e1000_82543.c revision 203049
1/******************************************************************************
2
3  Copyright (c) 2001-2010, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_82543.c 203049 2010-01-26 22:32:22Z jfv $*/
34
35/*
36 * 82543GC Gigabit Ethernet Controller (Fiber)
37 * 82543GC Gigabit Ethernet Controller (Copper)
38 * 82544EI Gigabit Ethernet Controller (Copper)
39 * 82544EI Gigabit Ethernet Controller (Fiber)
40 * 82544GC Gigabit Ethernet Controller (Copper)
41 * 82544GC Gigabit Ethernet Controller (LOM)
42 */
43
44#include "e1000_api.h"
45
46static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50                                     u16 *data);
51static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52                                      u16 data);
53static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62static s32  e1000_led_on_82543(struct e1000_hw *hw);
63static s32  e1000_led_off_82543(struct e1000_hw *hw);
64static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65                                   u32 value);
66static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
67static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
68static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
69static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
70static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
71static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
72static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
73static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74                                           u16 count);
75static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
76static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
77static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
78
79
80/**
81 *  e1000_init_phy_params_82543 - Init PHY func ptrs.
82 *  @hw: pointer to the HW structure
83 **/
84static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
85{
86	struct e1000_phy_info *phy = &hw->phy;
87	s32 ret_val = E1000_SUCCESS;
88
89	DEBUGFUNC("e1000_init_phy_params_82543");
90
91	if (hw->phy.media_type != e1000_media_type_copper) {
92		phy->type               = e1000_phy_none;
93		goto out;
94	} else {
95		phy->ops.power_up       = e1000_power_up_phy_copper;
96		phy->ops.power_down     = e1000_power_down_phy_copper;
97	}
98
99	phy->addr                       = 1;
100	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
101	phy->reset_delay_us             = 10000;
102	phy->type                       = e1000_phy_m88;
103
104	/* Function Pointers */
105	phy->ops.check_polarity         = e1000_check_polarity_m88;
106	phy->ops.commit                 = e1000_phy_sw_reset_generic;
107	phy->ops.force_speed_duplex     = e1000_phy_force_speed_duplex_82543;
108	phy->ops.get_cable_length       = e1000_get_cable_length_m88;
109	phy->ops.get_cfg_done           = e1000_get_cfg_done_generic;
110	phy->ops.read_reg               = (hw->mac.type == e1000_82543)
111	                                  ? e1000_read_phy_reg_82543
112	                                  : e1000_read_phy_reg_m88;
113	phy->ops.reset                  = (hw->mac.type == e1000_82543)
114	                                  ? e1000_phy_hw_reset_82543
115	                                  : e1000_phy_hw_reset_generic;
116	phy->ops.write_reg              = (hw->mac.type == e1000_82543)
117	                                  ? e1000_write_phy_reg_82543
118	                                  : e1000_write_phy_reg_m88;
119	phy->ops.get_info               = e1000_get_phy_info_m88;
120
121	/*
122	 * The external PHY of the 82543 can be in a funky state.
123	 * Resetting helps us read the PHY registers for acquiring
124	 * the PHY ID.
125	 */
126	if (!e1000_init_phy_disabled_82543(hw)) {
127		ret_val = phy->ops.reset(hw);
128		if (ret_val) {
129			DEBUGOUT("Resetting PHY during init failed.\n");
130			goto out;
131		}
132		msec_delay(20);
133	}
134
135	ret_val = e1000_get_phy_id(hw);
136	if (ret_val)
137		goto out;
138
139	/* Verify phy id */
140	switch (hw->mac.type) {
141	case e1000_82543:
142		if (phy->id != M88E1000_E_PHY_ID) {
143			ret_val = -E1000_ERR_PHY;
144			goto out;
145		}
146		break;
147	case e1000_82544:
148		if (phy->id != M88E1000_I_PHY_ID) {
149			ret_val = -E1000_ERR_PHY;
150			goto out;
151		}
152		break;
153	default:
154		ret_val = -E1000_ERR_PHY;
155		goto out;
156		break;
157	}
158
159out:
160	return ret_val;
161}
162
163/**
164 *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
165 *  @hw: pointer to the HW structure
166 **/
167static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
168{
169	struct e1000_nvm_info *nvm = &hw->nvm;
170
171	DEBUGFUNC("e1000_init_nvm_params_82543");
172
173	nvm->type               = e1000_nvm_eeprom_microwire;
174	nvm->word_size          = 64;
175	nvm->delay_usec         = 50;
176	nvm->address_bits       =  6;
177	nvm->opcode_bits        =  3;
178
179	/* Function Pointers */
180	nvm->ops.read           = e1000_read_nvm_microwire;
181	nvm->ops.update         = e1000_update_nvm_checksum_generic;
182	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
183	nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
184	nvm->ops.write          = e1000_write_nvm_microwire;
185
186	return E1000_SUCCESS;
187}
188
189/**
190 *  e1000_init_mac_params_82543 - Init MAC func ptrs.
