1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD$*/
34
35/*
36 * 82540EM Gigabit Ethernet Controller
37 * 82540EP Gigabit Ethernet Controller
38 * 82545EM Gigabit Ethernet Controller (Copper)
39 * 82545EM Gigabit Ethernet Controller (Fiber)
40 * 82545GM Gigabit Ethernet Controller
41 * 82546EB Gigabit Ethernet Controller (Copper)
42 * 82546EB Gigabit Ethernet Controller (Fiber)
43 * 82546GB Gigabit Ethernet Controller
44 */
45
46#include "e1000_api.h"
47
48static s32  e1000_init_phy_params_82540(struct e1000_hw *hw);
49static s32  e1000_init_nvm_params_82540(struct e1000_hw *hw);
50static s32  e1000_init_mac_params_82540(struct e1000_hw *hw);
51static s32  e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
52static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
53static s32  e1000_init_hw_82540(struct e1000_hw *hw);
54static s32  e1000_reset_hw_82540(struct e1000_hw *hw);
55static s32  e1000_set_phy_mode_82540(struct e1000_hw *hw);
56static s32  e1000_set_vco_speed_82540(struct e1000_hw *hw);
57static s32  e1000_setup_copper_link_82540(struct e1000_hw *hw);
58static s32  e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
59static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
60static s32  e1000_read_mac_addr_82540(struct e1000_hw *hw);
61
62/**
63 * e1000_init_phy_params_82540 - Init PHY func ptrs.
64 * @hw: pointer to the HW structure
65 **/
66static s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
67{
68	struct e1000_phy_info *phy = &hw->phy;
69	s32 ret_val;
70
71	phy->addr		= 1;
72	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
73	phy->reset_delay_us	= 10000;
74	phy->type		= e1000_phy_m88;
75
76	/* Function Pointers */
77	phy->ops.check_polarity	= e1000_check_polarity_m88;
78	phy->ops.commit		= e1000_phy_sw_reset_generic;
79	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
80	phy->ops.get_cable_length = e1000_get_cable_length_m88;
81	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
82	phy->ops.read_reg	= e1000_read_phy_reg_m88;
83	phy->ops.reset		= e1000_phy_hw_reset_generic;
84	phy->ops.write_reg	= e1000_write_phy_reg_m88;
85	phy->ops.get_info	= e1000_get_phy_info_m88;
86	phy->ops.power_up	= e1000_power_up_phy_copper;
87	phy->ops.power_down	= e1000_power_down_phy_copper_82540;
88
89	ret_val = e1000_get_phy_id(hw);
90	if (ret_val)
91		goto out;
92
93	/* Verify phy id */
94	switch (hw->mac.type) {
95	case e1000_82540:
96	case e1000_82545:
97	case e1000_82545_rev_3:
98	case e1000_82546:
99	case e1000_82546_rev_3:
100		if (phy->id == M88E1011_I_PHY_ID)
101			break;
102		/* Fall Through */
103	default:
104		ret_val = -E1000_ERR_PHY;
105		goto out;
106		break;
107	}
108
109out:
110	return ret_val;
111}
112
113/**
114 * e1000_init_nvm_params_82540 - Init NVM func ptrs.
115 * @hw: pointer to the HW structure
116 **/
117static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
118{
119	struct e1000_nvm_info *nvm = &hw->nvm;
120	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
121
122	DEBUGFUNC("e1000_init_nvm_params_82540");
123
124	nvm->type = e1000_nvm_eeprom_microwire;
125	nvm->delay_usec = 50;
126	nvm->opcode_bits = 3;
127	switch (nvm->override) {
128	case e1000_nvm_override_microwire_large:
129		nvm->address_bits = 8;
130		nvm->word_size = 256;
131		break;
132	case e1000_nvm_override_microwire_small:
133		nvm->address_bits = 6;
134		nvm->word_size = 64;
135		break;
136	default:
137		nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
138		nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
139		break;
140	}
141
142	/* Function Pointers */
143	nvm->ops.acquire	= e1000_acquire_nvm_generic;
144	nvm->ops.read		= e1000_read_nvm_microwire;
145	nvm->ops.release	= e1000_release_nvm_generic;
146	nvm->ops.update		= e1000_update_nvm_checksum_generic;
147	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
148	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
149	nvm->ops.write		= e1000_write_nvm_microwire;
150
151	return E1000_SUCCESS;
152}
153
154/**
155 * e1000_init_mac_params_82540 - Init MAC func ptrs.
