1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/11/sys/dev/e1000/e1000_82543.c 330446 2018-03-05 06:59:30Z eadler $*/
34
35/*
36 * 82543GC Gigabit Ethernet Controller (Fiber)
37 * 82543GC Gigabit Ethernet Controller (Copper)
38 * 82544EI Gigabit Ethernet Controller (Copper)
39 * 82544EI Gigabit Ethernet Controller (Fiber)
40 * 82544GC Gigabit Ethernet Controller (Copper)
41 * 82544GC Gigabit Ethernet Controller (LOM)
42 */
43
44#include "e1000_api.h"
45
46static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50				     u16 *data);
51static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52				      u16 data);
53static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62static s32  e1000_led_on_82543(struct e1000_hw *hw);
63static s32  e1000_led_off_82543(struct e1000_hw *hw);
64static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65				   u32 value);
66static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
67static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
68static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
69static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
70static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
71static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
72static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
73static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74					   u16 count);
75static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
76static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
77static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
78
79
80/**
81 *  e1000_init_phy_params_82543 - Init PHY func ptrs.
82 *  @hw: pointer to the HW structure
83 **/
84static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
85{
86	struct e1000_phy_info *phy = &hw->phy;
87	s32 ret_val = E1000_SUCCESS;
88
89	DEBUGFUNC("e1000_init_phy_params_82543");
90
91	if (hw->phy.media_type != e1000_media_type_copper) {
92		phy->type = e1000_phy_none;
93		goto out;
94	} else {
95		phy->ops.power_up = e1000_power_up_phy_copper;
96		phy->ops.power_down = e1000_power_down_phy_copper;
97	}
98
99	phy->addr		= 1;
100	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
101	phy->reset_delay_us	= 10000;
102	phy->type		= e1000_phy_m88;
103
104	/* Function Pointers */
105	phy->ops.check_polarity	= e1000_check_polarity_m88;
106	phy->ops.commit		= e1000_phy_sw_reset_generic;
107	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
108	phy->ops.get_cable_length = e1000_get_cable_length_m88;
109	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
110	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
111				  ? e1000_read_phy_reg_82543
112				  : e1000_read_phy_reg_m88;
113	phy->ops.reset		= (hw->mac.type == e1000_82543)
114				  ? e1000_phy_hw_reset_82543
115				  : e1000_phy_hw_reset_generic;
116	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
117				  ? e1000_write_phy_reg_82543
118				  : e1000_write_phy_reg_m88;
119	phy->ops.get_info	= e1000_get_phy_info_m88;
120
121	/*
122	 * The external PHY of the 82543 can be in a funky state.
123	 * Resetting helps us read the PHY registers for acquiring
124	 * the PHY ID.
125	 */
126	if (!e1000_init_phy_disabled_82543(hw)) {
127		ret_val = phy->ops.reset(hw);
128		if (ret_val) {
129			DEBUGOUT("Resetting PHY during init failed.\n");
130			goto out;
131		}
132		msec_delay(20);
133	}
134
135	ret_val = e1000_get_phy_id(hw);
136	if (ret_val)
137		goto out;
138
139	/* Verify phy id */
140	switch (hw->mac.type) {
141	case e1000_82543:
142		if (phy->id != M88E1000_E_PHY_ID) {
143			ret_val = -E1000_ERR_PHY;
144			goto out;
145		}
146		break;
147	case e1000_82544:
148		if (phy->id != M88E1000_I_PHY_ID) {
149			ret_val = -E1000_ERR_PHY;
150			goto out;
151		}
152		break;
153	default:
154		ret_val = -E1000_ERR_PHY;
155		goto out;
156		break;
157	}
158
159out:
160	return ret_val;
161}
162
163/**
164 *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
165 *  @hw: pointer to the HW structure
166 **/
167static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
168{
169	struct e1000_nvm_info *nvm = &hw->nvm;
170
171	DEBUGFUNC("e1000_init_nvm_params_82543");
172
173	nvm->type		= e1000_nvm_eeprom_microwire;
174	nvm->word_size		= 64;
175	nvm->delay_usec		= 50;
176	nvm->address_bits	=  6;
177	nvm->opcode_bits	=  3;
178
179	/* Function Pointers */
180	nvm->ops.read		= e1000_read_nvm_microwire;
181	nvm->ops.update		= e1000_update_nvm_checksum_generic;
182	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
183	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
184	nvm->ops.write		= e1000_write_nvm_microwire;
185
186	return E1000_SUCCESS;
187}
188
189/**
190 *  e1000_init_mac_params_82543 - Init MAC func ptrs.