191 *  @hw: pointer to the HW structure
192 **/
193static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
194{
195	struct e1000_mac_info *mac = &hw->mac;
196
197	DEBUGFUNC("e1000_init_mac_params_82543");
198
199	/* Set media type */
200	switch (hw->device_id) {
201	case E1000_DEV_ID_82543GC_FIBER:
202	case E1000_DEV_ID_82544EI_FIBER:
203		hw->phy.media_type = e1000_media_type_fiber;
204		break;
205	default:
206		hw->phy.media_type = e1000_media_type_copper;
207		break;
208	}
209
210	/* Set mta register count */
211	mac->mta_reg_count = 128;
212	/* Set rar entry count */
213	mac->rar_entry_count = E1000_RAR_ENTRIES;
214
215	/* Function pointers */
216
217	/* bus type/speed/width */
218	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
219	/* function id */
220	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
221	/* reset */
222	mac->ops.reset_hw = e1000_reset_hw_82543;
223	/* hw initialization */
224	mac->ops.init_hw = e1000_init_hw_82543;
225	/* link setup */
226	mac->ops.setup_link = e1000_setup_link_82543;
227	/* physical interface setup */
228	mac->ops.setup_physical_interface =
229	        (hw->phy.media_type == e1000_media_type_copper)
230	                ? e1000_setup_copper_link_82543
231	                : e1000_setup_fiber_link_82543;
232	/* check for link */
233	mac->ops.check_for_link =
234	        (hw->phy.media_type == e1000_media_type_copper)
235	                ? e1000_check_for_copper_link_82543
236	                : e1000_check_for_fiber_link_82543;
237	/* link info */
238	mac->ops.get_link_up_info =
239	        (hw->phy.media_type == e1000_media_type_copper)
240	                ? e1000_get_speed_and_duplex_copper_generic
241	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
242	/* multicast address update */
243	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
244	/* writing VFTA */
245	mac->ops.write_vfta = e1000_write_vfta_82543;
246	/* clearing VFTA */
247	mac->ops.clear_vfta = e1000_clear_vfta_generic;
248	/* read mac address */
249	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
250	/* turn on/off LED */
251	mac->ops.led_on = e1000_led_on_82543;
252	mac->ops.led_off = e1000_led_off_82543;
253	/* clear hardware counters */
254	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
255
256	/* Set tbi compatibility */
257	if ((hw->mac.type != e1000_82543) ||
258	    (hw->phy.media_type == e1000_media_type_fiber))
259		e1000_set_tbi_compatibility_82543(hw, FALSE);
260
261	return E1000_SUCCESS;
262}
263
264/**
265 *  e1000_init_function_pointers_82543 - Init func ptrs.
266 *  @hw: pointer to the HW structure
267 *
268 *  Called to initialize all function pointers and parameters.
269 **/
270void e1000_init_function_pointers_82543(struct e1000_hw *hw)
271{
272	DEBUGFUNC("e1000_init_function_pointers_82543");
273
274	hw->mac.ops.init_params = e1000_init_mac_params_82543;
275	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
276	hw->phy.ops.init_params = e1000_init_phy_params_82543;
277}
278
279/**
280 *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
281 *  @hw: pointer to the HW structure
282 *
283 *  Returns the current status of 10-bit Interface (TBI) compatibility
284 *  (enabled/disabled).
285 **/
286static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
287{
288	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
289	bool state = FALSE;
290
291	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
292
293	if (hw->mac.type != e1000_82543) {
294		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
295		goto out;
296	}
297
298	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
299	        ? TRUE : FALSE;
300
301out:
302	return state;
303}
304
305/**
306 *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
307 *  @hw: pointer to the HW structure
308 *  @state: enable/disable TBI compatibility
309 *
310 *  Enables or disabled 10-bit Interface (TBI) compatibility.
311 **/
312void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
313{
314	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
315
316	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
317
318	if (hw->mac.type != e1000_82543) {
319		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
320		goto out;
321	}
322
323	if (state)
324		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
325	else
326		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
327
328out:
329	return;
330}
331
332/**
333 *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
334 *  @hw: pointer to the HW structure
335 *
336 *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
337 *  (enabled/disabled).
338 **/
339bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
340{
341	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
342	bool state = FALSE;
343
344	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
345
346	if (hw->mac.type != e1000_82543) {
347		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
348		goto out;
349	}
350
351	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
352	        ? TRUE : FALSE;
353
354out:
355	return state;
356}
357
358/**
359 *  e1000_set_tbi_sbp_82543 - Set TBI SBP
360 *  @hw: pointer to the HW structure
361 *  @state: enable/disable TBI store bad packet
362 *
363 *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
364 **/
365static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
366{
367	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
368
369	DEBUGFUNC("e1000_set_tbi_sbp_82543");
370
371	if (state && e1000_tbi_compatibility_enabled_82543(hw))
372		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
373	else
374		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
375
376	return;
377}
378
379/**
380 *  e1000_init_phy_disabled_82543 - Returns init PHY status
381 *  @hw: pointer to the HW structure
382 *
383 *  Returns the current status of whether PHY initialization is disabled.
384 *  True if PHY initialization is disabled else FALSE.
385 **/
386static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
387{
388	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
389	bool ret_val;
390
391	DEBUGFUNC("e1000_init_phy_disabled_82543");
392
393	if (hw->mac.type != e1000_82543) {
394		ret_val = FALSE;
395		goto out;
396	}
397
398	ret_val = dev_spec->init_phy_disabled;
399
400out:
401	return ret_val;
402}
403
404/**
405 *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
406 *  @hw: pointer to the HW structure
407 *  @stats: Struct containing statistic register values
408 *  @frame_len: The length of the frame in question
409 *  @mac_addr: The Ethernet destination address of the frame in question
410 *  @max_frame_size: The maximum frame size
411 *
412 *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
413 **/
414void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
415                                  struct e1000_hw_stats *stats, u32 frame_len,
416                                  u8 *mac_addr, u32 max_frame_size)
417{
418	if (!(e1000_tbi_sbp_enabled_82543(hw)))
419		goto out;
420
421	/* First adjust the frame length. */
422	frame_len--;
423	/*
424	 * We need to adjust the statistics counters, since the hardware
425	 * counters overcount this packet as a CRC error and undercount
426	 * the packet as a good packet
427	 */
428	/* This packet should not be counted as a CRC error.    */
429	stats->crcerrs--;
430	/* This packet does count as a Good Packet Received.    */
431	stats->gprc++;
432
433	/* Adjust the Good Octets received counters             */
434	stats->gorc += frame_len;
435
436	/*
437	 * Is this a broadcast or multicast?  Check broadcast first,
438	 * since the test for a multicast frame will test positive on
439	 * a broadcast frame.