156 * @hw: pointer to the HW structure
157 **/
158static s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
159{
160	struct e1000_mac_info *mac = &hw->mac;
161	s32 ret_val = E1000_SUCCESS;
162
163	DEBUGFUNC("e1000_init_mac_params_82540");
164
165	/* Set media type */
166	switch (hw->device_id) {
167	case E1000_DEV_ID_82545EM_FIBER:
168	case E1000_DEV_ID_82545GM_FIBER:
169	case E1000_DEV_ID_82546EB_FIBER:
170	case E1000_DEV_ID_82546GB_FIBER:
171		hw->phy.media_type = e1000_media_type_fiber;
172		break;
173	case E1000_DEV_ID_82545GM_SERDES:
174	case E1000_DEV_ID_82546GB_SERDES:
175		hw->phy.media_type = e1000_media_type_internal_serdes;
176		break;
177	default:
178		hw->phy.media_type = e1000_media_type_copper;
179		break;
180	}
181
182	/* Set mta register count */
183	mac->mta_reg_count = 128;
184	/* Set rar entry count */
185	mac->rar_entry_count = E1000_RAR_ENTRIES;
186
187	/* Function pointers */
188
189	/* bus type/speed/width */
190	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
191	/* function id */
192	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
193	/* reset */
194	mac->ops.reset_hw = e1000_reset_hw_82540;
195	/* hw initialization */
196	mac->ops.init_hw = e1000_init_hw_82540;
197	/* link setup */
198	mac->ops.setup_link = e1000_setup_link_generic;
199	/* physical interface setup */
200	mac->ops.setup_physical_interface =
201		(hw->phy.media_type == e1000_media_type_copper)
202			? e1000_setup_copper_link_82540
203			: e1000_setup_fiber_serdes_link_82540;
204	/* check for link */
205	switch (hw->phy.media_type) {
206	case e1000_media_type_copper:
207		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
208		break;
209	case e1000_media_type_fiber:
210		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
211		break;
212	case e1000_media_type_internal_serdes:
213		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
214		break;
215	default:
216		ret_val = -E1000_ERR_CONFIG;
217		goto out;
218		break;
219	}
220	/* link info */
221	mac->ops.get_link_up_info =
222		(hw->phy.media_type == e1000_media_type_copper)
223			? e1000_get_speed_and_duplex_copper_generic
224			: e1000_get_speed_and_duplex_fiber_serdes_generic;
225	/* multicast address update */
226	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
227	/* writing VFTA */
228	mac->ops.write_vfta = e1000_write_vfta_generic;
229	/* clearing VFTA */
230	mac->ops.clear_vfta = e1000_clear_vfta_generic;
231	/* read mac address */
232	mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
233	/* ID LED init */
234	mac->ops.id_led_init = e1000_id_led_init_generic;
235	/* setup LED */
236	mac->ops.setup_led = e1000_setup_led_generic;
237	/* cleanup LED */
238	mac->ops.cleanup_led = e1000_cleanup_led_generic;
239	/* turn on/off LED */
240	mac->ops.led_on = e1000_led_on_generic;
241	mac->ops.led_off = e1000_led_off_generic;
242	/* clear hardware counters */
243	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
244
245out:
246	return ret_val;
247}
248
249/**
250 * e1000_init_function_pointers_82540 - Init func ptrs.
251 * @hw: pointer to the HW structure
252 *
253 * Called to initialize all function pointers and parameters.
254 **/
255void e1000_init_function_pointers_82540(struct e1000_hw *hw)
256{
257	DEBUGFUNC("e1000_init_function_pointers_82540");
258
259	hw->mac.ops.init_params = e1000_init_mac_params_82540;
260	hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
261	hw->phy.ops.init_params = e1000_init_phy_params_82540;
262}
263
264/**
265 *  e1000_reset_hw_82540 - Reset hardware
266 *  @hw: pointer to the HW structure
267 *
268 *  This resets the hardware into a known state.
