers. These are functions within the
381	 * adapter family file that sets up function pointers for the rest of
382	 * the functions in that family.
383	 */
384	switch (hw->mac.type) {
385	case e1000_82542:
386		e1000_init_function_pointers_82542(hw);
387		break;
388	case e1000_82543:
389	case e1000_82544:
390		e1000_init_function_pointers_82543(hw);
391		break;
392	case e1000_82540:
393	case e1000_82545:
394	case e1000_82545_rev_3:
395	case e1000_82546:
396	case e1000_82546_rev_3:
397		e1000_init_function_pointers_82540(hw);
398		break;
399	case e1000_82541:
400	case e1000_82541_rev_2:
401	case e1000_82547:
402	case e1000_82547_rev_2:
403		e1000_init_function_pointers_82541(hw);
404		break;
405	case e1000_82571:
406	case e1000_82572:
407	case e1000_82573:
408	case e1000_82574:
409	case e1000_82583:
410		e1000_init_function_pointers_82571(hw);
411		break;
412	case e1000_80003es2lan:
413		e1000_init_function_pointers_80003es2lan(hw);
414		break;
415	case e1000_ich8lan:
416	case e1000_ich9lan:
417	case e1000_ich10lan:
418	case e1000_pchlan:
419	case e1000_pch2lan:
420		e1000_init_function_pointers_ich8lan(hw);
421		break;
422	case e1000_82575:
423	case e1000_82576:
424	case e1000_82580:
425	case e1000_i350:
426		e1000_init_function_pointers_82575(hw);
427		break;
428	case e1000_vfadapt:
429		e1000_init_function_pointers_vf(hw);
430		break;
431	case e1000_vfadapt_i350:
432		e1000_init_function_pointers_vf(hw);
433		break;
434	default:
435		DEBUGOUT("Hardware not supported\n");
436		ret_val = -E1000_ERR_CONFIG;
437		break;
438	}
439
440	/*
441	 * Initialize the rest of the function pointers. These require some
442	 * register reads/writes in some cases.
443	 */
444	if (!(ret_val) && init_device) {
445		ret_val = e1000_init_mac_params(hw);
446		if (ret_val)
447			goto out;
448
449		ret_val = e1000_init_nvm_params(hw);
450		if (ret_val)
451			goto out;
452
453		ret_val = e1000_init_phy_params(hw);
454		if (ret_val)
455			goto out;
456
457		ret_val = e1000_init_mbx_params(hw);
458		if (ret_val)
459			goto out;
460	}
461
462out:
463	return ret_val;
464}
465
466/**
467 *  e1000_get_bus_info - Obtain bus information for adapter
468 *  @hw: pointer to the HW structure
469 *
470 *  This will obtain information about the HW bus for which the
471 *  adapter is attached and stores it in the hw structure. This is a
472 *  function pointer entry point called by drivers.
473 **/
474s32 e1000_get_bus_info(struct e1000_hw *hw)
475{
476	if (hw->mac.ops.get_bus_info)
477		return hw->mac.ops.get_bus_info(hw);
478
479	return E1000_SUCCESS;
480}
481
482/**
483 *  e1000_clear_vfta - Clear VLAN filter table
484 *  @hw: pointer to the HW structure
485 *
486 *  This clears the VLAN filter table on the adapter. This is a function
487 *  pointer entry point called by drivers.
488 **/
489void e1000_clear_vfta(struct e1000_hw *hw)
490{
491	if (hw->mac.ops.clear_vfta)
492		hw->mac.ops.clear_vfta(hw);
493}
494
495/**
496 *  e1000_write_vfta - Write value to VLAN filter table
497 *  @hw: pointer to the HW structure
498 *  @offset: the 32-bit offset in which to write the value to.
499 *  @value: the 32-bit value to write at location offset.
500 *
501 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
502 *  table. This is a function pointer entry point called by drivers.
503 **/
504void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
505{
506	if (hw->mac.ops.write_vfta)
507		hw->mac.ops.write_vfta(hw, offset, value);
508}
509
510/**
511 *  e1000_update_mc_addr_list - Update Multicast addresses
512 *  @hw: pointer to the HW structure
513 *  @mc_addr_list: array of multicast addresses to program
514 *  @mc_addr_count: number of multicast addresses to program
515 *
516 *  Updates the Multicast Table Array.