440	 */
441	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
442		/* Broadcast packet */
443		stats->bprc++;
444	else if (*mac_addr & 0x01)
445		/* Multicast packet */
446		stats->mprc++;
447
448	/*
449	 * In this case, the hardware has overcounted the number of
450	 * oversize frames.
451	 */
452	if ((frame_len == max_frame_size) && (stats->roc > 0))
453		stats->roc--;
454
455	/*
456	 * Adjust the bin counters when the extra byte put the frame in the
457	 * wrong bin. Remember that the frame_len was adjusted above.
458	 */
459	if (frame_len == 64) {
460		stats->prc64++;
461		stats->prc127--;
462	} else if (frame_len == 127) {
463		stats->prc127++;
464		stats->prc255--;
465	} else if (frame_len == 255) {
466		stats->prc255++;
467		stats->prc511--;
468	} else if (frame_len == 511) {
469		stats->prc511++;
470		stats->prc1023--;
471	} else if (frame_len == 1023) {
472		stats->prc1023++;
473		stats->prc1522--;
474	} else if (frame_len == 1522) {
475		stats->prc1522++;
476	}
477
478out:
479	return;
480}
481
482/**
483 *  e1000_read_phy_reg_82543 - Read PHY register
484 *  @hw: pointer to the HW structure
485 *  @offset: register offset to be read
486 *  @data: pointer to the read data
487 *
488 *  Reads the PHY at offset and stores the information read to data.
489 **/
490static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
491{
492	u32 mdic;
493	s32 ret_val = E1000_SUCCESS;
494
495	DEBUGFUNC("e1000_read_phy_reg_82543");
496
497	if (offset > MAX_PHY_REG_ADDRESS) {
498		DEBUGOUT1("PHY Address %d is out of range\n", offset);
499		ret_val = -E1000_ERR_PARAM;
500		goto out;
501	}
502
503	/*
504	 * We must first send a preamble through the MDIO pin to signal the
505	 * beginning of an MII instruction.  This is done by sending 32
506	 * consecutive "1" bits.
507	 */
508	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
509
510	/*
511	 * Now combine the next few fields that are required for a read
512	 * operation.  We use this method instead of calling the
513	 * e1000_shift_out_mdi_bits routine five different times.  The format
514	 * of an MII read instruction consists of a shift out of 14 bits and
515	 * is defined as follows:
516	 * 	<Preamble><SOF><Op Code><Phy Addr><Offset>
517	 * followed by a shift in of 18 bits.  This first two bits shifted in
518	 * are TurnAround bits used to avoid contention on the MDIO pin when a
519	 * READ operation is performed.  These two bits are thrown away
520	 * followed by a shift in of 16 bits which contains the desired data.
521	 */
522	mdic = (offset | (hw->phy.addr << 5) |
523		(PHY_OP_READ << 10) | (PHY_SOF << 12));
524
525	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
526
527	/*
528	 * Now that we've shifted out the read command to the MII, we need to
529	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
530	 * register address.
531	 */
532	*data = e1000_shift_in_mdi_bits_82543(hw);
533
534out:
535	return ret_val;
536}
537
538/**
539 *  e1000_write_phy_reg_82543 - Write PHY register
540 *  @hw: pointer to the HW structure
541 *  @offset: register offset to be written
542 *  @data: pointer to the data to be written at offset
543 *
544 *  Writes data to the PHY at offset.
545 **/
546static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
547{
548	u32 mdic;
549	s32 ret_val = E1000_SUCCESS;
550
551	DEBUGFUNC("e1000_write_phy_reg_82543");
552
553	if (offset > MAX_PHY_REG_ADDRESS) {
554		DEBUGOUT1("PHY Address %d is out of range\n", offset);
555		ret_val = -E1000_ERR_PARAM;
556		goto out;
557	}
558
559	/*
560	 * We'll need to use the SW defined pins to shift the write command
561	 * out to the PHY. We first send a preamble to the PHY to signal the
562	 * beginning of the MII instruction.  This is done by sending 32
563	 * consecutive "1" bits.
564	 */
565	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
566
567	/*
568	 * Now combine the remaining required fields that will indicate a
569	 * write operation. We use this method instead of calling the
570	 * e1000_shift_out_mdi_bits routine for each field in the command. The
571	 * format of a MII write instruction is as follows:
572	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
573	 */
574	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
575	        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
576	mdic <<= 16;
577	mdic |= (u32) data;
578
579	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
580
581out:
582	return ret_val;
583}
584
585/**
586 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
587 *  @hw: pointer to the HW structure
588 *  @ctrl: pointer to the control register
589 *
590 *  Raise the management data input clock by setting the MDC bit in the control
591 *  register.
592 **/
593static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
594{
595	/*
596	 * Raise the clock input to the Management Data Clock (by setting the
597	 * MDC bit), and then delay a sufficient amount of time.
598	 */
599	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
600	E1000_WRITE_FLUSH(hw);
601	usec_delay(10);
602}
603
604/**
605 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
606 *  @hw: pointer to the HW structure
607 *  @ctrl: pointer to the control register
608 *
609 *  Lower the management data input clock by clearing the MDC bit in the
610 *  control register.
611 **/
612static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
613{
614	/*
615	 * Lower the clock input to the Management Data Clock (by clearing the
616	 * MDC bit), and then delay a sufficient amount of time.
617	 */
618	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
619	E1000_WRITE_FLUSH(hw);
620	usec_delay(10);
621}
622
623/**
624 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
625 *  @hw: pointer to the HW structure
626 *  @data: data to send to the PHY
627 *  @count: number of bits to shift out
628 *
629 *  We need to shift 'count' bits out to the PHY.  So, the value in the
630 *  "data" parameter will be shifted out to the PHY one bit at a time.
631 *  In order to do this, "data" must be broken down into bits.