191 *  @hw: pointer to the HW structure
192 **/
193static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
194{
195	struct e1000_mac_info *mac = &hw->mac;
196
197	DEBUGFUNC("e1000_init_mac_params_82543");
198
199	/* Set media type */
200	switch (hw->device_id) {
201	case E1000_DEV_ID_82543GC_FIBER:
202	case E1000_DEV_ID_82544EI_FIBER:
203		hw->phy.media_type = e1000_media_type_fiber;
204		break;
205	default:
206		hw->phy.media_type = e1000_media_type_copper;
207		break;
208	}
209
210	/* Set mta register count */
211	mac->mta_reg_count = 128;
212	/* Set rar entry count */
213	mac->rar_entry_count = E1000_RAR_ENTRIES;
214
215	/* Function pointers */
216
217	/* bus type/speed/width */
218	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
219	/* function id */
220	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
221	/* reset */
222	mac->ops.reset_hw = e1000_reset_hw_82543;
223	/* hw initialization */
224	mac->ops.init_hw = e1000_init_hw_82543;
225	/* link setup */
226	mac->ops.setup_link = e1000_setup_link_82543;
227	/* physical interface setup */
228	mac->ops.setup_physical_interface =
229		(hw->phy.media_type == e1000_media_type_copper)
230		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
231	/* check for link */
232	mac->ops.check_for_link =
233		(hw->phy.media_type == e1000_media_type_copper)
234		 ? e1000_check_for_copper_link_82543
235		 : e1000_check_for_fiber_link_82543;
236	/* link info */
237	mac->ops.get_link_up_info =
238		(hw->phy.media_type == e1000_media_type_copper)
239		 ? e1000_get_speed_and_duplex_copper_generic
240		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
241	/* multicast address update */
242	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
243	/* writing VFTA */
244	mac->ops.write_vfta = e1000_write_vfta_82543;
245	/* clearing VFTA */
246	mac->ops.clear_vfta = e1000_clear_vfta_generic;
247	/* read mac address */
248	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
249	/* turn on/off LED */
250	mac->ops.led_on = e1000_led_on_82543;
251	mac->ops.led_off = e1000_led_off_82543;
252	/* clear hardware counters */
253	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
254
255	/* Set tbi compatibility */
256	if ((hw->mac.type != e1000_82543) ||
257	    (hw->phy.media_type == e1000_media_type_fiber))
258		e1000_set_tbi_compatibility_82543(hw, FALSE);
259
260	return E1000_SUCCESS;
261}
262
263/**
264 *  e1000_init_function_pointers_82543 - Init func ptrs.
265 *  @hw: pointer to the HW structure
266 *
267 *  Called to initialize all function pointers and parameters.
268 **/
269void e1000_init_function_pointers_82543(struct e1000_hw *hw)
270{
271	DEBUGFUNC("e1000_init_function_pointers_82543");
272
273	hw->mac.ops.init_params = e1000_init_mac_params_82543;
274	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
275	hw->phy.ops.init_params = e1000_init_phy_params_82543;
276}
277
278/**
279 *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
280 *  @hw: pointer to the HW structure
281 *
282 *  Returns the current status of 10-bit Interface (TBI) compatibility
283 *  (enabled/disabled).
284 **/
285static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
286{
287	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
288	bool state = FALSE;
289
290	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
291
292	if (hw->mac.type != e1000_82543) {
293		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
294		goto out;
295	}
296
297	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
298
299out:
300	return state;
301}
302
303/**
304 *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
305 *  @hw: pointer to the HW structure
306 *  @state: enable/disable TBI compatibility
307 *
308 *  Enables or disabled 10-bit Interface (TBI) compatibility.
309 **/
310void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
311{
312	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
313
314	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
315
316	if (hw->mac.type != e1000_82543) {
317		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
318		goto out;
319	}
320
321	if (state)
322		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
323	else
324		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
325
326out:
327	return;
328}
329
330/**
331 *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
332 *  @hw: pointer to the HW structure
333 *
334 *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
335 *  (enabled/disabled).
336 **/
337bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
338{
339	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
340	bool state = FALSE;
341
342	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
343
344	if (hw->mac.type != e1000_82543) {
345		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
346		goto out;
347	}
348
349	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
350
351out:
352	return state;
353}
354
355/**
356 *  e1000_set_tbi_sbp_82543 - Set TBI SBP
357 *  @hw: pointer to the HW structure
358 *  @state: enable/disable TBI store bad packet
359 *
360 *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
361 **/
362static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
363{
364	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
365
366	DEBUGFUNC("e1000_set_tbi_sbp_82543");
367
368	if (state && e1000_tbi_compatibility_enabled_82543(hw))
369		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
370	else
371		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
372
373	return;
374}
375
376/**
377 *  e1000_init_phy_disabled_82543 - Returns init PHY status
378 *  @hw: pointer to the HW structure
379 *
380 *  Returns the current status of whether PHY initialization is disabled.
381 *  True if PHY initialization is disabled else FALSE.
382 **/
383static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
384{
385	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
386	bool ret_val;
387
388	DEBUGFUNC("e1000_init_phy_disabled_82543");
389
390	if (hw->mac.type != e1000_82543) {
391		ret_val = FALSE;
392		goto out;
393	}
394
395	ret_val = dev_spec->init_phy_disabled;
396
397out:
398	return ret_val;
399}
400
401/**
402 *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
403 *  @hw: pointer to the HW structure
404 *  @stats: Struct containing statistic register values
405 *  @frame_len: The length of the frame in question
406 *  @mac_addr: The Ethernet destination address of the frame in question
407 *  @max_frame_size: The maximum frame size
408 *
409 *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
410 **/
411void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
412				  struct e1000_hw_stats *stats, u32 frame_len,
413				  u8 *mac_addr, u32 max_frame_size)
414{
415	if (!(e1000_tbi_sbp_enabled_82543(hw)))
416		goto out;
417
418	/* First adjust the frame length. */
419	frame_len--;
420	/*
421	 * We need to adjust the statistics counters, since the hardware
422	 * counters overcount this packet as a CRC error and undercount
423	 * the packet as a good packet
424	 */
425	/* This packet should not be counted as a CRC error. */
426	stats->crcerrs--;
427	/* This packet does count as a Good Packet Received. */
428	stats->gprc++;
429
430	/* Adjust the Good Octets received counters */
431	stats->gorc += frame_len;
432
433	/*
434	 * Is this a broadcast or multicast?  Check broadcast first,
435	 * since the test for a multicast frame will test positive on
436	 * a broadcast frame.
437	 */
438	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
439		/* Broadcast packet */
440		stats->bprc++;
441	else if (*mac_addr & 0x01)
442		/* Multicast packet */
443		stats->mprc++;
444
445	/*
446	 * In this case, the hardware has over counted the number of
447	 * oversize frames.