517 *  The caller must have a packed mc_addr_list of multicast addresses.
518 **/
519void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
520			       u32 mc_addr_count)
521{
522	if (hw->mac.ops.update_mc_addr_list)
523		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
524						mc_addr_count);
525}
526
527/**
528 *  e1000_force_mac_fc - Force MAC flow control
529 *  @hw: pointer to the HW structure
530 *
531 *  Force the MAC's flow control settings. Currently no func pointer exists
532 *  and all implementations are handled in the generic version of this
533 *  function.
534 **/
535s32 e1000_force_mac_fc(struct e1000_hw *hw)
536{
537	return e1000_force_mac_fc_generic(hw);
538}
539
540/**
541 *  e1000_check_for_link - Check/Store link connection
542 *  @hw: pointer to the HW structure
543 *
544 *  This checks the link condition of the adapter and stores the
545 *  results in the hw->mac structure. This is a function pointer entry
546 *  point called by drivers.
547 **/
548s32 e1000_check_for_link(struct e1000_hw *hw)
549{
550	if (hw->mac.ops.check_for_link)
551		return hw->mac.ops.check_for_link(hw);
552
553	return -E1000_ERR_CONFIG;
554}
555
556/**
557 *  e1000_check_mng_mode - Check management mode
558 *  @hw: pointer to the HW structure
559 *
560 *  This checks if the adapter has manageability enabled.
561 *  This is a function pointer entry point called by drivers.
562 **/
563bool e1000_check_mng_mode(struct e1000_hw *hw)
564{
565	if (hw->mac.ops.check_mng_mode)
566		return hw->mac.ops.check_mng_mode(hw);
567
568	return FALSE;
569}
570
571/**
572 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
573 *  @hw: pointer to the HW structure
574 *  @buffer: pointer to the host interface
575 *  @length: size of the buffer
576 *
577 *  Writes the DHCP information to the host interface.
578 **/
579s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
580{
581	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
582}
583
584/**
585 *  e1000_reset_hw - Reset hardware
586 *  @hw: pointer to the HW structure
587 *
588 *  This resets the hardware into a known state. This is a function pointer
589 *  entry point called by drivers.
590 **/
591s32 e1000_reset_hw(struct e1000_hw *hw)
592{
593	if (hw->mac.ops.reset_hw)
594		return hw->mac.ops.reset_hw(hw);
595
596	return -E1000_ERR_CONFIG;
597}
598
599/**
600 *  e1000_init_hw - Initialize hardware
601 *  @hw: pointer to the HW structure
602 *
603 *  This inits the hardware readying it for operation. This is a function
604 *  pointer entry point called by drivers.
605 **/
606s32 e1000_init_hw(struct e1000_hw *hw)
607{
608	if (hw->mac.ops.init_hw)
609		return hw->mac.ops.init_hw(hw);
610
611	return -E1000_ERR_CONFIG;
612}
613
614/**
615 *  e1000_setup_link - Configures link and flow control
616 *  @hw: pointer to the HW structure
617 *
618 *  This configures link and flow control settings for the adapter. This
619 *  is a function pointer entry point called by drivers. While modules can
620 *  also call this, they probably call their own version of this function.
621 **/
622s32 e1000_setup_link(struct e1000_hw *hw)
623{
624	if (hw->mac.ops.setup_link)
625		return hw->mac.ops.setup_link(hw);
626
627	return -E1000_ERR_CONFIG;
628}
629
630/**
631 *  e1000_get_speed_and_duplex - Returns current speed and duplex
632 *  @hw: pointer to the HW structure
633 *  @speed: pointer to a 16-bit value to store the speed
634 *  @duplex: pointer to a 16-bit value to store the duplex.
635 *
636 *  This returns the speed and duplex of the adapter in the two 'out'
637 *  variables passed in. This is a function pointer entry point called
638 *  by drivers.
639 **/
640s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
641{
642	if (hw->mac.ops.get_link_up_info)
643		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
644
645	return -E1000_ERR_CONFIG;
646}
647
648/**
649 *  e1000_setup_led - Configures SW controllable LED
650 *  @hw: pointer to the HW structure
651 *
652 *  This prepares the SW controllable LED for use and saves the current state
653 *  of the LED so it can be later restored. This is a function pointer entry
654 *  point called by drivers.