632 **/
633static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
634                                           u16 count)
635{
636	u32 ctrl, mask;
637
638	/*
639	 * We need to shift "count" number of bits out to the PHY.  So, the
640	 * value in the "data" parameter will be shifted out to the PHY one
641	 * bit at a time.  In order to do this, "data" must be broken down
642	 * into bits.
643	 */
644	mask = 0x01;
645	mask <<= (count -1);
646
647	ctrl = E1000_READ_REG(hw, E1000_CTRL);
648
649	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
650	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
651
652	while (mask) {
653		/*
654		 * A "1" is shifted out to the PHY by setting the MDIO bit to
655		 * "1" and then raising and lowering the Management Data Clock.
656		 * A "0" is shifted out to the PHY by setting the MDIO bit to
657		 * "0" and then raising and lowering the clock.
658		 */
659		if (data & mask) ctrl |= E1000_CTRL_MDIO;
660		else ctrl &= ~E1000_CTRL_MDIO;
661
662		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
663		E1000_WRITE_FLUSH(hw);
664
665		usec_delay(10);
666
667		e1000_raise_mdi_clk_82543(hw, &ctrl);
668		e1000_lower_mdi_clk_82543(hw, &ctrl);
669
670		mask >>= 1;
671	}
672}
673
674/**
675 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
676 *  @hw: pointer to the HW structure
677 *
678 *  In order to read a register from the PHY, we need to shift 18 bits
679 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
680 *  the PHY (setting the MDC bit), and then reading the value of the data out
681 *  MDIO bit.
682 **/
683static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
684{
685	u32 ctrl;
686	u16 data = 0;
687	u8 i;
688
689	/*
690	 * In order to read a register from the PHY, we need to shift in a
691	 * total of 18 bits from the PHY.  The first two bit (turnaround)
692	 * times are used to avoid contention on the MDIO pin when a read
693	 * operation is performed.  These two bits are ignored by us and
694	 * thrown away.  Bits are "shifted in" by raising the input to the
695	 * Management Data Clock (setting the MDC bit) and then reading the
696	 * value of the MDIO bit.
697	 */
698	ctrl = E1000_READ_REG(hw, E1000_CTRL);
699
700	/*
701	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
702	 * input.
703	 */
704	ctrl &= ~E1000_CTRL_MDIO_DIR;
705	ctrl &= ~E1000_CTRL_MDIO;
706
707	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
708	E1000_WRITE_FLUSH(hw);
709
710	/*
711	 * Raise and lower the clock before reading in the data.  This accounts
712	 * for the turnaround bits.  The first clock occurred when we clocked
713	 * out the last bit of the Register Address.
714	 */
715	e1000_raise_mdi_clk_82543(hw, &ctrl);
716	e1000_lower_mdi_clk_82543(hw, &ctrl);
717
718	for (data = 0, i = 0; i < 16; i++) {
719		data <<= 1;
720		e1000_raise_mdi_clk_82543(hw, &ctrl);
721		ctrl = E1000_READ_REG(hw, E1000_CTRL);
722		/* Check to see if we shifted in a "1". */
723		if (ctrl & E1000_CTRL_MDIO)
724			data |= 1;
725		e1000_lower_mdi_clk_82543(hw, &ctrl);
726	}
727
728	e1000_raise_mdi_clk_82543(hw, &ctrl);
729	e1000_lower_mdi_clk_82543(hw, &ctrl);
730
731	return data;
732}
733
734/**
735 *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
736 *  @hw: pointer to the HW structure
737 *
738 *  Calls the function to force speed and duplex for the m88 PHY, and
739 *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
740 *  then call the function for polarity reversal workaround.
741 **/
742static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
743{
744	s32 ret_val;
745
746	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
747
748	ret_val = e1000_phy_force_speed_duplex_m88(hw);
749	if (ret_val)
750		goto out;
751
752	if (!hw->mac.autoneg &&
753	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
754		ret_val = e1000_polarity_reversal_workaround_82543(hw);
755
756out:
757	return ret_val;
758}
759
760/**
761 *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
762 *  @hw: pointer to the HW structure
763 *
764 *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
765 *  inadvertently.  To workaround the issue, we disable the transmitter on
766 *  the PHY until we have established the link partner's link parameters.
767 **/
768static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
769{
770	s32 ret_val = E1000_SUCCESS;
771	u16 mii_status_reg;
772	u16 i;
773	bool link;
774
775	if (!(hw->phy.ops.write_reg))
776		goto out;
777
778	/* Polarity reversal workaround for forced 10F/10H links. */
779
780	/* Disable the transmitter on the PHY */
781
782	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
783	if (ret_val)
784		goto out;
785	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
786	if (ret_val)
787		goto out;
788
789	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
790	if (ret_val)
791		goto out;
792
793	/*
794	 * This loop will early-out if the NO link condition has been met.
795	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
796	 */
797	for (i = PHY_FORCE_TIME; i > 0; i--) {
798		/*
799		 * Read the MII Status Register and wait for Link Status bit
800		 * to be clear.
801		 */
802
803		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
804		if (ret_val)
805			goto out;
806
807		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
808		if (ret_val)
809			goto out;
810
811		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
812			break;
813		msec_delay_irq(100);
814	}
815
816	/* Recommended delay time after link has been lost */
817	msec_delay_irq(1000);
818
819	/* Now we will re-enable the transmitter on the PHY */
820
821	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
822	if (ret_val)
823		goto out;
824	msec_delay_irq(50);
825	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
826	if (ret_val)
827		goto out;
828	msec_delay_irq(50);
829	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
830	if (ret_val)
831		goto out;
832	msec_delay_irq(50);
833	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
834	if (ret_val)
835		goto out;
836
837	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
838	if (ret_val)
839		goto out;
840
841	/*
842	 * Read the MII Status Register and wait for Link Status bit
843	 * to be set.