448	 */
449	if ((frame_len == max_frame_size) && (stats->roc > 0))
450		stats->roc--;
451
452	/*
453	 * Adjust the bin counters when the extra byte put the frame in the
454	 * wrong bin. Remember that the frame_len was adjusted above.
455	 */
456	if (frame_len == 64) {
457		stats->prc64++;
458		stats->prc127--;
459	} else if (frame_len == 127) {
460		stats->prc127++;
461		stats->prc255--;
462	} else if (frame_len == 255) {
463		stats->prc255++;
464		stats->prc511--;
465	} else if (frame_len == 511) {
466		stats->prc511++;
467		stats->prc1023--;
468	} else if (frame_len == 1023) {
469		stats->prc1023++;
470		stats->prc1522--;
471	} else if (frame_len == 1522) {
472		stats->prc1522++;
473	}
474
475out:
476	return;
477}
478
479/**
480 *  e1000_read_phy_reg_82543 - Read PHY register
481 *  @hw: pointer to the HW structure
482 *  @offset: register offset to be read
483 *  @data: pointer to the read data
484 *
485 *  Reads the PHY at offset and stores the information read to data.
486 **/
487static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
488{
489	u32 mdic;
490	s32 ret_val = E1000_SUCCESS;
491
492	DEBUGFUNC("e1000_read_phy_reg_82543");
493
494	if (offset > MAX_PHY_REG_ADDRESS) {
495		DEBUGOUT1("PHY Address %d is out of range\n", offset);
496		ret_val = -E1000_ERR_PARAM;
497		goto out;
498	}
499
500	/*
501	 * We must first send a preamble through the MDIO pin to signal the
502	 * beginning of an MII instruction.  This is done by sending 32
503	 * consecutive "1" bits.
504	 */
505	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
506
507	/*
508	 * Now combine the next few fields that are required for a read
509	 * operation.  We use this method instead of calling the
510	 * e1000_shift_out_mdi_bits routine five different times.  The format
511	 * of an MII read instruction consists of a shift out of 14 bits and
512	 * is defined as follows:
513	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
514	 * followed by a shift in of 18 bits.  This first two bits shifted in
515	 * are TurnAround bits used to avoid contention on the MDIO pin when a
516	 * READ operation is performed.  These two bits are thrown away
517	 * followed by a shift in of 16 bits which contains the desired data.
518	 */
519	mdic = (offset | (hw->phy.addr << 5) |
520		(PHY_OP_READ << 10) | (PHY_SOF << 12));
521
522	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
523
524	/*
525	 * Now that we've shifted out the read command to the MII, we need to
526	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
527	 * register address.
528	 */
529	*data = e1000_shift_in_mdi_bits_82543(hw);
530
531out:
532	return ret_val;
533}
534
535/**
536 *  e1000_write_phy_reg_82543 - Write PHY register
537 *  @hw: pointer to the HW structure
538 *  @offset: register offset to be written
539 *  @data: pointer to the data to be written at offset
540 *
541 *  Writes data to the PHY at offset.
542 **/
543static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
544{
545	u32 mdic;
546	s32 ret_val = E1000_SUCCESS;
547
548	DEBUGFUNC("e1000_write_phy_reg_82543");
549
550	if (offset > MAX_PHY_REG_ADDRESS) {
551		DEBUGOUT1("PHY Address %d is out of range\n", offset);
552		ret_val = -E1000_ERR_PARAM;
553		goto out;
554	}
555
556	/*
557	 * We'll need to use the SW defined pins to shift the write command
558	 * out to the PHY. We first send a preamble to the PHY to signal the
559	 * beginning of the MII instruction.  This is done by sending 32
560	 * consecutive "1" bits.
561	 */
562	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
563
564	/*
565	 * Now combine the remaining required fields that will indicate a
566	 * write operation. We use this method instead of calling the
567	 * e1000_shift_out_mdi_bits routine for each field in the command. The
568	 * format of a MII write instruction is as follows:
569	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
570	 */
571	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
572		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
573	mdic <<= 16;
574	mdic |= (u32)data;
575
576	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
577
578out:
579	return ret_val;
580}
581
582/**
583 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
584 *  @hw: pointer to the HW structure
585 *  @ctrl: pointer to the control register
586 *
587 *  Raise the management data input clock by setting the MDC bit in the control
588 *  register.
589 **/
590static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
591{
592	/*
593	 * Raise the clock input to the Management Data Clock (by setting the
594	 * MDC bit), and then delay a sufficient amount of time.
595	 */
596	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
597	E1000_WRITE_FLUSH(hw);
598	usec_delay(10);
599}
600
601/**
602 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
603 *  @hw: pointer to the HW structure
604 *  @ctrl: pointer to the control register
605 *
606 *  Lower the management data input clock by clearing the MDC bit in the
607 *  control register.
608 **/
609static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
610{
611	/*
612	 * Lower the clock input to the Management Data Clock (by clearing the
613	 * MDC bit), and then delay a sufficient amount of time.
614	 */
615	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
616	E1000_WRITE_FLUSH(hw);
617	usec_delay(10);
618}
619
620/**
621 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
622 *  @hw: pointer to the HW structure
623 *  @data: data to send to the PHY
624 *  @count: number of bits to shift out
625 *
626 *  We need to shift 'count' bits out to the PHY.  So, the value in the
627 *  "data" parameter will be shifted out to the PHY one bit at a time.
628 *  In order to do this, "data" must be broken down into bits.
629 **/
630static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
631					   u16 count)
632{
633	u32 ctrl, mask;
634
635	/*
636	 * We need to shift "count" number of bits out to the PHY.  So, the
637	 * value in the "data" parameter will be shifted out to the PHY one
638	 * bit at a time.  In order to do this, "data" must be broken down
639	 * into bits.