655 **/
656s32 e1000_setup_led(struct e1000_hw *hw)
657{
658	if (hw->mac.ops.setup_led)
659		return hw->mac.ops.setup_led(hw);
660
661	return E1000_SUCCESS;
662}
663
664/**
665 *  e1000_cleanup_led - Restores SW controllable LED
666 *  @hw: pointer to the HW structure
667 *
668 *  This restores the SW controllable LED to the value saved off by
669 *  e1000_setup_led. This is a function pointer entry point called by drivers.
670 **/
671s32 e1000_cleanup_led(struct e1000_hw *hw)
672{
673	if (hw->mac.ops.cleanup_led)
674		return hw->mac.ops.cleanup_led(hw);
675
676	return E1000_SUCCESS;
677}
678
679/**
680 *  e1000_blink_led - Blink SW controllable LED
681 *  @hw: pointer to the HW structure
682 *
683 *  This starts the adapter LED blinking. Request the LED to be setup first
684 *  and cleaned up after. This is a function pointer entry point called by
685 *  drivers.
686 **/
687s32 e1000_blink_led(struct e1000_hw *hw)
688{
689	if (hw->mac.ops.blink_led)
690		return hw->mac.ops.blink_led(hw);
691
692	return E1000_SUCCESS;
693}
694
695/**
696 *  e1000_id_led_init - store LED configurations in SW
697 *  @hw: pointer to the HW structure
698 *
699 *  Initializes the LED config in SW. This is a function pointer entry point
700 *  called by drivers.
701 **/
702s32 e1000_id_led_init(struct e1000_hw *hw)
703{
704	if (hw->mac.ops.id_led_init)
705		return hw->mac.ops.id_led_init(hw);
706
707	return E1000_SUCCESS;
708}
709
710/**
711 *  e1000_led_on - Turn on SW controllable LED
712 *  @hw: pointer to the HW structure
713 *
714 *  Turns the SW defined LED on. This is a function pointer entry point
715 *  called by drivers.
716 **/
717s32 e1000_led_on(struct e1000_hw *hw)
718{
719	if (hw->mac.ops.led_on)
720		return hw->mac.ops.led_on(hw);
721
722	return E1000_SUCCESS;
723}
724
725/**
726 *  e1000_led_off - Turn off SW controllable LED
727 *  @hw: pointer to the HW structure
728 *
729 *  Turns the SW defined LED off. This is a function pointer entry point
730 *  called by drivers.
731 **/
732s32 e1000_led_off(struct e1000_hw *hw)
733{
734	if (hw->mac.ops.led_off)
735		return hw->mac.ops.led_off(hw);
736
737	return E1000_SUCCESS;
738}
739
740/**
741 *  e1000_reset_adaptive - Reset adaptive IFS
742 *  @hw: pointer to the HW structure
743 *
744 *  Resets the adaptive IFS. Currently no func pointer exists and all
745 *  implementations are handled in the generic version of this function.
746 **/
747void e1000_reset_adaptive(struct e1000_hw *hw)
748{
749	e1000_reset_adaptive_generic(hw);
750}
751
752/**
753 *  e1000_update_adaptive - Update adaptive IFS
754 *  @hw: pointer to the HW structure
755 *
756 *  Updates adapter IFS. Currently no func pointer exists and all
757 *  implementations are handled in the generic version of this function.
758 **/
759void e1000_update_adaptive(struct e1000_hw *hw)
760{
761	e1000_update_adaptive_generic(hw);
762}
763
764/**
765 *  e1000_disable_pcie_master - Disable PCI-Express master access
766 *  @hw: pointer to the HW structure
767 *
768 *  Disables PCI-Express master access and verifies there are no pending
769 *  requests. Currently no func pointer exists and all implementations are
770 *  handled in the generic version of this function.
771 **/
772s32 e1000_disable_pcie_master(struct e1000_hw *hw)
773{
774	return e1000_disable_pcie_master_generic(hw);
775}
776
777/**
778 *  e1000_config_collision_dist - Configure collision distance
779 *  @hw: pointer to the HW structure
780 *
781 *  Configures the collision distance to the default value and is used
782 *  during link setup.