844	 */
845	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
846	if (ret_val)
847		goto out;
848
849out:
850	return ret_val;
851}
852
853/**
854 *  e1000_phy_hw_reset_82543 - PHY hardware reset
855 *  @hw: pointer to the HW structure
856 *
857 *  Sets the PHY_RESET_DIR bit in the extended device control register
858 *  to put the PHY into a reset and waits for completion.  Once the reset
859 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
860 *  of reset.
861 **/
862static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
863{
864	u32 ctrl_ext;
865	s32 ret_val;
866
867	DEBUGFUNC("e1000_phy_hw_reset_82543");
868
869	/*
870	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
871	 * bit to put the PHY into reset...
872	 */
873	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
874	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
875	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
876	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
877	E1000_WRITE_FLUSH(hw);
878
879	msec_delay(10);
880
881	/* ...then take it out of reset. */
882	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
883	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
884	E1000_WRITE_FLUSH(hw);
885
886	usec_delay(150);
887
888	if (!(hw->phy.ops.get_cfg_done))
889		return E1000_SUCCESS;
890
891	ret_val = hw->phy.ops.get_cfg_done(hw);
892
893	return ret_val;
894}
895
896/**
897 *  e1000_reset_hw_82543 - Reset hardware
898 *  @hw: pointer to the HW structure
899 *
900 *  This resets the hardware into a known state.
901 **/
902static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
903{
904	u32 ctrl, icr;
905	s32 ret_val = E1000_SUCCESS;
906
907	DEBUGFUNC("e1000_reset_hw_82543");
908
909	DEBUGOUT("Masking off all interrupts\n");
910	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
911
912	E1000_WRITE_REG(hw, E1000_RCTL, 0);
913	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
914	E1000_WRITE_FLUSH(hw);
915
916	e1000_set_tbi_sbp_82543(hw, FALSE);
917
918	/*
919	 * Delay to allow any outstanding PCI transactions to complete before
920	 * resetting the device
921	 */
922	msec_delay(10);
923
924	ctrl = E1000_READ_REG(hw, E1000_CTRL);
925
926	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
927	if (hw->mac.type == e1000_82543) {
928		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
929	} else {
930		/*
931		 * The 82544 can't ACK the 64-bit write when issuing the
932		 * reset, so use IO-mapping as a workaround.
933		 */
934		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
935	}
936
937	/*
938	 * After MAC reset, force reload of NVM to restore power-on
939	 * settings to device.
940	 */
941	hw->nvm.ops.reload(hw);
942	msec_delay(2);
943
944	/* Masking off and clearing any pending interrupts */
945	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
946	icr = E1000_READ_REG(hw, E1000_ICR);
947
948	return ret_val;
949}
950
951/**
952 *  e1000_init_hw_82543 - Initialize hardware
953 *  @hw: pointer to the HW structure
954 *
955 *  This inits the hardware readying it for operation.
956 **/
957static s32 e1000_init_hw_82543(struct e1000_hw *hw)
958{
959	struct e1000_mac_info *mac = &hw->mac;
960	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
961	u32 ctrl;
962	s32 ret_val;
963	u16 i;
964
965	DEBUGFUNC("e1000_init_hw_82543");
966
967	/* Disabling VLAN filtering */
968	E1000_WRITE_REG(hw, E1000_VET, 0);
969	mac->ops.clear_vfta(hw);
970
971	/* Setup the receive address. */
972	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
973
974	/* Zero out the Multicast HASH table */
975	DEBUGOUT("Zeroing the MTA\n");
976	for (i = 0; i < mac->mta_reg_count; i++) {
977		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
978		E1000_WRITE_FLUSH(hw);
979	}
980
981	/*
982	 * Set the PCI priority bit correctly in the CTRL register.  This
983	 * determines if the adapter gives priority to receives, or if it
984	 * gives equal priority to transmits and receives.
985	 */
986	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
987		ctrl = E1000_READ_REG(hw, E1000_CTRL);
988		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
989	}
990
991	e1000_pcix_mmrbc_workaround_generic(hw);
992
993	/* Setup link and flow control */
994	ret_val = mac->ops.setup_link(hw);
995
996	/*
997	 * Clear all of the statistics registers (clear on read).  It is
998	 * important that we do this after we have tried to establish link
999	 * because the symbol error count will increment wildly if there
1000	 * is no link.
1001	 */
1002	e1000_clear_hw_cntrs_82543(hw);
1003
1004	return ret_val;
1005}
1006
1007/**
1008 *  e1000_setup_link_82543 - Setup flow control and link settings
1009 *  @hw: pointer to the HW structure
1010 *
1011 *  Read the EEPROM to determine the initial polarity value and write the
1012 *  extended device control register with the information before calling
1013 *  the generic setup link function, which does the following:
1014 *  Determines which flow control settings to use, then configures flow
1015 *  control.  Calls the appropriate media-specific link configuration
1016 *  function.  Assuming the adapter has a valid link partner, a valid link
1017 *  should be established.  Assumes the hardware has previously been reset
1018 *  and the transmitter and receiver are not enabled.
1019 **/
1020static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1021{
1022	u32 ctrl_ext;
1023	s32  ret_val;
1024	u16 data;
1025
1026	DEBUGFUNC("e1000_setup_link_82543");
1027
1028	/*
1029	 * Take the 4 bits from NVM word 0xF that determine the initial
1030	 * polarity value for the SW controlled pins, and setup the
1031	 * Extended Device Control reg with that info.
1032	 * This is needed because one of the SW controlled pins is used for
1033	 * signal detection.  So this should be done before phy setup.