640	 */
641	mask = 0x01;
642	mask <<= (count - 1);
643
644	ctrl = E1000_READ_REG(hw, E1000_CTRL);
645
646	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
647	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
648
649	while (mask) {
650		/*
651		 * A "1" is shifted out to the PHY by setting the MDIO bit to
652		 * "1" and then raising and lowering the Management Data Clock.
653		 * A "0" is shifted out to the PHY by setting the MDIO bit to
654		 * "0" and then raising and lowering the clock.
655		 */
656		if (data & mask)
657			ctrl |= E1000_CTRL_MDIO;
658		else
659			ctrl &= ~E1000_CTRL_MDIO;
660
661		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
662		E1000_WRITE_FLUSH(hw);
663
664		usec_delay(10);
665
666		e1000_raise_mdi_clk_82543(hw, &ctrl);
667		e1000_lower_mdi_clk_82543(hw, &ctrl);
668
669		mask >>= 1;
670	}
671}
672
673/**
674 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
675 *  @hw: pointer to the HW structure
676 *
677 *  In order to read a register from the PHY, we need to shift 18 bits
678 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
679 *  the PHY (setting the MDC bit), and then reading the value of the data out
680 *  MDIO bit.
681 **/
682static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
683{
684	u32 ctrl;
685	u16 data = 0;
686	u8 i;
687
688	/*
689	 * In order to read a register from the PHY, we need to shift in a
690	 * total of 18 bits from the PHY.  The first two bit (turnaround)
691	 * times are used to avoid contention on the MDIO pin when a read
692	 * operation is performed.  These two bits are ignored by us and
693	 * thrown away.  Bits are "shifted in" by raising the input to the
694	 * Management Data Clock (setting the MDC bit) and then reading the
695	 * value of the MDIO bit.
696	 */
697	ctrl = E1000_READ_REG(hw, E1000_CTRL);
698
699	/*
700	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
701	 * input.
702	 */
703	ctrl &= ~E1000_CTRL_MDIO_DIR;
704	ctrl &= ~E1000_CTRL_MDIO;
705
706	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
707	E1000_WRITE_FLUSH(hw);
708
709	/*
710	 * Raise and lower the clock before reading in the data.  This accounts
711	 * for the turnaround bits.  The first clock occurred when we clocked
712	 * out the last bit of the Register Address.
713	 */
714	e1000_raise_mdi_clk_82543(hw, &ctrl);
715	e1000_lower_mdi_clk_82543(hw, &ctrl);
716
717	for (data = 0, i = 0; i < 16; i++) {
718		data <<= 1;
719		e1000_raise_mdi_clk_82543(hw, &ctrl);
720		ctrl = E1000_READ_REG(hw, E1000_CTRL);
721		/* Check to see if we shifted in a "1". */
722		if (ctrl & E1000_CTRL_MDIO)
723			data |= 1;
724		e1000_lower_mdi_clk_82543(hw, &ctrl);
725	}
726
727	e1000_raise_mdi_clk_82543(hw, &ctrl);
728	e1000_lower_mdi_clk_82543(hw, &ctrl);
729
730	return data;
731}
732
733/**
734 *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
735 *  @hw: pointer to the HW structure
736 *
737 *  Calls the function to force speed and duplex for the m88 PHY, and
738 *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
739 *  then call the function for polarity reversal workaround.
740 **/
741static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
742{
743	s32 ret_val;
744
745	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
746
747	ret_val = e1000_phy_force_speed_duplex_m88(hw);
748	if (ret_val)
749		goto out;
750
751	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
752	    E1000_ALL_10_SPEED))
753		ret_val = e1000_polarity_reversal_workaround_82543(hw);
754
755out:
756	return ret_val;
757}
758
759/**
760 *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
761 *  @hw: pointer to the HW structure
762 *
763 *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
764 *  inadvertently.  To workaround the issue, we disable the transmitter on
765 *  the PHY until we have established the link partner's link parameters.
766 **/
767static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
768{
769	s32 ret_val = E1000_SUCCESS;
770	u16 mii_status_reg;
771	u16 i;
772	bool link;
773
774	if (!(hw->phy.ops.write_reg))
775		goto out;
776
777	/* Polarity reversal workaround for forced 10F/10H links. */
778
779	/* Disable the transmitter on the PHY */
780
781	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
782	if (ret_val)
783		goto out;
784	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
785	if (ret_val)
786		goto out;
787
788	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
789	if (ret_val)
790		goto out;
791
792	/*
793	 * This loop will early-out if the NO link condition has been met.
794	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
795	 */
796	for (i = PHY_FORCE_TIME; i > 0; i--) {
797		/*
798		 * Read the MII Status Register and wait for Link Status bit
799		 * to be clear.
800		 */
801
802		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
803		if (ret_val)
804			goto out;
805
806		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
807		if (ret_val)
808			goto out;
809
810		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
811			break;
812		msec_delay_irq(100);
813	}
814
815	/* Recommended delay time after link has been lost */
816	msec_delay_irq(1000);
817
818	/* Now we will re-enable the transmitter on the PHY */
819
820	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
821	if (ret_val)
822		goto out;
823	msec_delay_irq(50);
824	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
825	if (ret_val)
826		goto out;
827	msec_delay_irq(50);
828	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
829	if (ret_val)
830		goto out;
831	msec_delay_irq(50);
832	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
833	if (ret_val)
834		goto out;
835
836	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
837	if (ret_val)
838		goto out;
839
840	/*
841	 * Read the MII Status Register and wait for Link Status bit
842	 * to be set.