783 **/
784void e1000_config_collision_dist(struct e1000_hw *hw)
785{
786	if (hw->mac.ops.config_collision_dist)
787		hw->mac.ops.config_collision_dist(hw);
788}
789
790/**
791 *  e1000_rar_set - Sets a receive address register
792 *  @hw: pointer to the HW structure
793 *  @addr: address to set the RAR to
794 *  @index: the RAR to set
795 *
796 *  Sets a Receive Address Register (RAR) to the specified address.
797 **/
798void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
799{
800	if (hw->mac.ops.rar_set)
801		hw->mac.ops.rar_set(hw, addr, index);
802}
803
804/**
805 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
806 *  @hw: pointer to the HW structure
807 *
808 *  Ensures that the MDI/MDIX SW state is valid.
809 **/
810s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
811{
812	if (hw->mac.ops.validate_mdi_setting)
813		return hw->mac.ops.validate_mdi_setting(hw);
814
815	return E1000_SUCCESS;
816}
817
818/**
819 *  e1000_hash_mc_addr - Determines address location in multicast table
820 *  @hw: pointer to the HW structure
821 *  @mc_addr: Multicast address to hash.
822 *
823 *  This hashes an address to determine its location in the multicast
824 *  table. Currently no func pointer exists and all implementations
825 *  are handled in the generic version of this function.
826 **/
827u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
828{
829	return e1000_hash_mc_addr_generic(hw, mc_addr);
830}
831
832/**
833 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
834 *  @hw: pointer to the HW structure
835 *
836 *  Enables packet filtering on transmit packets if manageability is enabled
837 *  and host interface is enabled.
838 *  Currently no func pointer exists and all implementations are handled in the
839 *  generic version of this function.
840 **/
841bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
842{
843	return e1000_enable_tx_pkt_filtering_generic(hw);
844}
845
846/**
847 *  e1000_mng_host_if_write - Writes to the manageability host interface
848 *  @hw: pointer to the HW structure
849 *  @buffer: pointer to the host interface buffer
850 *  @length: size of the buffer
851 *  @offset: location in the buffer to write to
852 *  @sum: sum of the data (not checksum)
853 *
854 *  This function writes the buffer content at the offset given on the host if.
855 *  It also does alignment considerations to do the writes in most efficient
856 *  way.  Also fills up the sum of the buffer in *buffer parameter.
857 **/
858s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
859			    u16 offset, u8 *sum)
860{
861	if (hw->mac.ops.mng_host_if_write)
862		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
863						     offset, sum);
864
865	return E1000_NOT_IMPLEMENTED;
866}
867
868/**
869 *  e1000_mng_write_cmd_header - Writes manageability command header
870 *  @hw: pointer to the HW structure
871 *  @hdr: pointer to the host interface command header
872 *
873 *  Writes the command header after does the checksum calculation.
874 **/
875s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
876			       struct e1000_host_mng_command_header *hdr)
877{
878	if (hw->mac.ops.mng_write_cmd_header)
879		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
880
881	return E1000_NOT_IMPLEMENTED;
882}
883
884/**
885 *  e1000_mng_enable_host_if - Checks host interface is enabled
886 *  @hw: pointer to the HW structure
887 *
888 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
889 *
890 *  This function checks whether the HOST IF is enabled for command operation
891 *  and also checks whether the previous command is completed.  It busy waits
892 *  in case of previous command is not completed.
893 **/
894s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
895{
896	if (hw->mac.ops.mng_enable_host_if)
897		return hw->mac.ops.mng_enable_host_if(hw);
898
899	return E1000_NOT_IMPLEMENTED;
900}
901
902/**
903 *  e1000_wait_autoneg - Waits for autonegotiation completion
904 *  @hw: pointer to the HW structure
905 *
906 *  Waits for autoneg to complete. Currently no func pointer exists and all
907 *  implementations are handled in the generic version of this function.
908 **/
909s32 e1000_wait_autoneg(struct e1000_hw *hw)
910{
911	if (hw->mac.ops.wait_autoneg)
912		return hw->mac.ops.wait_autoneg(hw);
913
914	return E1000_SUCCESS;
915}
916
917/**
918 *  e1000_check_reset_block - Verifies PHY can be reset
919 *  @hw: pointer to the HW structure
920 *
921 *  Checks if the PHY is in a state that can be reset or if manageability
922 *  has it tied up. This is a function pointer entry point called by drivers.