1034	 */
1035	if (hw->mac.type == e1000_82543) {
1036		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1037		if (ret_val) {
1038			DEBUGOUT("NVM Read Error\n");
1039			ret_val = -E1000_ERR_NVM;
1040			goto out;
1041		}
1042		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1043		            NVM_SWDPIO_EXT_SHIFT);
1044		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1045	}
1046
1047	ret_val = e1000_setup_link_generic(hw);
1048
1049out:
1050	return ret_val;
1051}
1052
1053/**
1054 *  e1000_setup_copper_link_82543 - Configure copper link settings
1055 *  @hw: pointer to the HW structure
1056 *
1057 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1058 *  for link, once link is established calls to configure collision distance
1059 *  and flow control are called.
1060 **/
1061static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1062{
1063	u32 ctrl;
1064	s32 ret_val;
1065	bool link;
1066
1067	DEBUGFUNC("e1000_setup_copper_link_82543");
1068
1069	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1070	/*
1071	 * With 82543, we need to force speed and duplex on the MAC
1072	 * equal to what the PHY speed and duplex configuration is.
1073	 * In addition, we need to perform a hardware reset on the
1074	 * PHY to take it out of reset.
1075	 */
1076	if (hw->mac.type == e1000_82543) {
1077		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1079		ret_val = hw->phy.ops.reset(hw);
1080		if (ret_val)
1081			goto out;
1082		hw->phy.reset_disable = FALSE;
1083	} else {
1084		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1085		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1086	}
1087
1088	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1089	ret_val = e1000_copper_link_setup_m88(hw);
1090	if (ret_val)
1091		goto out;
1092
1093	if (hw->mac.autoneg) {
1094		/*
1095		 * Setup autoneg and flow control advertisement and perform
1096		 * autonegotiation.
1097		 */
1098		ret_val = e1000_copper_link_autoneg(hw);
1099		if (ret_val)
1100			goto out;
1101	} else {
1102		/*
1103		 * PHY will be set to 10H, 10F, 100H or 100F
1104		 * depending on user settings.
1105		 */
1106		DEBUGOUT("Forcing Speed and Duplex\n");
1107		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1108		if (ret_val) {
1109			DEBUGOUT("Error Forcing Speed and Duplex\n");
1110			goto out;
1111		}
1112	}
1113
1114	/*
1115	 * Check link status. Wait up to 100 microseconds for link to become
1116	 * valid.
1117	 */
1118	ret_val = e1000_phy_has_link_generic(hw,
1119	                                     COPPER_LINK_UP_LIMIT,
1120	                                     10,
1121	                                     &link);
1122	if (ret_val)
1123		goto out;
1124
1125
1126	if (link) {
1127		DEBUGOUT("Valid link established!!!\n");
1128		/* Config the MAC and PHY after link is up */
1129		if (hw->mac.type == e1000_82544) {
1130			e1000_config_collision_dist_generic(hw);
1131		} else {
1132			ret_val = e1000_config_mac_to_phy_82543(hw);
1133			if (ret_val)
1134				goto out;
1135		}
1136		ret_val = e1000_config_fc_after_link_up_generic(hw);
1137	} else {
1138		DEBUGOUT("Unable to establish link!!!\n");
1139	}
1140
1141out:
1142	return ret_val;
1143}
1144
1145/**
1146 *  e1000_setup_fiber_link_82543 - Setup link for fiber
1147 *  @hw: pointer to the HW structure
1148 *
1149 *  Configures collision distance and flow control for fiber links.  Upon
1150 *  successful setup, poll for link.
1151 **/
1152static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1153{
1154	u32 ctrl;
1155	s32 ret_val;
1156
1157	DEBUGFUNC("e1000_setup_fiber_link_82543");
1158
1159	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1160
1161	/* Take the link out of reset */
1162	ctrl &= ~E1000_CTRL_LRST;
1163
1164	e1000_config_collision_dist_generic(hw);
1165
1166	ret_val = e1000_commit_fc_settings_generic(hw);
1167	if (ret_val)
1168		goto out;
1169
1170	DEBUGOUT("Auto-negotiation enabled\n");
1171
1172	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1173	E1000_WRITE_FLUSH(hw);
1174	msec_delay(1);
1175
1176	/*
1177	 * For these adapters, the SW definable pin 1 is cleared when the
1178	 * optics detect a signal.  If we have a signal, then poll for a
1179	 * "Link-Up" indication.
1180	 */
1181	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1182		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1183	} else {
1184		DEBUGOUT("No signal detected\n");
1185	}
1186
1187out:
1188	return ret_val;
1189}
1190
1191/**
1192 *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1193 *  @hw: pointer to the HW structure
1194 *
1195 *  Checks the phy for link, if link exists, do the following:
1196 *   - check for downshift
1197 *   - do polarity workaround (if necessary)
1198 *   - configure collision distance
1199 *   - configure flow control after link up
1200 *   - configure tbi compatibility
1201 **/
1202static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1203{
1204	struct e1000_mac_info *mac = &hw->mac;
1205	u32 icr, rctl;
1206	s32 ret_val;
1207	u16 speed, duplex;
1208	bool link;
1209
1210	DEBUGFUNC("e1000_check_for_copper_link_82543");
1211
1212	if (!mac->get_link_status) {
1213		ret_val = E1000_SUCCESS;
1214		goto out;
1215	}
1216
1217	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1218	if (ret_val)
1219		goto out;
1220
1221	if (!link)
1222		goto out; /* No link detected */
1223
1224	mac->get_link_status = FALSE;
1225
1226	e1000_check_downshift_generic(hw);
1227
1228	/*
1229	 * If we are forcing speed/duplex, then we can return since
1230	 * we have already determined whether we have link or not.
1231	 */
1232	if (!mac->autoneg) {
1233		/*
1234		 * If speed and duplex are forced to 10H or 10F, then we will
1235		 * implement the polarity reversal workaround.  We disable
1236		 * interrupts first, and upon returning, place the devices
1237		 * interrupt state to its previous value except for the link
1238		 * status change interrupt which will happened due to the
1239		 * execution of this workaround.