843	 */
844	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
845	if (ret_val)
846		goto out;
847
848out:
849	return ret_val;
850}
851
852/**
853 *  e1000_phy_hw_reset_82543 - PHY hardware reset
854 *  @hw: pointer to the HW structure
855 *
856 *  Sets the PHY_RESET_DIR bit in the extended device control register
857 *  to put the PHY into a reset and waits for completion.  Once the reset
858 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
859 *  of reset.
860 **/
861static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
862{
863	u32 ctrl_ext;
864	s32 ret_val;
865
866	DEBUGFUNC("e1000_phy_hw_reset_82543");
867
868	/*
869	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
870	 * bit to put the PHY into reset...
871	 */
872	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
873	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
874	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
875	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
876	E1000_WRITE_FLUSH(hw);
877
878	msec_delay(10);
879
880	/* ...then take it out of reset. */
881	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
882	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
883	E1000_WRITE_FLUSH(hw);
884
885	usec_delay(150);
886
887	if (!(hw->phy.ops.get_cfg_done))
888		return E1000_SUCCESS;
889
890	ret_val = hw->phy.ops.get_cfg_done(hw);
891
892	return ret_val;
893}
894
895/**
896 *  e1000_reset_hw_82543 - Reset hardware
897 *  @hw: pointer to the HW structure
898 *
899 *  This resets the hardware into a known state.
900 **/
901static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
902{
903	u32 ctrl;
904	s32 ret_val = E1000_SUCCESS;
905
906	DEBUGFUNC("e1000_reset_hw_82543");
907
908	DEBUGOUT("Masking off all interrupts\n");
909	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
910
911	E1000_WRITE_REG(hw, E1000_RCTL, 0);
912	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
913	E1000_WRITE_FLUSH(hw);
914
915	e1000_set_tbi_sbp_82543(hw, FALSE);
916
917	/*
918	 * Delay to allow any outstanding PCI transactions to complete before
919	 * resetting the device
920	 */
921	msec_delay(10);
922
923	ctrl = E1000_READ_REG(hw, E1000_CTRL);
924
925	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
926	if (hw->mac.type == e1000_82543) {
927		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
928	} else {
929		/*
930		 * The 82544 can't ACK the 64-bit write when issuing the
931		 * reset, so use IO-mapping as a workaround.
932		 */
933		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
934	}
935
936	/*
937	 * After MAC reset, force reload of NVM to restore power-on
938	 * settings to device.
939	 */
940	hw->nvm.ops.reload(hw);
941	msec_delay(2);
942
943	/* Masking off and clearing any pending interrupts */
944	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
945	E1000_READ_REG(hw, E1000_ICR);
946
947	return ret_val;
948}
949
950/**
951 *  e1000_init_hw_82543 - Initialize hardware
952 *  @hw: pointer to the HW structure
953 *
954 *  This inits the hardware readying it for operation.
955 **/
956static s32 e1000_init_hw_82543(struct e1000_hw *hw)
957{
958	struct e1000_mac_info *mac = &hw->mac;
959	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
960	u32 ctrl;
961	s32 ret_val;
962	u16 i;
963
964	DEBUGFUNC("e1000_init_hw_82543");
965
966	/* Disabling VLAN filtering */
967	E1000_WRITE_REG(hw, E1000_VET, 0);
968	mac->ops.clear_vfta(hw);
969
970	/* Setup the receive address. */
971	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
972
973	/* Zero out the Multicast HASH table */
974	DEBUGOUT("Zeroing the MTA\n");
975	for (i = 0; i < mac->mta_reg_count; i++) {
976		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
977		E1000_WRITE_FLUSH(hw);
978	}
979
980	/*
981	 * Set the PCI priority bit correctly in the CTRL register.  This
982	 * determines if the adapter gives priority to receives, or if it
983	 * gives equal priority to transmits and receives.
984	 */
985	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
986		ctrl = E1000_READ_REG(hw, E1000_CTRL);
987		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
988	}
989
990	e1000_pcix_mmrbc_workaround_generic(hw);
991
992	/* Setup link and flow control */
993	ret_val = mac->ops.setup_link(hw);
994
995	/*
996	 * Clear all of the statistics registers (clear on read).  It is
997	 * important that we do this after we have tried to establish link
998	 * because the symbol error count will increment wildly if there
999	 * is no link.
1000	 */
1001	e1000_clear_hw_cntrs_82543(hw);
1002
1003	return ret_val;
1004}
1005
1006/**
1007 *  e1000_setup_link_82543 - Setup flow control and link settings
1008 *  @hw: pointer to the HW structure
1009 *
1010 *  Read the EEPROM to determine the initial polarity value and write the
1011 *  extended device control register with the information before calling
1012 *  the generic setup link function, which does the following:
1013 *  Determines which flow control settings to use, then configures flow
1014 *  control.  Calls the appropriate media-specific link configuration
1015 *  function.  Assuming the adapter has a valid link partner, a valid link
1016 *  should be established.  Assumes the hardware has previously been reset
1017 *  and the transmitter and receiver are not enabled.
1018 **/
1019static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1020{
1021	u32 ctrl_ext;
1022	s32  ret_val;
1023	u16 data;
1024
1025	DEBUGFUNC("e1000_setup_link_82543");
1026
1027	/*
1028	 * Take the 4 bits from NVM word 0xF that determine the initial
1029	 * polarity value for the SW controlled pins, and setup the
1030	 * Extended Device Control reg with that info.
1031	 * This is needed because one of the SW controlled pins is used for
1032	 * signal detection.  So this should be done before phy setup.
1033	 */
1034	if (hw->mac.type == e1000_82543) {
1035		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1036		if (ret_val) {
1037			DEBUGOUT("NVM Read Error\n");
1038			ret_val = -E1000_ERR_NVM;
1039			goto out;
1040		}
1041		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1042			    NVM_SWDPIO_EXT_SHIFT);
1043		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1044	}
1045
1046	ret_val = e1000_setup_link_generic(hw);
1047
1048out:
1049	return ret_val;
1050}
1051
1052/**
1053 *  e1000_setup_copper_link_82543 - Configure copper link settings
1054 *  @hw: pointer to the HW structure
1055 *
1056 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1057 *  for link, once link is established calls to configure collision distance
1058 *  and flow control are called.