923 **/
924s32 e1000_check_reset_block(struct e1000_hw *hw)
925{
926	if (hw->phy.ops.check_reset_block)
927		return hw->phy.ops.check_reset_block(hw);
928
929	return E1000_SUCCESS;
930}
931
932/**
933 *  e1000_read_phy_reg - Reads PHY register
934 *  @hw: pointer to the HW structure
935 *  @offset: the register to read
936 *  @data: the buffer to store the 16-bit read.
937 *
938 *  Reads the PHY register and returns the value in data.
939 *  This is a function pointer entry point called by drivers.
940 **/
941s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
942{
943	if (hw->phy.ops.read_reg)
944		return hw->phy.ops.read_reg(hw, offset, data);
945
946	return E1000_SUCCESS;
947}
948
949/**
950 *  e1000_write_phy_reg - Writes PHY register
951 *  @hw: pointer to the HW structure
952 *  @offset: the register to write
953 *  @data: the value to write.
954 *
955 *  Writes the PHY register at offset with the value in data.
956 *  This is a function pointer entry point called by drivers.
957 **/
958s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
959{
960	if (hw->phy.ops.write_reg)
961		return hw->phy.ops.write_reg(hw, offset, data);
962
963	return E1000_SUCCESS;
964}
965
966/**
967 *  e1000_release_phy - Generic release PHY
968 *  @hw: pointer to the HW structure
969 *
970 *  Return if silicon family does not require a semaphore when accessing the
971 *  PHY.
972 **/
973void e1000_release_phy(struct e1000_hw *hw)
974{
975	if (hw->phy.ops.release)
976		hw->phy.ops.release(hw);
977}
978
979/**
980 *  e1000_acquire_phy - Generic acquire PHY
981 *  @hw: pointer to the HW structure
982 *
983 *  Return success if silicon family does not require a semaphore when
984 *  accessing the PHY.
985 **/
986s32 e1000_acquire_phy(struct e1000_hw *hw)
987{
988	if (hw->phy.ops.acquire)
989		return hw->phy.ops.acquire(hw);
990
991	return E1000_SUCCESS;
992}
993
994/**
995 *  e1000_cfg_on_link_up - Configure PHY upon link up
996 *  @hw: pointer to the HW structure
997 **/
998s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
999{
1000	if (hw->phy.ops.cfg_on_link_up)
1001		return hw->phy.ops.cfg_on_link_up(hw);
1002
1003	return E1000_SUCCESS;
1004}
1005
1006/**
1007 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1008 *  @hw: pointer to the HW structure
1009 *  @offset: the register to read
1010 *  @data: the location to store the 16-bit value read.
1011 *
1012 *  Reads a register out of the Kumeran interface. Currently no func pointer
1013 *  exists and all implementations are handled in the generic version of
1014 *  this function.
1015 **/
1016s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1017{
1018	return e1000_read_kmrn_reg_generic(hw, offset, data);
1019}
1020
1021/**
1022 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1023 *  @hw: pointer to the HW structure
1024 *  @offset: the register to write
1025 *  @data: the value to write.
1026 *
1027 *  Writes a register to the Kumeran interface. Currently no func pointer
1028 *  exists and all implementations are handled in the generic version of
1029 *  this function.
1030 **/
1031s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1032{
1033	return e1000_write_kmrn_reg_generic(hw, offset, data);
1034}
1035
1036/**
1037 *  e1000_get_cable_length - Retrieves cable length estimation
1038 *  @hw: pointer to the HW structure
1039 *
1040 *  This function estimates the cable length and stores them in
1041 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1042 *  entry point called by drivers.
1043 **/
1044s32 e1000_get_cable_length(struct e1000_hw *hw)
1045{
1046	if (hw->phy.ops.get_cable_length)
1047		return hw->phy.ops.get_cable_length(hw);
1048
1049	return E1000_SUCCESS;
1050}
1051
1052/**
1053 *  e1000_get_phy_info - Retrieves PHY information from registers
1054 *  @hw: pointer to the HW structure
1055 *
1056 *  This function gets some information from various PHY registers and
1057 *  populates hw->phy values with it. This is a function pointer entry
1058 *  point called by drivers.