269 **/
270static s32 e1000_reset_hw_82540(struct e1000_hw *hw)
271{
272	u32 ctrl, manc;
273	s32 ret_val = E1000_SUCCESS;
274
275	DEBUGFUNC("e1000_reset_hw_82540");
276
277	DEBUGOUT("Masking off all interrupts\n");
278	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
279
280	E1000_WRITE_REG(hw, E1000_RCTL, 0);
281	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
282	E1000_WRITE_FLUSH(hw);
283
284	/*
285	 * Delay to allow any outstanding PCI transactions to complete
286	 * before resetting the device.
287	 */
288	msec_delay(10);
289
290	ctrl = E1000_READ_REG(hw, E1000_CTRL);
291
292	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
293	switch (hw->mac.type) {
294	case e1000_82545_rev_3:
295	case e1000_82546_rev_3:
296		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
297		break;
298	default:
299		/*
300		 * These controllers can't ack the 64-bit write when
301		 * issuing the reset, so we use IO-mapping as a
302		 * workaround to issue the reset.
303		 */
304		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
305		break;
306	}
307
308	/* Wait for EEPROM reload */
309	msec_delay(5);
310
311	/* Disable HW ARPs on ASF enabled adapters */
312	manc = E1000_READ_REG(hw, E1000_MANC);
313	manc &= ~E1000_MANC_ARP_EN;
314	E1000_WRITE_REG(hw, E1000_MANC, manc);
315
316	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
317	E1000_READ_REG(hw, E1000_ICR);
318
319	return ret_val;
320}
321
322/**
323 *  e1000_init_hw_82540 - Initialize hardware
324 *  @hw: pointer to the HW structure
325 *
326 *  This inits the hardware readying it for operation.
327 **/
328static s32 e1000_init_hw_82540(struct e1000_hw *hw)
329{
330	struct e1000_mac_info *mac = &hw->mac;
331	u32 txdctl, ctrl_ext;
332	s32 ret_val;
333	u16 i;
334
335	DEBUGFUNC("e1000_init_hw_82540");
336
337	/* Initialize identification LED */
338	ret_val = mac->ops.id_led_init(hw);
339	if (ret_val) {
340		DEBUGOUT("Error initializing identification LED\n");
341		/* This is not fatal and we should not stop init due to this */
342	}
343
344	/* Disabling VLAN filtering */
345	DEBUGOUT("Initializing the IEEE VLAN\n");
346	if (mac->type < e1000_82545_rev_3)
347		E1000_WRITE_REG(hw, E1000_VET, 0);
348
349	mac->ops.clear_vfta(hw);
350
351	/* Setup the receive address. */
352	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
353
354	/* Zero out the Multicast HASH table */
355	DEBUGOUT("Zeroing the MTA\n");
356	for (i = 0; i < mac->mta_reg_count; i++) {
357		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
358		/*
359		 * Avoid back to back register writes by adding the register
360		 * read (flush).  This is to protect against some strange
361		 * bridge configurations that may issue Memory Write Block
362		 * (MWB) to our register space.  The *_rev_3 hardware at
363		 * least doesn't respond correctly to every other dword in an
364		 * MWB to our register space.
365		 */
366		E1000_WRITE_FLUSH(hw);
367	}
368
369	if (mac->type < e1000_82545_rev_3)
370		e1000_pcix_mmrbc_workaround_generic(hw);
371
372	/* Setup link and flow control */
373	ret_val = mac->ops.setup_link(hw);
374
375	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
376	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
377		  E1000_TXDCTL_FULL_TX_DESC_WB;
378	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
379
380	/*
381	 * Clear all of the statistics registers (clear on read).  It is
382	 * important that we do this after we have tried to establish link
383	 * because the symbol error count will increment wildly if there
384	 * is no link.
385	 */
386	e1000_clear_hw_cntrs_82540(hw);
387
388	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
389	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
390		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
391		/*
392		 * Relaxed ordering must be disabled to avoid a parity
393		 * error crash in a PCI slot.
394		 */
395		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
396		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
397	}
398
399	return ret_val;
400}
401
402/**
403 *  e1000_setup_copper_link_82540 - Configure copper link settings
404 *  @hw: pointer to the HW structure
405 *
406 *  Calls the appropriate function to configure the link for auto-neg or forced
407 *  speed and duplex.  Then we check for link, once link is established calls
408 *  to configure collision distance and flow control are called.  If link is
409 *  not established, we return -E1000_ERR_PHY (-2).