1059 **/
1060static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1061{
1062	u32 ctrl;
1063	s32 ret_val;
1064	bool link;
1065
1066	DEBUGFUNC("e1000_setup_copper_link_82543");
1067
1068	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1069	/*
1070	 * With 82543, we need to force speed and duplex on the MAC
1071	 * equal to what the PHY speed and duplex configuration is.
1072	 * In addition, we need to perform a hardware reset on the
1073	 * PHY to take it out of reset.
1074	 */
1075	if (hw->mac.type == e1000_82543) {
1076		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1077		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1078		ret_val = hw->phy.ops.reset(hw);
1079		if (ret_val)
1080			goto out;
1081	} else {
1082		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1083		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1084	}
1085
1086	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1087	ret_val = e1000_copper_link_setup_m88(hw);
1088	if (ret_val)
1089		goto out;
1090
1091	if (hw->mac.autoneg) {
1092		/*
1093		 * Setup autoneg and flow control advertisement and perform
1094		 * autonegotiation.
1095		 */
1096		ret_val = e1000_copper_link_autoneg(hw);
1097		if (ret_val)
1098			goto out;
1099	} else {
1100		/*
1101		 * PHY will be set to 10H, 10F, 100H or 100F
1102		 * depending on user settings.
1103		 */
1104		DEBUGOUT("Forcing Speed and Duplex\n");
1105		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1106		if (ret_val) {
1107			DEBUGOUT("Error Forcing Speed and Duplex\n");
1108			goto out;
1109		}
1110	}
1111
1112	/*
1113	 * Check link status. Wait up to 100 microseconds for link to become
1114	 * valid.
1115	 */
1116	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1117					     &link);
1118	if (ret_val)
1119		goto out;
1120
1121
1122	if (link) {
1123		DEBUGOUT("Valid link established!!!\n");
1124		/* Config the MAC and PHY after link is up */
1125		if (hw->mac.type == e1000_82544) {
1126			hw->mac.ops.config_collision_dist(hw);
1127		} else {
1128			ret_val = e1000_config_mac_to_phy_82543(hw);
1129			if (ret_val)
1130				goto out;
1131		}
1132		ret_val = e1000_config_fc_after_link_up_generic(hw);
1133	} else {
1134		DEBUGOUT("Unable to establish link!!!\n");
1135	}
1136
1137out:
1138	return ret_val;
1139}
1140
1141/**
1142 *  e1000_setup_fiber_link_82543 - Setup link for fiber
1143 *  @hw: pointer to the HW structure
1144 *
1145 *  Configures collision distance and flow control for fiber links.  Upon
1146 *  successful setup, poll for link.
1147 **/
1148static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1149{
1150	u32 ctrl;
1151	s32 ret_val;
1152
1153	DEBUGFUNC("e1000_setup_fiber_link_82543");
1154
1155	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1156
1157	/* Take the link out of reset */
1158	ctrl &= ~E1000_CTRL_LRST;
1159
1160	hw->mac.ops.config_collision_dist(hw);
1161
1162	ret_val = e1000_commit_fc_settings_generic(hw);
1163	if (ret_val)
1164		goto out;
1165
1166	DEBUGOUT("Auto-negotiation enabled\n");
1167
1168	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1169	E1000_WRITE_FLUSH(hw);
1170	msec_delay(1);
1171
1172	/*
1173	 * For these adapters, the SW definable pin 1 is cleared when the
1174	 * optics detect a signal.  If we have a signal, then poll for a
1175	 * "Link-Up" indication.
1176	 */
1177	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1178		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1179	else
1180		DEBUGOUT("No signal detected\n");
1181
1182out:
1183	return ret_val;
1184}
1185
1186/**
1187 *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1188 *  @hw: pointer to the HW structure
1189 *
1190 *  Checks the phy for link, if link exists, do the following:
1191 *   - check for downshift
1192 *   - do polarity workaround (if necessary)
1193 *   - configure collision distance
1194 *   - configure flow control after link up
1195 *   - configure tbi compatibility
1196 **/
1197static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1198{
1199	struct e1000_mac_info *mac = &hw->mac;
1200	u32 icr, rctl;
1201	s32 ret_val;
1202	u16 speed, duplex;
1203	bool link;
1204
1205	DEBUGFUNC("e1000_check_for_copper_link_82543");
1206
1207	if (!mac->get_link_status) {
1208		ret_val = E1000_SUCCESS;
1209		goto out;
1210	}
1211
1212	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1213	if (ret_val)
1214		goto out;
1215
1216	if (!link)
1217		goto out; /* No link detected */
1218
1219	mac->get_link_status = FALSE;
1220
1221	e1000_check_downshift_generic(hw);
1222
1223	/*
1224	 * If we are forcing speed/duplex, then we can return since
1225	 * we have already determined whether we have link or not.
1226	 */
1227	if (!mac->autoneg) {
1228		/*
1229		 * If speed and duplex are forced to 10H or 10F, then we will
1230		 * implement the polarity reversal workaround.  We disable
1231		 * interrupts first, and upon returning, place the devices
1232		 * interrupt state to its previous value except for the link
1233		 * status change interrupt which will happened due to the
1234		 * execution of this workaround.