1059 **/
1060s32 e1000_get_phy_info(struct e1000_hw *hw)
1061{
1062	if (hw->phy.ops.get_info)
1063		return hw->phy.ops.get_info(hw);
1064
1065	return E1000_SUCCESS;
1066}
1067
1068/**
1069 *  e1000_phy_hw_reset - Hard PHY reset
1070 *  @hw: pointer to the HW structure
1071 *
1072 *  Performs a hard PHY reset. This is a function pointer entry point called
1073 *  by drivers.
1074 **/
1075s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1076{
1077	if (hw->phy.ops.reset)
1078		return hw->phy.ops.reset(hw);
1079
1080	return E1000_SUCCESS;
1081}
1082
1083/**
1084 *  e1000_phy_commit - Soft PHY reset
1085 *  @hw: pointer to the HW structure
1086 *
1087 *  Performs a soft PHY reset on those that apply. This is a function pointer
1088 *  entry point called by drivers.
1089 **/
1090s32 e1000_phy_commit(struct e1000_hw *hw)
1091{
1092	if (hw->phy.ops.commit)
1093		return hw->phy.ops.commit(hw);
1094
1095	return E1000_SUCCESS;
1096}
1097
1098/**
1099 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1100 *  @hw: pointer to the HW structure
1101 *  @active: boolean used to enable/disable lplu
1102 *
1103 *  Success returns 0, Failure returns 1
1104 *
1105 *  The low power link up (lplu) state is set to the power management level D0
1106 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1107 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1108 *  is used during Dx states where the power conservation is most important.
1109 *  During driver activity, SmartSpeed should be enabled so performance is
1110 *  maintained.  This is a function pointer entry point called by drivers.
1111 **/
1112s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1113{
1114	if (hw->phy.ops.set_d0_lplu_state)
1115		return hw->phy.ops.set_d0_lplu_state(hw, active);
1116
1117	return E1000_SUCCESS;
1118}
1119
1120/**
1121 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1122 *  @hw: pointer to the HW structure
1123 *  @active: boolean used to enable/disable lplu
1124 *
1125 *  Success returns 0, Failure returns 1
1126 *
1127 *  The low power link up (lplu) state is set to the power management level D3
1128 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1129 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1130 *  is used during Dx states where the power conservation is most important.
1131 *  During driver activity, SmartSpeed should be enabled so performance is
1132 *  maintained.  This is a function pointer entry point called by drivers.
1133 **/
1134s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1135{
1136	if (hw->phy.ops.set_d3_lplu_state)
1137		return hw->phy.ops.set_d3_lplu_state(hw, active);
1138
1139	return E1000_SUCCESS;
1140}
1141
1142/**
1143 *  e1000_read_mac_addr - Reads MAC address
1144 *  @hw: pointer to the HW structure
1145 *
1146 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1147 *  Currently no func pointer exists and all implementations are handled in the
1148 *  generic version of this function.
1149 **/
1150s32 e1000_read_mac_addr(struct e1000_hw *hw)
1151{
1152	if (hw->mac.ops.read_mac_addr)
1153		return hw->mac.ops.read_mac_addr(hw);
1154
1155	return e1000_read_mac_addr_generic(hw);
1156}
1157
1158/**
1159 *  e1000_read_pba_string - Read device part number string
1160 *  @hw: pointer to the HW structure
1161 *  @pba_num: pointer to device part number
1162 *  @pba_num_size: size of part number buffer
1163 *
1164 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1165 *  the value in pba_num.
1166 *  Currently no func pointer exists and all implementations are handled in the
1167 *  generic version of this function.
1168 **/
1169s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1170{
1171	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1172}
1173
1174/**
1175 *  e1000_read_pba_length - Read device part number string length
1176 *  @hw: pointer to the HW structure
1177 *  @pba_num_size: size of part number buffer
1178 *
1179 *  Reads the product board assembly (PBA) number length from the EEPROM and
1180 *  stores the value in pba_num.
1181 *  Currently no func pointer exists and all implementations are handled in the
1182 *  generic version of this function.
1183 **/
1184s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1185{
1186	return e1000_read_pba_length_generic(hw, pba_num_size);
1187}
1188
1189/**
1190 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1191 *  @hw: pointer to the HW structure
1192 *
1193 *  Validates the NVM checksum is correct. This is a function pointer entry
1194 *  point called by drivers.