410 **/
411static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
412{
413	u32 ctrl;
414	s32 ret_val;
415	u16 data;
416
417	DEBUGFUNC("e1000_setup_copper_link_82540");
418
419	ctrl = E1000_READ_REG(hw, E1000_CTRL);
420	ctrl |= E1000_CTRL_SLU;
421	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
422	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
423
424	ret_val = e1000_set_phy_mode_82540(hw);
425	if (ret_val)
426		goto out;
427
428	if (hw->mac.type == e1000_82545_rev_3 ||
429	    hw->mac.type == e1000_82546_rev_3) {
430		ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
431					       &data);
432		if (ret_val)
433			goto out;
434		data |= 0x00000008;
435		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
436						data);
437		if (ret_val)
438			goto out;
439	}
440
441	ret_val = e1000_copper_link_setup_m88(hw);
442	if (ret_val)
443		goto out;
444
445	ret_val = e1000_setup_copper_link_generic(hw);
446
447out:
448	return ret_val;
449}
450
451/**
452 *  e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
453 *  @hw: pointer to the HW structure
454 *
455 *  Set the output amplitude to the value in the EEPROM and adjust the VCO
456 *  speed to improve Bit Error Rate (BER) performance.  Configures collision
457 *  distance and flow control for fiber and serdes links.  Upon successful
458 *  setup, poll for link.
459 **/
460static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
461{
462	struct e1000_mac_info *mac = &hw->mac;
463	s32 ret_val = E1000_SUCCESS;
464
465	DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
466
467	switch (mac->type) {
468	case e1000_82545_rev_3:
469	case e1000_82546_rev_3:
470		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
471			/*
472			 * If we're on serdes media, adjust the output
473			 * amplitude to value set in the EEPROM.
474			 */
475			ret_val = e1000_adjust_serdes_amplitude_82540(hw);
476			if (ret_val)
477				goto out;
478		}
479		/* Adjust VCO speed to improve BER performance */
480		ret_val = e1000_set_vco_speed_82540(hw);
481		if (ret_val)
482			goto out;
483	default:
484		break;
485	}
486
487	ret_val = e1000_setup_fiber_serdes_link_generic(hw);
488
489out:
490	return ret_val;
491}
492
493/**
494 *  e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
495 *  @hw: pointer to the HW structure
496 *
497 *  Adjust the SERDES output amplitude based on the EEPROM settings.
498 **/
499static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
500{
501	s32 ret_val;
502	u16 nvm_data;
503
504	DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
505
506	ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
507	if (ret_val)
508		goto out;
509
510	if (nvm_data != NVM_RESERVED_WORD) {
511		/* Adjust serdes output amplitude only. */
512		nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
513		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
514						nvm_data);
515		if (ret_val)
516			goto out;
517	}
518
519out:
520	return ret_val;
521}
522
523/**
524 *  e1000_set_vco_speed_82540 - Set VCO speed for better performance
525 *  @hw: pointer to the HW structure
526 *
527 *  Set the VCO speed to improve Bit Error Rate (BER) performance.
528 **/
529static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
530{
531	s32  ret_val;
532	u16 default_page = 0;
533	u16 phy_data;
534
535	DEBUGFUNC("e1000_set_vco_speed_82540");
536
537	/* Set PHY register 30, page 5, bit 8 to 0 */
538
539	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
540				       &default_page);
541	if (ret_val)
542		goto out;
543
544	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
545	if (ret_val)
546		goto out;
547
548	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
549	if (ret_val)
550		goto out;
551
552	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
553	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
554	if (ret_val)
555		goto out;
556
557	/* Set PHY register 30, page 4, bit 11 to 1 */
558
559	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
560	if (ret_val)
561		goto out;
562
563	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
564	if (ret_val)
565		goto out;
566
567	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
568	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
569	if (ret_val)
570		goto out;
571
572	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
573					default_page);
574
575out:
576	return ret_val;
577}
578
579/**
580 *  e1000_set_phy_mode_82540 - Set PHY to class A mode
581 *  @hw: pointer to the HW structure
582 *
583 *  Sets the PHY to class A mode and assumes the following operations will
584 *  follow to enable the new class mode:
585 *    1.  Do a PHY soft reset.