1240		 */
1241		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1242			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1243			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1244			icr = E1000_READ_REG(hw, E1000_ICR);
1245			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1246			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1247		}
1248
1249		ret_val = -E1000_ERR_CONFIG;
1250		goto out;
1251	}
1252
1253	/*
1254	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1255	 * have Si on board that is 82544 or newer, Auto
1256	 * Speed Detection takes care of MAC speed/duplex
1257	 * configuration.  So we only need to configure Collision
1258	 * Distance in the MAC.  Otherwise, we need to force
1259	 * speed/duplex on the MAC to the current PHY speed/duplex
1260	 * settings.
1261	 */
1262	if (mac->type == e1000_82544)
1263		e1000_config_collision_dist_generic(hw);
1264	else {
1265		ret_val = e1000_config_mac_to_phy_82543(hw);
1266		if (ret_val) {
1267			DEBUGOUT("Error configuring MAC to PHY settings\n");
1268			goto out;
1269		}
1270	}
1271
1272	/*
1273	 * Configure Flow Control now that Auto-Neg has completed.
1274	 * First, we need to restore the desired flow control
1275	 * settings because we may have had to re-autoneg with a
1276	 * different link partner.
1277	 */
1278	ret_val = e1000_config_fc_after_link_up_generic(hw);
1279	if (ret_val) {
1280		DEBUGOUT("Error configuring flow control\n");
1281	}
1282
1283	/*
1284	 * At this point we know that we are on copper and we have
1285	 * auto-negotiated link.  These are conditions for checking the link
1286	 * partner capability register.  We use the link speed to determine if
1287	 * TBI compatibility needs to be turned on or off.  If the link is not
1288	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1289	 * at gigabit speed, we turn on TBI compatibility.
1290	 */
1291	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1292		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1293		if (ret_val) {
1294			DEBUGOUT("Error getting link speed and duplex\n");
1295			return ret_val;
1296		}
1297		if (speed != SPEED_1000) {
1298			/*
1299			 * If link speed is not set to gigabit speed,
1300			 * we do not need to enable TBI compatibility.
1301			 */
1302			if (e1000_tbi_sbp_enabled_82543(hw)) {
1303				/*
1304				 * If we previously were in the mode,
1305				 * turn it off.
1306				 */
1307				e1000_set_tbi_sbp_82543(hw, FALSE);
1308				rctl = E1000_READ_REG(hw, E1000_RCTL);
1309				rctl &= ~E1000_RCTL_SBP;
1310				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1311			}
1312		} else {
1313			/*
1314			 * If TBI compatibility is was previously off,
1315			 * turn it on. For compatibility with a TBI link
1316			 * partner, we will store bad packets. Some
1317			 * frames have an additional byte on the end and
1318			 * will look like CRC errors to to the hardware.
1319			 */
1320			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1321				e1000_set_tbi_sbp_82543(hw, TRUE);
1322				rctl = E1000_READ_REG(hw, E1000_RCTL);
1323				rctl |= E1000_RCTL_SBP;
1324				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1325			}
1326		}
1327	}
1328out:
1329	return ret_val;
1330}
1331
1332/**
1333 *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1334 *  @hw: pointer to the HW structure
1335 *
1336 *  Checks for link up on the hardware.  If link is not up and we have
1337 *  a signal, then we need to force link up.
1338 **/
1339static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1340{
1341	struct e1000_mac_info *mac = &hw->mac;
1342	u32 rxcw, ctrl, status;
1343	s32 ret_val = E1000_SUCCESS;
1344
1345	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1346
1347	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1348	status = E1000_READ_REG(hw, E1000_STATUS);
1349	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1350
1351	/*
1352	 * If we don't have link (auto-negotiation failed or link partner
1353	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1354	 * and our link partner is not trying to auto-negotiate with us (we
1355	 * are receiving idles or data), we need to force link up. We also
1356	 * need to give auto-negotiation time to complete, in case the cable
1357	 * was just plugged in. The autoneg_failed flag does this.
1358	 */
1359	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1360	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1361	    (!(status & E1000_STATUS_LU)) &&
1362	    (!(rxcw & E1000_RXCW_C))) {
1363		if (mac->autoneg_failed == 0) {
1364			mac->autoneg_failed = 1;
1365			ret_val = 0;
1366			goto out;
1367		}
1368		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1369
1370		/* Disable auto-negotiation in the TXCW register */
1371		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1372
1373		/* Force link-up and also force full-duplex. */
1374		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1375		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1376		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1377
1378		/* Configure Flow Control after forcing link up. */
1379		ret_val = e1000_config_fc_after_link_up_generic(hw);
1380		if (ret_val) {
1381			DEBUGOUT("Error configuring flow control\n");
1382			goto out;
1383		}
1384	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1385		/*
1386		 * If we are forcing link and we are receiving /C/ ordered
1387		 * sets, re-enable auto-negotiation in the TXCW register
1388		 * and disable forced link in the Device Control register
1389		 * in an attempt to auto-negotiate with our link partner.
1390		 */
1391		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1392		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1393		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1394
1395		mac->serdes_has_link = TRUE;
1396	}
1397
1398out:
1399	return ret_val;
1400}
1401
1402/**
1403 *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1404 *  @hw: pointer to the HW structure
1405 *
1406 *  For the 82543 silicon, we need to set the MAC to match the settings
1407 *  of the PHY, even if the PHY is auto-negotiating.
1408 **/
1409static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1410{
1411	u32 ctrl;
1412	s32 ret_val = E1000_SUCCESS;
1413	u16 phy_data;
1414
1415	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1416
1417	if (!(hw->phy.ops.read_reg))
1418		goto out;
1419
1420	/* Set the bits to force speed and duplex */
1421	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1422	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1423	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1424
1425	/*
1426	 * Set up duplex in the Device Control and Transmit Control
1427	 * registers depending on negotiated values.