1195 **/
1196s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1197{
1198	if (hw->nvm.ops.validate)
1199		return hw->nvm.ops.validate(hw);
1200
1201	return -E1000_ERR_CONFIG;
1202}
1203
1204/**
1205 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1206 *  @hw: pointer to the HW structure
1207 *
1208 *  Updates the NVM checksum. Currently no func pointer exists and all
1209 *  implementations are handled in the generic version of this function.
1210 **/
1211s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1212{
1213	if (hw->nvm.ops.update)
1214		return hw->nvm.ops.update(hw);
1215
1216	return -E1000_ERR_CONFIG;
1217}
1218
1219/**
1220 *  e1000_reload_nvm - Reloads EEPROM
1221 *  @hw: pointer to the HW structure
1222 *
1223 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1224 *  extended control register.
1225 **/
1226void e1000_reload_nvm(struct e1000_hw *hw)
1227{
1228	if (hw->nvm.ops.reload)
1229		hw->nvm.ops.reload(hw);
1230}
1231
1232/**
1233 *  e1000_read_nvm - Reads NVM (EEPROM)
1234 *  @hw: pointer to the HW structure
1235 *  @offset: the word offset to read
1236 *  @words: number of 16-bit words to read
1237 *  @data: pointer to the properly sized buffer for the data.
1238 *
1239 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1240 *  pointer entry point called by drivers.
1241 **/
1242s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1243{
1244	if (hw->nvm.ops.read)
1245		return hw->nvm.ops.read(hw, offset, words, data);
1246
1247	return -E1000_ERR_CONFIG;
1248}
1249
1250/**
1251 *  e1000_write_nvm - Writes to NVM (EEPROM)
1252 *  @hw: pointer to the HW structure
1253 *  @offset: the word offset to read
1254 *  @words: number of 16-bit words to write
1255 *  @data: pointer to the properly sized buffer for the data.
1256 *
1257 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1258 *  pointer entry point called by drivers.
1259 **/
1260s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1261{
1262	if (hw->nvm.ops.write)
1263		return hw->nvm.ops.write(hw, offset, words, data);
1264
1265	return E1000_SUCCESS;
1266}
1267
1268/**
1269 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1270 *  @hw: pointer to the HW structure
1271 *  @reg: 32bit register offset
1272 *  @offset: the register to write
1273 *  @data: the value to write.
1274 *
1275 *  Writes the PHY register at offset with the value in data.
1276 *  This is a function pointer entry point called by drivers.
1277 **/
1278s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1279			      u8 data)
1280{
1281	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1282}
1283
1284/**
1285 * e1000_power_up_phy - Restores link in case of PHY power down
1286 * @hw: pointer to the HW structure
1287 *
1288 * The phy may be powered down to save power, to turn off link when the
1289 * driver is unloaded, or wake on lan is not enabled (among others).
1290 **/
1291void e1000_power_up_phy(struct e1000_hw *hw)
1292{
1293	if (hw->phy.ops.power_up)
1294		hw->phy.ops.power_up(hw);
1295
1296	e1000_setup_link(hw);
1297}
1298
1299/**
1300 * e1000_power_down_phy - Power down PHY
1301 * @hw: pointer to the HW structure
1302 *
1303 * The phy may be powered down to save power, to turn off link when the
1304 * driver is unloaded, or wake on lan is not enabled (among others).
1305 **/
1306void e1000_power_down_phy(struct e1000_hw *hw)
1307{
1308	if (hw->phy.ops.power_down)
1309		hw->phy.ops.power_down(hw);
1310}
1311
1312/**
1313 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1314 *  @hw: pointer to the HW structure
1315 *
1316 *  Power on the optics and PCS.
1317 **/
1318void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1319{
1320	if (hw->mac.ops.power_up_serdes)
1321		hw->mac.ops.power_up_serdes(hw);
1322}
1323
1324/**
1325 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1326 *  @hw: pointer to the HW structure
1327 *
1328 *  Shutdown the optics and PCS on driver unload.
1329 **/
1330void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1331{
1332	if (hw->mac.ops.shutdown_serdes)
1333		hw->mac.ops.shutdown_serdes(hw);
1334}
1335
1336