1235		 */
1236		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1237			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1238			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1239			icr = E1000_READ_REG(hw, E1000_ICR);
1240			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1241			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1242		}
1243
1244		ret_val = -E1000_ERR_CONFIG;
1245		goto out;
1246	}
1247
1248	/*
1249	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1250	 * have Si on board that is 82544 or newer, Auto
1251	 * Speed Detection takes care of MAC speed/duplex
1252	 * configuration.  So we only need to configure Collision
1253	 * Distance in the MAC.  Otherwise, we need to force
1254	 * speed/duplex on the MAC to the current PHY speed/duplex
1255	 * settings.
1256	 */
1257	if (mac->type == e1000_82544)
1258		hw->mac.ops.config_collision_dist(hw);
1259	else {
1260		ret_val = e1000_config_mac_to_phy_82543(hw);
1261		if (ret_val) {
1262			DEBUGOUT("Error configuring MAC to PHY settings\n");
1263			goto out;
1264		}
1265	}
1266
1267	/*
1268	 * Configure Flow Control now that Auto-Neg has completed.
1269	 * First, we need to restore the desired flow control
1270	 * settings because we may have had to re-autoneg with a
1271	 * different link partner.
1272	 */
1273	ret_val = e1000_config_fc_after_link_up_generic(hw);
1274	if (ret_val)
1275		DEBUGOUT("Error configuring flow control\n");
1276
1277	/*
1278	 * At this point we know that we are on copper and we have
1279	 * auto-negotiated link.  These are conditions for checking the link
1280	 * partner capability register.  We use the link speed to determine if
1281	 * TBI compatibility needs to be turned on or off.  If the link is not
1282	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1283	 * at gigabit speed, we turn on TBI compatibility.
1284	 */
1285	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1286		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1287		if (ret_val) {
1288			DEBUGOUT("Error getting link speed and duplex\n");
1289			return ret_val;
1290		}
1291		if (speed != SPEED_1000) {
1292			/*
1293			 * If link speed is not set to gigabit speed,
1294			 * we do not need to enable TBI compatibility.
1295			 */
1296			if (e1000_tbi_sbp_enabled_82543(hw)) {
1297				/*
1298				 * If we previously were in the mode,
1299				 * turn it off.
1300				 */
1301				e1000_set_tbi_sbp_82543(hw, FALSE);
1302				rctl = E1000_READ_REG(hw, E1000_RCTL);
1303				rctl &= ~E1000_RCTL_SBP;
1304				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1305			}
1306		} else {
1307			/*
1308			 * If TBI compatibility is was previously off,
1309			 * turn it on. For compatibility with a TBI link
1310			 * partner, we will store bad packets. Some
1311			 * frames have an additional byte on the end and
1312			 * will look like CRC errors to the hardware.
1313			 */
1314			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1315				e1000_set_tbi_sbp_82543(hw, TRUE);
1316				rctl = E1000_READ_REG(hw, E1000_RCTL);
1317				rctl |= E1000_RCTL_SBP;
1318				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1319			}
1320		}
1321	}
1322out:
1323	return ret_val;
1324}
1325
1326/**
1327 *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1328 *  @hw: pointer to the HW structure
1329 *
1330 *  Checks for link up on the hardware.  If link is not up and we have
1331 *  a signal, then we need to force link up.
1332 **/
1333static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1334{
1335	struct e1000_mac_info *mac = &hw->mac;
1336	u32 rxcw, ctrl, status;
1337	s32 ret_val = E1000_SUCCESS;
1338
1339	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1340
1341	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1342	status = E1000_READ_REG(hw, E1000_STATUS);
1343	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1344
1345	/*
1346	 * If we don't have link (auto-negotiation failed or link partner
1347	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1348	 * and our link partner is not trying to auto-negotiate with us (we
1349	 * are receiving idles or data), we need to force link up. We also
1350	 * need to give auto-negotiation time to complete, in case the cable
1351	 * was just plugged in. The autoneg_failed flag does this.
1352	 */
1353	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1354	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1355	    (!(status & E1000_STATUS_LU)) &&
1356	    (!(rxcw & E1000_RXCW_C))) {
1357		if (!mac->autoneg_failed) {
1358			mac->autoneg_failed = TRUE;
1359			ret_val = 0;
1360			goto out;
1361		}
1362		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1363
1364		/* Disable auto-negotiation in the TXCW register */
1365		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1366
1367		/* Force link-up and also force full-duplex. */
1368		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1369		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1370		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1371
1372		/* Configure Flow Control after forcing link up. */
1373		ret_val = e1000_config_fc_after_link_up_generic(hw);
1374		if (ret_val) {
1375			DEBUGOUT("Error configuring flow control\n");
1376			goto out;
1377		}
1378	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1379		/*
1380		 * If we are forcing link and we are receiving /C/ ordered
1381		 * sets, re-enable auto-negotiation in the TXCW register
1382		 * and disable forced link in the Device Control register
1383		 * in an attempt to auto-negotiate with our link partner.
1384		 */
1385		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1386		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1387		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1388
1389		mac->serdes_has_link = TRUE;
1390	}
1391
1392out:
1393	return ret_val;
1394}
1395
1396/**
1397 *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1398 *  @hw: pointer to the HW structure
1399 *
1400 *  For the 82543 silicon, we need to set the MAC to match the settings
1401 *  of the PHY, even if the PHY is auto-negotiating.
1402 **/
1403static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1404{
1405	u32 ctrl;
1406	s32 ret_val = E1000_SUCCESS;
1407	u16 phy_data;
1408
1409	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1410
1411	if (!(hw->phy.ops.read_reg))
1412		goto out;
1413
1414	/* Set the bits to force speed and duplex */
1415	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1416	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1417	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1418
1419	/*
1420	 * Set up duplex in the Device Control and Transmit Control
1421	 * registers depending on negotiated values.