586 *    2.  Restart auto-negotiation or force link.
587 **/
588static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
589{
590	s32 ret_val = E1000_SUCCESS;
591	u16 nvm_data;
592
593	DEBUGFUNC("e1000_set_phy_mode_82540");
594
595	if (hw->mac.type != e1000_82545_rev_3)
596		goto out;
597
598	ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
599	if (ret_val) {
600		ret_val = -E1000_ERR_PHY;
601		goto out;
602	}
603
604	if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
605		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
606						0x000B);
607		if (ret_val) {
608			ret_val = -E1000_ERR_PHY;
609			goto out;
610		}
611		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
612						0x8104);
613		if (ret_val) {
614			ret_val = -E1000_ERR_PHY;
615			goto out;
616		}
617
618	}
619
620out:
621	return ret_val;
622}
623
624/**
625 * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
626 * @hw: pointer to the HW structure
627 *
628 * In the case of a PHY power down to save power, or to turn off link during a
629 * driver unload, or wake on lan is not enabled, remove the link.
630 **/
631static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
632{
633	/* If the management interface is not enabled, then power down */
634	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
635		e1000_power_down_phy_copper(hw);
636
637	return;
638}
639
640/**
641 *  e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
642 *  @hw: pointer to the HW structure
643 *
644 *  Clears the hardware counters by reading the counter registers.
645 **/
646static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
647{
648	DEBUGFUNC("e1000_clear_hw_cntrs_82540");
649
650	e1000_clear_hw_cntrs_base_generic(hw);
651
652	E1000_READ_REG(hw, E1000_PRC64);
653	E1000_READ_REG(hw, E1000_PRC127);
654	E1000_READ_REG(hw, E1000_PRC255);
655	E1000_READ_REG(hw, E1000_PRC511);
656	E1000_READ_REG(hw, E1000_PRC1023);
657	E1000_READ_REG(hw, E1000_PRC1522);
658	E1000_READ_REG(hw, E1000_PTC64);
659	E1000_READ_REG(hw, E1000_PTC127);
660	E1000_READ_REG(hw, E1000_PTC255);
661	E1000_READ_REG(hw, E1000_PTC511);
662	E1000_READ_REG(hw, E1000_PTC1023);
663	E1000_READ_REG(hw, E1000_PTC1522);
664
665	E1000_READ_REG(hw, E1000_ALGNERRC);
666	E1000_READ_REG(hw, E1000_RXERRC);
667	E1000_READ_REG(hw, E1000_TNCRS);
668	E1000_READ_REG(hw, E1000_CEXTERR);
669	E1000_READ_REG(hw, E1000_TSCTC);
670	E1000_READ_REG(hw, E1000_TSCTFC);
671
672	E1000_READ_REG(hw, E1000_MGTPRC);
673	E1000_READ_REG(hw, E1000_MGTPDC);
674	E1000_READ_REG(hw, E1000_MGTPTC);
675}
676
677/**
678 *  e1000_read_mac_addr_82540 - Read device MAC address
679 *  @hw: pointer to the HW structure
680 *
681 *  Reads the device MAC address from the EEPROM and stores the value.
682 *  Since devices with two ports use the same EEPROM, we increment the
683 *  last bit in the MAC address for the second port.
684 *
685 *  This version is being used over generic because of customer issues
686 *  with VmWare and Virtual Box when using generic. It seems in
687 *  the emulated 82545, RAR[0] does NOT have a valid address after a
688 *  reset, this older method works and using this breaks nothing for
689 *  these legacy adapters.
690 **/
691s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
692{
693	s32  ret_val = E1000_SUCCESS;
694	u16 offset, nvm_data, i;
695
696	DEBUGFUNC("e1000_read_mac_addr");
697
698	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
699		offset = i >> 1;
700		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
701		if (ret_val) {
702			DEBUGOUT("NVM Read Error\n");
703			goto out;
704		}
705		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
706		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
707	}
708
709	/* Flip last bit of mac address if we're on second port */
710	if (hw->bus.func == E1000_FUNC_1)
711		hw->mac.perm_addr[5] ^= 1;
712
713	for (i = 0; i < ETH_ADDR_LEN; i++)
714		hw->mac.addr[i] = hw->mac.perm_addr[i];
715
716out:
717	return ret_val;
718}
719