1428	 */
1429	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1430	if (ret_val)
1431		goto out;
1432
1433	ctrl &= ~E1000_CTRL_FD;
1434	if (phy_data & M88E1000_PSSR_DPLX)
1435		ctrl |= E1000_CTRL_FD;
1436
1437	e1000_config_collision_dist_generic(hw);
1438
1439	/*
1440	 * Set up speed in the Device Control register depending on
1441	 * negotiated values.
1442	 */
1443	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1444		ctrl |= E1000_CTRL_SPD_1000;
1445	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1446		ctrl |= E1000_CTRL_SPD_100;
1447
1448	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1449
1450out:
1451	return ret_val;
1452}
1453
1454/**
1455 *  e1000_write_vfta_82543 - Write value to VLAN filter table
1456 *  @hw: pointer to the HW structure
1457 *  @offset: the 32-bit offset in which to write the value to.
1458 *  @value: the 32-bit value to write at location offset.
1459 *
1460 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1461 *  table.
1462 **/
1463static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1464{
1465	u32 temp;
1466
1467	DEBUGFUNC("e1000_write_vfta_82543");
1468
1469	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1470		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1471		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1472		E1000_WRITE_FLUSH(hw);
1473		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1474		E1000_WRITE_FLUSH(hw);
1475	} else {
1476		e1000_write_vfta_generic(hw, offset, value);
1477	}
1478}
1479
1480/**
1481 *  e1000_led_on_82543 - Turn on SW controllable LED
1482 *  @hw: pointer to the HW structure
1483 *
1484 *  Turns the SW defined LED on.
1485 **/
1486static s32 e1000_led_on_82543(struct e1000_hw *hw)
1487{
1488	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1489
1490	DEBUGFUNC("e1000_led_on_82543");
1491
1492	if (hw->mac.type == e1000_82544 &&
1493	    hw->phy.media_type == e1000_media_type_copper) {
1494		/* Clear SW-definable Pin 0 to turn on the LED */
1495		ctrl &= ~E1000_CTRL_SWDPIN0;
1496		ctrl |= E1000_CTRL_SWDPIO0;
1497	} else {
1498		/* Fiber 82544 and all 82543 use this method */
1499		ctrl |= E1000_CTRL_SWDPIN0;
1500		ctrl |= E1000_CTRL_SWDPIO0;
1501	}
1502	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1503
1504	return E1000_SUCCESS;
1505}
1506
1507/**
1508 *  e1000_led_off_82543 - Turn off SW controllable LED
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Turns the SW defined LED off.
1512 **/
1513static s32 e1000_led_off_82543(struct e1000_hw *hw)
1514{
1515	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1516
1517	DEBUGFUNC("e1000_led_off_82543");
1518
1519	if (hw->mac.type == e1000_82544 &&
1520	    hw->phy.media_type == e1000_media_type_copper) {
1521		/* Set SW-definable Pin 0 to turn off the LED */
1522		ctrl |= E1000_CTRL_SWDPIN0;
1523		ctrl |= E1000_CTRL_SWDPIO0;
1524	} else {
1525		ctrl &= ~E1000_CTRL_SWDPIN0;
1526		ctrl |= E1000_CTRL_SWDPIO0;
1527	}
1528	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1529
1530	return E1000_SUCCESS;
1531}
1532
1533/**
1534 *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1535 *  @hw: pointer to the HW structure
1536 *
1537 *  Clears the hardware counters by reading the counter registers.
1538 **/
1539static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1540{
1541	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1542
1543	e1000_clear_hw_cntrs_base_generic(hw);
1544
1545	E1000_READ_REG(hw, E1000_PRC64);
1546	E1000_READ_REG(hw, E1000_PRC127);
1547	E1000_READ_REG(hw, E1000_PRC255);
1548	E1000_READ_REG(hw, E1000_PRC511);
1549	E1000_READ_REG(hw, E1000_PRC1023);
1550	E1000_READ_REG(hw, E1000_PRC1522);
1551	E1000_READ_REG(hw, E1000_PTC64);
1552	E1000_READ_REG(hw, E1000_PTC127);
1553	E1000_READ_REG(hw, E1000_PTC255);
1554	E1000_READ_REG(hw, E1000_PTC511);
1555	E1000_READ_REG(hw, E1000_PTC1023);
1556	E1000_READ_REG(hw, E1000_PTC1522);
1557
1558	E1000_READ_REG(hw, E1000_ALGNERRC);
1559	E1000_READ_REG(hw, E1000_RXERRC);
1560	E1000_READ_REG(hw, E1000_TNCRS);
1561	E1000_READ_REG(hw, E1000_CEXTERR);
1562	E1000_READ_REG(hw, E1000_TSCTC);
1563	E1000_READ_REG(hw, E1000_TSCTFC);
1564}
1565
1566/**
1567 *  e1000_read_mac_addr_82543 - Read device MAC address
1568 *  @hw: pointer to the HW structure
1569 *
1570 *  Reads the device MAC address from the EEPROM and stores the value.
1571 *  Since devices with two ports use the same EEPROM, we increment the
1572 *  last bit in the MAC address for the second port.
1573 *
1574 **/
1575s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1576{
1577	s32  ret_val = E1000_SUCCESS;
1578	u16 offset, nvm_data, i;
1579
1580	DEBUGFUNC("e1000_read_mac_addr");
1581
1582	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
1583		offset = i >> 1;
1584		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1585		if (ret_val) {
1586			DEBUGOUT("NVM Read Error\n");
1587			goto out;
1588		}
1589		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1590		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1591	}
1592
1593	/* Flip last bit of mac address if we're on second port */
1594	if (hw->bus.func == E1000_FUNC_1)
1595		hw->mac.perm_addr[5] ^= 1;
1596
1597	for (i = 0; i < ETH_ADDR_LEN; i++)
1598		hw->mac.addr[i] = hw->mac.perm_addr[i];
1599
1600out:
1601	return ret_val;
1602}
1603