1422	 */
1423	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1424	if (ret_val)
1425		goto out;
1426
1427	ctrl &= ~E1000_CTRL_FD;
1428	if (phy_data & M88E1000_PSSR_DPLX)
1429		ctrl |= E1000_CTRL_FD;
1430
1431	hw->mac.ops.config_collision_dist(hw);
1432
1433	/*
1434	 * Set up speed in the Device Control register depending on
1435	 * negotiated values.
1436	 */
1437	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1438		ctrl |= E1000_CTRL_SPD_1000;
1439	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1440		ctrl |= E1000_CTRL_SPD_100;
1441
1442	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1443
1444out:
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_write_vfta_82543 - Write value to VLAN filter table
1450 *  @hw: pointer to the HW structure
1451 *  @offset: the 32-bit offset in which to write the value to.
1452 *  @value: the 32-bit value to write at location offset.
1453 *
1454 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1455 *  table.
1456 **/
1457static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1458{
1459	u32 temp;
1460
1461	DEBUGFUNC("e1000_write_vfta_82543");
1462
1463	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1464		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1465		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1466		E1000_WRITE_FLUSH(hw);
1467		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1468		E1000_WRITE_FLUSH(hw);
1469	} else {
1470		e1000_write_vfta_generic(hw, offset, value);
1471	}
1472}
1473
1474/**
1475 *  e1000_led_on_82543 - Turn on SW controllable LED
1476 *  @hw: pointer to the HW structure
1477 *
1478 *  Turns the SW defined LED on.
1479 **/
1480static s32 e1000_led_on_82543(struct e1000_hw *hw)
1481{
1482	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1483
1484	DEBUGFUNC("e1000_led_on_82543");
1485
1486	if (hw->mac.type == e1000_82544 &&
1487	    hw->phy.media_type == e1000_media_type_copper) {
1488		/* Clear SW-definable Pin 0 to turn on the LED */
1489		ctrl &= ~E1000_CTRL_SWDPIN0;
1490		ctrl |= E1000_CTRL_SWDPIO0;
1491	} else {
1492		/* Fiber 82544 and all 82543 use this method */
1493		ctrl |= E1000_CTRL_SWDPIN0;
1494		ctrl |= E1000_CTRL_SWDPIO0;
1495	}
1496	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1497
1498	return E1000_SUCCESS;
1499}
1500
1501/**
1502 *  e1000_led_off_82543 - Turn off SW controllable LED
1503 *  @hw: pointer to the HW structure
1504 *
1505 *  Turns the SW defined LED off.
1506 **/
1507static s32 e1000_led_off_82543(struct e1000_hw *hw)
1508{
1509	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1510
1511	DEBUGFUNC("e1000_led_off_82543");
1512
1513	if (hw->mac.type == e1000_82544 &&
1514	    hw->phy.media_type == e1000_media_type_copper) {
1515		/* Set SW-definable Pin 0 to turn off the LED */
1516		ctrl |= E1000_CTRL_SWDPIN0;
1517		ctrl |= E1000_CTRL_SWDPIO0;
1518	} else {
1519		ctrl &= ~E1000_CTRL_SWDPIN0;
1520		ctrl |= E1000_CTRL_SWDPIO0;
1521	}
1522	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1523
1524	return E1000_SUCCESS;
1525}
1526
1527/**
1528 *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Clears the hardware counters by reading the counter registers.
1532 **/
1533static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1534{
1535	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1536
1537	e1000_clear_hw_cntrs_base_generic(hw);
1538
1539	E1000_READ_REG(hw, E1000_PRC64);
1540	E1000_READ_REG(hw, E1000_PRC127);
1541	E1000_READ_REG(hw, E1000_PRC255);
1542	E1000_READ_REG(hw, E1000_PRC511);
1543	E1000_READ_REG(hw, E1000_PRC1023);
1544	E1000_READ_REG(hw, E1000_PRC1522);
1545	E1000_READ_REG(hw, E1000_PTC64);
1546	E1000_READ_REG(hw, E1000_PTC127);
1547	E1000_READ_REG(hw, E1000_PTC255);
1548	E1000_READ_REG(hw, E1000_PTC511);
1549	E1000_READ_REG(hw, E1000_PTC1023);
1550	E1000_READ_REG(hw, E1000_PTC1522);
1551
1552	E1000_READ_REG(hw, E1000_ALGNERRC);
1553	E1000_READ_REG(hw, E1000_RXERRC);
1554	E1000_READ_REG(hw, E1000_TNCRS);
1555	E1000_READ_REG(hw, E1000_CEXTERR);
1556	E1000_READ_REG(hw, E1000_TSCTC);
1557	E1000_READ_REG(hw, E1000_TSCTFC);
1558}
1559
1560/**
1561 *  e1000_read_mac_addr_82543 - Read device MAC address
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Reads the device MAC address from the EEPROM and stores the value.
1565 *  Since devices with two ports use the same EEPROM, we increment the
1566 *  last bit in the MAC address for the second port.
1567 *
1568 **/
1569s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1570{
1571	s32  ret_val = E1000_SUCCESS;
1572	u16 offset, nvm_data, i;
1573
1574	DEBUGFUNC("e1000_read_mac_addr");
1575
1576	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
1577		offset = i >> 1;
1578		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1579		if (ret_val) {
1580			DEBUGOUT("NVM Read Error\n");
1581			goto out;
1582		}
1583		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1584		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1585	}
1586
1587	/* Flip last bit of mac address if we're on second port */
1588	if (hw->bus.func == E1000_FUNC_1)
1589		hw->mac.perm_addr[5] ^= 1;
1590
1591	for (i = 0; i < ETH_ADDR_LEN; i++)
1592		hw->mac.addr[i] = hw->mac.perm_addr[i];
1593
1594out:
1595	return ret_val;
1596}
1597